1
|
Turan B, Göktaş E, Uzun N, Selen ATH, Zamani AG, Yıldırım MS. Investigating Sequence Variations in CNTNAP2 and SETBP1 Genes in Language Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:100-109. [PMID: 39820116 PMCID: PMC11747735 DOI: 10.9758/cpn.24.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 01/19/2025]
Abstract
Objective Language disorder, a prevalent developmental disorder, impedes children's communication skills, with genetic and environmental factors playing pivotal roles in its pathomechanism. This study aims to investigate the involvement of sequence variations in SETBP1 and CNTNAP2 genes, along with environmental variables, in language disorder's etiology. Methods Between September 2022 and March 2023, thirty children aged 2-7 diagnosed with language disorders according to DSM-5 criteria, and evaluated using the Ankara Developmental Screening Inventory, were studied to identify genetic and environmental factors contributing to etiology.Thirty healthy children with similar age were included as a control group. DNA samples isolated from peripheral blood of both groups were analyzed for SETBP1 and CNTNAP2 genes using next-generation sequencing (custom design panel). The frequencies and clinical significance of the identified variants was evaluated, and variant verification and segregation analyses were performed by Sanger sequencing. The obtained data were compared using appropriate statistical methods. Results Language disorder showed a male-dominant distribution. The SETBP1 rs11082414-CC genotype frequency was significantly higher in patients (p = 0.024), and two rare variants (CNTNAP2: c.973C>G:p.P325A; CNTNAP2: c.2236 G>A:p.D746N) were exclusive to cases. In silico analyses yielded conflicting results for rare variants, inherited paternally from unaffected parents. Among non-genetic factors, patients had higher birth weights (p = 0.043) and shorter lactation durations (p = 0.044). Conclusion Homozygosity for SETBP1 rs11082414 polymorphic variant increases language disorder susceptibility. This study underscores the genetic dimension of language disorder, urging physicians' awareness and early intervention strategies to mitigate its impact.
Collapse
Affiliation(s)
- Betül Turan
- Department of Medical Genetics, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Emine Göktaş
- Department of Medical Genetics, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Necati Uzun
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ayşegül Tuğba Hıra Selen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ayşe Gül Zamani
- Department of Medical Genetics, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mahmut Selman Yıldırım
- Department of Medical Genetics, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
2
|
St George-Hyslop F, Haneklaus M, Kivisild T, Livesey FJ. Loss of CNTNAP2 Alters Human Cortical Excitatory Neuron Differentiation and Neural Network Development. Biol Psychiatry 2023; 94:780-791. [PMID: 37001843 DOI: 10.1016/j.biopsych.2023.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Loss-of-function mutations in the contactin-associated protein-like 2 (CNTNAP2) gene are causal for neurodevelopmental disorders, including autism, schizophrenia, epilepsy, and intellectual disability. CNTNAP2 encodes CASPR2, a single-pass transmembrane protein that belongs to the neurexin family of cell adhesion molecules. These proteins have a variety of functions in developing neurons, including connecting presynaptic and postsynaptic neurons, and mediating signaling across the synapse. METHODS To study the effect of loss of CNTNAP2 function on human cerebral cortex development, and how this contributes to the pathogenesis of neurodevelopmental disorders, we generated human induced pluripotent stem cells from one neurotypical control donor null for full-length CNTNAP2, modeling cortical development from neurogenesis through to neural network formation in vitro. RESULTS CNTNAP2 is particularly highly expressed in the first two populations of early-born excitatory cortical neurons, and loss of CNTNAP2 shifted the relative proportions of these two neuronal types. Live imaging of excitatory neuronal growth showed that loss of CNTNAP2 reduced neurite branching and overall neuronal complexity. At the network level, developing cortical excitatory networks null for CNTNAP2 had complex changes in activity compared with isogenic controls: an initial period of relatively reduced activity compared with isogenic controls, followed by a lengthy period of hyperexcitability, and then a further switch to reduced activity. CONCLUSIONS Complete loss of CNTNAP2 contributes to the pathogenesis of neurodevelopmental disorders through complex changes in several aspects of human cerebral cortex excitatory neuron development that culminate in aberrant neural network formation and function.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Moritz Haneklaus
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Nilles C, Berg L, Fleming C, Martino D, Pringsheim T. Developmental stuttering, physical concomitants associated with stuttering, and Tourette syndrome: A scoping review. JOURNAL OF FLUENCY DISORDERS 2023; 77:105992. [PMID: 37393778 DOI: 10.1016/j.jfludis.2023.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND AND PURPOSE Developmental stuttering and Tourette syndrome (TS) are common neurodevelopmental disorders. Although disfluencies may co-occur in TS, their type and frequency do not always represent pure stuttering. Conversely, core symptoms of stuttering may be accompanied by physical concomitants (PCs) that can be confused for tics. This scoping review aimed to explore the similarities and differences between stuttering and tics in terms of epidemiology, comorbidities, phenomenology, evolution, physiopathology, and treatment. We also described the nature of PCs in stuttering and disfluencies in TS. METHODS A literature search on Medline, Embase and PsycInfo was executed in March 2022. From 426 studies screened, 122 were included in the review (a majority being narrative reviews and case reports). RESULTS TS and stuttering have several epidemiological, phenomenological, comorbidity, and management similarities suggesting shared risk factors and physiopathology (involving the basal ganglia and their connections with speech and motor control cortical regions). PCs in stuttering commonly involve the face (eyelids, jaw/mouth/lip movements) and sometimes the head, trunk and limbs. PCs can be present from early stages of stuttering and vary over time and within individuals. The function of PCs is unknown. Some individuals with TS have a distinct disfluency pattern, composed of a majority of typical disfluencies (mostly between-word disfluencies), and a mix of cluttering-like behaviors, complex phonic tics (e.g. speech-blocking tics, echolalia, palilalia), and rarely, atypical disfluencies. CONCLUSION Future investigations are warranted to better understand the complex relationships between tics and stuttering and address the management of disfluencies in TS and PCs in stuttering.
Collapse
Affiliation(s)
- Christelle Nilles
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lindsay Berg
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Cassidy Fleming
- Pediatric Community Rehabilitation, Alberta Health Services, Calgary, Alberta, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Tamara Pringsheim
- Department of Clinical Neurosciences, Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
4
|
Naudhani S, Ahmad A, Khan Bazai F, Pervez MT, Zafar A, Shah SA, Raheem N, Baloch AH, Mushtaq M, Daud S. A Missense Pathogenic Variant in a Conserved Region of CNTNAP2 Is Associated with Obesity, Seizures, and Language Impairment in a Pakistani Family. Mol Syndromol 2023; 14:293-302. [PMID: 37766826 PMCID: PMC10521233 DOI: 10.1159/000529427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION In a consanguineous family, seven siblings born in three sibships showed a syndromic disorder characterized by obesity, seizures, and language impairment phenotypes, which appeared at early age or developed during early childhood. METHODS By whole-exome sequencing and subsequent Sanger sequencing, a novel homozygous missense variant (c.3371 T>A [p.Ile1124Asn]) in exon 20 of the CNTNAP2 gene was identified. RESULTS The pathogenic variant in this family is located within one of the laminin G-like 4 domains of CASPR2 and may cause loss of hydrophobic interactions of CASPR2 with its partner proteins. Single nucleotide and copy number variants in this gene have previously been related to Gilles de la Tourette syndrome, cortical dysplasia-focal epilepsy syndrome, schizophrenia, Pitt-Hopkins syndrome, and autism spectrum, attention deficit hyperactivity, and obsessive compulsive disorders. Yet, few studies described patients with CNTNAP2 variants showing diet-induced obesity. CONCLUSION This report expands the phenotypic spectrum of this rare syndrome and provides deeper insights by documenting the clinical features and genetic findings of the patients.
Collapse
Affiliation(s)
- Sara Naudhani
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Adeel Ahmad
- Continental Medical College and Hayat Memorial Hospital, Lahore, Pakistan
| | - Fariya Khan Bazai
- Quetta Institute of Medical Sciences/Combined Military Hospital, Quetta, Pakistan
| | - Muhammad Tariq Pervez
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Azqa Zafar
- Lahore General Hospital, Lahore, Pakistan
| | - Sajjad Ali Shah
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | | | - Abdul Hameed Baloch
- Department of Biotechnology, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Pakistan
| | | | - Shakeela Daud
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| |
Collapse
|
5
|
Fan LL, Sheng Y, Wang CY, Li YL, Liu JS. Case Report: Congenital Brain Dysplasia, Developmental Delay and Intellectual Disability in a Patient With a 7q35-7q36.3 Deletion. Front Genet 2021; 12:761003. [PMID: 34925452 PMCID: PMC8671813 DOI: 10.3389/fgene.2021.761003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
7q terminal deletion syndrome is a rare condition presenting with multiple congenital malformations, including abnormal brain and facial structures, developmental delay, intellectual disability, abnormal limbs, and sacral anomalies. At least 40 OMIM genes located in the 7q34-7q36.3 region act as candidate genes for these phenotypes, of which SHH, EN2, KCNH2, RHEB, HLXB9, EZH2, MNX1 and LIMR1 may be the most important. In this study, we discuss the case of a 2.5-year-old male patient with multiple malformations, congenital brain dysplasia, developmental delay, and intellectual disability. A high-resolution genome-wide single nucleotide polymorphism array and real-time polymerase chain reaction were performed to detect genetic lesions. A de novo 9.4 Mb deletion in chromosome region 7q35-7q36.3 (chr7:147,493,985-156,774,460) was found. This chromosome region contains 68 genes, some of which are candidate genes for each phenotype. To the best of our knowledge, this is a rare case report of 7q terminal deletion syndrome in a Chinese patient. Our study identifies a rare phenotype in terms of brain structure abnormalities and cerebellar sulcus widening in patients with deletion in 7q35-7q36.3.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China.,Departments of Reproductive Genetics, HeBei General Hospital, ShiJiaZhuang, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Yue Sheng
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Chen-Yu Wang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| | - Ya-Li Li
- Departments of Reproductive Genetics, HeBei General Hospital, ShiJiaZhuang, China
| | - Ji-Shi Liu
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Sun Y, Gao Y, Zhou Y, Zhou Y, Zhang Y, Wang D, Tan LH. IFNAR1 gene mutation may contribute to developmental stuttering in the Chinese population. Hereditas 2021; 158:46. [PMID: 34794508 PMCID: PMC8600687 DOI: 10.1186/s41065-021-00211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental stuttering is the most common form of stuttering without apparent neurogenic or psychogenic impairment. Recently, whole-exome sequencing (WES) has been suggested to be a promising approach to study Mendelian disorders. METHODS Here, we describe an application of WES to identify a gene potentially responsible for persistent developmental stuttering (PDS) by sequencing DNA samples from 10 independent PDS families and 11 sporadic cases. Sanger sequencing was performed for verification with samples obtained from 73 additional patients with sporadic cases. RESULTS We first searched for cosegregating variants/candidate genes in a Chinese family (Family 0) by sequencing DNA obtained from 3 affected members and 3 controls. Next, we sequenced DNA samples obtained from 9 additional Chinese families (Families 1-9) with stuttering to verify the identified candidate genes. Intriguingly, we found that two missense variants (Leu552Pro and Lys428Gln) of interferon-alpha/beta receptor 1 (IFNAR1) cosegregated with stuttering in three independent families (Families 0, 5 and 9). Moreover, we found two additional mutations (Gly301Glu and Pro335del) in the IFNAR1 gene in 4 patients with sporadic cases by using WES or Sanger sequencing. Further receptor mutagenesis and cell signaling studies revealed that these IFNAR1 variants may impair the activity of type I IFN signaling. CONCLUSION Our data indicate that IFNAR1 might be a potential pathogenic gene of PDS in the Chinese population.
Collapse
Affiliation(s)
- Yimin Sun
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Beijing CapitalBio Technology Co., Ltd., Beijing, 101111, China.
| | - Yong Gao
- Beijing CapitalBio Technology Co., Ltd., Beijing, 101111, China
| | - Yuxi Zhou
- Beijing CapitalBio Technology Co., Ltd., Beijing, 101111, China
| | - Yulong Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510400, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China
| | - Ying Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510400, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Hai Tan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510400, China. .,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, 518060, China.
| |
Collapse
|
7
|
Andres EM, Neely HL, Hafeez H, Yasmin T, Kausar F, Basra MAR, Raza MH. Study of rare genetic variants in TM4SF20, NFXL1, CNTNAP2, and ATP2C2 in Pakistani probands and families with language impairment. Meta Gene 2021; 30. [PMID: 34540591 DOI: 10.1016/j.mgene.2021.100966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Language impairment (LI) is highly heritable and aggregates in families. Genetic investigation of LI has revealed many chromosomal regions and genes of interest, though very few studies have focused on rare variant analysis in non-English speaking or non-European samples. We selected four candidate genes (TM4SF20, NFXL1, CNTNAP2 and ATP2C2) strongly suggested for specific language impairment (SLI), a subtype of LI, and investigated rare protein coding variants through Sanger sequencing of probands with LI ascertained from Pakistan. The probands and their family members completed a speech and language family history questionnaire and a vocabulary measure, the Peabody Picture Vocabulary Test-fourth edition (PPVT-4), translated to Urdu, the national language of Pakistan. Our study aimed to determine the significance of rare variants in these SLI candidate genes through segregation analysis in a novel population with a high rate of consanguinity. In total, we identified 16 rare variants (according to the rare MAF in the global population in gnomAD v2.1.1 database exomes), including eight variants with a MAF <0.5 % in the South Asian population. Most of the identified rare variants aggregated in proband's families, one rare variant (c.*9T>C in CNTNAP2) co-segregated in a small family (PKSLI-64) and another (c.2465C>T in ATP2C2) co-segregated in the proband branch (PKSLI-27). The lack of complete co-segregation of most of the identified rare variants indicates that while these genes could be involved in overall risk for LI, other genes are likely involved in LI in this population. Future investigation of these consanguineous families has the potential to expand our understanding of gene function related to language acquisition and impairment.
Collapse
Affiliation(s)
- Erin M Andres
- University of Kansas, Child Language Doctoral Program
| | | | - Huma Hafeez
- School of Chemistry, University of the Punjab
| | | | | | | | | |
Collapse
|
8
|
Turk AZ, Lotfi Marchoubeh M, Fritsch I, Maguire GA, SheikhBahaei S. Dopamine, vocalization, and astrocytes. BRAIN AND LANGUAGE 2021; 219:104970. [PMID: 34098250 PMCID: PMC8260450 DOI: 10.1016/j.bandl.2021.104970] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 05/06/2023]
Abstract
Dopamine, the main catecholamine neurotransmitter in the brain, is predominately produced in the basal ganglia and released to various brain regions including the frontal cortex, midbrain and brainstem. Dopamine's effects are widespread and include modulation of a number of voluntary and innate behaviors. Vigilant regulation and modulation of dopamine levels throughout the brain is imperative for proper execution of motor behaviors, in particular speech and other types of vocalizations. While dopamine's role in motor circuitry is widely accepted, its unique function in normal and abnormal speech production is not fully understood. In this perspective, we first review the role of dopaminergic circuits in vocal production. We then discuss and propose the conceivable involvement of astrocytes, the numerous star-shaped glia cells of the brain, in the dopaminergic network modulating normal and abnormal vocal productions.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Mahsa Lotfi Marchoubeh
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 72701 AR, USA
| | - Ingrid Fritsch
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, 72701 AR, USA
| | - Gerald A Maguire
- Department of Psychiatry and Neuroscience, School of Medicine, University of California, Riverside, 92521 CA, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA.
| |
Collapse
|
9
|
Falsaperla R, Pappalardo XG, Romano C, Marino SD, Corsello G, Ruggieri M, Parano E, Pavone P. Intronic Variant in CNTNAP2 Gene in a Boy With Remarkable Conduct Disorder, Minor Facial Features, Mild Intellectual Disability, and Seizures. Front Pediatr 2020; 8:550. [PMID: 33042910 PMCID: PMC7518065 DOI: 10.3389/fped.2020.00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction: Mutations in the contactin-associated protein-like 2 (CNTNAP2) gene (MIM#604569) encoding for CASPR2, a cell adhesion protein of the neurexin family, are known to be associated with autism, intellectual disability, and other neuropsychiatric disorders. A set of intronic deletions of CNTNAP2 gene has also been suggested to have a causative role in individuals with a wide phenotypic spectrum, including Pitt-Hopkins syndrome, cortical dysplasia-focal epilepsy syndrome, Tourette syndrome, language dysfunction, and abnormal behavioral manifestations. Case presentation: A 10-years-old boy was referred to the hospital with mild intellectual disability and language impairment. Moreover, the child exhibited minor facial features, epileptic seizures, and notable behavioral abnormalities including impulsivity, aggressivity, and hyperactivity suggestive of the diagnosis of disruptive, impulse-control and conduct disorder (CD). Array comparative genomic hybridization (CGH) revealed a copy number variant (CNV) deletion in the first intron of CNTNAP2 gene inherited from a healthy father. Conclusions: A comprehensive description of the phenotypic features of the child is provided, revealing a distinct and remarkable alteration of social behavior not previously reported in individuals affected by disorders related to CNTNAP2 gene disruptions. A possible causative link between the deletion of a non-coding regulatory region and the symptoms presented by the boy has been advanced.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Unit of Neonatology, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Catania, Italy
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Catia Romano
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| | - Simona Domenica Marino
- Unit of Neonatology, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care “G. D'Alessandro, ” University of Palermo, Palermo, Italy
| | - Martino Ruggieri
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| | - Enrico Parano
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Catania, Italy
| | - Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico-Vittorio Emanuele, ” Catania, Italy
| |
Collapse
|
10
|
Bukowska-Olech E, Dmitrzak-Węglarz M, Larysz D, Wojciechowicz B, Simon D, Walczak-Sztulpa J, Jamsheer A. Compound craniosynostosis, intellectual disability, and Noonan-like facial dysmorphism associated with 7q32.3-q35 deletion. Birth Defects Res 2020; 112:740-748. [PMID: 32529787 DOI: 10.1002/bdr2.1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Craniosynostosis (CS) is the premature fusion of the cranial sutures, occurring either in isolated or syndromic form. Syndromic CS, which was described in over 180 genetic syndromes, accounts for 15-30% of all CS cases and usually originates from mutations within the FGFR1, FGFR2, FGFR3, and TWIST1 genes. However, causative alterations in other genes, or rarely copy number variations (CNVs) were also reported. In this article, we describe a patient with Noonan-like facial dysmorphism accompanied by intellectual disability and compound CS, involving coronal, sagittal, and squamous sutures. METHODS We applied karyotyping, copy number variations analysis using array comparative genomic hybridization, and microarray-based genes expresion analysis. RESULTS We have shown that the index carried a large and rare heterozygous deletion, which encompassed 12.782 Mb and mapped to a chromosomal region of 7q32.3-q35 (HG38 - chr7:131837067-144607071). The aberration comprised 109 protein-coding genes, including BRAF, that encodes serine/threonine-protein kinase B-Raf, being a part of the RAS/MAPK signaling pathway. DISCUSSION The RAS/MAPK pathway plays an essential role in human development; hence, its dysregulation not surprisingly results in severe congenital anomalies, such as phenotypically overlapping syndromes termed RASopathies. To our best knowledge, we report here the first CNV causing haploinsufficiency of BRAF, resulting in dysregulation of the RAS/MAPK cascade, and consequently, in the phenotype observed in our patient. To conclude, with this report, we have pointed to the involvement of the RAS/MAPK signaling pathway in CS development. Moreover, we have shown that the molecular analysis based on both DNA and RNA profiling, undoubtedly constitutes a comprehensive diagnostic and research strategy for elucidating a cause of genetic diseases.
Collapse
Affiliation(s)
- Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Dawid Larysz
- Department of Radiotherapy, The Maria Skłodowska Curie Memorial Cancer Centre and Institute of Oncology, Gliwice, Poland
| | | | - Dorota Simon
- Centers for Medical Genetics GENESIS, Dąbrowskiego 77A Street, 60-529, Poznan, Poland
| | | | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Dąbrowskiego 77A Street, 60-529, Poznan, Poland
| |
Collapse
|
11
|
Benito-Aragón C, Gonzalez-Sarmiento R, Liddell T, Diez I, d'Oleire Uquillas F, Ortiz-Terán L, Bueichekú E, Chow HM, Chang SE, Sepulcre J. Neurofilament-lysosomal genetic intersections in the cortical network of stuttering. Prog Neurobiol 2020; 184:101718. [PMID: 31669185 PMCID: PMC6938554 DOI: 10.1016/j.pneurobio.2019.101718] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/03/2019] [Accepted: 10/12/2019] [Indexed: 02/02/2023]
Abstract
The neurobiological underpinnings of stuttering, a speech disorder characterized by disrupted speech fluency, remain unclear. While recent developments in the field have afforded researchers the ability to pinpoint several genetic profiles associated with stuttering, how these specific genetic backgrounds impact neuronal circuits and how they generate or facilitate the emergence of stuttered speech remains unknown. In this study, we identified the large-scale cortical network that characterizes stuttering using functional connectivity MRI and graph theory. We performed a spatial similarity analysis that examines whether the topology of the stuttering cortical network intersects with genetic expression levels of previously reported genes for stuttering from the protein-coding transcriptome data of the Allen Human Brain Atlas. We found that GNPTG - a gene involved in the mannose-6-phosphate lysosomal targeting pathways - was significantly co-localized with the stuttering cortical network. An enrichment analysis demonstrated that the genes identified with the stuttering cortical network shared a significantly overrepresented biological functionality of Neurofilament Cytoskeleton Organization (NEFH, NEFL and INA). The relationship between lysosomal pathways, cytoskeleton organization, and stuttering, was investigated by comparing the genetic interactome between GNPTG and the neurofilament genes implicated in the current study. We found that genes of the interactome network, including CDK5, SNCA, and ACTB, act as functional links between lysosomal and neurofilament genes. These findings support the notion that stuttering is due to a lysosomal dysfunction, which has deleterious effects on the neurofilament organization of the speech neuronal circuits. They help to elucidate the intriguing, unsolved link between lysosomal mutations and the presence of stuttering.
Collapse
Affiliation(s)
- Claudia Benito-Aragón
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; University of Navarra School of Medicine, University of Navarra, Pamplona, Navarra, Spain
| | - Ricardo Gonzalez-Sarmiento
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; University of Navarra School of Medicine, University of Navarra, Pamplona, Navarra, Spain
| | - Thomas Liddell
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; University of Exeter, Exeter, England, UK
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neurotechnology Laboratory, Tecnalia Health Department, Tecnalia, Derio, Basque Country, Spain
| | - Federico d'Oleire Uquillas
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Ortiz-Terán
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Universitat Jaume I, Castellón, Spain
| | - Ho Ming Chow
- Department of Psychiatry, University of Michigan, Michigan, USA; Katzin Diagnostic and Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Michigan, USA; Cognitive Imaging Research Center, Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
12
|
Hali S, Kim J, Kwak TH, Lee H, Shin CY, Han DW. Modelling monogenic autism spectrum disorder using mouse cortical organoids. Biochem Biophys Res Commun 2019; 521:164-171. [PMID: 31653345 DOI: 10.1016/j.bbrc.2019.10.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
Variants of the contactin-associated protein-like 2 (CNTNAP2), which is a member of the neurexin family of proteins, function as cell adhesion molecules. The loss of CNTNAP2 function leads to autism spectrum disorder in humans and to autistic behaviours in mice. However, the functional effects of these mutations at the cellular level during fetal developmental periods remain elusive. Here, we studied mouse cortical organoids (mCOs) derived from Cntnap2-/- (knockout, KO) mouse induced pluripotent stem cells (miPSCs). Our results showed that KO mCOs displayed inhibitory-neuron-specific defects. At the neural progenitor stage, the GABAergic-neurogenesis-governing transcriptional network was dysregulated in the absence of Cntnap2. Our findings suggest that, in the early fetal cortical development, the cell adhesion molecule Cntnap2 plays a crucial role in the regulation of the differentiation of GABAergic neurons in the organoid platform. The reduced number of GABAergic neurons was efficiently restored in KO mCOs by treatment with the antiepileptic drug retigabine, showing the effectiveness of Cntnap2 KO mCOs in the therapeutic targeting of ASD.
Collapse
Affiliation(s)
- Sai Hali
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Jonghun Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Tae Hwan Kwak
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | - Hyunseong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chan Young Shin
- Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea.
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; School of Biotechnology and Healthcare, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
13
|
Vogt D, Cho KKA, Shelton SM, Paul A, Huang ZJ, Sohal VS, Rubenstein JLR. Mouse Cntnap2 and Human CNTNAP2 ASD Alleles Cell Autonomously Regulate PV+ Cortical Interneurons. Cereb Cortex 2018; 28:3868-3879. [PMID: 29028946 PMCID: PMC6455910 DOI: 10.1093/cercor/bhx248] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023] Open
Abstract
Human mutations in CNTNAP2 are associated with an array of neuropsychiatric and neurological syndromes, including speech and language disorders, epilepsy, and autism spectrum disorder (ASD). We examined Cntnap2's expression and function in GABAergic cortical interneurons (CINs), where its RNA is present at highest levels in chandelier neurons, PV+ neurons and VIP+ neurons. In vivo functions were studied using both constitutive Cntnap2 null mice and a transplantation assay, the latter to assess cell autonomous phenotypes of medial ganglionic eminence (MGE)-derived CINs. We found that Cntnap2 constitutive null mutants had normal numbers of MGE-derived CINs, but had reduced PV+ CINs. Transplantation assays showed that Cntnap2 cell autonomously regulated the physiology of parvalbumin (PV)+, fast-spiking CINs; no phenotypes were observed in somatostatin+, regular spiking, CINs. We also tested the effects of 4 human CNTNAP2 ASD missense mutations in vivo, and found that they impaired PV+ CIN development. Together, these data reveal that reduced CNTNAP2 function impairs PV+ CINs, a cell type with important roles in regulating cortical circuits.
Collapse
Affiliation(s)
- Daniel Vogt
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen K A Cho
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Samantha M Shelton
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Anirban Paul
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vikaas S Sohal
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Saint-Martin M, Joubert B, Pellier-Monnin V, Pascual O, Noraz N, Honnorat J. Contactin-associated protein-like 2, a protein of the neurexin family involved in several human diseases. Eur J Neurosci 2018; 48:1906-1923. [PMID: 30028556 DOI: 10.1111/ejn.14081] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/08/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Contactin-associated protein-like 2 (CASPR2) is a cell adhesion protein of the neurexin family. Proteins of this family have been shown to play a role in the development of the nervous system, in synaptic functions, and in neurological diseases. Over recent years, CASPR2 function has gained an increasing interest as demonstrated by the growing number of publications. Here, we gather published data to comprehensively review CASPR2 functions within the nervous system in relation to CASPR2-related diseases in humans. On the one hand, studies on Cntnap2 (coding for CASPR2) knockout mice revealed its role during development, especially, in setting-up the inhibitory network. Consistent with this result, mutations in the CNTNAP2 gene coding for CASPR2 in human have been identified in neurodevelopmental disorders such as autism, intellectual disability, and epilepsy. On the other hand, CASPR2 was shown to play a role beyond development, in the localization of voltage-gated potassium channel (VGKC) complex that is composed of TAG-1, Kv1.1, and Kv1.2. This complex was found in several subcellular compartments essential for action potential propagation: the node of Ranvier, the axon initial segment, and the synapse. In line with a role of CASPR2 in the mature nervous system, neurological autoimmune diseases have been described in patients without neurodevelopmental disorders but with antibodies directed against CASPR2. These autoimmune diseases were of two types: central with memory disorders and temporal lobe seizures, or peripheral with muscular hyperactivity. Overall, we review the up-to-date knowledge on CASPR2 function and pinpoint confused or lacking information that will need further investigation.
Collapse
Affiliation(s)
- Margaux Saint-Martin
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bastien Joubert
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| | - Véronique Pellier-Monnin
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Pascual
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Nelly Noraz
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| |
Collapse
|
15
|
The contribution of 7q33 copy number variations for intellectual disability. Neurogenetics 2017; 19:27-40. [PMID: 29260337 DOI: 10.1007/s10048-017-0533-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
Copy number variations (CNVs) at the 7q33 cytoband are very rarely described in the literature, and almost all of the cases comprise large deletions affecting more than just the q33 segment. We report seven patients (two families with two siblings and their affected mother and one unrelated patient) with neurodevelopmental delay associated with CNVs in 7q33 alone. All the patients presented mild to moderate intellectual disability (ID), dysmorphic features, and a behavioral phenotype characterized by aggressiveness and disinhibition. One family presents a small duplication in cis affecting CALD1 and AGBL3 genes, while the other four patients carry two larger deletions encompassing EXOC4, CALD1, AGBL3, and CNOT4. This work helps to refine the phenotype and narrow the minimal critical region involved in 7q33 CNVs. Comparison with similar cases and functional studies should help us clarify the relevance of the deleted genes for ID and behavioral alterations.
Collapse
|
16
|
Ross LA, Del Bene VA, Molholm S, Woo YJ, Andrade GN, Abrahams BS, Foxe JJ. Common variation in the autism risk gene CNTNAP2, brain structural connectivity and multisensory speech integration. BRAIN AND LANGUAGE 2017; 174:50-60. [PMID: 28738218 DOI: 10.1016/j.bandl.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Three lines of evidence motivated this study. 1) CNTNAP2 variation is associated with autism risk and speech-language development. 2) CNTNAP2 variations are associated with differences in white matter (WM) tracts comprising the speech-language circuitry. 3) Children with autism show impairment in multisensory speech perception. Here, we asked whether an autism risk-associated CNTNAP2 single nucleotide polymorphism in neurotypical adults was associated with multisensory speech perception performance, and whether such a genotype-phenotype association was mediated through white matter tract integrity in speech-language circuitry. Risk genotype at rs7794745 was associated with decreased benefit from visual speech and lower fractional anisotropy (FA) in several WM tracts (right precentral gyrus, left anterior corona radiata, right retrolenticular internal capsule). These structural connectivity differences were found to mediate the effect of genotype on audiovisual speech perception, shedding light on possible pathogenic pathways in autism and biological sources of inter-individual variation in audiovisual speech processing in neurotypicals.
Collapse
Affiliation(s)
- Lars A Ross
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Victor A Del Bene
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Ferkauf Graduate School of Psychology Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gizely N Andrade
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA
| | - Brett S Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
17
|
An oscillopathic approach to developmental dyslexia: From genes to speech processing. Behav Brain Res 2017; 329:84-95. [DOI: 10.1016/j.bbr.2017.03.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/14/2017] [Accepted: 03/18/2017] [Indexed: 12/27/2022]
|
18
|
Abstract
Intragenic deletions of the contactin-associated protein-like 2 gene (CNTNAP2) have been found in patients with Gilles de la Tourette syndrome, intellectual disability (ID), obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, stuttering, and attention deficit hyperactivity disorder. A variety of molecular mechanisms, such as loss of transcription factor binding sites and perturbation of penetrance and expressivity, have been proposed to account for the phenotypic variability resulting from CNTNAP2 mutations. Deletions of both CNTNAP2 alleles produced truncated proteins lacking the transmembrane or some of the extracellular domains, or no protein at all. This observation can be extended to heterozygous intragenic deletions by assuming that such deletion-containing alleles lead to expression of a Caspr2 protein lacking one or several extracellular domains. Such altered forms of Capr2 proteins will lack the ability to bridge the intercellular space between neurons by binding to partners, such as CNTN1, CNTN2, DLG1, and DLG4. This presumed effect of intragenic deletions of CNTNAP2, and possibly other genes involved in connecting neuronal cells, represents a molecular basis for the postulated neuronal hypoconnectivity in autism and probably other neurodevelopmental disorders, including epilepsy, ID, language impairments and schizophrenia. Thus, CNTNAP2 may represent a paradigmatic case of a gene functioning as a node in a genetic and cellular network governing brain development and acquisition of higher cognitive functions.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Altunel A, Sever A, Altunel EÖ. ACTH has beneficial effects on stuttering in ADHD and ASD patients with ESES: A retrospective study. Brain Dev 2017; 39:130-137. [PMID: 27645286 DOI: 10.1016/j.braindev.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 08/07/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Etiology of stuttering remains unknown and no pharmacologic intervention has been approved for treatment. We aimed to evaluate EEG parameters and the effect of adrenocorticotropic hormone (ACTH) therapy in stuttering. METHODS In this retrospective study, 25 patients with attention deficit and hyperactivity (ADHD) or autism spectrum disorder (ASD), and comorbid stuttering were followed and treated with ACTH for electrical status epilepticus in sleep (ESES). Sleep EEGs were recorded at referral and follow-up visits and short courses of ACTH were administered when spike-wave index (SWI) was ⩾15%. The assessment of treatment effectiveness was based on reduction in SWI, and the clinician-reported improvement in stuttering, and ADHD or ASD. Statistical analyses were conducted in order to investigate the relationship between the clinical and EEG parameters. RESULTS Following treatment with ACTH, a reduction in SWI in all the patients was accompanied by a 72% improvement in ADHD or ASD, and 83.8% improvement in stuttering. Twelve of the 25 patients with stuttering showed complete treatment response. Linear regressions established that SWI at final visit significantly predicted improvement in ADHD or ASD, and in stuttering. If symptoms had recurred, improvement was once again achieved with repeated ACTH therapies. Stuttering always improved prior to, and recurred following ADHD or ASD. CONCLUSION The underlying etiology leading to ESES may play a significant role in the pathophysiology of stuttering and connect stuttering to other developmental disorders. ACTH therapy has beneficial effects on stuttering and improves EEG parameters.
Collapse
Affiliation(s)
- Attila Altunel
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Fatih, Istanbul, Turkey.
| | - Ali Sever
- Department of Radiology, Kadikoy Florence Nightingale Hospital, Bagdat Cad No: 63, 34724 Kadikoy, Istanbul, Turkey
| | | |
Collapse
|
20
|
An Interstitial Deletion at 7q33-36.1 in a Patient with Intellectual Disability, Significant Language Delay, and Severe Microcephaly. Case Rep Genet 2016; 2016:6046351. [PMID: 28053794 PMCID: PMC5178345 DOI: 10.1155/2016/6046351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 01/23/2023] Open
Abstract
Interstitial deletions of the distal 7q region are considered a rare entity. In this report, we describe a seven-year-old male with a heterozygous interstitial deletion at 7q33-36.1 with characteristic dysmorphic facial features, intellectual disability, severe microcephaly, and significant language delay. The primary focus of our report is to compare our case with the few others in the literature describing interstitial deletions at the long arm of chromosome 7. Based on the various breakpoints in prior studies, a number of phenotypic variations have been identified that are unique to each of the reports. However, there are also a number of similarities among these cases as well. We hope to provide a concise review of the literature and genes involved within our deletion sequence in the hope that it will contribute to creating a phenotypic profile for this patient population.
Collapse
|
21
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
22
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|
23
|
Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2016; 83:742-764. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/28/2023]
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are characterised by marked language deficits, but it is not clear how these arise from gene mutations associated with the disorders. Our goal is to narrow the gap between SZ and ASD and, ultimately, give support to the view that they represent abnormal (but related) ontogenetic itineraries for the human faculty of language. We will focus on the distinctive oscillatory profiles of the SZ and ASD brains, in turn using these insights to refine our understanding of how the brain implements linguistic computations by exploring a novel model of linguistic feature-set composition. We will argue that brain rhythms constitute the best route to interpreting language deficits in both conditions and mapping them to neural dysfunction and risk alleles of the genes. Importantly, candidate genes for SZ and ASD are overrepresented among the gene sets believed to be important for language evolution. This translational effort may help develop an understanding of the aetiology of SZ and ASD and their high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| | | |
Collapse
|
24
|
Smogavec M, Cleall A, Hoyer J, Lederer D, Nassogne MC, Palmer EE, Deprez M, Benoit V, Maystadt I, Noakes C, Leal A, Shaw M, Gecz J, Raymond L, Reis A, Shears D, Brockmann K, Zweier C. Eight further individuals with intellectual disability and epilepsy carrying bi-allelic CNTNAP2 aberrations allow delineation of the mutational and phenotypic spectrum. J Med Genet 2016; 53:820-827. [PMID: 27439707 DOI: 10.1136/jmedgenet-2016-103880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. METHODS Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. RESULTS We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. CONCLUSIONS By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Human Genetics, University Medical Center, Georg August University, Göttingen, Germany
| | - Alison Cleall
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Marie-Cécile Nassogne
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Elizabeth E Palmer
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Marie Deprez
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Charlotte Noakes
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alejandro Leal
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Section of Genetics and Biotechnology, School of Biology and Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Marie Shaw
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Deborah Shears
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center, Georg August University, Göttingen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
25
|
CNTNAP2 gene in high functioning autism: no association according to family and meta-analysis approaches. J Neural Transm (Vienna) 2015; 123:353-63. [PMID: 26559825 DOI: 10.1007/s00702-015-1458-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 10/22/2022]
Abstract
The Contactin Associated Protein-like 2 (CNTNAP2) gene has been discussed to be associated with different symptoms of autism spectrum disorders (ASDs) and other neurodevelopmental disorders. We aimed to elucidate the genetic association of CNTNAP2 within high functioning ASD (HFA), focusing on autism specific symptoms and reducing intelligence related factors. Furthermore, we compared our findings conducting a meta-analysis in patients with ASD and HFA only. A case-control association study was performed for HFA (HFA, n = 105; controls, n = 133). Moreover, we performed a family-based association study (DFAM) analysis (HFA, n = 44; siblings, n = 57). Individuals were genotyped for the two most frequently reported single nucleotide polymorphisms (SNPs) in the CNTNAP2 gene (rs2710102, rs7794745). Furthermore, a meta-analysis using the MIX2 software integrated our results with previously published data. A significant association for the carriers of the T-allele of the rs7794745 with HFA was found in the case-control sample [OR = 1.547; (95 % CI 1.056-2.266); p = 0.025]. No association could be found by DFAM with any of the CNTNAP2 SNPs with HFA. The meta-analysis of both SNPs did not show a significant association with either ASD or with HFA. Overall, including case-control, sibs, and meta-analysis, we could not detect any significant association with the CNTNAP2 gene and HFA. Our results point in the direction that CNTNAP2 may not play a major role in HFA, but rather seems to have a significance in neurodevelopmental disorders or in individuals displaying intellectual delays.
Collapse
|
26
|
Centanni TM, Sanmann JN, Green JR, Iuzzini-Seigel J, Bartlett C, Sanger WG, Hogan TP. The role of candidate-gene CNTNAP2 in childhood apraxia of speech and specific language impairment. Am J Med Genet B Neuropsychiatr Genet 2015; 168:536-43. [PMID: 26097074 DOI: 10.1002/ajmg.b.32325] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/13/2015] [Indexed: 01/24/2023]
Abstract
Childhood apraxia of speech (CAS) is a debilitating pediatric speech disorder characterized by varying symptom profiles, comorbid deficits, and limited response to intervention. Specific Language Impairment (SLI) is an inherited pediatric language disorder characterized by delayed and/or disordered oral language skills including impaired semantics, syntax, and discourse. To date, the genes associated with CAS and SLI are not fully characterized. In the current study, we evaluated behavioral and genetic profiles of seven children with CAS and eight children with SLI, while ensuring all children were free of comorbid impairments. Deletions within CNTNAP2 were found in two children with CAS but not in any of the children with SLI. These children exhibited average to high performance on language and word reading assessments in spite of poor articulation scores. These findings suggest that genetic variation within CNTNAP2 may be related to speech production deficits.
Collapse
Affiliation(s)
- T M Centanni
- MGH Institute of Health Professions, Boston, Massachusetts
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - J N Sanmann
- University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - J R Green
- MGH Institute of Health Professions, Boston, Massachusetts
| | - J Iuzzini-Seigel
- MGH Institute of Health Professions, Boston, Massachusetts
- Marquette University, Milwaukee, Michigan
| | - C Bartlett
- The Ohio State University, Columbus, Ohio
| | - W G Sanger
- University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - T P Hogan
- MGH Institute of Health Professions, Boston, Massachusetts
| |
Collapse
|
27
|
Variants of the CNTNAP2 5' promoter as risk factors for autism spectrum disorders: a genetic and functional approach. Mol Psychiatry 2015; 20:839-49. [PMID: 25224256 DOI: 10.1038/mp.2014.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 06/04/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
Abstract
Contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin gene superfamily, is one of the best-replicated risk genes for autism spectrum disorders (ASD). ASD are predominately genetically determined neurodevelopmental disorders characterized by impairments of language development, social interaction and communication, as well as stereotyped behavior and interests. Although CNTNAP2 expression levels were proposed to alter ASD risk, no study to date has focused on its 5' promoter. Here, we directly sequenced the CNTNAP2 5' promoter region of 236 German families with one child with ASD and detected four novel variants. Furthermore, we genotyped the three most frequent variants (rs150447075, rs34712024, rs71781329) in an additional sample of 356 families and found nominal association of rs34712024G with ASD and rs71781329GCG[7] with language development. The four novel and the three known minor alleles of the identified variants were predicted to alter transcription factor binding sites (TFBS). At the functional level, the respective sequences spanning these seven variants were bound by nuclear factors. In a luciferase promoter assay, the respective minor alleles showed cell line-specific and differentiation stage-dependent effects at the level of promoter activation. The novel potential rare risk-variant M2, a G>A mutation -215 base pairs 5' of the transcriptional start site, significantly reduced promoter efficiency in HEK293T and in undifferentiated and differentiated neuroblastoid SH-SY5Y cells. This variant was transmitted to a patient with autistic disorder. The under-transmitted, protective minor G allele of the common variant rs34712024, in contrast, increased transcriptional activity. These results lead to the conclusion that the pathomechanism of CNTNAP2 promoter variants on ASD risk is mediated by their effect on TFBSs, and thus confirm the hypothesis that a reduced CNTNAP2 level during neuronal development increases liability for ASD.
Collapse
|
28
|
Benítez-Burraco A, Boeckx C. Possible functional links among brain- and skull-related genes selected in modern humans. Front Psychol 2015; 6:794. [PMID: 26136701 PMCID: PMC4468360 DOI: 10.3389/fpsyg.2015.00794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
Collapse
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Research and Advanced Studies , Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
29
|
Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome. Case Rep Genet 2015; 2015:131852. [PMID: 26064708 PMCID: PMC4433680 DOI: 10.1155/2015/131852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/18/2015] [Indexed: 12/02/2022] Open
Abstract
This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.
Collapse
|
30
|
Poot M. Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders. Mol Syndromol 2015; 6:7-22. [PMID: 25852443 DOI: 10.1159/000371594] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 12/23/2022] Open
Abstract
Based on genomic rearrangements and copy number variations, the contactin-associated protein-like 2 gene (CNTNAP2) has been implicated in neurodevelopmental disorders such as Gilles de la Tourette syndrome, intellectual disability, obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, and attention deficit hyperactivity disorder. To explain the phenotypic pleiotropy of CNTNAP2 alterations, several hypotheses have been put forward. Those include gene disruption, loss of a gene copy by a heterozygous deletion, altered regulation of gene expression due to loss of transcription factor binding and DNA methylation sites, and mutations in the amino acid sequence of the encoded protein which may provoke altered interactions of the CNTNAP2-encoded protein, Caspr2, with other proteins. Also exome sequencing, which covers <0.2% of the CNTNAP2 genomic DNA, has revealed numerous single nucleotide variants in healthy individuals and in patients with neurodevelopmental disorders. In some of these disorders, disruption of CNTNAP2 may be interpreted as a susceptibility factor rather than a directly causative mutation. In addition to being associated with impaired development of language, CNTNAP2 may turn out to be a central node in the molecular networks controlling neurodevelopment. This review discusses the impact of CNTNAP2 mutations on its functioning at multiple levels of the combinatorial genetic networks that govern brain development. In addition, recommendations for genomic testing in the context of clinical genetic management of patients with neurodevelopmental disorders and their families are put forward.
Collapse
Affiliation(s)
- Martin Poot
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins. PLoS Genet 2015; 11:e1004852. [PMID: 25621974 PMCID: PMC4306541 DOI: 10.1371/journal.pgen.1004852] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/26/2014] [Indexed: 11/19/2022] Open
Abstract
Contactins and Contactin-Associated Proteins, and Contactin-Associated
Protein-Like 2 (CNTNAP2) in particular, have been widely cited
as autism risk genes based on findings from homozygosity mapping, molecular
cytogenetics, copy number variation analyses, and both common and rare single
nucleotide association studies. However, data specifically with regard to the
contribution of heterozygous single nucleotide variants (SNVs) have been
inconsistent. In an effort to clarify the role of rare point mutations in
CNTNAP2 and related gene families, we have conducted
targeted next-generation sequencing and evaluated existing sequence data in
cohorts totaling 2704 cases and 2747 controls. We find no evidence for
statistically significant association of rare heterozygous mutations in any of
the CNTN or CNTNAP genes, including
CNTNAP2, placing marked limits on the scale of their
plausible contribution to risk. Prior genetic studies of autism spectrum disorders (ASD) have demonstrated a
role for Contactin-Associated Protein-Like 2 protein
(CNTNAP2), as well as for other genes that code for
Contactin proteins and Contactin-Associated Proteins. While there is strong
evidence that the loss of two copies of the gene CNTNAP2
causes autism and epilepsy, the impact of mutations in only one copy of this
gene, or in only one copy of related genes, is less clear. We performed
large-scale DNA sequencing on a cohort of over 1000 autism patients and
nearly 1000 unaffected controls and did not find significant association at
any of 6 genes in the Contactin family and 4 genes in the
Contactin-Associated Protein family when looking for rare mutations that are
predicted to be disruptive to the protein’s function and are present
in only one copy of the respective gene. We then combined the data on
CNTNAP2 from our laboratory with
CNTNAP2 data from another research laboratory, and
found no significant association of deleterious heterozygous mutations at
this gene. Given the paucity of nonsense mutations identified across the
combined sample, an assessment of their impact was circumscribed. However,
missense heterozygous mutations in CNTNAP2 and in other
Contactins or Contactin-Associated Proteins are not elevated in affected
individuals versus controls and, consequently, do not have a marked impact,
as a group, on the risk for autism spectrum disorders.
Collapse
|
32
|
Boeckx C, Benítez-Burraco A. Globularity and language-readiness: generating new predictions by expanding the set of genes of interest. Front Psychol 2014; 5:1324. [PMID: 25505436 PMCID: PMC4243498 DOI: 10.3389/fpsyg.2014.01324] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
This study builds on the hypothesis put forth in Boeckx and Benítez-Burraco (2014), according to which the developmental changes expressed at the levels of brain morphology and neural connectivity that resulted in a more globular braincase in our species were crucial to understand the origins of our language-ready brain. Specifically, this paper explores the links between two well-known 'language-related' genes like FOXP2 and ROBO1 implicated in vocal learning and the initial set of genes of interest put forth in Boeckx and Benítez-Burraco (2014), with RUNX2 as focal point. Relying on the existing literature, we uncover potential molecular links that could be of interest to future experimental inquiries into the biological foundations of language and the testing of our initial hypothesis. Our discussion could also be relevant for clinical linguistics and for the interpretation of results from paleogenomics.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | | |
Collapse
|
33
|
Condro MC, White SA. Recent Advances in the Genetics of Vocal Learning. COMPARATIVE COGNITION & BEHAVIOR REVIEWS 2014; 9:75-98. [PMID: 26052371 DOI: 10.3819/ccbr.2014.90003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Language is a complex communicative behavior unique to humans, and its genetic basis is poorly understood. Genes associated with human speech and language disorders provide some insights, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been associated with speech and language disorders, along with other genes. Here, we review these recent findings that implicate genetic factors in human speech. Due to the exclusivity of language to humans, no single animal model is sufficient to study the complete behavioral effects of these genes. Fortunately, some animals possess subcomponents of language. One such subcomponent is vocal learning, which though rare in the animal kingdom, is shared with songbirds. We therefore discuss how songbird studies have contributed to the current understanding of genetic factors that impact human speech, and support the continued use of this animal model for such studies in the future.
Collapse
Affiliation(s)
- Michael C Condro
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles
| | - Stephanie A White
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| |
Collapse
|
34
|
Sampath S, Bhat S, Gupta S, O’Connor A, West AB, Arking DE, Chakravarti A. Defining the contribution of CNTNAP2 to autism susceptibility. PLoS One 2013; 8:e77906. [PMID: 24147096 PMCID: PMC3798378 DOI: 10.1371/journal.pone.0077906] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 09/05/2013] [Indexed: 12/31/2022] Open
Abstract
Multiple lines of genetic evidence suggest a role for CNTNAP2 in autism. To assess its population impact we studied 2148 common single nucleotide polymorphisms (SNPs) using transmission disequilibrium test (TDT) across the entire ~3.3 Mb CNTNAP2 locus in 186 (408 trios) multiplex and 323 simplex families with autistic spectrum disorder (ASD). This analysis yielded two SNPs with nominal statistical significance (rs17170073, p = 2.0 x 10-4; rs2215798, p = 1.6 x 10-4) that did not survive multiple testing. In a combined analysis of all families, two highly correlated (r2 = 0.99) SNPs in intron 14 showed significant association with autism (rs2710093, p = 9.0 x 10-6; rs2253031, p = 2.5 x 10-5). To validate these findings and associations at SNPs from previous autism studies (rs7794745, rs2710102 and rs17236239) we genotyped 2051 additional families (572 multiplex and 1479 simplex). None of these variants were significantly associated with ASD after corrections for multiple testing. The analysis of Mendelian errors within each family did not indicate any segregating deletions. Nevertheless, a study of CNTNAP2 gene expression in brains of autistic patients and of normal controls, demonstrated altered expression in a subset of patients (p = 1.9 x10-5). Consequently, this study suggests that although CNTNAP2 dysregulation plays a role in some cases, its population contribution to autism susceptibility is limited.
Collapse
Affiliation(s)
- Srirangan Sampath
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetics Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Shambu Bhat
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetics Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Simone Gupta
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetics Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ashley O’Connor
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetics Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew B. West
- Department of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dan E. Arking
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetics Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetics Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
35
|
Genetic insights into the functional elements of language. Hum Genet 2013; 132:959-86. [PMID: 23749164 DOI: 10.1007/s00439-013-1317-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.
Collapse
|
36
|
Rush ET, Stevens JM, Sanger WG, Olney AH. Report of a patient with developmental delay, hearing loss, growth retardation, and cleft lip and palate and a deletion of 7q34-36.1: review of distal 7q deletions. Am J Med Genet A 2013; 161A:1726-32. [PMID: 23696251 DOI: 10.1002/ajmg.a.35951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 02/09/2013] [Indexed: 11/10/2022]
Abstract
The use of aCGH has improved our ability to find subtle cytogenetic abnormalities as well as to find more precise information in patients with previously known abnormalities. In addition, it has allowed more specific genotype-phenotype correlation. In this report we describe a patient with a chromosomal deletion initially diagnosed with conventional cytogenetic analysis which was redemonstrated and more specifically described upon aCGH analysis. Our patient is a 12-year-old female born to a 26-year-old G1P0 mother. She was noted as a neonate to have a bilateral cleft lip and cleft palate, abnormal external ears, dysmorphic facies, and moderate to severe hearing loss. She has subsequently shown developmental delay, hyperreflexia, seizures, hyperactivity, and absence of speech. Chromosomal analysis showed deletion of 7q34q36.1. FISH studies confirmed the deletion was interstitial. Parental chromosomes were performed and did not show any cytogenetic abnormalities. aCGH was recently performed for the patient to further characterize the breakpoints of the deletion and confirmed the deletion was interstitial and of 13.2 Mb in size. Both proximal and terminal 7q deletion show a different phenotype than that of our patient. A number of patients with similar deletions have been found and while significant variability is observed, a number of findings appear to be common to deletions in this region. Therefore, we feel that distal interstitial deletions of chromosome 7q represent a recognizable phenotype and could be considered a separate deletion syndrome.
Collapse
Affiliation(s)
- Eric T Rush
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
37
|
Ukkola-Vuoti L, Kanduri C, Oikkonen J, Buck G, Blancher C, Raijas P, Karma K, Lähdesmäki H, Järvelä I. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS One 2013; 8:e56356. [PMID: 23460800 PMCID: PMC3584088 DOI: 10.1371/journal.pone.0056356] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.
Collapse
Affiliation(s)
- Liisa Ukkola-Vuoti
- Department of Medical Genetics, University of Helsinki, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci U S A 2012; 109:18120-5. [PMID: 23074245 DOI: 10.1073/pnas.1216398109] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the contactin-associated protein 2 (CNTNAP2) gene encoding CASPR2, a neurexin-related cell-adhesion molecule, predispose to autism, but the function of CASPR2 in neural circuit assembly remains largely unknown. In a knockdown survey of autism candidate genes, we found that CASPR2 is required for normal development of neural networks. RNAi-mediated knockdown of CASPR2 produced a cell-autonomous decrease in dendritic arborization and spine development in pyramidal neurons, leading to a global decline in excitatory and inhibitory synapse numbers and a decrease in synaptic transmission without a detectable change in the properties of these synapses. Our data suggest that in addition to the previously described role of CASPR2 in mature neurons, where CASPR2 organizes nodal microdomains of myelinated axons, CASPR2 performs an earlier organizational function in developing neurons that is essential for neural circuit assembly and operates coincident with the time of autism spectrum disorder (ASD) pathogenesis.
Collapse
|
39
|
Gene × gene interaction in shared etiology of autism and specific language impairment. Biol Psychiatry 2012; 72:692-9. [PMID: 22704665 PMCID: PMC3449050 DOI: 10.1016/j.biopsych.2012.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND To examine the relationship between autism spectrum disorders (ASD) and specific language impairment (SLI), family studies typically take a comparative approach where families with one disease are examined for traits of the other disease. In contrast, the present report is the first study with both disorders required to be present in each family to provide a more direct test of the hypothesis of shared genetic etiology. METHODS We behaviorally assessed 51 families including at least one person with ASD and at least one person with SLI (without ASD). Pedigree members were tested with 22 standardized measures of language and intelligence. Because these extended families include a nonshared environmental contrast, we calculated heritability, not just familiality, for each measure twice: 1) baseline heritability analysis, compared with; 2) heritability estimates after statistically removing ASD subjects from pedigrees. RESULTS Significant increases in heritability on four supra-linguistic measures (including Pragmatic Judgment) and a composite language score but not on any other measures were observed when removing ASD subjects from the analysis, indicating differential genetic effects that are unique to ASD. Nongenetic explanations such as effects of ASD severity or measurement error or low score variability in ASD subjects were systematically ruled out, leaving the hypothesis of nonadditive genetics effects as the potential source of the heritability change caused by ASD. CONCLUSIONS Although the data suggest genetic risk factors common to both SLI and ASD, there are effects that seem unique to ASD, possibly caused by nonadditive gene-gene interactions of shared risk loci.
Collapse
|
40
|
Amino-Terminal Microdeletion within the CNTNAP2 Gene Associated with Variable Expressivity of Speech Delay. Case Rep Genet 2012; 2012:172408. [PMID: 23074684 PMCID: PMC3447220 DOI: 10.1155/2012/172408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/26/2012] [Indexed: 01/21/2023] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is highly expressed in the frontal lobe circuits in the developing human brain. Mutations in this gene have been associated with several neurodevelopmental disorders such as autism and specific language impairment. Here we describe a 450 kb deletion within the CNTNAP2 gene that is maternally inherited in two male siblings, but with a variable clinical phenotype. This variability is described in the context of a limited number of other cases reported in the literature. The in-frame intragenic deletion removes a critical domain of the CNTNAP2 protein, and this case also highlights the challenges of correlating genotype and phenotype.
Collapse
|
41
|
Benítez-Burraco A. Aspectos problemáticos del análisis genético de los trastornos específicos del lenguaje: FOXP2 como paradigma. Neurologia 2012; 27:225-33. [DOI: 10.1016/j.nrl.2011.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 01/05/2023] Open
|
42
|
Benítez-Burraco A. Problematic aspects of the genetic analysis of the specific disorders of the language: FOXP2 as paradigm. NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2012.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
|
44
|
Peñagarikano O, Geschwind DH. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol Med 2012; 18:156-63. [PMID: 22365836 PMCID: PMC3633421 DOI: 10.1016/j.molmed.2012.01.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD) is a phenotypically and genetically heterogeneous condition characterized by the presence of repetitive/restrictive behaviors and variable deficits in language and social behavior. Many genes predisposing an individual to ASD have been identified, and understanding the causal disease mechanism(s) is critical to be able to develop treatments. Neurobiological, genetic, and imaging data provide strong evidence for the CNTNAP2 gene as a risk factor for ASD and related neurodevelopmental disorders. This review discusses the clinical genetics and current understanding of the biology of CNTNAP2 as related to ASD and illustrates how the integration of multiple research approaches, from human studies to animal models, converge to inform functional biology focused on novel treatment development.
Collapse
Affiliation(s)
- Olga Peñagarikano
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
45
|
Whalley HC, O'Connell G, Sussmann JE, Peel A, Stanfield AC, Hayiou-Thomas ME, Johnstone EC, Lawrie SM, McIntosh AM, Hall J. Genetic variation in CNTNAP2 alters brain function during linguistic processing in healthy individuals. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:941-8. [PMID: 21987501 DOI: 10.1002/ajmg.b.31241] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/14/2011] [Indexed: 11/08/2022]
Abstract
Language impairments are a characteristic feature of autism and related autism spectrum disorders (ASDs). Autism is also highly heritable and one of the most promising candidate genes implicated in its pathogenesis is contactin-associated protein-like 2 (CNTNAP2), a gene also associated with language impairment. In the current study we investigated the functional effects of variants of CNTNAP2 associated with autism and language impairment (rs7794745 and rs2710102; presumed risk alleles T and C, respectively) in healthy individuals using functional magnetic resonance imaging (fMRI) during performance of a language task (n = 66). Against a background of normal performance and lack of behavioral abnormalities, healthy individuals with the putative risk allele versus those without demonstrated significant increases in activation in the right inferior frontal gyrus (Broca's area homologue) and right lateral temporal cortex. These findings demonstrate that risk associated variation in the CNTNAP2 gene impacts on brain activation in healthy non-autistic individuals during a language processing task providing evidence of the effect of genetic variation in CNTNAP2 on a core feature of ASDs.
Collapse
Affiliation(s)
- Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Poot M, van der Smagt J, Brilstra E, Bourgeron T. Disentangling the Myriad Genomics of Complex Disorders, Specifically Focusing on Autism, Epilepsy, and Schizophrenia. Cytogenet Genome Res 2011; 135:228-40. [DOI: 10.1159/000334064] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|