1
|
Bolin LG. Soil microbes influence the ecology and evolution of plant plasticity. THE NEW PHYTOLOGIST 2025; 245:2224-2236. [PMID: 39775550 DOI: 10.1111/nph.20383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Stress often induces plant trait plasticity, and microbial communities also alter plant traits. Therefore, it is unclear how much plasticity results from direct plant responses to stress vs indirect responses due to stress-induced changes in soil microbial communities. To test how microbes and microbial community responses to stress affect the ecology and potentially the evolution of plant plasticity, I grew plants in four stress environments (salt, herbicide, herbivory, and no stress) with microbes that had responded to these same environments or with sterile inoculant. Plants delayed flowering under stress only when inoculated with live microbial communities, and this plasticity was maladaptive. However, microbial communities responded to stress in ways that accelerated flowering across all environments. Microbes also affected the expression of genetic variation for plant flowering time and specific leaf area, as well as genetic variation for plasticity of both traits, and disrupted a positive genetic correlation for plasticity in response to herbicide and herbivory stress, suggesting that microbes may affect the pace of plant evolution. Together, these results highlight an important role for soil microbes in plant plastic responses to stress and suggest that microbes may alter the evolution of plant plasticity.
Collapse
Affiliation(s)
- Lana G Bolin
- Department of Biology, The University of New Mexico, Castetter Hall, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
2
|
Pozzi ACM, Shaw RG, May G. The geographic scale of population-level variation in growth and nodulation differs for two species of prairie clover. AMERICAN JOURNAL OF BOTANY 2025; 112:e16450. [PMID: 39754326 DOI: 10.1002/ajb2.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 01/06/2025]
Abstract
PREMISE Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria. METHODS Seed representing two species, Dalea candida and D. purpurea, from the same five source populations were planted into an experimental site in Minnesota. We assessed variation within and among source populations in plant growth and in numbers of nodules and evaluated the relationship of growth and nodulation levels. RESULTS Plant growth varied among source populations, with greater differences among populations of D. purpurea than of D. candida. We did not detect a relationship between plant growth and distance of source populations from the experimental site. Populations of both species were equally likely to develop nodules at the experimental site, but the numbers of nodules were lowest for the most distantly sourced populations. Plant growth was positively correlated with the number of nodules, and this relationship varied considerably within and among populations. CONCLUSIONS Environmental heterogeneity at local and regional scales maintains substantial levels of genetic variation in plant populations within remnant prairie preserves. Further, association with rhizobia at a restoration site can improve growth of widely sourced plant populations. The in situ maintenance of plant genetic variation and species diversity provides resources for conservation and maintenance of prairie biomes.
Collapse
Affiliation(s)
- Adrien C M Pozzi
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, 69622, France
| | - Ruth G Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA
| |
Collapse
|
3
|
Iriart V, Rarick EM, Ashman TL. Rhizobial variation, more than plant variation, mediates plant symbiotic and fitness responses to herbicide stress. Ecology 2024:e4426. [PMID: 39440990 DOI: 10.1002/ecy.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024]
Abstract
Symbiotic mutualisms provide critical ecosystem services throughout the world. Anthropogenic stressors, however, may disrupt mutualistic interactions and impact ecosystem health. The plant-rhizobia symbiosis promotes plant growth and contributes to the nitrogen (N) cycle. While off-target herbicide exposure is recognized as a significant stressor impacting wild plants, we lack knowledge about how it affects the symbiotic relationship between plants and rhizobia. Moreover, we do not know whether the impact of herbicide exposure on symbiotic traits or plant fitness might be ameliorated by plant or rhizobial genetic variation. To address these gaps, we conducted a greenhouse study where we grew 17 full-sibling genetic families of red clover (Trifolium pratense) either alone (uninoculated) or in symbiosis with one of two genetic strains of rhizobia (Rhizobium leguminosarum) and exposed them to a concentration of the herbicide dicamba that simulated "drift" (i.e., off-target atmospheric movement) or a control solution. We recorded responses in immediate vegetative injury, key features of the plant-rhizobia mutualism (nodule number, nodule size, and N fixation), mutualism outcomes, and plant fitness (biomass). In general, we found that rhizobial variation more than plant variation determined outcomes of mutualism and plant fitness in response to herbicide exposure. Herbicide damage response depended on plant family, but also whether plants were inoculated with rhizobia and if so, with which strain. Rhizobial strain variation determined nodule number and size, but this was herbicide treatment-dependent. In contrast, strain and herbicide treatment independently impacted symbiotic N fixation. And while herbicide exposure significantly reduced plant fitness, this effect depended on inoculation state. Furthermore, the differential fitness benefits that the two rhizobial strains provided plants seemed to diminish under herbicidal conditions. Altogether, these findings suggest that exposure to low levels of herbicide impact key components of the plant-rhizobia mutualism as well as plant fitness, but genetic variation in the partners determines the magnitude and/or direction of these effects. In particular, our results highlight a strong role of rhizobial strain identity in driving both symbiotic and plant growth responses to herbicide stress.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Rarick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Porter SS, Dupin SE, Denison RF, Kiers ET, Sachs JL. Host-imposed control mechanisms in legume-rhizobia symbiosis. Nat Microbiol 2024:10.1038/s41564-024-01762-2. [PMID: 39095495 DOI: 10.1038/s41564-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.
Collapse
Affiliation(s)
- Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - Simon E Dupin
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - R Ford Denison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joel L Sachs
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
5
|
Lau JA, Hammond MD, Schmidt JE, Weese DJ, Yang WH, Heath KD. Contemporary evolution rivals the effects of rhizobium presence on community and ecosystem properties in experimental mesocosms. Oecologia 2022; 200:133-143. [PMID: 36125524 DOI: 10.1007/s00442-022-05253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Because genotypes within a species commonly differ in traits that influence other species, whole communities, or even ecosystem functions, evolutionary change within one key species may affect the community and ecosystem processes. Here we use experimental mesocosms to test how the evolution of reduced cooperation in rhizobium mutualists in response to 20 years of nitrogen fertilization compares to the effects of rhizobium presence on soil nitrogen availability and plant community composition and diversity. The evolution of reduced rhizobium cooperation caused reductions in soil nitrogen, biological nitrogen fixation, and leaf nitrogen concentrations that were as strong as, or even stronger than, experimental rhizobium inoculation (presence/absence) treatments. Effects of both rhizobium evolution and rhizobium inoculation on legume dominance, plant community composition, and plant species diversity were often smaller in magnitude, but suggest that rhizobium evolution can alter the relative abundance of plant functional groups. Our findings indicate that the consequences of rapid microbial evolution for ecosystems and communities can rival the effects resulting from the presence or abundance of keystone mutualists.
Collapse
Affiliation(s)
- Jennifer A Lau
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA.
- Department of Biology & the Environmental Resilience Institute, Indiana University, 1001 E 3rd St., Bloomington, IN, 47401, USA.
| | - Mark D Hammond
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | - Jennifer E Schmidt
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Dylan J Weese
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Geology, University of Illinois, 1301 West Green St, Urbana, IL, 61801, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Heath KD, Batstone RT, Cerón Romero M, McMullen JG. MGEs as the MVPs of Partner Quality Variation in Legume-Rhizobium Symbiosis. mBio 2022; 13:e0088822. [PMID: 35758609 PMCID: PMC9426554 DOI: 10.1128/mbio.00888-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite decades of research, we are only just beginning to understand the forces maintaining variation in the nitrogen-fixing symbiosis between rhizobial bacteria and leguminous plants. In their recent work, Alexandra Weisberg and colleagues use genomics to document the breadth of mobile element diversity that carries the symbiosis genes of Bradyrhizobium in natural populations. Studying rhizobia from the perspective of their mobile genetic elements, which have their own transmission modes and fitness interests, reveals novel mechanisms for the generation and maintenance of diversity in natural populations of these ecologically and economically important mutualisms.
Collapse
Affiliation(s)
- Katy D. Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | - Rebecca T. Batstone
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | - Mario Cerón Romero
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois
| | | |
Collapse
|
7
|
Burghardt LT, Epstein B, Hoge M, Trujillo DI, Tiffin P. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype. Appl Environ Microbiol 2022; 88:e0052622. [PMID: 35852362 PMCID: PMC9361818 DOI: 10.1128/aem.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.
Collapse
Affiliation(s)
- Liana T. Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Plant Science Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Michelle Hoge
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Diana I. Trujillo
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
8
|
Elias JD, Agrawal AA. A private channel of nitrogen alleviates interspecific competition for an annual legume. Ecology 2021; 102:e03449. [PMID: 34166532 DOI: 10.1002/ecy.3449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 11/08/2022]
Abstract
The way resource availability predictably alters interspecific interactions and may favor one resource-acquisition strategy over another is critical for understanding context dependency. The ubiquity of nitrogen (N) limitation across terrestrial environments is a driver of plant competition and the association of some plants with N-fixing bacteria (rhizobia) may alleviate competition with nonfixing plants. Conversely, when available soil N is elevated, competitive advantages imparted by rhizobia are hypothesized to decline because nonfixing species are able to acquire those nutrients readily. We manipulated competition, soil N, and soil microbial inoculation, employing the ground bean Amphicarpaea bracteata, a native annual N-fixing legume, and jewelweed Impatiens capensis, a native co-occurring nonfixing annual. We found that legume performance was negatively impacted by interspecific competition, but less so under lower soil N in both the greenhouse and field. The legume invested a greater proportion of resources in rhizobia when competing, but only under low N. Also consistent with predictions, a competition-by-microbial-inoculation interaction demonstrated that negative effects of competition were alleviated by rhizobia. Finally, we detected an interaction between inoculation and fertilization, whereby N addition resulted in increased performance for uninoculated legumes, but a small decline in performance for inoculated plants, the latter likely representing a cost of mutualism. Thus, several lines of evidence point to the legume-rhizobia mutualism being more beneficial under competition and limited soil N. Competing I. capensis, in contrast, benefited from N addition regardless of the addition of soil microbes. In a survey of natural populations, legume and rhizobia growth were positively correlated at population edges (where interspecific competition is expected to be higher, the mutualism is stronger), whereas at population centers we found no association. Isotopic evidence confirmed a higher degree of rhizobial N-fixation at population edges compared to centers. Taken together, our results demonstrate an important role for the largely private channel of nitrogen in legume competitive performance, but with the benefits imparted by rhizobia being predictably weaker at higher soil fertility. We speculate that alleviation of competitive impacts through resource partitioning is an important and yet largely overlooked aspect of the evolutionary ecology of legume-rhizobia interactions.
Collapse
Affiliation(s)
- J D Elias
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| | - A A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
9
|
The direct and interactive effects of elevated CO2 and additional nitrate on relative costs and benefits of legume-rhizobia symbiosis. Symbiosis 2021. [DOI: 10.1007/s13199-021-00784-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractRising concentrations of carbon dioxide (CO2) is likely to have important effects on growth and development of plants and on their relationship with symbiotic microbes. A rise in CO2 could increase demand by plant hosts for nutrient resources, which may increase host investments in beneficial symbionts. In the legume-rhizobia mutualism, while elevated CO2 is often associated with increased nodule growth and investment in N2-fixing rhizobia, it is yet unclear if this response depends on the mutualistic quality of the rhizobia. To test if host carbon allocation towards more-beneficial nodules are similar to less-beneficial (but still effective) nodules when plant N demand changes, we manipulated plant C and N status with elevated CO2 and additional nitrate. We used two isogenic Rhizobium etli strains that differ in their ability to synthesize an energy reserve compound, poly-beta-hydroxybutyrate (PHB), as well as their efficiencies for nitrogen fixation and nodulation rates, resulting in two Phaseolus vulgaris host groups with either large number of small nodules or small number of large nodules. The addition of nitrate negatively affected carbon allocation towards nodules, and elevated CO2 reversed this effect, as expected. However, this alleviation of nodule inhibition was greater on plants that started with greater numbers of smaller nodules. If smaller nodules indicate less-efficient or low-fixing rhizobia, this study suggests that increased demand for nitrogen in the face of elevated CO2 has the potential to disproportionately favor less-beneficial strains and increase variation of nitrogen fixation quality among rhizobia.
Collapse
|
10
|
Cao Y, Tie D, Zhao JL, Wang XB, Yi JJ, Chai YF, Wang KF, Wang ET, Yue M. Diversity and distribution of Sophora davidii rhizobia in habitats with different irradiances and soil traits in Loess Plateau area of China. Syst Appl Microbiol 2021; 44:126224. [PMID: 34218028 DOI: 10.1016/j.syapm.2021.126224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
To investigate the diversity and distribution of rhizobia associated with Sophora davidii in habitats with different light and soil conditions at the Loess Plateau, we isolated rhizobia from root nodules of this plant grown at 14 sites at forest edge or understory in Shaanxi Province. Based on PCR-RFLP and phylogenies of 16S rRNA gene, housekeeping genes (atpD, dnaK, recA), and symbiosis genes (nodC and nifH), a total of 271 isolates were identified as 16 Mesorhizobium genospecies, belonging to four nodC lineages, and three nifH lineages. The dominance of M. waimense in the forest edge and of M. amorphae/Mesorhizobium sp. X in the understory habitat evidenced the illumination as a possible factor to affect the diversity and biogeographic patterns of rhizobia. However, the results of Canonical Correlation Analysis (CCA) among the environmental factors and distribution of rhizobial genospecies illustrated that soil pH and contents of total phosphorus, total potassium and total organic carbon were the main determinants for the community structure of S. davidii rhizobia, while the illumination conditions and available P presented similar and minor effects. In addition, high similarity of nodC and nifH genes between Mesorhizobium robiniae and some S. davidii rhizobia under the forest of Robinia pseudoacacia might be evidence for symbiotic gene lateral transfer. These findings firstly brought an insight into the diversity and distribution of rhizobia associated with S. davidii, and revealed illumination conditions a possible factor with impacts less than the soil traits to drive the symbiosis association between rhizobia and their host legumes.
Collapse
Affiliation(s)
- Ying Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China.
| | - Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Jia Le Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Xu Bo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Jun Jie Yi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Yong Fu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - Ke Feng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Cd. México, Mexico
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China; Department of Life Science, Northwest University, Taibai North Rd. 229, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
11
|
Vaidya P, Stinchcombe JR. The Potential for Genotype-by-Environment Interactions to Maintain Genetic Variation in a Model Legume-Rhizobia Mutualism. PLANT COMMUNICATIONS 2020; 1:100114. [PMID: 33367267 PMCID: PMC7747969 DOI: 10.1016/j.xplc.2020.100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 05/10/2023]
Abstract
The maintenance of genetic variation in mutualism-related traits is key for understanding mutualism evolution, yet the mechanisms maintaining variation remain unclear. We asked whether genotype-by-environment (G×E) interaction is a potential mechanism maintaining variation in the model legume-rhizobia system, Medicago truncatula-Ensifer meliloti. We planted 50 legume genotypes in a greenhouse under ambient light and shade to reflect reduced carbon availability for plants. We found an expected reduction under shaded conditions for plant performance traits, such as leaf number, aboveground and belowground biomass, and a mutualism-related trait, nodule number. We also found G×E for nodule number, with ∼83% of this interaction due to shifts in genotype fitness rank order across light environments, coupled with strong positive directional selection on nodule number regardless of light environment. Our results suggest that G×E can maintain genetic variation in a mutualism-related trait that is under consistent positive directional selection across light environments.
Collapse
Affiliation(s)
- Priya Vaidya
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- Corresponding author
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- Koffler Scientific Reserve at Joker's Hill, University of Toronto, Toronto, ON M5S3B2, Canada
| |
Collapse
|
12
|
Heath KD, Podowski JC, Heniff S, Klinger CR, Burke PV, Weese DJ, Yang WH, Lau JA. Light availability and rhizobium variation interactively mediate the outcomes of legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2020; 107:229-238. [PMID: 32072629 DOI: 10.1002/ajb2.1435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/08/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Nutrients, light, water, and temperature are key factors limiting the growth of individual plants in nature. Mutualistic interactions between plants and microbes often mediate resource limitation for both partners. In the mutualism between legumes and rhizobia, plants provide rhizobia with carbon in exchange for fixed nitrogen. Because partner quality in mutualisms is genotype-dependent, within-species genetic variation is expected to alter the responses of mutualists to changes in the resource environment. Here we ask whether partner quality variation in rhizobia mediates the response of host plants to changing light availability, and conversely, whether light alters the expression of partner quality variation. METHODS We inoculated clover hosts with 11 strains of Rhizobium leguminosarum that differed in partner quality, grew plants under either ambient or low light conditions in the greenhouse, and measured plant growth, nodule traits, and foliar nutrient composition. RESULTS Light availability and rhizobium inoculum interactively determined plant growth, and variation in rhizobium partner quality was more apparent in ambient light. CONCLUSIONS Our results suggest that variation in the costs and benefits of rhizobium symbionts mediate host responses to light availability and that rhizobium strain variation might more important in higher-light environments. Our work adds to a growing appreciation for the role of microbial intraspecific and interspecific diversity in mediating extended phenotypes in their hosts and suggests an important role for light availability in the ecology and evolution of legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Justin C Podowski
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Stephanie Heniff
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Christie R Klinger
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Patricia V Burke
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Dylan J Weese
- Department of Biology, St. Ambrose University, Davenport, IA, 52803, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Jennifer A Lau
- W. K. Kellogg Biological Station and Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
13
|
Baucom RS, Heath KD, Chambers SM. Plant-environment interactions from the lens of plant stress, reproduction, and mutualisms. AMERICAN JOURNAL OF BOTANY 2020; 107:175-178. [PMID: 32060910 PMCID: PMC7186814 DOI: 10.1002/ajb2.1437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 05/06/2023]
Affiliation(s)
- Regina S. Baucom
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Katy D. Heath
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | | |
Collapse
|