1
|
da Cunha GCR, de Souza VS, Von Zuben M, Córdoba MS, Soares MVA, Bonadio RS, de Oliveira DM, de Oliveira SF, Araújo JFDM, Pic-Taylor A. Mayer-Rokitansky-Küster-Hauser syndrome associated with 7q11.23 microduplication: A case report. Glob Med Genet 2025; 12:100039. [PMID: 40276154 PMCID: PMC12019817 DOI: 10.1016/j.gmg.2025.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is characterized by the congenital absence of the uterus and vagina in females with 46, XX karyotype. The genetic etiology remains poorly understood. Case presentation We described a 29-year-old female patient with a main complaint of primary amenorrhea. The MRKHS diagnosis was confirmed, and molecular analysis revealed a 7q11.23 microduplication in the proband that was shown to be inherited from her mother. In the literature, müllerian malformations have been reported in only a few cases of 7q11.23 microduplication. However, the abnormalities observed in our patient have not been described previously. To the best of our knowledge, this is the first documented case of a patient with the coexistence of 7q11.23 microduplication syndrome and MRKHS. Discussion/conclusion Identification of the 7q11.23 duplication could suggest a new candidate region for MRKHS and add to the already described signs of 7q11.23 microduplication syndrome.
Collapse
Affiliation(s)
- Gabriela Corassa Rodrigues da Cunha
- Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-graduação em Ciências da Saúde, Brasília, DF, Brazil
- Universidade de Brasília, Faculdade de Medicina, Laboratório de Genética Clínica, Brasília, DF, Brazil
- Instituto Nacional de Doenças Raras – InRaras, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vanessa Sodré de Souza
- Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-graduação em Ciências da Saúde, Brasília, DF, Brazil
- Universidade de Brasília, Faculdade de Medicina, Laboratório de Genética Clínica, Brasília, DF, Brazil
- Instituto Nacional de Doenças Raras – InRaras, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcus Von Zuben
- Universidade de Brasília, Hospital Universitário, Brasília, DF, Brazil
| | - Mara Santos Córdoba
- Universidade de Brasília, Hospital Universitário, Brasília, DF, Brazil
- Universidade de Brasília, Faculdade de Medicina, Laboratório de Genética Clínica, Brasília, DF, Brazil
- Instituto Nacional de Doenças Raras – InRaras, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Raphael Severino Bonadio
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Daniela Mara de Oliveira
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
- Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Animal, Brasília, DF, Brazil
| | - Silviene Fabiana de Oliveira
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
- Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Animal, Brasília, DF, Brazil
- Instituto Nacional de Doenças Raras – InRaras, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Juliana Forte de Mazzeu Araújo
- Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-graduação em Ciências da Saúde, Brasília, DF, Brazil
- Universidade de Brasília, Hospital Universitário, Brasília, DF, Brazil
- Universidade de Brasília, Faculdade de Medicina, Laboratório de Genética Clínica, Brasília, DF, Brazil
- Instituto Nacional de Doenças Raras – InRaras, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Aline Pic-Taylor
- Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-graduação em Ciências da Saúde, Brasília, DF, Brazil
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
- Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Animal, Brasília, DF, Brazil
- Instituto Nacional de Doenças Raras – InRaras, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Gao S, Shan C, Zhang R, Wang T. Genetic advances in neurodevelopmental disorders. MEDICAL REVIEW (2021) 2025; 5:139-151. [PMID: 40224365 PMCID: PMC11987507 DOI: 10.1515/mr-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/14/2024] [Indexed: 04/15/2025]
Abstract
Neurodevelopmental disorders (NDDs) are a group of highly heterogeneous diseases that affect children's social, cognitive, and emotional functioning. The etiology is complicated with genetic factors playing an important role. During the past decade, large-scale whole exome sequencing (WES) and whole genome sequencing (WGS) have vastly advanced the genetic findings of NDDs. Various forms of variants have been reported to contribute to NDDs, such as de novo mutations (DNMs), copy number variations (CNVs), rare inherited variants (RIVs), and common variation. By far, over 200 high-risk NDD genes have been identified, which are involved in biological processes including synaptic function, transcriptional and epigenetic regulation. In addition, monogenic, oligogenic, polygenetic, and omnigenic models have been proposed to explain the genetic architecture of NDDs. However, the majority of NDD patients still do not have a definitive genetic diagnosis. In the future, more types of risk factors, as well as noncoding variants, are await to be identified, and including their interplay mechanisms are key to resolving the etiology and heterogeneity of NDDs.
Collapse
Affiliation(s)
- Shilin Gao
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Chaoyi Shan
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rong Zhang
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
| | - Tianyun Wang
- Department of Neuroscience, Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
3
|
Li R, Yang Y, Bao X, Chen M, Yang H, Gong F, Du H, Pan H, Zhu H. Genetic variations, clinical presentation and treatment outcome of isolated growth hormone deficiency type I and II: case series and review of the literature. Endocrine 2025; 87:1171-1181. [PMID: 39562420 DOI: 10.1007/s12020-024-04102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE To report a case series of four patients with isolated growth hormone deficiency (IGHD) type I from two Chinese pedigrees and to elucidate phenotype-genotype correlation of IGHD type I and II with GH1 gene alterations in the literature. METHODS Whole exome sequencing (WES) was performed and a literature review was conducted. RESULTS Four patients presented with extreme growth retardation (height -4.74 to -6.50 SDS) and undetectable peak growth hormone (GH) during GH stimulating test. WES revealed a novel homozygous nonsense mutation, c.316delC (p.L106Cfs*35), in GH1 gene in the the first pedigree. Deletions of exon 1-5 in GH1 gene were identified in the second pedigree. Ideal catch-up growth after GH treatment was achieved. 94 patients with IGHD type I and 240 patients with IGHD type II were included in literature review. Patients with IGHD type I exhibited younger age (3.2 vs 6.0 years, P < 0.001), more severe growth retardation (median height -6.50 vs -3.84 SDS, P < 0.001), lower peak GH levels (0.05 vs 1.70 ng/ml, P < 0.001) and a higher dosage of GH (0.22 vs 0.17 mg/kg/week, P = 0.012) compared to patients with IGHD type II. Gross deletions constituted 72.3% of IGHD type I cases, while splicing mutations and missense mutations comprised 54.2% and 45.0% of IGHD type II cases. In patients with IGHD type I harboring gross deletion, an early age of diagnosis correlated with both a higher height SDS at diagnosis and a better response after GH treatment. Height SDS after GH treatment in patients with IGHD type II carrying splicing mutations was negatively correlated with age at diagnosis. CONCLUSION We identified two GH1 gene mutations, c.316delC (p.L106Cfs*35) and deletions of exon 1-5 in four Chinese patients with IGHD type I. They had a good response to GH treatment and gained satisfactory height improvement. Early diagnosis and initiating treatment may lead to a better prognosis.
Collapse
Affiliation(s)
- Ran Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Yiying Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
- Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Xudong Bao
- Department of Pediatric, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Meiping Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Hanze Du
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
4
|
Colijn MA. Rare genetic disorders and the heightened importance of baseline motor examinations in children and adolescents experiencing a first episode of psychosis. Eur Child Adolesc Psychiatry 2025; 34:811-813. [PMID: 38671246 DOI: 10.1007/s00787-024-02449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Mark Ainsley Colijn
- Department of Psychiatry, Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, The University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
5
|
Luo X, Niu H, Zhou F, Chen X, Pei Y, Liu W, Wei F. Prenatal diagnosis, ultrasound findings and pregnancy outcome of 7q11.23 deletion and duplication syndromes: what are the fetal features? BMC Pregnancy Childbirth 2024; 24:727. [PMID: 39506689 PMCID: PMC11542197 DOI: 10.1186/s12884-024-06920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVE Analyze the ultrasound findings, single nucleotide polymorphism array (SNP-array) results, and pregnancy outcomes of fetuses with 7q11.23 deletions and duplications in the second and third trimesters. Investigate the prenatal ultrasound characteristics and follow up information of these fetuses. METHODS Seven fetuses were diagnosed with 7q11.23 deletion and six with 7q11.23 duplication via SNP-array at the prenatal diagnosis center of a single Chinese tertiary medical center from January 2017 to May 2024. Maternal demographics, ultrasound findings, SNP-array results, pregnancy outcomes, and follow-up information were comprehensively reviewed and analyzed. RESULTS The copy number variations (CNVs) ranged from 1.43 Mb to 1.78 Mb in cases of 7q11.23 deletions and from 1.42 Mb to 1.68 Mb in cases of 7q11.23 duplications. These CNVs encompassed 29 OMIM-listed genes, including ELN, DNAJC30, GTF2IRD1, and GTF2I. Among the seven cases of 7q11.23 deletion syndrome, six exhibited ultrasound abnormalities. The main clinical phenotypes included three cases of intrauterine growth restriction and four cases of cardiovascular system abnormalities, specifically two cases with ventricular septal defects, one case with aortic narrowing, and one case with supravalvular pulmonary stenosis. One case was particularly notable, exhibiting complex multi-organ structural malformations. Out of six cases of 7q11.23 duplication syndrome, five exhibited ultrasound abnormalities. These included two cases of cardiovascular abnormalities: one case with a widened left ventricle and another case with a shortened fetal humerus length. One case revealed complex multi-organ structural malformations, including hydronephrosis, a microgallbladder, and a cleft lip and palate. All seven cases of 7q11.23 deletions and three cases of 7q11.23 duplications opted for termination of the pregnancy. The remaining three cases of 7q11.23 duplications chose to continue the pregnancy. One case underwent surgical treatment for a ventricular septal defect after birth, and the prognosis was favorable. Another case involved a full-term delivery, this child was followed up at the age of 4 and exhibited a phenotype of poor language expression ability. CONCLUSION Our study broadened the clinical phenotype spectrum of fetuses with 7q11.23 deletions and duplications. Additionally, it conducted a preliminary evaluation of prenatal ultrasound findings and postnatal clinical phenotypes in follow-up cases. The clinical phenotype of fetuses with 7q11.23 deletion and duplication syndromes involves multiple systems and is relatively complex. Cardiovascular abnormalities and intrauterine growth restriction are the most common clinical manifestations observed in prenatal 7q11.23 deletion syndrome. Fetuses with 7q11.23 duplications exhibit a wide range of clinical phenotypes that lack specificity.
Collapse
Affiliation(s)
- Xiaojin Luo
- The Genetics Laboratory, Longgang District maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Hongyan Niu
- The Genetics Laboratory, Longgang District maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Fei Zhou
- The Genetics Laboratory, Longgang District maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Xiaohang Chen
- The Genetics Laboratory, Longgang District maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Yuanyuan Pei
- The Genetics Laboratory, Longgang District maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Weiqiang Liu
- The Genetics Laboratory, Longgang District maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China.
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Wang F, Peng H, Lou G, Ren Y, Liao S. Characterization of the Prenatal Ultrasound Phenotype Associated With 7q11.23 Microduplication Syndrome and Williams-Beuren Syndrome. Prenat Diagn 2024; 44:1398-1411. [PMID: 39304981 DOI: 10.1002/pd.6669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE This study aimed to characterize the intrauterine phenotype of fetuses with 7q11.23 microduplication syndrome and Williams-Beuren syndrome (WBS) to provide insight into prenatal genotype and phenotype correlations in the 7q11.23 region. METHODS Seven fetuses with 7q11.23 microduplication syndrome and sixteen with WBS were diagnosed via array comparative genomic hybridization (array CGH) or copy number variation sequencing (CNV-seq) at our center. Clinical data were also systematically collected and analyzed, including intrauterine phenotype, pregnancy outcome, and inheritance. RESULTS In our cases, the most common prenatal ultrasound feature of 7q11.23 microduplication syndrome was cardiovascular defects; less frequent features included choroid plexus cysts, anencephaly, bilateral pyelectasis, and cervical lymphatic hygroma. On the other hand, WBS was mainly associated with cardiovascular defects and intrauterine growth retardation. Other clinical phenotypes included hypoechoic frontal horn of the right lateral ventricle, crossed fused renal ectopia, hyperechogenic bowel, hyperechogenic right thoracic cavity, and hyperechogenic hepatic parenchyma/intrahepatic duct wall. CONCLUSIONS Our study describes a series of new ultrasound features identified prenatally in fetuses with 7q11.23 microduplications and microdeletions with the intent of expanding the prenatal phenotype associated with copy number variants in this chromosomal region. Additional studies are needed to clearly delineate specific prenatal features associated with these rare genetic entities.
Collapse
Affiliation(s)
- Fengyang Wang
- Henan Provincial Institute of Medical Genetics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Huijuan Peng
- Department of Ultrasonography, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guiyu Lou
- Henan Provincial Institute of Medical Genetics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yanxin Ren
- Henan Provincial Institute of Medical Genetics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shixiu Liao
- Henan Provincial Institute of Medical Genetics, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Velleman SL, Guimaraes VN, Klein-Tasman BP, Huffman MJ, Becerra AM, Mervis CB. Relations Between Selective Mutism and Speech Sound Disorder in Children With 7q11.23 Duplication Syndrome. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:3452-3462. [PMID: 37678220 DOI: 10.1044/2023_jslhr-22-00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE The aim of this study was to explore relations between speech sound disorder severity and selective mutism in a group of children with 7q11.23 duplication syndrome (Dup7), a genetic condition predisposing children to childhood apraxia of speech (CAS) and other speech sound disorders and to anxiety disorders, including selective mutism and social anxiety disorder. METHOD Forty-nine children aged 4-17 years with genetically confirmed Dup7 completed the Goldman-Fristoe Test of Articulation-Second Edition (GFTA-2), the Expressive Vocabulary Test-Second Edition (EVT-2), and the Differential Ability Scales-Second Edition (DAS-II). Parents completed the Anxiety Disorders Interview Schedule-Parent (ADIS-P). RESULTS Mean standard scores (SSs) were 65.67 for the GFTA-2, 92.73 for the EVT-2, and 82.69 for the DAS-II General Conceptual Ability (GCA; similar to IQ). Standard deviations for all measures were larger than for the general population. GFTA-2 SS was significantly correlated with both EVT-2 SS and DAS-II GCA. Based on the ADIS-P, 22 participants (45%) were diagnosed with selective mutism and 29 (59%) were diagnosed with social anxiety disorder. No significant differences in performance on any of the measures were found either between the group with a selective mutism diagnosis and the group that did not have selective mutism or between the group with a selective mutism and/or social anxiety disorder diagnosis and the group that did not have either disorder. CONCLUSIONS For children with Dup7, neither the diagnosis of selective mutism nor the diagnosis of selective mutism and/or social anxiety disorder was related to severity of speech sound disorder, expressive vocabulary ability, or overall intellectual ability. Accordingly, treatment for speech sound disorder alone is unlikely to lead to remission of selective mutism or social anxiety disorder. Instead, selective mutism and/or social anxiety disorder should be treated directly. Further research is needed to determine if these findings generalize to other populations, such as children with idiopathic CAS.
Collapse
Affiliation(s)
- Shelley L Velleman
- Department of Communication Sciences and Disorders, The University of Vermont, Burlington
| | - Vitor N Guimaraes
- Department of Psychological and Brain Sciences, University of Louisville, KY
| | | | - Myra J Huffman
- Department of Psychological and Brain Sciences, University of Louisville, KY
| | - Angela M Becerra
- Department of Psychological and Brain Sciences, University of Louisville, KY
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, KY
| |
Collapse
|
8
|
Adams JW, Vinokur A, de Souza JS, Austria C, Guerra BS, Herai RH, Wahlin KJ, Muotri AR. Loss of GTF2I promotes neuronal apoptosis and synaptic reduction in human cellular models of neurodevelopment. Cell Rep 2024; 43:113867. [PMID: 38416640 PMCID: PMC11002531 DOI: 10.1016/j.celrep.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Individuals with Williams syndrome (WS), a neurodevelopmental disorder caused by hemizygous loss of 26-28 genes at 7q11.23, characteristically portray a hypersocial phenotype. Copy-number variations and mutations in one of these genes, GTF2I, are associated with altered sociality and are proposed to underlie hypersociality in WS. However, the contribution of GTF2I to human neurodevelopment remains poorly understood. Here, human cellular models of neurodevelopment, including neural progenitors, neurons, and three-dimensional cortical organoids, are differentiated from CRISPR-Cas9-edited GTF2I-knockout (GTF2I-KO) pluripotent stem cells to investigate the role of GTF2I in human neurodevelopment. GTF2I-KO progenitors exhibit increased proliferation and cell-cycle alterations. Cortical organoids and neurons demonstrate increased cell death and synaptic dysregulation, including synaptic structural dysfunction and decreased electrophysiological activity on a multielectrode array. Our findings suggest that changes in synaptic circuit integrity may be a prominent mediator of the link between alterations in GTF2I and variation in the phenotypic expression of human sociality.
Collapse
Affiliation(s)
- Jason W Adams
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA
| | - Annabelle Vinokur
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Janaína S de Souza
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Charles Austria
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Bruno S Guerra
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Karl J Wahlin
- Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Wei SM, Gregory MD, Nash T, de Abreu e Gouvêa A, Mervis CB, Cole KM, Garvey MH, Kippenhan JS, Eisenberg DP, Kolachana B, Schmidt PJ, Berman KF. Altered pubertal timing in 7q11.23 copy number variations and associated genetic mechanisms. iScience 2024; 27:109113. [PMID: 38375233 PMCID: PMC10875153 DOI: 10.1016/j.isci.2024.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Pubertal timing, including age at menarche (AAM), is a heritable trait linked to lifetime health outcomes. Here, we investigate genetic mechanisms underlying AAM by combining genome-wide association study (GWAS) data with investigations of two rare genetic conditions clinically associated with altered AAM: Williams syndrome (WS), a 7q11.23 hemideletion characterized by early puberty; and duplication of the same genes (7q11.23 Duplication syndrome [Dup7]) characterized by delayed puberty. First, we confirm that AAM-derived polygenic scores in typically developing children (TD) explain a modest amount of variance in AAM (R2 = 0.09; p = 0.04). Next, we demonstrate that 7q11.23 copy number impacts AAM (WS < TD < Dup7; p = 1.2x10-8, η2 = 0.45) and pituitary volume (WS < TD < Dup7; p = 3x10-5, ηp2 = 0.2) with greater effect sizes. Finally, we relate an AAM-GWAS signal in 7q11.23 to altered expression in postmortem brains of STAG3L2 (p = 1.7x10-17), a gene we also find differentially expressed with 7q11.23 copy number (p = 0.03). Collectively, these data explicate the role of 7q11.23 in pubertal onset, with STAG3L2 and pituitary development as potential mediators.
Collapse
Affiliation(s)
- Shau-Ming Wei
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Michael D. Gregory
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany Nash
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Andrea de Abreu e Gouvêa
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn B. Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Katherine M. Cole
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Madeline H. Garvey
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - J. Shane Kippenhan
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Daniel P. Eisenberg
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Bhaskar Kolachana
- Human Brain Collection Core, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Karen F. Berman
- Section on Integrative Neuroimaging, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Iadarola MJ, Sapio MR, Loydpierson AJ, Mervis CB, Fehrenbacher JC, Vasko MR, Maric D, Eisenberg DP, Nash TA, Kippenhan JS, Garvey MH, Mannes AJ, Gregory MD, Berman KF. Syntaxin1A overexpression and pain insensitivity in individuals with 7q11.23 duplication syndrome. JCI Insight 2024; 9:e176147. [PMID: 38261410 DOI: 10.1172/jci.insight.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Genetic modifications leading to pain insensitivity phenotypes, while rare, provide invaluable insights into the molecular biology of pain and reveal targets for analgesic drugs. Pain insensitivity typically results from Mendelian loss-of-function mutations in genes expressed in nociceptive (pain-sensing) dorsal root ganglion (DRG) neurons that connect the body to the spinal cord. We document a pain insensitivity mechanism arising from gene overexpression in individuals with the rare 7q11.23 duplication syndrome (Dup7), who have 3 copies of the approximately 1.5-megabase Williams syndrome (WS) critical region. Based on parental accounts and pain ratings, people with Dup7, mainly children in this study, are pain insensitive following serious injury to skin, bones, teeth, or viscera. In contrast, diploid siblings (2 copies of the WS critical region) and individuals with WS (1 copy) show standard reactions to painful events. A converging series of human assessments and cross-species cell biological and transcriptomic studies identified 1 likely candidate in the WS critical region, STX1A, as underlying the pain insensitivity phenotype. STX1A codes for the synaptic vesicle fusion protein syntaxin1A. Excess syntaxin1A was demonstrated to compromise neuropeptide exocytosis from nociceptive DRG neurons. Taken together, these data indicate a mechanism for producing "genetic analgesia" in Dup7 and offer previously untargeted routes to pain control.
Collapse
Affiliation(s)
- Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Carolyn B Mervis
- Neurodevelopmental Sciences Laboratory, Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Jill C Fehrenbacher
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael R Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), and
| | - Daniel P Eisenberg
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Tiffany A Nash
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - J Shane Kippenhan
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Madeline H Garvey
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael D Gregory
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health (NIMH), NIH, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Pai C, McIntosh BA, Knutsen RH, Levin MD, Tsang KM, Kozel BA, Heuckeroth RO. Loss of Baz1b in mice causes perinatal lethality, growth failure, and variable multi-system outcomes. Dev Biol 2024; 505:42-57. [PMID: 37827362 PMCID: PMC10872721 DOI: 10.1016/j.ydbio.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
BAZ1B is one of 25-27 coding genes deleted in canonical Williams syndrome, a multi-system disorder causing slow growth, vascular stenosis, and gastrointestinal complaints, including constipation. BAZ1B is involved in (among other processes) chromatin organization, DNA damage repair, and mitosis, suggesting reduced BAZ1B may contribute to Williams syndrome symptoms. In mice, loss of Baz1b causes early neonatal death. 89.6% of Baz1b-/- mice die within 24 h of birth without vascular anomalies or congenital heart disease (except for patent ductus arteriosus). Some (<50%) Baz1b-/- were noted to have prolonged neonatal cyanosis, patent ductus arteriosus, or reduced lung aeration, and none developed a milk spot. Meanwhile, 35.5% of Baz1b+/- mice die over the first three weeks after birth. Surviving Baz1b heterozygotes grow slowly (with variable severity). 66.7% of Baz1b+/- mice develop bowel dilation, compared to 37.8% of wild-type mice, but small bowel and colon transit studies were normal. Additionally, enteric neuron density appeared normal in Baz1b-/- mice except in distal colon myenteric plexus, where neuron density was modestly elevated. Combined with several rare phenotypes (agnathia, microphthalmia, bowel dilation) recovered, our work confirms the importance of BAZ1B in survival and growth and suggests that reduced copy number of BAZ1B may contribute to the variability in Williams syndrome phenotypes.
Collapse
Affiliation(s)
- Christopher Pai
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA, 19104; The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Basil A McIntosh
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Russell H Knutsen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Mark D Levin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Kit Man Tsang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892
| | - Beth A Kozel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA, 20892.
| | - Robert O Heuckeroth
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA, 19104; The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA, 19104.
| |
Collapse
|
12
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Serrano-Juárez CA, Prieto-Corona B, Rodríguez-Camacho M, Sandoval-Lira L, Villalva-Sánchez ÁF, Yáñez-Téllez MG, López MFR. Neuropsychological Genotype-Phenotype in Patients with Williams Syndrome with Atypical Deletions: A Systematic Review. Neuropsychol Rev 2023; 33:891-911. [PMID: 36520254 DOI: 10.1007/s11065-022-09571-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/04/2022] [Indexed: 12/16/2022]
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder caused by a microdeletion in the q11.23 region of chromosome 7. Recent case series reports and clinical case studies have suggested that the cognitive, behavioral, emotional, and social profile in WS could depend on the genes involved in the deletion. The objective of this systematic review was to analyze and synthesize the variability of the cognitive and behavioral profile of WS with atypical deletion and its probable relationship with the affected genes. The medical subject headings searched were "Williams syndrome," "genotype," "phenotype," "cognitive profile," and "atypical deletion." The studies included were in English or Spanish, with children and adults, and published between January 2000 and October 2022. Twenty-three studies are reported. The characteristics of the participants, the genes involved, the neuropsychological domains and instruments, and the prevalence of the WS cognitive profile criteria were used for the genotype-phenotype analysis. The genes with a major impact on the cognitive profile of WS were (a) LIMK1 and those belonging to the GTF2I family, the former with a greater influence on visuospatial abilities; (b) GTF2IRD1 and GTF2I, which have an impact on intellectual capacity as well as on visuospatial and social skills; (c) FZD9, BAZ1B, STX1A, and CLIP2, which influence the cognitive profile if other genes are also effected; and (d) GTF2IRD2, which is related to the severity of the effect on visuospatial and social skills, producing a behavioral phenotype like that of the autism spectrum. The review revealed four neuropsychological phenotypes, depending on the genes involved, and established the need for more comprehensive study of the neuropsychological profile of these patients. Based on the results found, we propose a model for the investigation of and clinical approach to the WS neuropsychological phenotype.
Collapse
Affiliation(s)
- Carlos Alberto Serrano-Juárez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Belén Prieto-Corona
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México.
| | - Mario Rodríguez-Camacho
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Lucero Sandoval-Lira
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Ángel Fernando Villalva-Sánchez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | - Ma Guillermina Yáñez-Téllez
- Neuroscience Group. Laboratorio de Neurometría, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios #1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, México
| | | |
Collapse
|
14
|
Garofalo M, Vansenne F, Sival DA, Verbeek DS. Pathogenetic Insights into Developmental Coordination Disorder Reveal Substantial Overlap with Movement Disorders. Brain Sci 2023; 13:1625. [PMID: 38137073 PMCID: PMC10741651 DOI: 10.3390/brainsci13121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Developmental Coordination Disorder (DCD) is a neurodevelopmental condition characterized by non-progressive central motor impairments. Mild movement disorder features have been observed in DCD. Until now, the etiology of DCD has been unclear. Recent studies suggested a genetic substrate in some patients with DCD, but comprehensive knowledge about associated genes and underlying pathogenetic mechanisms is still lacking. In this study, we first identified genes described in the literature in patients with a diagnosis of DCD according to the official diagnostic criteria. Second, we exposed the underlying pathogenetic mechanisms of DCD, by investigating tissue- and temporal gene expression patterns and brain-specific biological mechanisms. Third, we explored putative shared pathogenetic mechanisms between DCD and frequent movement disorders with a known genetic component, including ataxia, chorea, dystonia, and myoclonus. We identified 12 genes associated with DCD in the literature, which are ubiquitously expressed in the central nervous system throughout brain development. These genes are involved in cellular processes, neural signaling, and nervous system development. There was a remarkable overlap (62%) in pathogenetic mechanisms between DCD-associated genes and genes linked with movement disorders. Our findings suggest that some patients might have a genetic etiology of DCD, which could be considered part of a pathogenetic movement disorder spectrum.
Collapse
Affiliation(s)
- Martinica Garofalo
- Department of Pediatric Neurology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.G.); (D.A.S.)
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
| | - Fleur Vansenne
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Deborah A. Sival
- Department of Pediatric Neurology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.G.); (D.A.S.)
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
| | - Dineke S. Verbeek
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
15
|
Wang Y, Liu C, Hu R, Geng J, Lu J, Zhao X, Xiong Y, Wu J, Yin A. Intrauterine phenotype features of fetuses with 7q11.23 microduplication syndrome. Orphanet J Rare Dis 2023; 18:305. [PMID: 37759207 PMCID: PMC10523695 DOI: 10.1186/s13023-023-02923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE To share our experience on prenatal diagnosis of 7q11.23 microduplication syndrome and to further delineate the fetal phenotypes of the syndrome. METHODS A retrospective study was conducted to evaluate seven cases of dup7q11.23 syndrome diagnosed prenatally by chromosomal microarray (CMA). Clinical data were reviewed, including maternal characteristics, indications for prenatal diagnosis, sonographic findings, CMA results, pregnancy outcomes and follow-ups. RESULTS Seven cases, including 2 pairs of MCDA twins, were prenatally identified with dup7q11.23 syndrome. The most common prenatal sonographic features were ventriculomegaly, low-lying conus medullaris, and dilated ascending aorta. All 7 fetuses presented with typical 7q11.23 duplications (1.40-1.55 Mb). Parental chromosome analysis was performed in four pairs of parents, and indicated that the duplications of Case 6 and 7 were inherited from their asymptomatic mother. CONCLUSION Our case series suggest that prenatal features of dup7q11.23 cases are diversified, with ventriculomegaly and low-lying conus medullaris being the most common intrauterine phenotypes. Additionally, cleft palate, dilated ascending aorta, and renal abnormalities were also observed, and should be taken into consideration in subsequent studies.
Collapse
Affiliation(s)
- Yunan Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Chang Liu
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Rong Hu
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Juan Geng
- UItrasonic Diagnosis Deparment, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Jian Lu
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Xin Zhao
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Ying Xiong
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Jing Wu
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China
| | - Aihua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, NO.521-523, Xingnan Road, Panyu District, Guangzhou, 511442, Guangdong, People's Republic of China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Ophir O, Levy G, Bar E, Kimchi Feldhorn O, Rokach M, Elad Sfadia G, Barak B. Deletion of Gtf2i via Systemic Administration of AAV-PHP.eB Virus Increases Social Behavior in a Mouse Model of a Neurodevelopmental Disorder. Biomedicines 2023; 11:2273. [PMID: 37626769 PMCID: PMC10452363 DOI: 10.3390/biomedicines11082273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Williams syndrome (WS) is a neurodevelopmental disorder characterized by distinctive cognitive and personality profiles which also impacts various physiological systems. The syndrome arises from the deletion of about 25 genes located on chromosome 7q11.23, including Gtf2i. Prior research indicated a strong association between pre-natal Gtf2i deletion, and the hyper-social phenotypes observed in WS, as well as myelination deficits. As most studies addressed pre-natal Gtf2i deletion in mouse models, post-natal neuronal roles of Gtf2i were unknown. To investigate the impact of post-natal deletion of neuronal Gtf2i on hyper-sociability, we intravenously injected an AAV-PHP.eB virus expressing Cre-recombinase under the control of αCaMKII, a promoter in a mouse model with floxed Gtf2i. This targeted deletion was performed in young mice, allowing for precise and efficient brain-wide infection leading to the exclusive removal of Gtf2i from excitatory neurons. As a result of such gene deletion, the mice displayed hyper-sociability, increased anxiety, impaired cognition, and hyper-mobility, relative to controls. These findings highlight the potential of systemic viral manipulation as a gene-editing technique to modulate behavior-regulating genes during the post-natal stage, thus presenting novel therapeutic approaches for addressing neurodevelopmental dysfunction.
Collapse
Affiliation(s)
- Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The School of Neurobiology, Biochemistry & Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Nygaard KR, Maloney SE, Swift RG, McCullough KB, Wagner RE, Fass SB, Garbett K, Mirnics K, Veenstra‐VanderWeele J, Dougherty JD. Extensive characterization of a Williams syndrome murine model shows Gtf2ird1-mediated rescue of select sensorimotor tasks, but no effect on enhanced social behavior. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12853. [PMID: 37370259 PMCID: PMC10393419 DOI: 10.1111/gbb.12853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Williams syndrome is a rare neurodevelopmental disorder exhibiting cognitive and behavioral abnormalities, including increased social motivation, risk of anxiety and specific phobias along with perturbed motor function. Williams syndrome is caused by a microdeletion of 26-28 genes on chromosome 7, including GTF2IRD1, which encodes a transcription factor suggested to play a role in the behavioral profile of Williams syndrome. Duplications of the full region also lead to frequent autism diagnosis, social phobias and language delay. Thus, genes in the region appear to regulate social motivation in a dose-sensitive manner. A "complete deletion" mouse, heterozygously eliminating the syntenic Williams syndrome region, has been deeply characterized for cardiac phenotypes, but direct measures of social motivation have not been assessed. Furthermore, the role of Gtf2ird1 in these behaviors has not been addressed in a relevant genetic context. Here, we have generated a mouse overexpressing Gtf2ird1, which can be used both to model duplication of this gene alone and to rescue Gtf2ird1 expression in the complete deletion mice. Using a comprehensive behavioral pipeline and direct measures of social motivation, we provide evidence that the Williams syndrome critical region regulates social motivation along with motor and anxiety phenotypes, but that Gtf2ird1 complementation is not sufficient to rescue most of these traits, and duplication does not decrease social motivation. However, Gtf2ird1 complementation does rescue light-aversive behavior and performance on select sensorimotor tasks, perhaps indicating a role for this gene in sensory processing or integration.
Collapse
Affiliation(s)
- Kayla R. Nygaard
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Susan E. Maloney
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Intellectual & Developmental Disabilities Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Raylynn G. Swift
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Katherine B. McCullough
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Rachael E. Wagner
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Stuart B. Fass
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Karoly Mirnics
- Psychiatry, Biochemistry & Molecular Biology, Pharmacology & Experimental Neuroscience, Munroe‐Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jeremy Veenstra‐VanderWeele
- Departments of Psychiatry and PediatricsColumbia University, New York State Psychiatric Institute, and Center for Autism and the Developing Brain, New York‐Presbyterian HospitalNew York CityNew YorkUSA
| | - Joseph D. Dougherty
- Department of GeneticsWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Intellectual & Developmental Disabilities Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
18
|
Hussein Y, Tripathi U, Choudhary A, Nayak R, Peles D, Rosh I, Rabinski T, Djamus J, Vatine GD, Spiegel R, Garin-Shkolnik T, Stern S. Early maturation and hyperexcitability is a shared phenotype of cortical neurons derived from different ASD-associated mutations. Transl Psychiatry 2023; 13:246. [PMID: 37414777 PMCID: PMC10326262 DOI: 10.1038/s41398-023-02535-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized mainly by social and sensory-motor abnormal and repetitive behavior patterns. Over hundreds of genes and thousands of genetic variants were reported to be highly penetrant and causative of ASD. Many of these mutations cause comorbidities such as epilepsy and intellectual disabilities (ID). In this study, we measured cortical neurons derived from induced pluripotent stem cells (iPSCs) of patients with four mutations in the genes GRIN2B, SHANK3, UBTF, as well as chromosomal duplication in the 7q11.23 region and compared them to neurons derived from a first-degree relative without the mutation. Using a whole-cell patch-clamp, we observed that the mutant cortical neurons demonstrated hyperexcitability and early maturation compared to control lines. These changes were characterized by increased sodium currents, increased amplitude and rate of excitatory postsynaptic currents (EPSCs), and more evoked action potentials in response to current stimulation in early-stage cell development (3-5 weeks post differentiation). These changes that appeared in all the different mutant lines, together with previously reported data, indicate that an early maturation and hyperexcitability may be a convergent phenotype of ASD cortical neurons.
Collapse
Affiliation(s)
- Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Ritu Nayak
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Tatiana Rabinski
- The Department of Physiology and Cell Biology, Faculty of Health Sciences and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gad David Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences and the Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ronen Spiegel
- Center for Rare Diseases, Emek Medical Center, Afula, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
19
|
Abbiati CI, Velleman SL, Overby MS, Becerra AM, Mervis CB. Early diagnostic indicators of childhood apraxia of speech in young children with 7q11.23 duplication syndrome: preliminary findings. CLINICAL LINGUISTICS & PHONETICS 2023; 37:330-344. [PMID: 35652603 PMCID: PMC9832391 DOI: 10.1080/02699206.2022.2080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/03/2022] [Accepted: 05/15/2022] [Indexed: 05/20/2023]
Abstract
Limited evidence for early indicators of childhood apraxia of speech (CAS) precludes reliable diagnosis before 36 months, although a few prior studies have identified several potential early indicators. We examined these possible early indicators in 10 toddlers aged 14-24 months at risk for CAS due to a genetic condition: 7q11.23 duplication syndrome (Dup7). Phon Vocalisation analyses were conducted on phonetic transcriptions of each child's vocalisations during an audio-video recorded 30-minute play session with a caregiver and/or a trained research assistant. The resulting data were compared to data previously collected by Overby from similar-aged toddlers developing typically (TD), later diagnosed with CAS (LCAS), or later diagnosed with another speech sound disorder (LSSD). The Dup7 group did not differ significantly from the LCAS group on any measure. In contrast, the Dup7 group evidenced significant delays relative to the LSSD group on canonical babble frequency, volubility, consonant place diversity, and consonant manner diversity and relative to the TD group not only on these measures but also on canonical babble ratio, consonant diversity, and vocalisation structure diversity. Toddlers with Dup7 also demonstrated expressive vocabulary delay as measured by both number of word types orally produced during the play sessions and primary caregivers' responses on a standardised parent-report measure of early expressive vocabulary. Examining babble, phonetic, and phonotactic characteristics from the productions of young children may allow for earlier identification of CAS and a better understanding of the nature of CAS.
Collapse
Affiliation(s)
- Claudia I. Abbiati
- Department of Communication Sciences & Disorders, University of Vermont, Burlington, VT, USA
| | - Shelley L. Velleman
- Department of Communication Sciences & Disorders, University of Vermont, Burlington, VT, USA
| | - Megan S. Overby
- Department of Speech-Language Pathology, Duquesne University, Pittsburgh, PA, USA
| | - Angela M. Becerra
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
20
|
Courdier C, Boudjarane J, Malan V, Muti C, Sperelakis-Beedham B, Odent S, Jaillard S, Quelin C, Le Caignec C, Patat O, Dubucs C, Julia S, Schluth-Bolard C, Goumy C, Redon S, Gaillard JB, Huynh MT, Dupont C, Tabet AC, Cogan G, Vialard F, Dard R, Jedraszak G, Jobic F, Lefebvre M, Quenum G, Inai S, Rama M, Sauvestre F, Coatleven F, Thomas J, Rooryck C. Antenatal ultrasound features of isolated recurrent copy number variation in 7q11.23 (Williams syndrome and 7q11.23 duplication syndrome). Prenat Diagn 2023; 43:734-745. [PMID: 36914926 DOI: 10.1002/pd.6340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE We aimed to gather fetal cases carrying a 7q11.23 copy number variation (CNV) and collect precise clinical data to broaden knowledge of antenatal features in these syndromes. METHODS We retrospectively recruited unrelated cases with 7q11.23 deletion, known as Williams-Beuren syndrome (WBS), or 7q11.23 duplication who had prenatal ultrasound findings. We collected laboratory and clinical data, fetal ultrasound, cardiac ultrasound and fetal autopsy reports from 18 prenatal diagnostic centers throughout France. RESULTS 40 fetuses with WBS were collected and the most common features were intra-uterine growth retardation (IUGR) (70.0%, 28/40), cardiovascular defects (30.0%, 12/40), polyhydramnios (17.5%, 7/40) and protruding tongue (15.0%, 6/40). Fetal autopsy reports were available for 11 cases and were compared with ultrasound prenatal features. Four cases of fetuses with 7q11.23 microduplication were collected and prenatal ultrasound signs were variable and often isolated. CONCLUSION This work strengthens the fact that 7q11.23 CNVs are associated with a broad spectrum of antenatal presentations. IUGR and cardiovascular defects were the most frequent ultrasound signs. By reporting the biggest series of antenatal WBS, we aim to better delineate distinctive signs in fetuses with 7q11.23 CNVs.
Collapse
Affiliation(s)
- Cécile Courdier
- Service de Génétique médicale, CHU Bordeaux, Bordeaux, France
| | - John Boudjarane
- Laboratoire de Cytogénétique, Département de Génétique Médicale, Hôpital Timone Enfants, AP-HM, Marseille, France
| | - Valérie Malan
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Christine Muti
- Unité de Génétique, Centre hospitalier de Versailles, Versailles, France
| | | | - Sylvie Odent
- Service de Génétique clinique, CHU de Rennes, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU de Rennes, Rennes, France
| | - Chloé Quelin
- Service de Génétique clinique, CHU de Rennes, Rennes, France
| | - Cédric Le Caignec
- Service de Génétique médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Olivier Patat
- Service de Génétique médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Charlotte Dubucs
- Service de Génétique médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Sophie Julia
- Service de Génétique médicale, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Caroline Schluth-Bolard
- Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron, France
- Laboratoire de Diagnostic Génétique, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Carole Goumy
- Service de Cytogénétique Médicale, CHU d'Estaing, Clermont-Ferrand, France
| | - Sylvia Redon
- Laboratoire de Génétique Moléculaire et d'histocompatibilité, INSERM U1078, CHRU Morvan, Brest, France
| | | | - Minh Tuan Huynh
- Laboratoire de Génétique médicale, CHU de Nantes, Nantes, France
| | - Céline Dupont
- Unité fonctionnelle de Cytogénétique, Département de Génétique, Hôpital Robert Debré, AP-HP, Paris, France
| | - Anne-Claude Tabet
- Unité fonctionnelle de Cytogénétique, Département de Génétique, Hôpital Robert Debré, AP-HP, Paris, France
| | - Guillaume Cogan
- Unité fonctionnelle de Cytogénétique, Département de Génétique, Hôpital Robert Debré, AP-HP, Paris, France
| | - François Vialard
- Département de Génétique, Laboratoire de Biologie médicale, CHI de Poissy/Saint-Germain-en-Laye, Poissy, France
| | - Rodolphe Dard
- Département de Génétique, Laboratoire de Biologie médicale, CHI de Poissy/Saint-Germain-en-Laye, Poissy, France
| | - Guillaume Jedraszak
- Laboratoire de Génétique Constitutionnelle, CHU d'Amiens, Amiens, France
- HEMATIM UR4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Florence Jobic
- Service de Génétique Clinique et Oncogénétique, CHU d'Amiens, Amiens, France
| | | | - Geneviève Quenum
- Laboratoire de cytogénétique, Hôpital Armand Trousseau, Paris, France
| | - Saori Inai
- Service de Gynécologie, CH de Libourne, Libourne, France
| | - Mélanie Rama
- Institut de Génétique Médicale, Hôpital Jeanne de Flandre, CHRU Lille, Lille, France
| | - Fanny Sauvestre
- Unité de Fœtopathologie, Service de Pathologie, CHU de Bordeaux, Bordeaux, France
| | | | - Julie Thomas
- Service des maladies Cardio-vasculaires congénitales, Hôpital Haut Lévêque, Bordeaux, France
| | - Caroline Rooryck
- Service de Génétique médicale, CHU Bordeaux, Bordeaux, France
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), INSERM U1211, Bordeaux, France
| |
Collapse
|
21
|
Mollon J, Almasy L, Jacquemont S, Glahn DC. The contribution of copy number variants to psychiatric symptoms and cognitive ability. Mol Psychiatry 2023; 28:1480-1493. [PMID: 36737482 PMCID: PMC10213133 DOI: 10.1038/s41380-023-01978-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Copy number variants (CNVs) are deletions and duplications of DNA sequence. The most frequently studied CNVs, which are described in this review, are recurrent CNVs that occur in the same locations on the genome. These CNVs have been strongly implicated in neurodevelopmental disorders, namely autism spectrum disorder (ASD), intellectual disability (ID), and developmental delay (DD), but also in schizophrenia. More recent work has also shown that CNVs increase risk for other psychiatric disorders, namely, depression, bipolar disorder, and post-traumatic stress disorder. Many of the same CNVs are implicated across all of these disorders, and these neuropsychiatric CNVs are also associated with cognitive ability in the general population, as well as with structural and functional brain alterations. Neuropsychiatric CNVs also show incomplete penetrance, such that carriers do not always develop any psychiatric disorder, and may show only mild symptoms, if any. Variable expressivity, whereby the same CNVs are associated with many different phenotypes of varied severity, also points to highly complex mechanisms underlying disease risk in CNV carriers. Comprehensive and longitudinal phenotyping studies of individual CNVs have provided initial insights into these mechanisms. However, more work is needed to estimate and predict the effect of non-recurrent, ultra-rare CNVs, which also contribute to psychiatric and cognitive outcomes. Moreover, delineating the broader phenotypic landscape of neuropsychiatric CNVs in both clinical and general population cohorts may also offer important mechanistic insights.
Collapse
Affiliation(s)
- Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastien Jacquemont
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
- Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT, USA
| |
Collapse
|
22
|
Sun S, Zhang Z, Zhao J, Lan X. Extended application of BACs-on-Beads technique in prenatal diagnosis. Arch Med Sci 2023; 19:250-257. [PMID: 36817672 PMCID: PMC9897109 DOI: 10.5114/aoms/155981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/22/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION This study explored the application of bacterial artificial chromosomes (BACs)-on-Beads (BoBs) technique, especially its ability to detect microdeletion/microduplication regions with a single probe. METHODS Both chromosome karyotyping and BoBs technique were applied on a total of 2218 pregnant women. Chromosome microarray analysis (CMA) was performed on patients whose cells were reported as being abnormal by BoBs technique with a single probe. RESULTS Twenty-two cases were detected as microdeletion/microduplication with a single probe, which was consistent with the CMA results. CONCLUSIONS We believe that the microdeletion/microduplication results detected by BoBs technique with a single probe provide comprehensive guidance for prenatal diagnosis.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Medical Genetics, The Affiliated Weihai Second Municipal Hospital of Qingdao University (Weihai Maternity and Child Care Hospital), Weihai, China
- Dong Guan Eontec Co., Ltd, Dongguan, Guangdong, China
| | - Zhonghua Zhang
- Department of Otorhinolaryngology, The Affiliated Weihai Second Municipal Hospital of Qingdao University (Weihai Maternity and Child Care Hospital), Weihai, China
| | - Jing Zhao
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xinqiang Lan
- Department of Medical Genetics, The Affiliated Weihai Second Municipal Hospital of Qingdao University (Weihai Maternity and Child Care Hospital), Weihai, China
| |
Collapse
|
23
|
Warren EB, Briano JA, Ellegood J, DeYoung T, Lerch JP, Morrow EM. 17q12 deletion syndrome mouse model shows defects in craniofacial, brain and kidney development, and glucose homeostasis. Dis Model Mech 2022; 15:dmm049752. [PMID: 36373506 PMCID: PMC10655816 DOI: 10.1242/dmm.049752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
17q12 deletion (17q12Del) syndrome is a copy number variant (CNV) disorder associated with neurodevelopmental disorders and renal cysts and diabetes syndrome (RCAD). Using CRISPR/Cas9 genome editing, we generated a mouse model of 17q12Del syndrome on both inbred (C57BL/6N) and outbred (CD-1) genetic backgrounds. On C57BL/6N, the 17q12Del mice had severe head development defects, potentially mediated by haploinsufficiency of Lhx1, a gene within the interval that controls head development. Phenotypes included brain malformations, particularly disruption of the telencephalon and craniofacial defects. On the CD-1 background, the 17q12Del mice survived to adulthood and showed milder craniofacial and brain abnormalities. We report postnatal brain defects using automated magnetic resonance imaging-based morphometry. In addition, we demonstrate renal and blood glucose abnormalities relevant to RCAD. On both genetic backgrounds, we found sex-specific presentations, with male 17q12Del mice exhibiting higher penetrance and more severe phenotypes. Results from these experiments pinpoint specific developmental defects and pathways that guide clinical studies and a mechanistic understanding of the human 17q12Del syndrome. This mouse mutant represents the first and only experimental model to date for the 17q12 CNV disorder. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Emily B. Warren
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Juan A. Briano
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Eric M. Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
24
|
Luperchio TR, Kozel BA. Extending the spectrum in aortopathy: stenosis to aneurysm. Curr Opin Genet Dev 2022; 76:101962. [DOI: 10.1016/j.gde.2022.101962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
|
25
|
Klein-Tasman BP, Yund BD, Mervis CB. The Behavioral Phenotype of 7q11.23 Duplication Syndrome Includes Risk for Oppositional Behavior and Aggression. J Dev Behav Pediatr 2022; 43:e390-e398. [PMID: 35580312 PMCID: PMC9329151 DOI: 10.1097/dbp.0000000000001068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE 7q11.23 duplication syndrome (Dup7) is a genetic disorder with a variable phenotype associated with cognitive and behavioral characteristics including a high incidence of expressive language difficulties, social anxiety, and oppositional or disruptive behavior. Correlates of aggression and oppositionality were examined. METHOD Participants were 63 children with genetically confirmed Dup7 between the ages of 4 and 17 years. A multimethod, multi-informant approach was used to assess aggression and oppositional behavior, and the contributions of cognitive functioning, expressive language, autism spectrum, social anxiety, and hyperactivity/impulsivity (H/I) symptomatology were considered. RESULTS Elevated levels of aggression and oppositional behavior were found. Cognitive functioning, expressive language, and autism spectrum disorder symptomatology were not significantly related to parent ratings of aggression, although young children who had language and nonverbal cognitive delays were most likely to demonstrate examiner-observed aggression. Social anxiety and H/I symptomatology were related to defiant/aggressive and oppositional behavior. CONCLUSION Genes in the 7q11.23 region duplicated in Dup7, in transaction with the environment, may contribute to aggressive and oppositional behavior.
Collapse
Affiliation(s)
| | - Brianna D Yund
- Department of Pediatrics, Division of Clinical Behavioral Neuroscience, University of Minnesota, Minneapolis, MN
| | - Carolyn B Mervis
- Department of Psychological and Behavioral Sciences, University of Louisville, Louisville, KY
| |
Collapse
|
26
|
High heritability of ascending aortic diameter and trans-ancestry prediction of thoracic aortic disease. Nat Genet 2022; 54:772-782. [PMID: 35637384 DOI: 10.1038/s41588-022-01070-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
Enlargement of the aorta is an important risk factor for aortic aneurysm and dissection, a leading cause of morbidity in the developed world. Here we performed automated extraction of ascending aortic diameter from cardiac magnetic resonance images of 36,021 individuals from the UK Biobank, followed by genome-wide association. We identified lead variants across 41 loci, including genes related to cardiovascular development (HAND2, TBX20) and Mendelian forms of thoracic aortic disease (ELN, FBN1). A polygenic score significantly predicted prevalent risk of thoracic aortic aneurysm and the need for surgical intervention for patients with thoracic aneurysm across multiple ancestries within the UK Biobank, FinnGen, the Penn Medicine Biobank and the Million Veterans Program (MVP). Additionally, we highlight the primary causal role of blood pressure in reducing aortic dilation using Mendelian randomization. Overall, our findings provide a roadmap for using genetic determinants of human anatomy to understand cardiovascular development while improving prediction of diseases of the thoracic aorta.
Collapse
|
27
|
Donabedian PL, Walia JY, Agarwal-Sinha S. Partial CHARGE syndrome with bilateral retinochoroidal colobomas associated with 7q11.23 duplication syndrome: case report. BMC Ophthalmol 2022; 22:100. [PMID: 35246073 PMCID: PMC8895878 DOI: 10.1186/s12886-022-02298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background CHARGE syndrome is a relatively common cause of deafness and blindness resulting from failure to form the primordia of specific organs due to deficient contribution of neural crest cell derivatives. The majority of CHARGE syndrome cases are caused by heterozygous mutations in CHD7 on chromosome 8q21. Those with CHARGE syndrome without CHD7 mutation typically do not have an identified genetic defect. 7q11.23 duplication syndrome is associated with mild facial dysmorphism, heart defects, language delay, and autism spectrum disorder. In the current literature, 7q11.23 duplication has not been associated with CHARGE syndrome, retinochoroidal colobomas, or significant ear abnormalities. Case presentation We describe a patient with 7q11.23 duplication syndrome and clinical CHARGE syndrome with no variant in CHARGE-associated genes. Conclusions This case highlights the still incomplete understanding of the pathogenesis of CHARGE syndrome and raises the possibility of a dose-sensitive effect of genes in the 7q11.23 critical region on neural crest differentiation and fate.
Collapse
Affiliation(s)
- Patrick L Donabedian
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jessica Y Walia
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Swati Agarwal-Sinha
- Department of Ophthalmology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Seidel M, Buono S, Città S, Trubia G, Zagaria T, Zingale M, Bertelli MO, Elia M. Disorders Due to Brain Damage and Dysfunction and to Physical Diseases (Excluding Neurocognitive Disorders). TEXTBOOK OF PSYCHIATRY FOR INTELLECTUAL DISABILITY AND AUTISM SPECTRUM DISORDER 2022:757-782. [DOI: 10.1007/978-3-319-95720-3_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Xiang J, Ding Y, Yang F, Gao A, Zhang W, Tang H, Mao J, He Q, Zhang Q, Wang T. Genetic Analysis of Children With Unexplained Developmental Delay and/or Intellectual Disability by Whole-Exome Sequencing. Front Genet 2021; 12:738561. [PMID: 34858471 PMCID: PMC8631448 DOI: 10.3389/fgene.2021.738561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Whole-exome sequencing (WES) has been recommended as a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders (NDDs). We aimed to identify the genetic causes of 17 children with developmental delay (DD) and/or intellectual disability (ID). Methods: WES and exome-based copy number variation (CNV) analysis were performed for 17 patients with unexplained DD/ID. Results: Single-nucleotide variant (SNV)/small insertion or deletion (Indel) analysis and exome-based CNV calling yielded an overall diagnostic rate of 58.8% (10/17), of which diagnostic SNVs/Indels accounted for 41.2% (7/17) and diagnostic CNVs accounted for 17.6% (3/17). Conclusion: Our findings expand the known mutation spectrum of genes related to DD/ID and indicate that exome-based CNV analysis could improve the diagnostic yield of patients with DD/ID.
Collapse
Affiliation(s)
- Jingjing Xiang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Yang Ding
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Fei Yang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Ang Gao
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Wei Zhang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Hui Tang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Jun Mao
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Quanze He
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Qin Zhang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Ting Wang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.,Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
30
|
Kozel BA, Barak B, Ae Kim C, Mervis CB, Osborne LR, Porter M, Pober BR. Williams syndrome. Nat Rev Dis Primers 2021; 7:42. [PMID: 34140529 PMCID: PMC9437774 DOI: 10.1038/s41572-021-00276-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as many as 1:7,500 individuals. WS arises due to the mispairing of low-copy DNA repetitive elements at meiosis. The deletion size is similar across most individuals with WS and leads to the loss of one copy of 25-27 genes on chromosome 7q11.23. The resulting unique disorder affects multiple systems, with cardinal features including but not limited to cardiovascular disease (characteristically stenosis of the great arteries and most notably supravalvar aortic stenosis), a distinctive craniofacial appearance, and a specific cognitive and behavioural profile that includes intellectual disability and hypersociability. Genotype-phenotype evidence is strongest for ELN, the gene encoding elastin, which is responsible for the vascular and connective tissue features of WS, and for the transcription factor genes GTF2I and GTF2IRD1, which are known to affect intellectual ability, social functioning and anxiety. Mounting evidence also ascribes phenotypic consequences to the deletion of BAZ1B, LIMK1, STX1A and MLXIPL, but more work is needed to understand the mechanism by which these deletions contribute to clinical outcomes. The age of diagnosis has fallen in regions of the world where technological advances, such as chromosomal microarray, enable clinicians to make the diagnosis of WS without formally suspecting it, allowing earlier intervention by medical and developmental specialists. Phenotypic variability is considerable for all cardinal features of WS but the specific sources of this variability remain unknown. Further investigation to identify the factors responsible for these differences may lead to mechanism-based rather than symptom-based therapies and should therefore be a high research priority.
Collapse
Affiliation(s)
- Beth A. Kozel
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Boaz Barak
- The Sagol School of Neuroscience and The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chong Ae Kim
- Department of Pediatrics, Universidade de São Paulo, São Paulo, Brazil
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, USA
| | - Lucy R. Osborne
- Department of Medicine, University of Toronto, Ontario, Canada
| | - Melanie Porter
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Barbara R. Pober
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
31
|
Mosley TJ, Johnston HR, Cutler DJ, Zwick ME, Mulle JG. Sex-specific recombination patterns predict parent of origin for recurrent genomic disorders. BMC Med Genomics 2021; 14:154. [PMID: 34107974 PMCID: PMC8190997 DOI: 10.1186/s12920-021-00999-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Structural rearrangements of the genome, which generally occur during meiosis and result in large-scale (> 1 kb) copy number variants (CNV; deletions or duplications ≥ 1 kb), underlie genomic disorders. Recurrent pathogenic CNVs harbor similar breakpoints in multiple unrelated individuals and are primarily formed via non-allelic homologous recombination (NAHR). Several pathogenic NAHR-mediated recurrent CNV loci demonstrate biases for parental origin of de novo CNVs. However, the mechanism underlying these biases is not well understood. METHODS We performed a systematic, comprehensive literature search to curate parent of origin data for multiple pathogenic CNV loci. Using a regression framework, we assessed the relationship between parental CNV origin and the male to female recombination rate ratio. RESULTS We demonstrate significant association between sex-specific differences in meiotic recombination and parental origin biases at these loci (p = 1.07 × 10-14). CONCLUSIONS Our results suggest that parental origin of CNVs is largely influenced by sex-specific recombination rates and highlight the need to consider these differences when investigating mechanisms that cause structural variation.
Collapse
Affiliation(s)
- Trenell J Mosley
- Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
- Emory Integrated Computational Core, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Jennifer G Mulle
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Whitehead Building Suite 300, Atlanta, GA, 30322, USA.
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
32
|
Osborne LR, Mervis CB. 7q11.23 deletion and duplication. Curr Opin Genet Dev 2021; 68:41-48. [DOI: 10.1016/j.gde.2021.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/24/2023]
|
33
|
Precision Medicine Approaches to Vascular Disease: JACC Focus Seminar 2/5. J Am Coll Cardiol 2021; 77:2531-2550. [PMID: 34016266 DOI: 10.1016/j.jacc.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022]
Abstract
In this second of a 5-part Focus Seminar series, we focus on precision medicine in the context of vascular disease. The most common vascular disease worldwide is atherosclerosis, which is the primary cause of coronary artery disease, peripheral vascular disease, and a large proportion of strokes and other disorders. Atherosclerosis is a complex genetic disease that likely involves many hundreds to thousands of single nucleotide polymorphisms, each with a relatively modest effect for causing disease. Conversely, although less prevalent, there are many vascular disorders that typically involve only a single genetic change, but these changes can often have a profound effect that is sufficient to cause disease. These are termed "Mendelian vascular diseases," which include Marfan and Loeys-Dietz syndromes. Given the very different genetic basis of atherosclerosis versus Mendelian vascular diseases, this article was divided into 2 parts to cover the most promising precision medicine approaches for these disease types.
Collapse
|
34
|
Levy G, Barak B. Postnatal therapeutic approaches in genetic neurodevelopmental disorders. Neural Regen Res 2021; 16:414-422. [PMID: 32985459 PMCID: PMC7996025 DOI: 10.4103/1673-5374.293133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
Genetic neurodevelopmental disorders are characterized by abnormal neurophysiological and behavioral phenotypes, affecting individuals worldwide. While the subject has been heavily researched, current treatment options relate mostly to alleviating symptoms, rather than targeting the altered genome itself. In this review, we address the neurogenetic basis of neurodevelopmental disorders, genetic tools that are enabling precision research of these disorders in animal models, and postnatal gene-therapy approaches for neurodevelopmental disorders derived from preclinical studies in the laboratory.
Collapse
Affiliation(s)
- Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
35
|
Qaiser F, Yin Y, Mervis CB, Morris CA, Klein-Tasman BP, Tam E, Osborne LR, Yuen RKC. Rare and low frequency genomic variants impacting neuronal functions modify the Dup7q11.23 phenotype. Orphanet J Rare Dis 2021; 16:6. [PMID: 33407644 PMCID: PMC7788915 DOI: 10.1186/s13023-020-01648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/14/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND 7q11.23 duplication (Dup7) is one of the most frequent recurrent copy number variants (CNVs) in individuals with autism spectrum disorder (ASD), but based on gold-standard assessments, only 19% of Dup7 carriers have ASD, suggesting that additional genetic factors are necessary to manifest the ASD phenotype. To assess the contribution of additional genetic variants to the Dup7 phenotype, we conducted whole-genome sequencing analysis of 20 Dup7 carriers: nine with ASD (Dup7-ASD) and 11 without ASD (Dup7-non-ASD). RESULTS We identified three rare variants of potential clinical relevance for ASD: a 1q21.1 microdeletion (Dup7-non-ASD) and two deletions which disrupted IMMP2L (one Dup7-ASD, one Dup7-non-ASD). There were no significant differences in gene-set or pathway variant burden between the Dup7-ASD and Dup7-non-ASD groups. However, overall intellectual ability negatively correlated with the number of rare loss-of-function variants present in nervous system development and membrane component pathways, and adaptive behaviour standard scores negatively correlated with the number of low-frequency likely-damaging missense variants found in genes expressed in the prenatal human brain. ASD severity positively correlated with the number of low frequency loss-of-function variants impacting genes expressed at low levels in the brain, and genes with a low level of intolerance. CONCLUSIONS Our study suggests that in the presence of the same pathogenic Dup7 variant, rare and low frequency genetic variants act additively to contribute to components of the overall Dup7 phenotype.
Collapse
Affiliation(s)
- Farah Qaiser
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| | - Yue Yin
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY USA
| | - Colleen A. Morris
- Department of Pediatrics, UNLV School of Medicine, Las Vegas, NV USA
| | | | - Elaine Tam
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Lucy R. Osborne
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Ryan K. C. Yuen
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Genetics & Genome Biology Program, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4 Canada
| |
Collapse
|
36
|
Muthusamy K, Mrugala MM, Bendok BR, Dhamija R. LZTR1-related spinal schwannomatosis and 7q11.23 duplication syndrome: A complex phenotype with dual diagnosis. Mol Genet Genomic Med 2020; 9:e1560. [PMID: 33269527 PMCID: PMC7963420 DOI: 10.1002/mgg3.1560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023] Open
Abstract
Background Dual diagnoses in genetics practice are not uncommon and patients with dual diagnosis often present with complex and challenging phenotypes. A combination of meticulous phenotyping and molecular genetic techniques are essential in solving these diagnostic odysseys. Methods Clinical features and genetic workup of a patient presenting with incidental schwannomatosis. Results A 19‐year‐old male presented with incidental painless schwannomatosis in the background of macrocephaly, distinctive facies, and learning disability. Comprehensive genetic testing with gene panel and chromosomal microarray led to a dual diagnosis of LZTR1‐related schwannomatosis and 7q11.23 duplication syndrome. Conclusion We emphasize the need for high index of suspicion and comprehensive genetic testing in complex phenotypes. Interrogation of the interplay between the pathogenic variants in multiple genes could improve our understanding of the pathophysiologic pathways and contribute to therapeutic discoveries. A nineteen year old male presented with incidental painless schwannomatosis in the background of macrocephaly, distinctive facies and learning disability. Comprehensive genetic testing with gene panel and chromosomal microarray led to a dual diagnosis of LZTR1 related schwannomatosis and 7q11.23 duplication syndrome. We emphasize the need for high index of suspicion and comprehensive genetic testing in complex phenotypes. Interrogation of the interplay between the pathogenic variants in multiple genes could improve our understanding of the pathophysiologic pathways and contribute to therapeutic discoveries.
Collapse
Affiliation(s)
| | - Maciej M Mrugala
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA.,Department of Neurologic Surgery, Mayo Clinic, Phoenix, AZ, USA.,Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA.,Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Bernard R Bendok
- Department of Neurologic Surgery, Mayo Clinic, Phoenix, AZ, USA.,Department of Diagnostic Radiology, Mayo Clinic, Phoenix, AZ, USA.,Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Radhika Dhamija
- Department of Neurology, Mayo Clinic, Phoenix, AZ, USA.,Department of Clinical Genomics, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
37
|
Dentici ML, Bergonzini P, Scibelli F, Caciolo C, De Rose P, Cumbo F, Alesi V, Capolino R, Zanni G, Sinibaldi L, Novelli A, Tartaglia M, Digilio MC, Dallapiccola B, Vicari S, Alfieri P. 7q11.23 Microduplication Syndrome: Clinical and Neurobehavioral Profiling. Brain Sci 2020; 10:E839. [PMID: 33187326 PMCID: PMC7697259 DOI: 10.3390/brainsci10110839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
7q11.23 Microduplication (dup7q11.23) syndrome is a rare autosomal dominant disorder due to a recurring 1.5 to 1.8 Mb duplication of the Williams-Beuren Syndrome critical region. Dup7q11.23 has been associated with several neuro-behavioral characteristics such as low cognitive and adaptive functioning, expressive language impairment, anxiety problems and autistic features. In the present study, we analyze the clinical features of ten individuals in which array-CGH detected dup7q11.23, spanning from 1.4 to 2.1 Mb. The clinical characteristics associated with dup7q11.23 are discussed with respect to its reciprocal deletion. Consistent with previous studies, we confirm that individuals with dup7q11.23 syndrome do not have a homogeneous clinical profile, although some recurring dysmorphic features were found, including macrocephaly, prominent forehead, elongated palpebral fissures, thin lip vermilion and microstomia. Minor congenital malformations include patent ductus arteriosus, cryptorchidism and pes planus. A common finding is hypotonia and joint laxity, resulting in mild motor delay. Neuropsychological and psychodiagnostic assessment confirm that mild cognitive impairment, expressive language deficits and anxiety are recurring neurobehavioral features. New insights into adaptive, psychopathological and neurodevelopmental profiles are discussed.
Collapse
Affiliation(s)
- Maria Lisa Dentici
- Medical Genetic Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.D.); (R.C.); (L.S.); (M.C.D.)
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Paola Bergonzini
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Francesco Scibelli
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Cristina Caciolo
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Paola De Rose
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Francesca Cumbo
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| | - Viola Alesi
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.A.); (A.N.)
| | - Rossella Capolino
- Medical Genetic Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.D.); (R.C.); (L.S.); (M.C.D.)
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Ginevra Zanni
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lorenzo Sinibaldi
- Medical Genetic Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.D.); (R.C.); (L.S.); (M.C.D.)
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (V.A.); (A.N.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Maria Cristina Digilio
- Medical Genetic Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.D.); (R.C.); (L.S.); (M.C.D.)
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (G.Z.); (M.T.)
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
- Department of Life Sciences and Public Health, Catholic University, 00168 Rome, Italy
| | - Paolo Alfieri
- Child and Adolescent Neuropsychiatry Unit, Department of Neurological and Psychiatric Science, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (F.S.); (C.C.); (P.D.R.); (F.C.); (S.V.)
| |
Collapse
|
38
|
Abstract
14-3-3 proteins are mostly expressed in the brain and are closely involved in numerous brain functions and various brain disorders. Among the isotypes of the 14-3-3 proteins, 14-3-3γ is mainly expressed in neurons and is highly produced during brain development, which could indicate that it has a significance in neural development. Furthermore, the distinctive levels of temporally and locally regulated 14-3-3γ expression in various brain disorders suggest that it could play a substantial role in brain plasticity of the diseased states. In this review, we introduce the various brain disorders reported to be involved with 14-3-3γ, and summarize the changes of 14-3-3γ expression in each brain disease. We also discuss the potential of 14-3-3γ for treatment and the importance of research on specific 14-3-3 isotypes for an effective therapeutic approach.
Collapse
Affiliation(s)
- Eunsil Cho
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02708, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul 02708, Korea
| |
Collapse
|
39
|
Wang Y, Li Y, Chen Y, Zhou R, Sang Z, Meng L, Tan J, Qiao F, Bao Q, Luo D, Peng C, Wang YS, Luo C, Hu P, Xu Z. Systematic analysis of copy-number variations associated with early pregnancy loss. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 55:96-104. [PMID: 31364215 DOI: 10.1002/uog.20412] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Embryonic numerical and structural chromosomal abnormalities are the most common cause of early pregnancy loss. However, the role of submicroscopic copy-number variations (CNVs) in early pregnancy loss is unclear, and little is known about the critical regions and candidate genes for miscarriage, because of the large size of structural chromosomal abnormalities. The aim of this study was to identify potential miscarriage-associated submicroscopic CNVs and critical regions of large CNVs as well as candidate genes for miscarriage. METHODS Over a 5-year period, 5180 fresh miscarriage specimens were investigated using quantitative fluorescent polymerase chain reaction/CNV sequencing or chromosomal microarray analysis. Statistically significant submicroscopic CNVs were identified by comparing the frequency of recurrent submicroscopic CNVs between cases and a published control cohort. Furthermore, genes within critical regions of miscarriage-associated CNVs were prioritized by integrating the Residual Variation Intolerance Score and the human gene expression dataset for identification of potential miscarriage candidate genes. RESULTS Results without significant maternal-cell contamination were obtained in 5003 of the 5180 (96.6%) cases. Clinically significant chromosomal abnormalities were identified in 59.1% (2955/5003) of these cases. Three recurrent submicroscopic CNVs (microdeletions in 22q11.21, 2q37.3 and 9p24.3p24.2) were significantly more frequent in miscarriage cases, and were considered to be associated with miscarriage. Moreover, 44 critical regions of large CNVs were observed, including 14 deletions and 30 duplications. There were 309 genes identified as potential miscarriage candidate genes through gene-prioritization analysis. CONCLUSIONS We identified potential miscarriage candidate CNVs and genes. These data demonstrate the importance of CNVs in the etiology of miscarriage and highlight the importance of ongoing analysis of CNVs in the study of miscarriage. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Y Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Y Li
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Y Chen
- CapitalBio Genomics Co., Ltd, Dongguan, Guangdong Province, China
- CapitalBio Technology Inc., Beijing, China
| | - R Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Z Sang
- Biosan Biochemical Technologies Co., Ltd, Hangzhou, Zhejiang Province, China
| | - L Meng
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - J Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - F Qiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Q Bao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - D Luo
- CapitalBio Genomics Co., Ltd, Dongguan, Guangdong Province, China
- CapitalBio Technology Inc., Beijing, China
| | - C Peng
- CapitalBio Genomics Co., Ltd, Dongguan, Guangdong Province, China
- CapitalBio Technology Inc., Beijing, China
| | - Y S Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - C Luo
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - P Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Z Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
40
|
Krishnamurthy K, Castellano-Sanchez AA, Febres-Aldana CA, Kochiyil J, Brathwaite C, Poppiti RJ. Pontocerebellar Hypoplasia Maps to Chromosome 7q11.23: An Autopsy Case Report of a Novel Genetic Variant. Case Rep Pediatr 2019; 2019:7048537. [PMID: 31885998 PMCID: PMC6925823 DOI: 10.1155/2019/7048537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 11/29/2022] Open
Abstract
Pontocerebellar hypoplasias are a group of autosomal recessive neurodevelopmetal disorders with varied phenotypic presentations and extensive genetic mutational landscape that are currently classified into ten subtypes. This classification is based predominantly on the genetic iterations as the phenotypic presentations are often broad and overlapping. Pontocerebellar hypoplasia type-3 (PCH3) is an autosomal recessive disorder characterized by a small cerebellar vermis, hyperreflexia, and seizures, described in Middle Eastern families in association with a homozygous truncating mutation of the PCLO gene in locus 7q11-21. This is a case of PCH, with previously unreported novel genetic alterations. The patient is a 1-week-old girl, born at term to a 26-year-old G4P0A3 woman in a nonconsanguinous relation. At birth, the baby was depressed and hypertonic with abnormal tonic-clonic movements of extremities. MRI revealed cerebellar and brainstem hypoplasia. Postmortem examination revealed a palmar simian crease. The cerebellum measured 2.5 cm from side to side and 1 cm from rostral to caudal. The vermis was rudimentary. Sectioning revealed a flattened linear fourth ventricle, scant abortive cerebellar foliae, and a markedly small cerebellum when compared with the cerebrum and with age-matched size. H&E-stained sections of cerebellum revealed scant rudimentary foliae. A rudimentary unilateral embolliform nucleus was identified. The remaining cerebellar nuclei were absent. Chromosomal microarray showed an interstitial duplication of 841 kB on chromosome 7q11.23. Locus 7q11.23 contains FGL2 and GSAP genes and is 5 MB upstream of the 7q11-21 region, suggesting a possible linkage. This novel genomic finding possibly represents a new familial variant of PCH closely associated with PCH-3 and further strengthens its association with the 7q11 locus.
Collapse
Affiliation(s)
- Kritika Krishnamurthy
- A. M. Rywlin MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Amilcar A. Castellano-Sanchez
- A. M. Rywlin MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL, USA
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL, USA
| | | | - Jyotsna Kochiyil
- Department of Radiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Carole Brathwaite
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL, USA
- Department of Pathology, Nicklaus Children's Hospital, Miami, FL, USA
| | - Robert J. Poppiti
- A. M. Rywlin MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL, USA
- Florida International University, Herbert Wertheim College of Medicine, Miami, FL, USA
| |
Collapse
|
41
|
Pollak RM, Murphy MM, Epstein MP, Zwick ME, Klaiman C, Saulnier CA, Mulle JG. Neuropsychiatric phenotypes and a distinct constellation of ASD features in 3q29 deletion syndrome: results from the 3q29 registry. Mol Autism 2019; 10:30. [PMID: 31346402 PMCID: PMC6636128 DOI: 10.1186/s13229-019-0281-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background The 1.6 Mb 3q29 deletion is associated with neurodevelopmental and psychiatric phenotypes, including increased risk for autism spectrum disorder (ASD) and a 20 to 40-fold increased risk for schizophrenia. However, the phenotypic spectrum of the deletion, particularly with respect to ASD, remains poorly described. Methods We ascertained individuals with 3q29 deletion syndrome (3q29Del, “cases,” n = 93, 58.1% male) and typically developing controls (n = 64, 51.6% male) through the 3q29 registry (https://3q29deletion.patientcrossroads.org). Self-report of neuropsychiatric illness was evaluated for 93 cases. Subsets of participants were evaluated with the Social Responsiveness Scale (SRS, n = 48 cases, 56 controls), Social Communication Questionnaire (n = 33 cases, 46 controls), Autism Spectrum Screening Questionnaire (n = 24 cases, 35 controls), and Achenbach Behavior Checklists (n = 48 cases, 57 controls). Results 3q29Del cases report a higher prevalence of autism diagnoses versus the general population (29.0% vs. 1.47%, p < 2.2E− 16). Notably, 3q29 deletion confers a greater influence on risk for ASD in females (OR = 41.8, p = 4.78E− 05) than in males (OR = 24.6, p = 6.06E− 09); this is aligned with the reduced male:female bias from 4:1 in the general population to 2:1 in our study sample. Although 71% of cases do not report a diagnosis of ASD, there is evidence of significant social disability (3q29Del SRS T-score = 71.8, control SRS T-score = 45.9, p = 2.16E− 13). Cases also report increased frequency of generalized anxiety disorder compared to controls (28.0% vs. 6.2%, p = 0.001), which is mirrored by elevated mean scores on the Achenbach diagnostic and statistical manual-oriented sub-scales (p < 0.001). Finally, cases show a distinct constellation of ASD features on the SRS as compared to idiopathic ASD, with substantially elevated Restricted Interests and Repetitive Behaviors, but only mild impairment in Social Motivation. Conclusions Our sample of 3q29Del is significantly enriched for ASD diagnosis, especially among females, and features of autism may be present even when an ASD diagnosis is not reported. Further, the constellation of ASD features in this population is distinct from idiopathic ASD, with substantially less impaired social motivation. Our study implies that ASD evaluation should be the standard of care for individuals with 3q29Del. From a research perspective, the distinct ASD subtype present in 3q29Del is an ideal entry point for expanding understanding of ASD. Electronic supplementary material The online version of this article (10.1186/s13229-019-0281-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca M Pollak
- 1Genetics and Molecular Biology, Laney Graduate School, Emory University, Atlanta, USA
| | - Melissa M Murphy
- 2Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA
| | - Michael P Epstein
- 2Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA
| | - Michael E Zwick
- 2Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA.,3Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Cheryl Klaiman
- 3Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA.,4Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, USA
| | - Celine A Saulnier
- 3Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | | | - Jennifer G Mulle
- 2Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA.,5Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA.,Whitehead 305M, 615 Michael Street, Atlanta, GA 30322 USA
| |
Collapse
|
42
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
43
|
Salehi Karlslätt K, Pettersson M, Jäntti N, Szafranski P, Wester T, Husberg B, Ullberg U, Stankiewicz P, Nordgren A, Lundin J, Lindstrand A, Nordenskjöld A. Rare copy number variants contribute pathogenic alleles in patients with intestinal malrotation. Mol Genet Genomic Med 2019; 7:e549. [PMID: 30632303 PMCID: PMC6418355 DOI: 10.1002/mgg3.549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intestinal malrotation is a potentially life-threatening congenital anomaly due to the risk of developing midgut volvulus. The reported incidence is 0.2%-1% and both apparently hereditary and sporadic cases have been reported. Intestinal malrotation is associated with a few syndromes with known genotype but the genetic contribution in isolated intestinal malrotation has not yet been reported. Rare copy number variants (CNVs) have been implicated in many congenital anomalies, and hence we sought to investigate the potential contribution of rare CNVs in intestinal malrotation. METHODS Analysis of array comparative genomic hybridization (aCGH) data from 47 patients with symptomatic intestinal malrotation was performed. RESULTS We identified six rare CNVs in five patients. Five CNVs involved syndrome loci: 7q11.23 microduplication, 16p13.11 microduplication, 18q terminal deletion, HDAC8 (Cornelia de Lange syndrome type 5 and FOXF1) as well as one intragenic deletion in GALNT14, not previously implicated in human disease. CONCLUSION In the present study, we identified rare CNVs contributing pathogenic or potentially pathogenic alleles in five patients with syndromic intestinal malrotation, suggesting that CNV screening is indicated in intestinal malrotation with associated malformations or neurological involvements. In addition, we identified intestinal malrotation in two known syndromes (Cornelia de Lange type 5 and 18q terminal deletion syndrome) that has not previously been associated with gastrointestinal malformations.
Collapse
Affiliation(s)
- Karin Salehi Karlslätt
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nina Jäntti
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Tomas Wester
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt Husberg
- Department of General Surgery, Ersta Hospital, Stockholm, Sweden
| | - Ulla Ullberg
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Forsingdal A, Jørgensen TN, Olsen L, Werge T, Didriksen M, Nielsen J. Can Animal Models of Copy Number Variants That Predispose to Schizophrenia Elucidate Underlying Biology? Biol Psychiatry 2019; 85:13-24. [PMID: 30144930 DOI: 10.1016/j.biopsych.2018.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The diagnosis of schizophrenia rests on clinical criteria that cannot be assessed in animal models. Together with absence of a clear underlying pathology and understanding of what causes schizophrenia, this has hindered development of informative animal models. However, recent large-scale genomic studies have identified copy number variants (CNVs) that confer high risk of schizophrenia and have opened a new avenue for generation of relevant animal models. Eight recurrent CNVs have reproducibly been shown to increase the risk of schizophrenia by severalfold: 22q11.2(del), 15q13.3(del), 1q21(del), 1q21(dup), NRXN1(del), 3q29(del), 7q11.23(dup), and 16p11.2(dup). Five of these CNVs have been modeled in animals, mainly mice, but also rats, flies, and zebrafish, and have been shown to recapitulate behavioral and electrophysiological aspects of schizophrenia. Here, we provide an overview of the schizophrenia-related phenotypes found in animal models of schizophrenia high-risk CNVs. We also discuss strengths and limitations of the CNV models, and how they can advance our biological understanding of mechanisms that can lead to schizophrenia and can be used to develop new and better treatments for schizophrenia.
Collapse
Affiliation(s)
- Annika Forsingdal
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Trine Nygaard Jørgensen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Line Olsen
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde; Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Michael Didriksen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde
| | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Mental Health Center, Sankt Hans Hospital, Mental Health Services, Roskilde.
| |
Collapse
|
45
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
46
|
Frater J, Williams IG, Hunter C. Chromosome 7q11.23 duplication syndrome presenting as neuropsychiatric regression in late adolescence: A new manifestation of a new syndrome? Aust N Z J Psychiatry 2018; 52:715-716. [PMID: 29466866 DOI: 10.1177/0004867418758923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Julanne Frater
- 1 Metro South Addiction and Mental Health Services, Princess Alexandra Hospital, Brisbane, QLD, Australia.,2 Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ian G Williams
- 1 Metro South Addiction and Mental Health Services, Princess Alexandra Hospital, Brisbane, QLD, Australia.,3 Bayside Child and Youth Mental Health, Bayside Mental Health Services, Redlands, QLD, Australia
| | - Colleen Hunter
- 1 Metro South Addiction and Mental Health Services, Princess Alexandra Hospital, Brisbane, QLD, Australia.,3 Bayside Child and Youth Mental Health, Bayside Mental Health Services, Redlands, QLD, Australia
| |
Collapse
|
47
|
Klein-Tasman BP, Mervis CB. Autism Spectrum Symptomatology Among Children with Duplication 7q11.23 Syndrome. J Autism Dev Disord 2018; 48:1982-1994. [PMID: 29307037 PMCID: PMC6003247 DOI: 10.1007/s10803-017-3439-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold-standard diagnostic assessments of autism spectrum disorder (ASD) symptomatology were conducted on 63 children (mean CA: 8.81 years) with 7q11.23 duplication syndrome, one of the copy number variants identified by Sanders et al. (Neuron 70:863-885, 2011a) as associated with ASD. ASD classification rate was 39.6% for the Autism Diagnostic Interview-Revised and 25.4% for the Autism Diagnostic Observation Schedule-2 (ADOS-2). Based on these assessments combined with clinical judgment, 19.0% of children were diagnosed with ASD. Reasons for these discrepancies are discussed, as are differences in rate of diagnosis as a function of sex, age, and ADOS-2 module administered and differences in intellectual and adaptive behavior abilities as a function of presence or absence of ASD diagnosis and ADOS-2 module administered. Implications are addressed.
Collapse
Affiliation(s)
- Bonita P Klein-Tasman
- Department of Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI, 53201, USA.
| | - Carolyn B Mervis
- Department of Psychological and Brain Sciences, University of Louisville, 317 Life Sciences Building, Louisville, KY, 40292, USA
| |
Collapse
|
48
|
Iacono G, Mereu E, Guillaumet-Adkins A, Corominas R, Cuscó I, Rodríguez-Esteban G, Gut M, Pérez-Jurado LA, Gut I, Heyn H. bigSCale: an analytical framework for big-scale single-cell data. Genome Res 2018; 28:878-890. [PMID: 29724792 PMCID: PMC5991513 DOI: 10.1101/gr.230771.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has significantly deepened our insights into complex tissues, with the latest techniques capable of processing tens of thousands of cells simultaneously. Analyzing increasing numbers of cells, however, generates extremely large data sets, extending processing time and challenging computing resources. Current scRNA-seq analysis tools are not designed to interrogate large data sets and often lack sensitivity to identify marker genes. With bigSCale, we provide a scalable analytical framework to analyze millions of cells, which addresses the challenges associated with large data sets. To handle the noise and sparsity of scRNA-seq data, bigSCale uses large sample sizes to estimate an accurate numerical model of noise. The framework further includes modules for differential expression analysis, cell clustering, and marker identification. A directed convolution strategy allows processing of extremely large data sets, while preserving transcript information from individual cells. We evaluated the performance of bigSCale using both a biological model of aberrant gene expression in patient-derived neuronal progenitor cells and simulated data sets, which underlines the speed and accuracy in differential expression analysis. To test its applicability for large data sets, we applied bigSCale to assess 1.3 million cells from the mouse developing forebrain. Its directed down-sampling strategy accumulates information from single cells into index cell transcriptomes, thereby defining cellular clusters with improved resolution. Accordingly, index cell clusters identified rare populations, such as reelin (Reln)-positive Cajal-Retzius neurons, for which we report previously unrecognized heterogeneity associated with distinct differentiation stages, spatial organization, and cellular function. Together, bigSCale presents a solution to address future challenges of large single-cell data sets.
Collapse
Affiliation(s)
- Giovanni Iacono
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Elisabetta Mereu
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Roser Corominas
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.,Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Ivon Cuscó
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.,Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Gustavo Rodríguez-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Luis Alberto Pérez-Jurado
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.,Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| |
Collapse
|
49
|
Castiglia L, Husain RA, Marquardt I, Fink C, Liehr T, Serino D, Elia M, Coci EG. 7q11.23 microduplication syndrome: neurophysiological and neuroradiological insights into a rare chromosomal disorder. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:359-370. [PMID: 29266505 DOI: 10.1111/jir.12457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/09/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The phenotypical consequence of the heterozygous chromosome 7q11.23 interstitial microdeletion is the Williams-Beuren syndrome, a very well-known genetic multi-systemic disorder. Much less is known about the reverse condition, the heterozygous interstitial microduplication of 7q11.23 region. The first molecular cytogenetic description was published in 2005, and only after several years were the reported patients numerous enough to attempt a description of a common phenotype. METHOD By using a broad multidisciplinary approach, we investigated 12 patients with this rare genetic anomaly. Ten of them harboured the duplication of the classical Williams-Beuren syndrome region and two a slightly larger duplication. Upon a detailed description of the clinical and psychological features, we used electroencephalography and magnetic resonance imaging to explore neurophysiological function and brain structures. RESULTS We analysed the clinical, psychological, neuroradiological and neurophysiological features of 12 yet-unpublished individuals affected by this rare genetic anomaly, focusing specifically on the last two aspects. Several structural abnormalities of the central nervous system were detected, like ventriculomegaly, hypotrophic cerebellum, hypotrophic corpus callosum and hypoplastic temporal lobes. Although only one of 12 individuals suffered from seizures during childhood, three others had abnormal electroencephalography findings prominent in the anterior brain regions, without any visible seizures to date. CONCLUSION Taken together, we enlarged the yet-underrepresented cohort in the literature of patients affected by 7q11.23 microduplication syndrome and shed further light on neuroradiological and neurophysiological aspects of this rare genetic syndrome.
Collapse
Affiliation(s)
- L Castiglia
- Oasi Institute for Research on Mental Retardation and Brain, Troina, Enna, Italy
| | - R A Husain
- Department of Neuropediatrics, Universitätsklinikum Jena, Jena, Thuringia, Germany
| | - I Marquardt
- Department of Neuropediatrics, Klinikum Oldenburg, Oldenburg, Lower Saxony, Germany
| | - C Fink
- Department of Radiology, Allgemeines Krankenhaus Celle, Celle, Lower Saxony, Germany
| | - T Liehr
- Institute of Human Genetics, Friedrich-Schiller-Universität Jena, Jena, Thuringia, Germany
| | - D Serino
- Department of Pediatric Neuro-Psichiatry, ASL CN1, Cuneo, Piedmont, Italy
| | - M Elia
- Oasi Institute for Research on Mental Retardation and Brain, Troina, Enna, Italy
| | - E G Coci
- Department of Paediatrics, Städtisches Klinikum Braunschweig, Braunschweig, Lower Saxony, Germany
- Department of Neuropediatrics, Universitaetsklinikum Bochum, Ruhr-Universitaet Bochum, Bochum, North Rhine-Westphalia, Germany
| |
Collapse
|
50
|
Abstract
This review summarizes common microdeletion and microduplication syndromes and highlights important updates in patient-care needs for people with these conditions (22q11.2, 7q11.23, 17p11.2, and 16p11.2). These conditions are in chromosomal "hotspots" and have an estimated prevalence of 1 in 1,000 to 1 in 25,000. Some conditions have possible increased or decreased genetic risk of schizophrenia (22q11.2 deletion and duplication), or risk of aortic dilation (7q11.23 duplication) versus aortic stenosis (7q11.23 deletion). Many of these conditions are associated with developmental delay, autism, and/or multiple congenital anomalies and would not be detected with a karyotype. Chromosomal microarray analysis will detect all these conditions with a single screening test, allowing for the appropriate diagnosis and management of these patients. [Pediatr Ann. 2018;47(5):e198-e203.].
Collapse
|