1
|
Prabhune NM, Ameen B, Prabhu S. Therapeutic potential of synthetic and natural iron chelators against ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3527-3555. [PMID: 39601820 DOI: 10.1007/s00210-024-03640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron accumulation that results in the production of reactive oxygen species. This further causes lipid peroxidation and damage to the cellular components, eventually culminating into oxidative stress. Recent studies have highlighted the pivotal role of ferroptosis in the pathophysiological development and progression of various diseases such as β-thalassemia, hemochromatosis, and neurodegenerative disorders like AD and PD. Extensive efforts are in progress to understand the molecular mechanisms governing the role of ferroptosis in these conditions, and chelation therapy stands out as a potential approach to mitigate ferroptosis and its related implications in their development. There are currently both synthetic and natural iron chelators that are being researched for their potential as ferroptosis inhibitors. While synthetic chelators are relatively well-established and studied, their short plasma half-life and toxic side effects necessitate the exploration and identification of natural products that can act as efficient and safe iron chelators. In this review, we comprehensively discuss both synthetic and natural iron chelators as potential therapeutic strategies against ferroptosis-induced pathologies.
Collapse
Affiliation(s)
- Nupura Manish Prabhune
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bilal Ameen
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sudharshan Prabhu
- Department of Cellular and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Yan Y, Gong Y, Liang X, Xiong Q, Lin J, Wu Y, Zhang L, Chen H, Jin J, Luan X. Decoding β-catenin associated protein-protein interactions: Emerging cancer therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2025; 1880:189232. [PMID: 39643250 DOI: 10.1016/j.bbcan.2024.189232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The hyperactive Wnt/β-catenin signaling circuit has been proven to be closely related to the progression of various cancers, with β-catenin serving as a central regulator of pro-tumorigenic processes. Preclinical evidences strongly support β-catenin as a promising therapeutic target. However, it has long been considered "undruggable" due to challenges such as the lack of crystal structures for its N- and C-terminal domains, high mutation rates, and limited availability of inhibitors. Notably, the network of β-catenin-associated protein-protein interactions (PPIs) is vital in the progression of multiple diseases. These interactions form a cancer-specific network that participates in all phases of oncogenesis, from cell metastasis to immunosuppressive microenvironment formation. Thus, researches on these PPIs are essential for unraveling the molecular mechanisms behind tumors with aberrant β-catenin activation, as well as for developing new targeted therapies. In this review, we delve into how β-catenin's PPIs orchestrate cancer progression and highlight biological and clinical dilemmas, proposing frontier technologies and potential challenges in targeting β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiting Gong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Li W, Xue Y, Zhang F, Xiao L, Huang Z, Li W, Zhu L, Ge G. In Vitro Ciclopirox Glucuronidation in Liver Microsomes from Humans and Various Experimental Animals. Eur J Drug Metab Pharmacokinet 2024; 49:619-629. [PMID: 38990427 DOI: 10.1007/s13318-024-00907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND AND OBJECTIVE Ciclopirox is a widely used antifungal drug, redisposition of which has drawn increasing attentions due to multiple promising activities. The drug undergoes extensive glucuronidation, which acts as a major obstacle in the ongoing novel application and still remains poorly understood. The current study aims to phenotype ciclopirox glucuronidation pathway and as well to decipher the related species differences. METHODS Ciclopirox glucuronidation was investigated in liver microsomes from humans (HLM) and various experimental animals. Assays with recombinant uridine diphosphate glucuronosyltransferases (UGTs), enzyme kinetic analyses and selective inhibitors were used to determine the role of individual UGTs in ciclopirox glucuronidation. RESULTS HLM is highly active in ciclopirox glucuronidation with Michaelis-Menten constant (Km), maximum velocity (Vmax), and intrinsic clearance (CLint) values of 139 μM, 7.89 nmol/min/mg, and 56 μL/min/mg, respectively. UGT1A9 displays by far the highest activity, whereas several other isoforms (UGT1A6, UGT1A7, and UGT1A8) catalyze formation of traced glucuronides. Further kinetic analysis demonstrates that UGT1A9 has a closed Km value (167 μM) to HLM. UGT1A9 selective inhibitor (magnolol) can potently inhibit ciclopirox glucuronidation in HLM with the IC50 value of 0.12 μM. The reaction displays remarkable differences across liver microsomes from mice, rats, cynomolgus monkey, minipig, and beagle dog, with the CLint values in the range of 26-369 μL/min/mg. In addition, ciclopirox glucuronidation activities of experimental animals' liver microsomes were less sensitive to magnolol than that of HLM. CONCLUSIONS Ciclopirox glucuronidation displays remarkable species differences with UGT1A9 as a dominant contributor in humans. It is suggested that the pharmacological or toxicological effects of ciclopirox may be UGT1A9 and species dependent.
Collapse
Affiliation(s)
- Wenjing Li
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China
| | - Yufan Xue
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology and Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, People's Republic of China
| | - Ling Xiao
- School of Resources and Environment, Anqing Normal University, Anqing, 246311, People's Republic of China
| | - Zhu Huang
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China
| | - Wenjuan Li
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China
| | - Liangliang Zhu
- School of Life Science, Innovation Center of Targeted Development of Medicinal Resources (iCTM), Anqing Normal University, 1318 Jixianbei Road, Anqing, 246133, People's Republic of China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology and Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
4
|
Wei X, Zhou Y, Shen X, Fan L, Liu D, Gao X, Zhou J, Wu Y, Li Y, Feng W, Zhang Z. Ciclopirox inhibits SARS-CoV-2 replication by promoting the degradation of the nucleocapsid protein. Acta Pharm Sin B 2024; 14:2505-2519. [PMID: 38828154 PMCID: PMC11143514 DOI: 10.1016/j.apsb.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 06/05/2024] Open
Abstract
The nucleocapsid protein (NP) plays a crucial role in SARS-CoV-2 replication and is the most abundant structural protein with a long half-life. Despite its vital role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assembly and host inflammatory response, it remains an unexplored target for drug development. In this study, we identified a small-molecule compound (ciclopirox) that promotes NP degradation using an FDA-approved library and a drug-screening cell model. Ciclopirox significantly inhibited SARS-CoV-2 replication both in vitro and in vivo by inducing NP degradation. Ciclopirox induced abnormal NP aggregation through indirect interaction, leading to the formation of condensates with higher viscosity and lower mobility. These condensates were subsequently degraded via the autophagy-lysosomal pathway, ultimately resulting in a shortened NP half-life and reduced NP expression. Our results suggest that NP is a potential drug target, and that ciclopirox holds substantial promise for further development to combat SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Xiafei Wei
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuzheng Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaotong Shen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Lujie Fan
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511495, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Jian Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yezi Wu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yunfei Li
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Wei Feng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| |
Collapse
|
5
|
Taha A, Kadhim MM, Naser ST, Majdi A, Abdullaha SAH, Hachim SK, Abdulwahid Abdulhussain M, Mahdi Rheima A. A density functional theory study on the potential application of Ni and Co doped ZnO nanosheets as a carrier for ciclopirox anticancer drug. Comput Methods Biomech Biomed Engin 2024; 27:765-774. [PMID: 37781969 DOI: 10.1080/10255842.2023.2202294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/08/2023] [Indexed: 10/03/2023]
Abstract
The Ni and Co doping effect on the ciclopirox (CPX) drug delivery performance of a ZnO nanosheet (ZnO-NS) was investigated theoretically. Doping Ni and Co metals into the ZnO-NS increased the adsorption energy of CPX from -7.9 to -27.4 and -31.7 kcal/mol, respectively. The CPX adsorption reduced the ZnO-NS gap (Eg) from 3.81 to 3.46 eV, while the CPX adsorption reduced the Eg of the Ni- and Co-doped ZnO-NS from 2.74 and 2.68 eV to 1.87 and 1.71 eV, respectively. The CPX adsorption performance increased after doping process. A drug release mechanism was introduced in cancerous tissues based on the PH..
Collapse
Affiliation(s)
- Ali Taha
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, Iraq
| | | | - Ali Majdi
- Department of Building and Construction Techniques Engineering, Al- Mustaqbal University College, Hilla, Iraq
| | | | - Safa K Hachim
- College of technical engineering, The Islamic University, Najaf, Iraq
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
6
|
Kontoghiorghes GJ. The Importance and Essentiality of Natural and Synthetic Chelators in Medicine: Increased Prospects for the Effective Treatment of Iron Overload and Iron Deficiency. Int J Mol Sci 2024; 25:4654. [PMID: 38731873 PMCID: PMC11083551 DOI: 10.3390/ijms25094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The supply and control of iron is essential for all cells and vital for many physiological processes. All functions and activities of iron are expressed in conjunction with iron-binding molecules. For example, natural chelators such as transferrin and chelator-iron complexes such as haem play major roles in iron metabolism and human physiology. Similarly, the mainstay treatments of the most common diseases of iron metabolism, namely iron deficiency anaemia and iron overload, involve many iron-chelator complexes and the iron-chelating drugs deferiprone (L1), deferoxamine (DF) and deferasirox. Endogenous chelators such as citric acid and glutathione and exogenous chelators such as ascorbic acid also play important roles in iron metabolism and iron homeostasis. Recent advances in the treatment of iron deficiency anaemia with effective iron complexes such as the ferric iron tri-maltol complex (feraccru or accrufer) and the effective treatment of transfusional iron overload using L1 and L1/DF combinations have decreased associated mortality and morbidity and also improved the quality of life of millions of patients. Many other chelating drugs such as ciclopirox, dexrazoxane and EDTA are used daily by millions of patients in other diseases. Similarly, many other drugs or their metabolites with iron-chelation capacity such as hydroxyurea, tetracyclines, anthracyclines and aspirin, as well as dietary molecules such as gallic acid, caffeic acid, quercetin, ellagic acid, maltol and many other phytochelators, are known to interact with iron and affect iron metabolism and related diseases. Different interactions are also observed in the presence of essential, xenobiotic, diagnostic and theranostic metal ions competing with iron. Clinical trials using L1 in Parkinson's, Alzheimer's and other neurodegenerative diseases, as well as HIV and other infections, cancer, diabetic nephropathy and anaemia of inflammation, highlight the importance of chelation therapy in many other clinical conditions. The proposed use of iron chelators for modulating ferroptosis signifies a new era in the design of new therapeutic chelation strategies in many other diseases. The introduction of artificial intelligence guidance for optimal chelation therapeutic outcomes in personalised medicine is expected to increase further the impact of chelation in medicine, as well as the survival and quality of life of millions of patients with iron metabolic disorders and also other diseases.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
7
|
Sinha IR, Sandal PS, Burns GD, Mallika AP, Irwin KE, Cruz ALF, Wang V, Rodríguez JL, Wong PC, Ling JP. Large-scale RNA-seq mining reveals ciclopirox triggers TDP-43 cryptic exons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587011. [PMID: 38585725 PMCID: PMC10996699 DOI: 10.1101/2024.03.27.587011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nuclear clearance and cytoplasmic aggregation of TDP-43 in neurons, initially identified in ALS-FTD, are hallmark pathological features observed across a spectrum of neurodegenerative diseases. We previously found that TDP-43 loss-of-function leads to the transcriptome-wide inclusion of deleterious cryptic exons in brains and biofluids post-mortem as well as during the presymptomatic stage of ALS-FTD, but upstream mechanisms that lead to TDP-43 dysregulation remain unclear. Here, we developed a web-based resource (SnapMine) to determine the levels of TDP-43 cryptic exon inclusion across hundreds of thousands of publicly available RNA sequencing datasets. We established cryptic exon inclusion across a variety of human cells and tissues to provide ground truth references for future studies on TDP-43 dysregulation. We then explored studies that were entirely unrelated to TDP-43 or neurodegeneration and found that ciclopirox olamine (CPX), an FDA-approved antifungal, can trigger the inclusion of TDP-43-associated cryptic exons in a variety of mouse and human primary cells. CPX induction of cryptic exon occurs via heavy metal toxicity and oxidative stress, suggesting that similar vulnerabilities could play a role in neurodegeneration. Our work demonstrates how diverse datasets can be linked through common biological features and underscores that public archives of sequencing data represent a vastly underutilized resource with tremendous potential for uncovering novel insights into complex biological mechanisms and diseases.
Collapse
Affiliation(s)
- Irika R Sinha
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Parker S Sandal
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Grace D Burns
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Katherine E Irwin
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Anna Lourdes F Cruz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Vania Wang
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Philip C Wong
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X, Chen G. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal 2023; 21:327. [PMID: 37974196 PMCID: PMC10652626 DOI: 10.1186/s12964-023-01267-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 11/19/2023] Open
Abstract
Regulated cell death (RCD) is a regulable cell death that involves well-organized signaling cascades and molecular mechanisms. RCD is implicated in fundamental processes such as organ production and tissue remodeling, removing superfluous structures or cells, and regulating cell numbers. Previous studies have not been able to reveal the complete mechanisms, and novel methods of RCD are constantly being proposed. Two metal ions, iron (Fe) and copper (Cu) are essential factors leading to RCDs that not only induce ferroptosis and cuproptosis, respectively but also lead to cell impairment and eventually diverse cell death. This review summarizes the direct and indirect mechanisms by which Fe and Cu impede cell growth and the various forms of RCD mediated by these two metals. Moreover, we aimed to delineate the interrelationships between these RCDs with the distinct pathways of ferroptosis and cuproptosis, shedding light on the complex and intricate mechanisms that govern cellular survival and death. Finally, the prospects outlined in this review suggest a novel approach for investigating cell death, which may involve integrating current therapeutic strategies and offer a promising solution to overcome drug resistance in certain diseases. Video Abstract.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yujie Zhou
- Basic Science Institute, Sungkyunkwan University, Suwon, South Korea
| | - Qianhui Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhijie Luo
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yufan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xudan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China.
| |
Collapse
|
9
|
Pádua D, Figueira P, Pinto M, Maia AF, Peixoto J, Lima RT, Pombinho A, Pereira CF, Almeida R, Mesquita P. High-Throughput Drug Screening Revealed That Ciclopirox Olamine Can Engender Gastric Cancer Stem-like Cells. Cancers (Basel) 2023; 15:4406. [PMID: 37686684 PMCID: PMC10487151 DOI: 10.3390/cancers15174406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer stem cells (CSCs) are relevant therapeutic targets for cancer treatment. Still, the molecular circuits behind CSC characteristics are not fully understood. The low number of CSCs can sometimes be an obstacle to carrying out assays that explore their properties. Thus, increasing CSC numbers via small molecule-mediated cellular reprogramming appears to be a valid alternative tool. Using the SORE6-GFP reporter system embedded in gastric non-CSCs (SORE6-), we performed a high-throughput image-based drug screen with 1200 small molecules to identify compounds capable of converting SORE6- to SORE6+ (CSCs). Here, we report that the antifungal agent ciclopirox olamine (CPX), a potential candidate for drug repurposing in cancer treatment, is able to reprogram gastric non-CSCs into cancer stem-like cells via activation of SOX2 expression and increased expression of C-MYC, HIF-1α, KLF4, and HMGA1. This reprogramming depends on the CPX concentration and treatment duration. CPX can also induce cellular senescence and the metabolic shift from oxidative phosphorylation (OXPHOS) to glycolysis. We also disclose that the mechanism underlying the cellular reprogramming is similar to that of cobalt chloride (CoCl2), a hypoxia-mimetic agent.
Collapse
Affiliation(s)
- Diana Pádua
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Paula Figueira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Mariana Pinto
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - André Filipe Maia
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IBMC—Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Joana Peixoto
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| | - Raquel T. Lima
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
- Pathology Department, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António Pombinho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IBMC—Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
| | - Carlos Filipe Pereira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Raquel Almeida
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
- Pathology Department, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Patrícia Mesquita
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (D.P.); (A.F.M.); (J.P.); (R.T.L.); (A.P.); (R.A.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
McFadden WM, Sarafianos SG. Biology of the hepatitis B virus (HBV) core and capsid assembly modulators (CAMs) for chronic hepatitis B (CHB) cure. Glob Health Med 2023; 5:199-207. [PMID: 37655181 PMCID: PMC10461335 DOI: 10.35772/ghm.2023.01065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) is a hepadnavirus, a small DNA virus that infects liver tissue, with some unusual replication steps that share similarities to retroviruses. HBV infection can lead to chronic hepatitis B (CHB), a life-long infection associated with significant risks of liver disease, especially if untreated. HBV is a significant global health problem, with hundreds of millions currently living with CHB. Currently approved strategies to prevent or inhibit HBV are highly effective, however, a cure for CHB has remained elusive. To achieve a cure, elimination of the functionally integrated HBV covalently closed chromosomal DNA (cccDNA) genome is required. The capsid core is an essential component of HBV replication, serving roles when establishing infection and in creating new virions. Over the last two and a half decades, significant efforts have been made to find and characterize antivirals that target the capsid, specifically the HBV core protein (Cp). The antivirals that interfere with the kinetics and morphology of the capsid, termed capsid assembly modulators (CAMs), are extremely potent, and clinical investigations indicate they are well tolerated and highly effective. Several CAMs offer the potential to cure CHB by decreasing the cccDNA pools. Here, we review the biology of the HBV capsid, focused on Cp, and the development of inhibitors that target it.
Collapse
Affiliation(s)
- William M. McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G. Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
11
|
Sidorkiewicz I, Jóźwik M, Buczyńska A, Erol A, Jóźwik M, Moniuszko M, Jarząbek K, Niemira M, Krętowski A. Identification and subsequent validation of transcriptomic signature associated with metabolic status in endometrial cancer. Sci Rep 2023; 13:13763. [PMID: 37612452 PMCID: PMC10447446 DOI: 10.1038/s41598-023-40994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023] Open
Abstract
Aberrant metabolism has been identified as a main driver of cancer. Profiling of metabolism-related pathways in cancer furthers the understanding of tumor plasticity and identification of potential metabolic vulnerabilities. In this prospective controlled study, we established transcriptomic profiles of metabolism-related pathways in endometrial cancer (EC) using a novel method, NanoString nCounter Technology. Fifty-seven ECs and 30 normal endometrial specimens were studied using the NanoString Metabolic Panel, further validated by qRT-PCR with a very high similarity. Statistical analyses were by GraphPad PRISM and Weka software. The analysis identified 11 deregulated genes (FDR ≤ 0.05; |FC|≥ 1.5) in EC: SLC7A11; SLC7A5; RUNX1; LAMA4; COL6A3; PDK1; CCNA1; ENO1; PKM; NR2F1; and NAALAD2. Gene ontology showed direct association of these genes with 'central carbon metabolism (CCM) in cancer'. Thus, 'CCM in cancer' appears to create one of the main metabolic axes in EC. Further, transcriptomic data were functionally validated with drug repurposing on three EC cell lines, with several drug candidates suggested. These results lay the foundation for personalized therapeutic strategies in this cancer. Metabolic plasticity represents a promising diagnostic and therapeutic option in EC.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276, Białystok, Poland.
| | - Maciej Jóźwik
- Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, 15-276, Białystok, Poland
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Anna Erol
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Marcin Jóźwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045, Olsztyn, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269, Białystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276, Białystok, Poland
| | - Katarzyna Jarząbek
- Laboratory of Genetic and Molecular Diagnostics, Maria Skłodowska-Curie Białystok Oncology Center, 15-027, Białystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Marii Skłodowskiej-Curie 24a, 15-276, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, 15-276, Białystok, Poland
| |
Collapse
|
12
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
13
|
Wang L, Wei C, Wang Y, Huang N, Zhang T, Dai Y, Xue L, Lin S, Wu ZB. Identification of the enhancer RNAs related to tumorgenesis of pituitary neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1149997. [PMID: 37534217 PMCID: PMC10393250 DOI: 10.3389/fendo.2023.1149997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/27/2023] [Indexed: 08/04/2023] Open
Abstract
Background Pituitary neuroendocrine tumors (PitNETs), which originate from the pituitary gland, account for 10%-15% of all intracranial neoplasms. Recent studies have indicated that enhancer RNAs (eRNAs) exert regulatory effects on tumor growth. However, the mechanisms underlying the eRNA-mediated tumorigenesis of PitNETs have not been elucidated. Methods Normal pituitary and PitNETs tissues were used to identify the differentially expressed eRNAs (DEEs). Immune gene sets and hallmarks of cancer gene sets were quantified based on single sample gene set enrichment analysis (ssGSEA) algorithm using GSVA. The perspective of immune cells among all samples was calculated by the CIBERSORT algorithm. Moreover, the regulatory network composed of key DEEs, target genes of eRNAs, hallmarks of cancer gene sets, differentially expressed TF, immune cells and immune gene sets were constructed by Pearson correlation analysis. Small molecular anti-PitNETs drugs were explored by CMap analysis and the accuracy of the study was verified by in vitro and in vivo experiments, ATAC-seq and ChIP-seq. Results In this study, data of 134 PitNETs and 107 non-tumorous pituitary samples were retrieved from a public database to identify differentially expressed genes. In total, 1128 differentially expressed eRNAs (DEEs) (494 upregulated eRNAs and 634 downregulated eRNAs) were identified. Next, the correlation of DEEs with cancer-related and immune-related gene signatures was examined to establish a co-expression regulatory network comprising 18 DEEs, 50 potential target genes of DEEs, 5 cancer hallmark gene sets, 2 differentially expressed transcription factors, 4 immune cell types, and 4 immune gene sets. Based on this network, the following four therapeutics for PitNETs were identified using Connectivity Map analysis: ciclopirox, bepridil, clomipramine, and alexidine. The growth-inhibitory effects of these therapeutics were validated using in vitro experiments. Ciclopirox exerted potential growth-inhibitory effects on PitNETs. Among the DEEs, GNLY, HOXB7, MRPL33, PRDM16, TCF7, and ZNF26 were determined to be potential diagnostic and therapeutic biomarkers for PitNETs. Conclusion This study illustrated the significant influence of eRNAs on the occurrence and development of PitNETs. By constructing the co-expression regulation network, GNLY, HOXB6, MRPL33, PRDM16, TCF7, and ZNF26 were identified as relatively significant DEEs which were considered as the novel biomarkers of diagnosis and treatment of PitNETs. This study demonstrated the roles of eRNAs in the occurrence and development of PitNETs and revealed that ciclopirox was a potential therapeutic for pituitary adenomas.
Collapse
Affiliation(s)
- Liangbo Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenlu Wei
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuting Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xue
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojian Lin
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Ofek P, Yeini E, Arad G, Danilevsky A, Pozzi S, Luna CB, Dangoor SI, Grossman R, Ram Z, Shomron N, Brem H, Hyde TM, Geiger T, Satchi-Fainaro R. Deoxyhypusine hydroxylase: A novel therapeutic target differentially expressed in short-term vs long-term survivors of glioblastoma. Int J Cancer 2023. [PMID: 37141410 DOI: 10.1002/ijc.34545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Glioblastoma (GB) is the most aggressive neoplasm of the brain. Poor prognosis is mainly attributed to tumor heterogeneity, invasiveness and drug resistance. Only a small fraction of GB patients survives longer than 24 months from the time of diagnosis (ie, long-term survivors [LTS]). In our study, we aimed to identify molecular markers associated with favorable GB prognosis as a basis to develop therapeutic applications to improve patients' outcome. We have recently assembled a proteogenomic dataset of 87 GB clinical samples of varying survival rates. Following RNA-seq and mass spectrometry (MS)-based proteomics analysis, we identified several differentially expressed genes and proteins, including some known cancer-related pathways and some less established that showed higher expression in short-term (<6 months) survivors (STS) compared to LTS. One such target found was deoxyhypusine hydroxylase (DOHH), which is known to be involved in the biosynthesis of hypusine, an unusual amino acid essential for the function of the eukaryotic translation initiation factor 5A (eIF5A), which promotes tumor growth. We consequently validated DOHH overexpression in STS samples by quantitative polymerase chain reaction (qPCR) and immunohistochemistry. We further showed robust inhibition of proliferation, migration and invasion of GB cells following silencing of DOHH with short hairpin RNA (shRNA) or inhibition of its activity with small molecules, ciclopirox and deferiprone. Moreover, DOHH silencing led to significant inhibition of tumor progression and prolonged survival in GB mouse models. Searching for a potential mechanism by which DOHH promotes tumor aggressiveness, we found that it supports the transition of GB cells to a more invasive phenotype via epithelial-mesenchymal transition (EMT)-related pathways.
Collapse
Affiliation(s)
- Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gali Arad
- Department of Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Artem Danilevsky
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Christian Burgos Luna
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sahar Israeli Dangoor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
- Department of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamar Geiger
- Department of Molecular Genetics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Zhu Y, Zhao Z, Xue M, Wang D, Su G, Ju X, Yang Q, Zhang S, Fan D, Zhu H, Yu M, Li Y, Kong L, Zhou H. Ciclopirox olamine sensitizes leukemia cells to natural killer cell-mediated cytolysis by upregulating NKG2DLs via the Akt signaling pathway. Biochem Biophys Res Commun 2023; 659:10-19. [PMID: 37030020 DOI: 10.1016/j.bbrc.2023.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The activating receptor natural killer group 2D (NKG2D) expressed by Natural killer (NK) cells functions as a "master-switch" in governing the awakening status of NK cells. The NKG2D-mediated cytotoxicity has been declared to be related with the expression levels of NKG2D ligands (NKG2DLs) expressed on tumor cells. Therefore, selective induction of NKG2DLs could be a reliable approach to enhance the efficacy of NK cell-mediated immunotherapy. Our existing study demonstrated that Ciclopirox Olamine (CPX), an off-patent antifungal agent, effectively elevated the expression of NKG2DLs on leukemia cells and sensitized leukemia cells to NK-cell mediated cytolysis. Induction of ROS production and AKT phosphorylation by CPX is essential for the up-regulation of NKG2DLs expressions. Inhibition of AKT by using AKT inhibitor MK2206 decreased both NKG2DLs expressions and NK cell cytotoxicity. These data indicated that increased sensitivity of CPX-treated leukemia cells to NK cell cytolysis was attributed to higher NKG2DLs expressions, resulting from activated AKT signaling pathway. Our findings support the ongoing development of CPX as an anti-tumor agent and suggest its promising immunotherapeutic value in the medication of leukemia.
Collapse
|
16
|
Ciclopirox Inhibition of eIF5A Hypusination Attenuates Fibroblast Activation and Cardiac Fibrosis. J Cardiovasc Dev Dis 2023; 10:jcdd10020052. [PMID: 36826549 PMCID: PMC9963048 DOI: 10.3390/jcdd10020052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a primary contributor to heart failure (HF), and is considered to be a targetable process for HF therapy. Cardiac fibroblast (CF) activation accompanied by excessive extracellular matrix (ECM) production is central to the initiation and maintenance of fibrotic scarring in cardiac fibrosis. However, therapeutic compounds targeting CF activation remain limited in treating cardiac fibrosis. Eukaryotic translation initiation factor 5A (eIF5A), upon being hypusinated, is essential for the translation elongation of proline-codon rich mRNAs. In this study, we found that increased hypusinated eIF5A protein levels were associated with cardiac fibrosis and heart dysfunction in myocardial infarction (MI) mouse models. Ciclopirox (CPX), an FDA-approved antifungal drug, inhibits the deoxyhypusine hydroxylase (DOHH) enzyme required for eIF5A hypusination. Results from preventive and reversal mouse models suggest that CPX treatment significantly reduced MI-driven cardiac fibrosis and improved cardiac function. In vitro studies of isolated mouse primary CFs revealed that inhibition of eIF5A hypusination using CPX significantly abolished TGFβ induced CF proliferation, activation, and collagen expression. Proteomic analysis from mouse CFs reveals that CPX downregulates the expression of proline-rich proteins that are enriched in extracellular matrix and cell adhesion pathways. Our findings are relevant to human heart disease, as increased hypusinated eIF5A levels were observed in heart samples of ischemic heart failure patients compared to healthy subjects. Together, these results suggest that CPX can be repurposed to treat cardiac fibrosis and ischemic heart failure.
Collapse
|
17
|
Wan X, Xiang J, Fan H, Jiang Y, Lu Y, Zhang C, Zhang Y, Chen Q, Lei Y. Ciclopirox Olamine Induces Proliferation Inhibition and Protective Autophagy in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2023; 16:ph16010113. [PMID: 36678610 PMCID: PMC9863056 DOI: 10.3390/ph16010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma is one of the most common fatal malignancies worldwide. Thus far, the hepatocellular carcinoma prognosis has been bleak due to deficiencies in the identification and diagnosis of early hepatocellular carcinoma. Ciclopirox olamine (CPX) is a synthetic antifungal agent and has been considered as an anti-cancer candidate drug recently, though the detailed mechanisms related to its anti-cancer effect in hepatocellular carcinoma have not yet been revealed. Here, we found that CPX could inhibit proliferation in HCC cells but not in intrahepatic cholangiocarcinoma cells by arresting the cell cycle. Moreover, the anti-cancer effects of CPX in HCC cells were also attributed to CPX-triggered ROS accumulation and DJ-1 downregulation. Additionally, CPX could promote complete autophagic flux, which alleviated the anti-cancer effect of CPX in HCC cells, whereas the ROS scavenger (NAC) would attenuate CPX-induced protective autophagy. Interestingly, CPX could also induce glycogen clustering in HCC cells. Altogether, this study provides a new insight into the detailed molecular mechanisms of CPX as an anti-cancer therapy and a strategy for treating hepatocellular carcinoma.
Collapse
|
18
|
Al-Marzook FA, Salam Hussein E, Kadhim MM, Mahdi Rheima A, Al-Marjani MF, Ahmed Hamza T, Muhammed Mahdi Z, Adel M, Darabinajand B. Studying Ga and Ge-doped AlP nanotube as a drug carrier for ciclopirox anticancer drug using DFT. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Qin M, Shao B, Lin L, Zhang ZQ, Sheng ZG, Qin L, Shao J, Zhu BZ. Molecular mechanism of the unusual biphasic effects of the natural compound hinokitiol on iron-induced cellular DNA damage. Free Radic Biol Med 2023; 194:163-171. [PMID: 36476568 DOI: 10.1016/j.freeradbiomed.2022.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hinokitiol is a natural monoterpene compound found in the heartwood of cupressaceous plants that have anticancer and anti-inflammatory properties. However, few studies have focused on its effect on iron-mediated cellular DNA damage. Here we show that hinokitiol exhibited unusual biphasic effects on iron-induced DNA damage in a molar ratio (hinokitiol/iron) dependent manner in HeLa cells. Under low ratios (<3:1), hinokitiol markedly enhanced DNA damage induced by Fe(II) or Fe(II)-H2O2; However, when the ratios increased over 3:1, the DNA damage was progressively inhibited. We found that the total cytoplasmic and nuclear iron concentration increased as the ratios of hinokitiol/iron increased. However, the cellular level of labile iron pool (LIP) only increased at ratios lower than 3, and the ROS generation is consistent with LIP change. Hinokitiol was found to interact with iron to form lipophilic hinokitiol-iron complexes with different stoichiometry and redox-activity by complementary applications of various analytical methods. Taken together, we propose that the enhancement of iron-induced cellular DNA damage by hinokitiol at low ratios (<3:1) was due to formation of lipophilic and redox-active iron complexes which facilitated cellular iron uptake and •OH production, while the inhibition at ratios higher than 3 was due to formation of redox-inactive iron complexes. These new findings will help us to design more effective drugs for the prevention and treatment of a series of iron-related diseases via regulating the two critical physicochemical factors (lipophilicity and redox activity of iron complexes) by simple natural compounds with iron-chelating properties.
Collapse
Affiliation(s)
- Miao Qin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bo Shao
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Li Lin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Ciclopirox drives growth arrest and autophagic cell death through STAT3 in gastric cancer cells. Cell Death Dis 2022; 13:1007. [PMID: 36443287 PMCID: PMC9705325 DOI: 10.1038/s41419-022-05456-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Ciclopirox (CPX), an antifungal drug, has recently been identified as a promising agent for cancer treatment. However, the effects and underlying mechanism of CPX as an antitumor agent of gastric cancer (GC) remain largely unknown. Here, we found that CPX dramatically suppresses GC xenograft growth in vitro via inhibiting proliferation and stimulating autophagic cell death rather than apoptosis. Moreover, CPX (20 mg/kg, intraperitoneally) substantially inhibits GC xenograft tumor growth in vivo. Mechanistically, CPX promotes growth arrest and autophagic cell death through suppressing the phosphorylation of signal transducers and activators of transcription 3 (STAT3) at tyrosine 705 (Tyr705) and serine 727 (Ser727) sites, respectively. Additionally, CPX induces STAT3 ubiquitination, which subsequently leads to a decrease in the p-STAT3 (Ser727) level. On the other hand, CPX represses the p-STAT3 (Tyr705) level via p-Src (Tyr416) inhibition. Collectively, our findings unmask a novel mechanism by which CPX regulates growth and autophagic cell death in GC cells via regulating the phosphorylation of STAT3 both at Tyr705 and Ser727 residues, and suggest that CPX may be a potential treatment for GC.
Collapse
|
21
|
Zangi M, Donald KA, Casals AG, Franson AD, Yu AJ, Marker EM, Woodson ME, Campbell SD, Mottaleb MA, Narayana Hajay Kumar TV, Reddy MS, Raghava Reddy LV, Sadhukhan SK, Griggs DW, Morrison LA, Meyers MJ. Synthetic derivatives of the antifungal drug ciclopirox are active against herpes simplex virus 2. Eur J Med Chem 2022; 238:114443. [PMID: 35635945 PMCID: PMC11103786 DOI: 10.1016/j.ejmech.2022.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
We previously showed that the anti-fungal drug ciclopirox olamine effectively inhibits replication of herpes simplex virus (HSV)-1 and HSV-2. Given the rise of HSV strains that are resistant to nucleos(t)ide analog treatment, as well as the incomplete efficacy of nucleos(t)ide analogs, new inhibitory compounds must be explored for potential use in the treatment of HSV infection. In the present study, we analyzed 44 compounds derived from the core structure of ciclopirox olamine for inhibitory activity against HSV. Thirteen of these derivative compounds inhibited HSV-2 replication by > 1000- to ∼100,000-fold at 1 μM and displayed EC50 values lower than that of acyclovir, as well as low cytotoxicity, indicating their strong therapeutic potential. Through structural comparison, we also provide evidence for the importance of various structural motifs to the efficacy of ciclopirox and its derivatives, namely hydrophobic groups at R4 and R6 of the ciclopirox core structure. Like ciclopirox, representative analogs exhibit some oral bioavailability but are rapidly cleared in vivo. Together, these results will guide further development of N-hydroxypyridones as HSV therapeutics.
Collapse
Affiliation(s)
- Maryam Zangi
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Andreu Gazquez Casals
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Elise M Marker
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molly E Woodson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Scott D Campbell
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA.
| | - M Abdul Mottaleb
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA
| | | | | | | | | | - David W Griggs
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA.
| | - Marvin J Meyers
- Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA; Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO, 63103, USA.
| |
Collapse
|
22
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
23
|
Singh S, Abu-Zaid A, Jin H, Fang J, Wu Q, Wang T, Feng H, Quarni W, Shao Y, Maxham L, Abdolvahabi A, Yun MK, Vaithiyalingam S, Tan H, Bowling J, Honnell V, Young B, Guo Y, Bajpai R, Pruett-Miller SM, Grosveld GC, Hatley M, Xu B, Fan Y, Wu G, Chen EY, Chen T, Lewis PW, Rankovic Z, Li Y, Murphy AJ, Easton J, Peng J, Chen X, Wang R, White SW, Davidoff AM, Yang J. Targeting KDM4 for treating PAX3-FOXO1-driven alveolar rhabdomyosarcoma. Sci Transl Med 2022; 14:eabq2096. [PMID: 35857643 PMCID: PMC9548378 DOI: 10.1126/scitranslmed.abq2096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chimeric transcription factors drive lineage-specific oncogenesis but are notoriously difficult to target. Alveolar rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue sarcoma transformed by the pathognomonic Paired Box 3-Forkhead Box O1 (PAX3-FOXO1) fusion protein, which governs a core regulatory circuitry transcription factor network. Here, we show that the histone lysine demethylase 4B (KDM4B) is a therapeutic vulnerability for PAX3-FOXO1+ RMS. Genetic and pharmacologic inhibition of KDM4B substantially delayed tumor growth. Suppression of KDM4 proteins inhibited the expression of core oncogenic transcription factors and caused epigenetic alterations of PAX3-FOXO1-governed superenhancers. Combining KDM4 inhibition with cytotoxic chemotherapy led to tumor regression in preclinical PAX3-FOXO1+ RMS subcutaneous xenograft models. In summary, we identified a targetable mechanism required for maintenance of the PAX3-FOXO1-related transcription factor network, which may translate to a therapeutic approach for fusion-positive RMS.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Waise Quarni
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lily Maxham
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alireza Abdolvahabi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Protein Technologies Center, Molecular Interaction Analysis, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haiyan Tan
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Bowling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Victoria Honnell
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yian Guo
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gerard C Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark Hatley
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Ave., Suite 500, Memphis, TN 38163, USA
| |
Collapse
|
24
|
Fan H, He Y, Xiang J, Zhou J, Wan X, You J, Du K, Li Y, Cui L, Wang Y, Zhang C, Bu Y, Lei Y. ROS generation attenuates the anti-cancer effect of CPX on cervical cancer cells by inducing autophagy and inhibiting glycophagy. Redox Biol 2022; 53:102339. [PMID: 35636017 PMCID: PMC9144037 DOI: 10.1016/j.redox.2022.102339] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cervical cancer is one of the most common gynecological malignancies with poor prognosis due to constant chemoresistance and repeated relapse. Ciclopirox olamine (CPX), a synthetic antifungal agent, has recently been identified to be a promising anti-cancer candidate. However, the detailed mechanisms related to its anti-cancer effects remain unclear and need to be further elucidated. In this study, we found that CPX could induce proliferation inhibition in cervical cancer cells by targeting PARK7. Further results demonstrated that CPX could induce cytoprotective autophagy by downregulating the expression of PARK7 to activate PRKAA1 or by PARK7-independent accumulation of ROS to inhibit mTOR signaling. Meanwhile, CPX treatment increased the glycogen clustering and glycophagy in cervical cancer cells. The presence of N-acetyl-l-cysteine (NAC), a ROS scavenger, led to further clustering of glycogen in cells by reducing autophagy and enhancing glycophagy, which promoted CPX-induced inhibition of cervical cancer cell proliferation. Together, our study provides new insights into the molecular mechanisms of CPX in the anti-cancer therapy and opens new avenues for the glycophagy in cancer therapeutics. CPX induces cytoprotective autophagy and inhibits proliferation of cervical cancer cells by targeting PARK7. ROS generation attenuates the anticancer effect of CPX by inducing cytoprotective autophagy and inhibiting glycophagy. ROS-triggered glycogen clustering and inactivation of YAP1 are involved in the anti-cancer effects of CPX.
Collapse
Affiliation(s)
- Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yujia He
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Junqi Xiang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiawei You
- Department of Basic Medicine, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
25
|
Di Bonaventura G, Lupetti V, De Fabritiis S, Piccirilli A, Porreca A, Di Nicola M, Pompilio A. Giving Drugs a Second Chance: Antibacterial and Antibiofilm Effects of Ciclopirox and Ribavirin against Cystic Fibrosis Pseudomonas aeruginosa Strains. Int J Mol Sci 2022; 23:ijms23095029. [PMID: 35563420 PMCID: PMC9102761 DOI: 10.3390/ijms23095029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Drug repurposing is an attractive strategy for developing new antibacterial molecules. Herein, we evaluated the in vitro antibacterial, antibiofilm, and antivirulence activities of eight FDA-approved “non-antibiotic” drugs, comparatively to tobramycin, against selected Pseudomonas aeruginosa strains from cystic fibrosis patients. MIC and MBC values were measured by broth microdilution method. Time–kill kinetics was studied by the macro dilution method, and synergy studies were performed by checkerboard microdilution assay. The activity against preformed biofilms was measured by crystal violet and viable cell count assays. The effects on gene expression were studied by real-time quantitative PCR, while the cytotoxic potential was evaluated against IB3-1 bronchial CF cells. Ciclopirox, 5-fluorouracil, and actinomycin D showed the best activity against P. aeruginosa planktonic cells and therefore underwent further evaluation. Time–kill assays indicated actinomycin D and ciclopirox, contrarily to 5-fluorouracil and tobramycin, have the potential for bacterial eradication, although with strain-dependent efficacy. Ciclopirox was the most effective against the viability of the preformed biofilm. A similar activity was observed for other drugs, although they stimulate extracellular polymeric substance production. Ribavirin showed a specific antibiofilm effect, not dependent on bacterial killing. Exposure to drugs and tobramycin generally caused hyperexpression of the virulence traits tested, except for actinomycin D, which downregulated the expression of alkaline protease and alginate polymerization. Ciclopirox and actinomycin D revealed high cytotoxic potential. Ciclopirox and ribavirin might provide chemical scaffolds for anti-P. aeruginosa drugs. Further studies are warranted to decrease ciclopirox cytotoxicity and evaluate the in vivo protective effects.
Collapse
Affiliation(s)
- Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.L.); (A.P.); (M.D.N.); (A.P.)
- Center of Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence:
| | - Veronica Lupetti
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.L.); (A.P.); (M.D.N.); (A.P.)
- Center of Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Simone De Fabritiis
- Center of Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Annamaria Porreca
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.L.); (A.P.); (M.D.N.); (A.P.)
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.L.); (A.P.); (M.D.N.); (A.P.)
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (V.L.); (A.P.); (M.D.N.); (A.P.)
- Center of Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| |
Collapse
|
26
|
Yin J, Che G, Jiang K, Zhou Z, Wu L, Xu M, Liu J, Yan S. Ciclopirox Olamine Exerts Tumor-Suppressor Effects via Topoisomerase II Alpha in Lung Adenocarcinoma. Front Oncol 2022; 12:791916. [PMID: 35251970 PMCID: PMC8894728 DOI: 10.3389/fonc.2022.791916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Globally, lung cancer is one of the most malignant tumors, of which lung adenocarcinoma (LUAD) is the most common subtype, with a particularly poor prognosis. Ciclopirox olamine (CPX) is an antifungal drug and was recently identified as a potential antitumor agent. However, how CPX and its mechanism of action function during LUAD remain unclear. Methods The effects of CPX on cell proliferation, cell cycle, reactive oxygen species (ROS) levels, and apoptosis were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation, western blotting, flow cytometry assays, and immunohistochemistry. Global gene expression levels were compared between control and CPX-treated LUAD cells. A LUAD xenograft mouse model was used to evaluate the potential in vivo effects of CPX. Results We observed that CPX displayed strong antitumorigenic properties in LUAD cells, inhibited LUAD proliferation, induced ROS production, caused DNA damage, and activated the ATR-CHK1-P53 pathway. Topoisomerase II alpha (TOP2A) is overexpressed in LUAD and associated with a poor prognosis. By analyzing differentially expressed genes (DEGs), TOP2A was significantly down-regulated in CPX-treated LUAD cells. Furthermore, CPX treatment substantially inhibited in vivo LUAD xenograft growth without toxicity or side effects to the hematological system and internal organs. Conclusions Collectively, for the first time, we showed that CPX exerted tumor-suppressor effects in LUAD via TOP2A, suggesting CPX could potentially function as a promising chemotherapeutic for LUAD treatment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Che
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Jiang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyang Zhou
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyou Xu
- Department of Medical Oncology, Peking University Cancer Hospital, Beijing, China
| | - Jian Liu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Liu, ; Senxiang Yan,
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Liu, ; Senxiang Yan,
| |
Collapse
|
27
|
Al-Zubaydi F, Gao D, Kakkar D, Li S, Holloway J, Szekely Z, Chan N, Kumar S, Sabaawy HE, Love S, Sinko PJ. Breast intraductal nanoformulations for treating ductal carcinoma in situ II: Dose de-escalation using a slow releasing/slow bioconverting prodrug strategy. Drug Deliv Transl Res 2022; 12:240-256. [PMID: 33590464 DOI: 10.1007/s13346-021-00903-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Ductal carcinoma in situ (DCIS) represents approximately 20-25% of newly diagnosed breast cancers. DCIS is treated by surgery and possibly radiotherapy. Chemotherapy is only used as adjuvant or neoadjuvant therapy but not as primary therapy. The present study investigated the intraductal administration of Ciclopirox (CPX) formulated in nanosuspensions (NSs) or nanoparticles (NPs) to treat DCIS locally in a Fischer 344 rat model orthotopically implanted with 13762 Mat B III cells. Slow converting esterase responsive CPX prodrugs (CPDs) were successfully synthesized at high purity (> 95%) by directly acetylating the hydroxyl group or by appending a self-immolative linker between CPX and a phenolic ester. Direct esterification CPDs were not sufficiently stable so self-immolative CPDs were formulated in NSs and NPs. Prodrug release was evaluated from poly(lactic-co-glycolic acid) NPs, and CPD4 demonstrated the slowest release rate with the rank order of CPD2 (R = methyl) > CPD3 (R = t-butyl) > CPD4 (R = phenyl). Intraductally administered CPX NS, CPD4 NS, and an innovative mixture of CDP4 NS and NPs (at 1 mg CPX equivalent/duct) demonstrated significant (p < 0.05) in vivo anti-tumor efficacy compared with immediate release (IR) CPX NS and non-treated controls. CPX mammary persistence at 6 h and 48 h after CPD4 NS or NP administration was also greater than after the immediate release CPX NS. A strong correlation between CPX mammary persistence and efficacy is demonstrated. In conclusion, nanoformulations utilizing a slow releasing/slow bioconverting CPX prodrug delivery strategy resulted in significant dose de-escalation (~ five fold) while maintaining anti-tumor efficacy.
Collapse
Affiliation(s)
- Firas Al-Zubaydi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Dipti Kakkar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Shike Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Jennifer Holloway
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Shicha Kumar
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Susan Love
- Dr. Susan Love Research Foundation, 16133 Ventura Suite 1000, Encino, CA, 91436, USA
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
28
|
Guo Q, Li L, Hou S, Yuan Z, Li C, Zhang W, Zheng L, Li X. The Role of Iron in Cancer Progression. Front Oncol 2021; 11:778492. [PMID: 34858857 PMCID: PMC8631356 DOI: 10.3389/fonc.2021.778492] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron is an essential trace element for the human body, and its deficiency or excess can induce a variety of biological processes. Plenty of evidences have shown that iron metabolism is closely related to the occurrence and development of tumors. In addition, iron plays an important role in cell death, which is very important for the development of potential strategies for tumor treatment. Here, we reviewed the latest research about iron metabolism disorders in various types of tumors, the functions and properties of iron in ferroptosis and ferritinophagy, and new opportunities for iron-based on treatment methods for tumors, providing more information regarding the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Liwen Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenhui Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Delineating the Switch between Senescence and Apoptosis in Cervical Cancer Cells under Ciclopirox Treatment. Cancers (Basel) 2021; 13:cancers13194995. [PMID: 34638479 PMCID: PMC8508512 DOI: 10.3390/cancers13194995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Novel treatment options for cervical cancer are urgently required. Ciclopirox (CPX), an iron chelator, has shown promising anti-tumorigenic potential in several preclinical tumor models, including cervical cancer cells. In these cells, CPX can induce apoptosis, a form of cell death, or senescence, an irreversible cellular growth arrest. These different phenotypic outcomes may influence therapy response. Here, we show that the decision of cervical cancer cells to induce apoptosis or senescence is strongly dependent on glucose availability: CPX induces apoptosis under limited glucose availability, whereas under increased glucose supply, CPX treatment results in senescence. Further, we link the pro-apoptotic and pro-senescent activities of CPX to its capacity to block oxidative phosphorylation and to chelate iron, respectively. In addition, we show that the combined treatment of CPX and glycolysis inhibitors blocks the proliferation of cervical cancer cells in a synergistic manner. Collectively, we provide novel insights into the anti-proliferative activities of CPX in cervical cancer cells, elucidate the cellular decision between apoptosis or senescence induction, and provide a rationale to combine CPX with glycolysis inhibitors. Abstract The iron-chelating drug ciclopirox (CPX) may possess therapeutic potential for cancer treatment, including cervical cancer. As is observed for other chemotherapeutic drugs, CPX can induce senescence or apoptosis in cervical cancer cells which could differently affect their therapy response. The present study aims to gain insights into the determinants which govern the switch between senescence and apoptosis in cervical cancer cells. We performed proteome analyses, proliferation studies by live-cell imaging and colony formation assays, senescence and apoptosis assays, and combination treatments of CPX with inhibitors of oxidative phosphorylation (OXPHOS) or glycolysis. We found that CPX downregulates OXPHOS factors and facilitates the induction of apoptosis under limited glucose availability, an effect which is shared by classical OXPHOS inhibitors. Under increased glucose availability, however, CPX-induced apoptosis is prevented and senescence is induced, an activity which is not exerted by classical OXPHOS inhibitors, but by other iron chelators. Moreover, we show that the combination of CPX with glycolysis inhibitors blocks cervical cancer proliferation in a synergistic manner. Collectively, our results reveal that the phenotypic response of cervical cancer cells towards CPX is strongly dependent on glucose availability, link the pro-apoptotic and pro-senescent activities of CPX to its bifunctionality as an OXPHOS inhibitor and iron chelator, respectively, and provide a rationale for combining CPX with glycolysis inhibitors.
Collapse
|
30
|
Erwin AL, Balwani M. Porphyrias in the Age of Targeted Therapies. Diagnostics (Basel) 2021; 11:diagnostics11101795. [PMID: 34679493 PMCID: PMC8534485 DOI: 10.3390/diagnostics11101795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
The porphyrias are a group of eight rare genetic disorders, each caused by the deficiency of one of the enzymes in the heme biosynthetic pathway, resulting in the excess accumulation of heme precursors and porphyrins. Depending on the tissue site as well as the chemical characteristics of the accumulating substances, the clinical features of different porphyrias vary substantially. Heme precursors are neurotoxic, and their accumulation results in acute hepatic porphyria, while porphyrins are photoactive, and excess amounts cause cutaneous porphyrias, which present with photosensitivity. These disorders are clinically heterogeneous but can result in severe clinical manifestations, long-term complications and a significantly diminished quality of life. Medical management consists mostly of the avoidance of triggering factors and symptomatic treatment. With an improved understanding of the underlying pathophysiology and disease mechanisms, new treatment approaches have become available, which address the underlying defects at a molecular or cellular level, and promise significant improvement, symptom prevention and more effective treatment of acute and chronic disease manifestations.
Collapse
Affiliation(s)
- Angelika L. Erwin
- Center for Personalized Genetic Healthcare, Cleveland Clinic & Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Correspondence: ; Tel.: +1-216-444-9249
| | - Manisha Balwani
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
31
|
Kaviani S, Shahab S, Sheikhi M, Potkin V, Zhou H. A DFT study of Se-decorated B12N12 nanocluster as a possible drug delivery system for ciclopirox. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Ekstrom TL, Pathoulas NM, Huehls AM, Kanakkanthara A, Karnitz LM. VLX600 Disrupts Homologous Recombination and Synergizes with PARP Inhibitors and Cisplatin by Inhibiting Histone Lysine Demethylases. Mol Cancer Ther 2021; 20:1561-1571. [PMID: 34224364 DOI: 10.1158/1535-7163.mct-20-1099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Tumors with defective homologous recombination (HR) DNA repair are more sensitive to chemotherapies that induce lesions repaired by HR as well as PARP inhibitors (PARPis). However, these therapies have limited activity in HR-proficient cells. Accordingly, agents that disrupt HR may be a means to augment the activities of these therapies in HR-proficient tumors. Here we show that VLX600, a small molecule that has been in a phase I clinical trial, disrupts HR and synergizes with PARPis and platinum compounds in ovarian cancer cells. We further found that VLX600 and other iron chelators disrupt HR, in part, by inhibiting iron-dependent histone lysine demethylases (KDM) family members, thus blocking recruitment of HR repair proteins, including RAD51, to double-strand DNA breaks. Collectively, these findings suggest that pharmacologically targeting KDM family members with VLX600 may be a potential novel strategy to therapeutically induce HR defects in ovarian cancers and correspondingly sensitize them to platinum agents and PARPis, two standard-of-care therapies for ovarian cancer.
Collapse
Affiliation(s)
- Thomas L Ekstrom
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nicholas M Pathoulas
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Amelia M Huehls
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Arun Kanakkanthara
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Larry M Karnitz
- Division of Oncology Research, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
33
|
Fosciclopirox suppresses growth of high-grade urothelial cancer by targeting the γ-secretase complex. Cell Death Dis 2021; 12:562. [PMID: 34059639 PMCID: PMC8166826 DOI: 10.1038/s41419-021-03836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131).
Collapse
|
34
|
Improving the Pharmacological Properties of Ciclopirox for Its Use in Congenital Erythropoietic Porphyria. J Pers Med 2021; 11:jpm11060485. [PMID: 34071291 PMCID: PMC8230281 DOI: 10.3390/jpm11060485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Congenital erythropoietic porphyria (CEP), also known as Günther's disease, results from a deficient activity in the fourth enzyme, uroporphyrinogen III synthase (UROIIIS), of the heme pathway. Ciclopirox (CPX) is an off-label drug, topically prescribed as an antifungal. It has been recently shown that it also acts as a pharmacological chaperone in CEP, presenting a specific activity in deleterious mutations in UROIIIS. Despite CPX is active at subtoxic concentrations, acute gastrointestinal (GI) toxicity was found due to the precipitation in the stomach of the active compound and subsequent accumulation in the intestine. To increase its systemic availability, we carried out pharmacokinetic (PK) and pharmacodynamic (PD) studies using alternative formulations for CPX. Such strategy effectively suppressed GI toxicity in WT mice and in a mouse model of the CEP disease (UROIIISP248Q/P248Q). In terms of activity, phosphorylation of CPX yielded good results in CEP cellular models but showed limited activity when administered to the CEP mouse model. These results highlight the need of a proper formulation for pharmacological chaperones used in the treatment of rare diseases.
Collapse
|
35
|
Lin J, Zangi M, Kumar TVH, Shakar Reddy M, Reddy LVR, Sadhukhan SK, Bradley DP, Moreira-Walsh B, Edwards TC, O’Dea AT, Tavis JE, Meyers MJ, Donlin MJ. Synthetic Derivatives of Ciclopirox are Effective Inhibitors of Cryptococcus neoformans. ACS OMEGA 2021; 6:8477-8487. [PMID: 33817509 PMCID: PMC8015083 DOI: 10.1021/acsomega.1c00273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Opportunistic fungal infections caused by Cryptococcus neoformans are a significant source of mortality in immunocompromised patients. They are challenging to treat because of a limited number of antifungal drugs, and novel and more effective anticryptococcal therapies are needed. Ciclopirox olamine, a N-hydroxypyridone, has been in use as an approved therapeutic agent for the treatment of topical fungal infections for more than two decades. It is a fungicide, with broad activity across multiple fungal species. We synthesized 10 N-hydroxypyridone derivatives to develop an initial structure-activity understanding relative to efficacy as a starting point for the development of systemic antifungals. We screened the derivatives for antifungal activity against C. neoformans and Cryptococcus gattii and counter-screened for specificity in Candida albicans and two Malassezia species. Eight of the ten show inhibition at 1-3 μM concentration (0.17-0.42 μg per mL) in both Cryptococcus species and in C. albicans, but poor activity in the Malassezia species. In C. neoformans, the N-hydroxypyridones are fungicides, are not antagonistic with either fluconazole or amphotericin B, and are synergistic with multiple inhibitors of the mitochondrial electron transport chain. They appear to function primarily by chelating iron within the active site of iron-dependent enzymes. This preliminary structure-activity relationship points to the need for a lipophilic functional group at position six of the N-hydroxypyridone ring and identifies positions four and six as sites where further substitution may be tolerated. These molecules provide a clear starting point for future optimization for efficacy and target identification.
Collapse
Affiliation(s)
- Jeffrey Lin
- Department
of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Maryam Zangi
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | | | - Makala Shakar Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Lingala Vijaya Raghava Reddy
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Subir Kumar Sadhukhan
- Medicinal
Chemistry Division, Albany Molecular Research
Inc., MN Park, Turkpally
Shamirpet Mandal, Genome Valley, Hyderabad 500078, India
| | - Daniel P. Bradley
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Brenda Moreira-Walsh
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
| | - Tiffany C. Edwards
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Austin T. O’Dea
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - John E. Tavis
- Department
of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Marvin J. Meyers
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Maureen J. Donlin
- Edward
A. Doisy Department of Biochemistry, Saint
Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, Missouri 63104, United
States
- Institute
for Drug and Biotherapeutic Innovation, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
36
|
Radadiya PS, Thornton MM, Puri RV, Yerrathota S, Dinh-Phan J, Magenheimer B, Subramaniam D, Tran PV, Zhu H, Bolisetty S, Calvet JP, Wallace DP, Sharma M. Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight 2021; 6:141299. [PMID: 33784251 PMCID: PMC8119220 DOI: 10.1172/jci.insight.141299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Despite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity. Several mechanisms of action have been proposed, including chelation of iron and inhibition of iron-dependent enzymes. Here, we show that CPX-O inhibited in vitro cystogenesis of primary human PKD cyst-lining epithelial cells cultured in a 3D collagen matrix. To assess the in vivo role of CPX-O, we treated PKD mice with CPX-O. CPX-O reduced the kidney-to-body weight ratios of PKD mice. The CPX-O treatment was also associated with decreased cell proliferation, decreased cystic area, and improved renal function. Ferritin levels were markedly elevated in cystic kidneys of PKD mice, and CPX-O treatment reduced renal ferritin levels. The reduction in ferritin was associated with increased ferritinophagy marker nuclear receptor coactivator 4, which reversed upon CPX-O treatment in PKD mice. Interestingly, these effects on ferritin appeared independent of iron. These data suggest that CPX-O can induce ferritin degradation via ferritinophagy, which is associated with decreased cyst growth progression in PKD mice. Most importantly these data indicate that CPX-O has the potential to treat autosomal dominant PKD.
Collapse
Affiliation(s)
| | | | - Rajni V. Puri
- Department of Internal Medicine
- Jared Grantham Kidney Institute
| | | | | | - Brenda Magenheimer
- Jared Grantham Kidney Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pamela V. Tran
- Jared Grantham Kidney Institute
- Department of Anatomy and Cell Biology, and
| | - Hao Zhu
- Jared Grantham Kidney Institute
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Subhashini Bolisetty
- Department of Internal Medicine, School of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - James P. Calvet
- Jared Grantham Kidney Institute
- Department of Biochemistry and Molecular Biology
| | | | | |
Collapse
|
37
|
Su Z, Han S, Jin Q, Zhou N, Lu J, Shangguan F, Yu S, Liu Y, Wang L, Lu J, Li Q, Cai L, Wang C, Tian X, Chen L, Zheng W, Lu B. Ciclopirox and bortezomib synergistically inhibits glioblastoma multiforme growth via simultaneously enhancing JNK/p38 MAPK and NF-κB signaling. Cell Death Dis 2021; 12:251. [PMID: 33674562 PMCID: PMC7935936 DOI: 10.1038/s41419-021-03535-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
Ciclopirox (CPX) is an antifungal drug that has recently been reported to act as a potential anticancer drug. However, the effects and underlying molecular mechanisms of CPX on glioblastoma multiforme (GBM) remain unknown. Bortezomib (BTZ) is the first proteasome inhibitor-based anticancer drug approved to treat multiple myeloma and mantle cell lymphoma, as BTZ exhibits toxic effects on diverse tumor cells. Herein, we show that CPX displays strong anti-tumorigenic activity on GBM. Mechanistically, CPX inhibits GBM cellular migration and invasion by reducing N-Cadherin, MMP9 and Snail expression. Further analysis revealed that CPX suppresses the expression of several key subunits of mitochondrial enzyme complex, thus leading to the disruption of mitochondrial oxidative phosphorylation (OXPHOS) in GBM cells. In combination with BTZ, CPX promotes apoptosis in GBM cells through the induction of reactive oxygen species (ROS)-mediated c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) signaling. Moreover, CPX and BTZ synergistically activates nuclear factor kappa B (NF-κB) signaling and induces cellular senescence. Our findings suggest that a combination of CPX and BTZ may serve as a novel therapeutic strategy to enhance the anticancer activity of CPX against GBM.
Collapse
Affiliation(s)
- Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shengnan Han
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Pathology, The Second Hospital of Jiaxing, Jiaxing University, Jiaxing, 314000, China
| | - Qiumei Jin
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ningning Zhou
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Junwan Lu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fugen Shangguan
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shiyi Yu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lu Wang
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianglong Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qun Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chengde Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lingyan Chen
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Weiming Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education of China School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
38
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Qi J, Zhou N, Li L, Mo S, Zhou Y, Deng Y, Chen T, Shan C, Chen Q, Lu B. Ciclopirox activates PERK-dependent endoplasmic reticulum stress to drive cell death in colorectal cancer. Cell Death Dis 2020; 11:582. [PMID: 32719342 PMCID: PMC7385140 DOI: 10.1038/s41419-020-02779-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
Ciclopirox (CPX) modulates multiple cellular pathways involved in the growth of a variety of tumor cell types. However, the effects of CPX on colorectal cancer (CRC) and the underlying mechanisms for its antitumor activity remain unclear. Herein, we report that CPX exhibited strong antitumorigenic properties in CRC by inducing cell cycle arrest, repressing cell migration, and invasion by affecting N-cadherin, Snail, E-cadherin, MMP-2, and MMP-9 expression, and disruption of cellular bioenergetics contributed to CPX-associated inhibition of cell growth, migration, and invasion. Interestingly, CPX-induced reactive oxygen species (ROS) production and impaired mitochondrial respiration, whereas the capacity of glycolysis was increased. CPX (20 mg/kg, intraperitoneally) substantially inhibited CRC xenograft growth in vivo. Mechanistic studies revealed that the antitumor activity of CPX relies on apoptosis induced by ROS-mediated endoplasmic reticulum (ER) stress in both 5-FU-sensitive and -resistant CRC cells. Our data reveal a novel mechanism for CPX through the disruption of cellular bioenergetics and activating protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent ER stress to drive cell death and overcome drug resistance in CRC, indicating that CPX could potentially be a novel chemotherapeutic for the treatment of CRC.
Collapse
Affiliation(s)
- Jianjun Qi
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.,Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ningning Zhou
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liyi Li
- Department of Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Shouyong Mo
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 32300, China
| | - Yidan Zhou
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yao Deng
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ting Chen
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Qin Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Bin Lu
- Protein Quality Control and Diseases laboratory, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
40
|
Lu T, Tang J, Shrestha B, Heath BR, Hong L, Lei YL, Ljungman M, Neamati N. Up-regulation of hypoxia-inducible factor antisense as a novel approach to treat ovarian cancer. Theranostics 2020; 10:6959-6976. [PMID: 32550915 PMCID: PMC7295058 DOI: 10.7150/thno.41792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is estimated to kill ~14,000 women in the United States in 2019. Current chemotherapies to treat OC initially show therapeutic efficacy but frequently drug resistance develops, at which point therapies with alternative targets are needed. Herein, we are describing a novel approach to sensitize these tumors to standard chemotherapies by increasing the transcription of hypoxia-inducible factor antisense. Methods: Genome-wide Bru-seq analysis was performed to fully capture the nascent transcriptional signature of OC cells treated with the gp130 inhibitor, SC144. In vitro and in vivo analysis, including characterization of hypoxia and select protein expression, combination with standard of care chemotherapy and antitumor efficacy were performed to assess the biological activity of SC144 on induction of hypoxia in OC cells. Results: Bru-seq analysis of OVCAR8 cells treated with SC144 shows upregulation of hypoxia related genes. In addition, transcription of hypoxia-inducible factor antisense (HIF1A-AS2) was induced that in turn reduced expression of HIF-1α and simultaneously increased expression of NDRG1. Furthermore, we observed decreased protein levels of EGFR, Met, c-Myc, cyclin D1, MMP-2, MMP-9 and TF, and phosphorylation of Src and P130-cas. SC144-induced alterations of HIF-1α and NDRG1 were also confirmed in prostate cancer cells. Ciclopirox olamine (CPX) induces a cellular transcriptional profile comparable to SC144, suggesting a similar cellular mechanism of action between these two compounds. In addition, SC144 sensitized OC cells to olaparib, carboplatin and cisplatin, and shows better in vivo efficacy than CPX. Conclusion: Induction of hypoxic stress responses through inhibition of gp130 represents a novel approach to design effective anticancer treatments in combination with standard-of-care chemotherapy in OC and the efficacy reported here strongly supports their clinical development.
Collapse
|
41
|
Al-Zubaydi F, Gao D, Kakkar D, Li S, Adler D, Holloway J, Szekely Z, Gu Z, Chan N, Kumar S, Love S, Sinko PJ. Breast intraductal nanoformulations for treating ductal carcinoma in situ I: Exploring metal-ion complexation to slow ciclopirox release, enhance mammary persistence and efficacy. J Control Release 2020; 323:71-82. [PMID: 32302762 DOI: 10.1016/j.jconrel.2020.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Ductal Carcinoma In Situ (DCIS) represents a significant fraction (~20-25%) of all newly diagnosed breast cancer cases and, if left untreated, a significant fraction of patients will progress to invasive disease. Surgery is the only treatment option. Ciclopirox (CPX), an FDA-approved antifungal drug, has exhibited promising antitumor activity by down-regulating the expression of vital antiapoptotic cellular proteins and inhibiting the genetic expression of several oncogenic pathways. In this study, the feasibility of using nanoscale delivery systems to control release and prolong mammary tissue persistence of a lipophilic metal complex of CPX and Zinc (CPXZn) after intraductal administration was investigated. METHODS CPX and CPX-Zn nanosuspensions (NSs) were prepared using an evaporative nanoprecipitation-ultra-sonication method. Flash nanoprecipitation was used to prepare PLGA nanoparticles (NPs) loaded with CPXZn. Our established orthotopic DCIS rat model was used to evaluate efficacy. Briefly, two days after 13762 Mat B III cell intraductal inoculation, rats were divided into treatment groups and a single intraductal injection of CPX NS, CPX-Zn NS or CPX-Zn NPs was administered. In the first study arm, the efficacy of CPX NS (1, 3, 5 mg/duct) was evaluated. In the second arm, the in vivo efficacy of CPX NS, CPX-Zn NS and CPX-Zn loaded NPs was evaluated and compared at equivalent CPX doses. The mammary persistence of CPX from CPX NS, CPX-Zn NS, and CPX-Zn PLGA NPs was also assessed. RESULTS CPX-Zn complex was successfully synthesized and characterized by several spectral analyses. CPX release was slowed from the CPX-Zn NS and further slowed by incorporating CPX-Zn into PLGA NPs as compared to the CPX NS with release half times following the order: CPX NS < CPX-Zn NS << CPX-Zn NP. Intraductal CPX NS administration was dose and time dependent in suppressing tumor initiation suggesting prolonged mammary exposure may improve efficacy. In the second arm, mammary tissue persistence of CPX followed the rank order CPX NS < CPX-Zn NS << CPX-Zn NP at 6 h and 48 h post-administration. Prolonged mammary CPX exposure was highly correlated to improved efficacy. Prolonged CPX tissue persistence, attributed to slower release from the zinc complex and the PLGA NPs, resulted in a 5-fold dose reduction compared to the CPX NS. CONCLUSIONS The current results demonstrate that slowing drug release in the mammary duct after intraductal administration overcomes the rapid ductal clearance of CPX, prolongs mammary tissue persistence, improves efficacy against DCIS lesions in vivo, and requires 5-fold less CPX to achieve equivalent efficacy. The studies also provide a strategic path forward for developing a locally administered drug delivery system for treating DCIS, for which no primary chemotherapy option is available.
Collapse
Affiliation(s)
- Firas Al-Zubaydi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Dipti Kakkar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Shike Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Derek Adler
- Rutgers Molecular Imaging Center, 41 Gordon Road Suite D, Piscataway, NJ 08854, USA.
| | - Jennifer Holloway
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Zichao Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Shicha Kumar
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Susan Love
- Dr. Susan Love Research Foundation, 16133 Ventura Suite 1000, Encino, California 91436, USA.
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
42
|
Alves IA, Savi FM, de Vasconcelos C. Braz J, Quintans Junior LJ, Serafini MR. The Patenting and Technological Trends in Candidiasis Treatment: A Systematic Review (2014-2018). Curr Top Med Chem 2019; 19:2629-2639. [DOI: 10.2174/1568026619666191030091211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 11/22/2022]
Abstract
Background:
In the last few decades, mycoses caused by opportunistic fungi namely Candida
species has gained significant attention. Such infections are very common and present high mortality
rates, especially in immunocompromised patients. Currently, a limited number of antifungal drugs
are available for the treatment of these infections and are also often related to severe adverse side effects.
Therefore, new drugs and innovative technologies for the treatment of this infection are necessary.
Objective:
The aim of this study was to evaluate the development of new drugs, formulations, as well as
patents for the treatment of infections caused by Candida spp.
Methods:
The present patent review was carried out through a specialized search database Espacenet.
The patent selection was based on the following inclusion criteria: Recent patents published in English
or Spanish containing candidiasis as the keyword in the title, abstract or full text. This survey was conducted
in October and November 2018.
Results:
As a result of that, 22 patents were selected to the final selection, the most common routes of
application were oral (n = 6), vaginal (n = 6), topical (n = 5) and others (n = 5). This fact is related to the
clinical manifestations of candidiasis.
Conclusion:
Through this review, it was possible to identify significant improvements and advances in
the area of antifungal therapeutic innovation research. In addition, we demonstrated the growing interest
of academic and industrial groups in pharmaceutical development and novel formulations for the treatment
of candidiasis. New therapeutic options can contribute to improve the quality of patient’s life, prevent
infections and promote the search for an innovative and effective treatment of Candida infections.
Collapse
Affiliation(s)
- Izabel Almeida Alves
- Universidade Regional Integrada do Alto Uruguai e das Missoes, Santo Angelo, Rio Grande do Sul, Brazil
| | - Flávia Medeiros Savi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Juliana de Vasconcelos C. Braz
- Department of Pharmacy, Programa de Pos Graduacao em Ciencias da Saude, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Lucindo José Quintans Junior
- Department of Pharmacy, Programa de Pos Graduacao em Ciencias da Saude, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, Brazil
| | - Mairim Russo Serafini
- Department of Pharmacy, Programa de Pos Graduacao em Ciencias da Saude, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, Brazil
| |
Collapse
|
43
|
Huang YM, Cheng CH, Pan SL, Yang PM, Lin DY, Lee KH. Gene Expression Signature-Based Approach Identifies Antifungal Drug Ciclopirox As a Novel Inhibitor of HMGA2 in Colorectal Cancer. Biomolecules 2019; 9:biom9110688. [PMID: 31684108 PMCID: PMC6920845 DOI: 10.3390/biom9110688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Human high-mobility group A2 (HMGA2) encodes for a non-histone chromatin protein which influences a variety of biological processes, including the cell cycle process, apoptosis, the DNA damage repair process, and epithelial–mesenchymal transition. The accumulated evidence suggests that high expression of HMGA2 is related to tumor progression, poor prognosis, and a poor response to therapy. Thus, HMGA2 is an important molecular target for many types of malignancies. Our recent studies revealed the positive connections between heat shock protein 90 (Hsp90) and HMGA2 and that the Hsp90 inhibitor has therapeutic potential to inhibit HMGA2-triggered tumorigenesis. However, 43% of patients suffered visual disturbances in a phase I trial of the second-generation Hsp90 inhibitor, NVP-AUY922. To identify a specific inhibitor to target HMGA2, the Gene Expression Omnibus (GEO) database and the Library of Integrated Network-based Cellular Signatures (LINCS) L1000platform were both analyzed. We identified the approved small-molecule antifungal agent ciclopirox (CPX) as a novel potential inhibitor of HMGA2. In addition, CPX induces cytotoxicity of colorectal cancer (CRC) cells by induction of cell cycle arrest and apoptosis in vitro and in vivo through direct interaction with the AT-hook motif (a small DNA-binding protein motif) of HMGA2. In conclusion, this study is the first to report that CPX is a novel potential inhibitor of HMGA2 using a drug-repurposing approach, which can provide a potential therapeutic intervention in CRC patients.
Collapse
Affiliation(s)
- Yu-Min Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Pei-Ming Yang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ding-Yen Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 003107, Taiwan.
| | - Kuen-Haur Lee
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
| |
Collapse
|
44
|
Braun JA, Herrmann AL, Blase JI, Frensemeier K, Bulkescher J, Scheffner M, Galy B, Hoppe-Seyler K, Hoppe-Seyler F. Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: Repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis. Int J Cancer 2019; 146:461-474. [PMID: 31603527 DOI: 10.1002/ijc.32709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/02/2023]
Abstract
The malignant growth of human papillomavirus (HPV)-positive cancer cells is dependent on the continuous expression of the viral E6/E7 oncogenes. Here, we examined the effects of iron deprivation on the phenotype of HPV-positive cervical cancer cells. We found that iron chelators, such as the topical antifungal agent ciclopirox (CPX), strongly repress HPV E6/E7 oncogene expression, both at the transcript and protein level. CPX efficiently blocks the proliferation of HPV-positive cancer cells by inducing cellular senescence. Although active mTOR signaling is considered to be critical for the cellular senescence response towards a variety of prosenescent agents, CPX-induced senescence occurs under conditions of severely impaired mTOR signaling. Prolonged CPX treatment leads to p53-independent Caspase-3/7 activation and induction of apoptosis. CPX also eliminates HPV-positive cancer cells under hypoxic conditions through induction of apoptosis. Taken together, these results show that iron deprivation exerts profound antiviral and antiproliferative effects in HPV-positive cancer cells and suggest that iron chelators, such as CPX, possess therapeutic potential as HPV-inhibitory, prosenescent and proapoptotic agents in both normoxic and hypoxic environments.
Collapse
Affiliation(s)
- Julia A Braun
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Anja L Herrmann
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johanna I Blase
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Frensemeier
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Bulkescher
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bruno Galy
- Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Urquiza P, Laín A, Sanz-Parra A, Moreno J, Bernardo-Seisdedos G, Dubus P, González E, Gutiérrez-de-Juan V, García S, Eraña H, San Juan I, Macías I, Ben Bdira F, Pluta P, Ortega G, Oyarzábal J, González-Muñiz R, Rodríguez-Cuesta J, Anguita J, Díez E, Blouin JM, de Verneuil H, Mato JM, Richard E, Falcón-Pérez JM, Castilla J, Millet O. Repurposing ciclopirox as a pharmacological chaperone in a model of congenital erythropoietic porphyria. Sci Transl Med 2019; 10:10/459/eaat7467. [PMID: 30232228 DOI: 10.1126/scitranslmed.aat7467] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/04/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Congenital erythropoietic porphyria is a rare autosomal recessive disease produced by deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway. The disease affects many organs, can be life-threatening, and currently lacks curative treatments. Inherited mutations most commonly reduce the enzyme's stability, altering its homeostasis and ultimately blunting intracellular heme production. This results in uroporphyrin by-product accumulation in the body, aggravating associated pathological symptoms such as skin photosensitivity and disfiguring phototoxic cutaneous lesions. We demonstrated that the synthetic marketed antifungal ciclopirox binds to the enzyme, stabilizing it. Ciclopirox targeted the enzyme at an allosteric site distant from the active center and did not affect the enzyme's catalytic role. The drug restored enzymatic activity in vitro and ex vivo and was able to alleviate most clinical symptoms of congenital erythropoietic porphyria in a genetic mouse model of the disease at subtoxic concentrations. Our findings establish a possible line of therapeutic intervention against congenital erythropoietic porphyria, which is potentially applicable to most of deleterious missense mutations causing this devastating disease.
Collapse
Affiliation(s)
- Pedro Urquiza
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain
| | - Ana Laín
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain
| | - Arantza Sanz-Parra
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain
| | - Jorge Moreno
- Prion Research Laboratory, CIC bioGUNE, 48160 Derio, Spain
| | | | - Pierre Dubus
- Univerité de Bordeaux, Bordeaux Research in Translational Oncology, INSERM U1053, F-33000 Bordeaux, France.,INSERM, Biothérapie des Maladies Génétiques, Inflammatoires et Cancers, U1035, Bordeaux, France
| | | | | | | | - Hasier Eraña
- Atlas Molecular Pharma S. L., 48160 Derio, Spain
| | - Itxaso San Juan
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain
| | - Iratxe Macías
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain
| | - Fredj Ben Bdira
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain.,Department of Macromolecular Biochemistry, Leiden Institute of Chemistry, 2300 RA Leiden, Netherlands
| | - Paula Pluta
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain
| | - Gabriel Ortega
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Julen Oyarzábal
- Small Molecule Discovery Platform, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | | | | | - Juan Anguita
- Animal Facility, CIC bioGUNE, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.,Macrophage and Tick Vaccine Laboratory, CIC bioGUNE, 48160 Derio, Spain
| | - Emilio Díez
- Atlas Molecular Pharma S. L., 48160 Derio, Spain
| | - Jean-Marc Blouin
- Université de Bordeaux, Biothérapie des Maladies Génétiques, Inflammatoires et Cancers, U1035, F-33000 Bordeaux, France
| | - Hubert de Verneuil
- Université de Bordeaux, Biothérapie des Maladies Génétiques, Inflammatoires et Cancers, U1035, F-33000 Bordeaux, France
| | - José M Mato
- Liver Metabolism Laboratory, CIC bioGUNE, 48160 Derio, Spain.,CIBERehd-ISCiii, 28029 Madrid, Spain
| | - Emmanuel Richard
- Université de Bordeaux, Biothérapie des Maladies Génétiques, Inflammatoires et Cancers, U1035, F-33000 Bordeaux, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, CIC bioGUNE, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.,CIBERehd-ISCiii, 28029 Madrid, Spain
| | - Joaquín Castilla
- Prion Research Laboratory, CIC bioGUNE, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Oscar Millet
- Protein Stability and Inherited Disease Laboratory, CIC bioGUNE, 48160 Derio, Spain.
| |
Collapse
|
46
|
Wang F, Lv H, Zhao B, Zhou L, Wang S, Luo J, Liu J, Shang P. Iron and leukemia: new insights for future treatments. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:406. [PMID: 31519186 PMCID: PMC6743129 DOI: 10.1186/s13046-019-1397-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/27/2019] [Indexed: 01/19/2023]
Abstract
Iron, an indispensable element for life, is involved in all kinds of important physiological activities. Iron promotes cell growth and proliferation, but it also causes oxidative stress damage. The body has a strict regulation mechanism of iron metabolism due to its potential toxicity. As a cancer of the bone marrow and blood cells, leukemia threatens human health seriously. Current studies suggest that dysregulation of iron metabolism and subsequent accumulation of excess iron are closely associated with the occurrence and progress of leukemia. Specifically, excess iron promotes the development of leukemia due to the pro-oxidative nature of iron and its damaging effects on DNA. On the other hand, leukemia cells acquire large amounts of iron to maintain rapid growth and proliferation. Therefore, targeting iron metabolism may provide new insights for approaches to the treatment of leukemia. This review summarizes physiologic iron metabolism, alternations of iron metabolism in leukemia and therapeutic opportunities of targeting the altered iron metabolism in leukemia, with a focus on acute leukemia.
Collapse
Affiliation(s)
- Fang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huanhuan Lv
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China.,Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bin Zhao
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Liangfu Zhou
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Luo
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junyu Liu
- School of Life Science, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China. .,Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
47
|
Cai H, Gong J, Abriola L, Hoyer D, NYSCF Global Stem Cell Array Team, Noggle S, Paull D, Del Priore LV, Fields MA. High-throughput screening identifies compounds that protect RPE cells from physiological stressors present in AMD. Exp Eye Res 2019; 185:107641. [DOI: 10.1016/j.exer.2019.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/12/2019] [Accepted: 04/06/2019] [Indexed: 12/30/2022]
|
48
|
Weir SJ, Wood R, Schorno K, Brinker AE, Ramamoorthy P, Heppert K, Rajewski L, Tanol M, Ham T, McKenna MJ, McCulloch W, Dalton M, Reed GA, Jensen RA, Baltezor MJ, Anant S, Taylor JA. Preclinical Pharmacokinetics of Fosciclopirox, a Novel Treatment of Urothelial Cancers, in Rats and Dogs. J Pharmacol Exp Ther 2019; 370:148-159. [PMID: 31113837 PMCID: PMC6614794 DOI: 10.1124/jpet.119.257972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Pharmacokinetic studies in rats and dogs were performed to characterize the in vivo performance of a novel prodrug, fosciclopirox. Ciclopirox olamine (CPX-O) is a marketed topical antifungal agent with demonstrated in vitro and in vivo preclinical anticancer activity in several solid tumor and hematologic malignancies. The oral route of administration for CPX-O is not feasible due to low bioavailability and dose-limiting gastrointestinal toxicities. To enable parenteral administration, the phosphoryl-oxymethyl ester of ciclopirox (CPX), fosciclopirox (CPX-POM), was synthesized and formulated as an injectable drug product. In rats and dogs, intravenous CPX-POM is rapidly and completely metabolized to its active metabolite, CPX. The bioavailability of the active metabolite is complete following CPX-POM administration. CPX and its inactive metabolite, ciclopirox glucuronide (CPX-G), are excreted in urine, resulting in delivery of drug to the entire urinary tract. The absolute bioavailability of CPX following subcutaneous administration of CPX-POM is excellent in rats and dogs, demonstrating the feasibility of this route of administration. These studies confirmed the oral bioavailability of CPX-O is quite low in rats and dogs compared with intravenous CPX-POM. Given its broad-spectrum anticancer activity in several solid tumor and hematologic cancers and renal elimination, CPX-POM is being developed for the treatment of urothelial cancer. The safety, dose tolerance, pharmacokinetics, and pharmacodynamics of intravenous CPX-POM are currently being characterized in a United States multicenter first-in-human Phase 1 clinical trial in patients with advanced solid tumors (NCT03348514).
Collapse
Affiliation(s)
- Scott J Weir
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Robyn Wood
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Karl Schorno
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Amanda E Brinker
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Prabhu Ramamoorthy
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Kathy Heppert
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Lian Rajewski
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Mehmet Tanol
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Tammy Ham
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Michael J McKenna
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - William McCulloch
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Michael Dalton
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Gregory A Reed
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Roy A Jensen
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Michael J Baltezor
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - Shrikant Anant
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| | - John A Taylor
- University of Kansas Cancer Center, Kansas City, Kansas (S.J.W., R.W., A.E.B., G.A.R., R.A.J., M.J.B., S.A., J.A.T.); Institute for Advancing Medical Innovation (S.J.W., R.W., A.E.B., M.J.B.) and Departments of Cancer Biology (S.J.W., P.R., S.A.), Pharmacology, Toxicology, and Therapeutics (S.J.W., G.A.R.) Pathology (R.A.J.), and Urology (J.A.T.), University of Kansas Medical Center, Kansas City, Kansas; Biotechnology Innovation and Optimization Center, University of Kansas, Lawrence, Kansas (K.S., K.H., L.R., M.T., M.J.B.); School of Pharmacy, Istanbul Kemerburgaz University, Istanbul, Turkey (M.T.); CicloMed LLC, Kansas City, Missouri (T.H.); Navigator LSA, Wilmington, North Carolina (M.J.M.); Alba BioPharm Advisors Inc., Durham, North Carolina (W.M.); and The Gnomon Group, Carrboro, North Carolina (M.D.)
| |
Collapse
|
49
|
Zhou J, Zhang L, Wang M, Zhou L, Feng X, Yu L, Lan J, Gao W, Zhang C, Bu Y, Huang C, Zhang H, Lei Y. CPX Targeting DJ-1 Triggers ROS-induced Cell Death and Protective Autophagy in Colorectal Cancer. Am J Cancer Res 2019; 9:5577-5594. [PMID: 31534504 PMCID: PMC6735393 DOI: 10.7150/thno.34663] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
Rationale: Colorectal cancer (CRC) is one of the most common cancers worldwide. Ciclopirox olamine (CPX) has recently been identified to be a promising anticancer candidate; however, novel activities and detailed mechanisms remain to be uncovered. Methods: The cytotoxic potential of CPX towards CRC cells was examined in vitro and in vivo. The global gene expression pattern, ROS levels, mitochondrial function, autophagy, apoptosis, etc. were determined between control and CPX-treated CRC cells. Results: We found that CPX inhibited CRC growth by inhibiting proliferation and inducing apoptosis both in vitro and in vivo. The anti-cancer effects of CPX involved the downregulation of DJ-1, and overexpression of DJ-1 could reverse the cytotoxic effect of CPX on CRC cells. The loss of DJ-1 resulted in mitochondrial dysfunction and ROS accumulation, thus leading to CRC growth inhibition. The cytoprotective autophagy was provoked simultaneously, and blocking autophagy pharmacologically or genetically could further enhance the anti-cancer efficacy of CPX. Conclusion: Our study demonstrates that DJ-1 loss-induced ROS accumulation plays a pivotal role in CPX-mediated CRC inhibition, providing a further understanding for CRC treatment via modulating compensatory protective autophagy.
Collapse
|
50
|
Abstract
This review explores the multifaceted role that iron has in cancer biology. Epidemiological studies have demonstrated an association between excess iron and increased cancer incidence and risk, while experimental studies have implicated iron in cancer initiation, tumor growth, and metastasis. The roles of iron in proliferation, metabolism, and metastasis underpin the association of iron with tumor growth and progression. Cancer cells exhibit an iron-seeking phenotype achieved through dysregulation of iron metabolic proteins. These changes are mediated, at least in part, by oncogenes and tumor suppressors. The dependence of cancer cells on iron has implications in a number of cell death pathways, including ferroptosis, an iron-dependent form of cell death. Uniquely, both iron excess and iron depletion can be utilized in anticancer therapies. Investigating the efficacy of these therapeutic approaches is an area of active research that promises substantial clinical impact.
Collapse
Affiliation(s)
- Suzy V Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - David H Manz
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA; .,School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Bibbin T Paul
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Nicole Blanchette-Farra
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA;
| | - Frank M Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|