1
|
Highman C, Overby M, Leitão S, Abbiati C, Velleman S. Update on Identification and Treatment of Infants and Toddlers With Suspected Childhood Apraxia of Speech. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:3288-3308. [PMID: 37441847 DOI: 10.1044/2023_jslhr-22-00639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
PURPOSE The purpose of this tutorial is to (a) provide an updated review of the literature pertaining to proposed early features of childhood apraxia of speech (CAS), (b) discuss the findings of recent treatment studies of infants and toddlers with suspected CAS (sCAS), and (c) present evidence-based strategies and tools that can be used for the identification of and intervention for infants and toddlers with sCAS or at high risk for the disorder. METHOD Since Davis and Velleman's (2000) seminal work on assessment and intervention in infants and toddlers with sCAS, limited research has guided clinicians in the complex task of identifying and treating early speech motor difficulties prior to a definitive diagnosis of CAS. Following the structure of Davis and Velleman, we explore the proposed early characteristics of CAS with reference to contemporary research. Next, we describe the limited treatment studies that have investigated intervention for infants and toddlers at risk of or suspected of having CAS. Finally, we present practical suggestions for integrating this knowledge into clinical practice. CONCLUSIONS Many of the originally proposed correlates of CAS in infants and toddlers now have research supporting their presence. However, questions remain about the developmental trajectory of the disorder. Although limited in number and restricted by lack of experimental control, emerging treatment studies can help guide clinicians in providing appropriate intervention to infants and toddlers with sCAS who need not wait for a definitive diagnosis to initiate intervention.
Collapse
Affiliation(s)
- Chantelle Highman
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Megan Overby
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Suze Leitão
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Claudia Abbiati
- Department of Communication Sciences and Disorders, University of Vermont, Burlington
| | - Shelley Velleman
- Department of Communication Sciences and Disorders, University of Vermont, Burlington
| |
Collapse
|
2
|
St George-Hyslop F, Haneklaus M, Kivisild T, Livesey FJ. Loss of CNTNAP2 Alters Human Cortical Excitatory Neuron Differentiation and Neural Network Development. Biol Psychiatry 2023; 94:780-791. [PMID: 37001843 DOI: 10.1016/j.biopsych.2023.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Loss-of-function mutations in the contactin-associated protein-like 2 (CNTNAP2) gene are causal for neurodevelopmental disorders, including autism, schizophrenia, epilepsy, and intellectual disability. CNTNAP2 encodes CASPR2, a single-pass transmembrane protein that belongs to the neurexin family of cell adhesion molecules. These proteins have a variety of functions in developing neurons, including connecting presynaptic and postsynaptic neurons, and mediating signaling across the synapse. METHODS To study the effect of loss of CNTNAP2 function on human cerebral cortex development, and how this contributes to the pathogenesis of neurodevelopmental disorders, we generated human induced pluripotent stem cells from one neurotypical control donor null for full-length CNTNAP2, modeling cortical development from neurogenesis through to neural network formation in vitro. RESULTS CNTNAP2 is particularly highly expressed in the first two populations of early-born excitatory cortical neurons, and loss of CNTNAP2 shifted the relative proportions of these two neuronal types. Live imaging of excitatory neuronal growth showed that loss of CNTNAP2 reduced neurite branching and overall neuronal complexity. At the network level, developing cortical excitatory networks null for CNTNAP2 had complex changes in activity compared with isogenic controls: an initial period of relatively reduced activity compared with isogenic controls, followed by a lengthy period of hyperexcitability, and then a further switch to reduced activity. CONCLUSIONS Complete loss of CNTNAP2 contributes to the pathogenesis of neurodevelopmental disorders through complex changes in several aspects of human cerebral cortex excitatory neuron development that culminate in aberrant neural network formation and function.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Moritz Haneklaus
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom.
| |
Collapse
|
3
|
Abashkin DA, Karpov DS, Kurishev AO, Marilovtseva EV, Golimbet VE. ASCL1 Is Involved in the Pathogenesis of Schizophrenia by Regulation of Genes Related to Cell Proliferation, Neuronal Signature Formation, and Neuroplasticity. Int J Mol Sci 2023; 24:15746. [PMID: 37958729 PMCID: PMC10648210 DOI: 10.3390/ijms242115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia (SZ) is a common psychiatric neurodevelopmental disorder with a complex genetic architecture. Genome-wide association studies indicate the involvement of several transcription factors, including ASCL1, in the pathogenesis of SZ. We aimed to identify ASCL1-dependent cellular and molecular mechanisms associated with SZ. We used Capture-C, CRISPR/Cas9 systems and RNA-seq analysis to confirm the involvement of ASCL1 in SZ-associated pathogenesis, establish a mutant SH-SY5Y line with a functional ASCL1 knockout (ASCL1-del) and elucidate differentially expressed genes that may underlie ASCL1-dependent pathogenic mechanisms. Capture-C confirmed the spatial interaction of the ASCL1 promoter with SZ-associated loci. Transcriptome analysis showed that ASCL1 regulation may be through a negative feedback mechanism. ASCL1 dysfunction affects the expression of genes associated with the pathogenesis of SZ, as well as bipolar and depressive disorders. Genes differentially expressed in ASCL1-del are involved in cell mitosis, neuronal projection, neuropeptide signaling, and the formation of intercellular contacts, including the synapse. After retinoic acid (RA)-induced differentiation, ASCL1 activity is restricted to a small subset of genes involved in neuroplasticity. These data suggest that ASCL1 dysfunction promotes SZ development predominantly before the onset of neuronal differentiation by slowing cell proliferation and impeding the formation of neuronal signatures.
Collapse
Affiliation(s)
| | - Dmitry S. Karpov
- Mental Health Research Center, Kashirskoe Sh., 34, Moscow 115522, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | | | | | - Vera E. Golimbet
- Mental Health Research Center, Kashirskoe Sh., 34, Moscow 115522, Russia
| |
Collapse
|
4
|
D'Onofrio G, Accogli A, Severino M, Caliskan H, Kokotović T, Blazekovic A, Jercic KG, Markovic S, Zigman T, Goran K, Barišić N, Duranovic V, Ban A, Borovecki F, Ramadža DP, Barić I, Fazeli W, Herkenrath P, Marini C, Vittorini R, Gowda V, Bouman A, Rocca C, Alkhawaja IA, Murtaza BN, Rehman MMU, Al Alam C, Nader G, Mancardi MM, Giacomini T, Srivastava S, Alvi JR, Tomoum H, Matricardi S, Iacomino M, Riva A, Scala M, Madia F, Pistorio A, Salpietro V, Minetti C, Rivière JB, Srour M, Efthymiou S, Maroofian R, Houlden H, Vernes SC, Zara F, Striano P, Nagy V. Genotype-phenotype correlation in contactin-associated protein-like 2 (CNTNAP-2) developmental disorder. Hum Genet 2023; 142:909-925. [PMID: 37183190 PMCID: PMC10329570 DOI: 10.1007/s00439-023-02552-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell-cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with "Pitt-Hopkins-like syndrome-1" (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype-phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype-phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.
Collapse
Affiliation(s)
- Gianluca D'Onofrio
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Haluk Caliskan
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Tomislav Kokotović
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Antonela Blazekovic
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb University Hospital Center, Zagreb, Croatia
| | - Kristina Gotovac Jercic
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb University Hospital Center, Zagreb, Croatia
- Department of Neurology, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| | - Silvana Markovic
- Department of Pediatrics, General Hospital dr. Tomislav Bardek Koprivnica, Koprivnica, Croatia
| | - Tamara Zigman
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Krnjak Goran
- Department of Pediatrics, Varazdin General Hospital, Varazdin, Croatia
| | - Nina Barišić
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vlasta Duranovic
- Division of Neuropediatrics, Department of Pediatrics, Children's Hospital Zagre, Zagreb, Croatia
| | - Ana Ban
- Division of Neuropediatrics, Department of Pediatrics, Children's Hospital Zagre, Zagreb, Croatia
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb University Hospital Center, Zagreb, Croatia
- Department of Neurology, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| | - Danijela Petković Ramadža
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivo Barić
- Department of Paediatrics, University Hospital Center Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Walid Fazeli
- Department of Pediatric Neurology, University Hospital Bonn, Bonn, Germany
| | - Peter Herkenrath
- Department of Pediatric Neurology, University Hospital Bonn, Bonn, Germany
| | - Carla Marini
- Child Neurology and Psychiatry Unit Children's Hospital "G. Salesi" Azienda Ospedaliero-Universitaria delle Marche Ancona, Ancona, Italy
| | - Roberta Vittorini
- Department of Pediatrics, Regina Margherita Children's Hospital, Turin, Italy
| | - Vykuntaraju Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Issam Azmi Alkhawaja
- Pediatric Neurology Unit, Pediatric Department, Albashir Hospital, Amman, Jordan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Malik Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology KP, Abbottabad, Pakistan
| | - Chadi Al Alam
- Division of Pediatric Neurology, Department of Pediatrics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Gisele Nader
- Division of Pediatric Neurology, Department of Pediatrics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maria Margherita Mancardi
- Unit of Child Neuropsychiatry, Department of Clinical and Surgical Neuroscience and Rehabilitation, Epilepsy Center, EPICARE Reference Network, IRCCS Giannina Gaslini, Genoa, Italy
| | - Thea Giacomini
- Unit of Child Neuropsychiatry, Department of Clinical and Surgical Neuroscience and Rehabilitation, Epilepsy Center, EPICARE Reference Network, IRCCS Giannina Gaslini, Genoa, Italy
| | - Siddharth Srivastava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, Institute of Child Health, Children's Hospital Lahore, Lahore, Pakistan
| | - Hoda Tomoum
- Department of Pediatrics, Ain Shams University, Cairo, Egypt
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Michele Iacomino
- Unit of Medical Genetics-IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Francesca Madia
- Unit of Medical Genetics-IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angela Pistorio
- Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Carlo Minetti
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - Jean-Baptiste Rivière
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, H3A 1B1, Canada
- Bioinformatics Platform, Research Institute of the McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Division of Pediatric Neurology, Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Stephanie Efthymiou
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Reza Maroofian
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Henry Houlden
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sonja Catherine Vernes
- School of Biology, The University of St Andrews, Fife, UK
- Neurogenetics of Vocal Communication, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Federico Zara
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Pasquale Striano
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Via Gerolamo Gaslini 5, 16147, Genoa, Italy.
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
5
|
Differences and Commonalities in Children with Childhood Apraxia of Speech and Comorbid Neurodevelopmental Disorders: A Multidimensional Perspective. J Pers Med 2022; 12:jpm12020313. [PMID: 35207801 PMCID: PMC8880782 DOI: 10.3390/jpm12020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Childhood apraxia of speech (CAS) is a motor speech disorder often co-occurring with language impairment and complex neurodevelopmental disorders. A cohort of 106 children with CAS associated to other neurodevelopmental disorders underwent a multidimensional investigation of speech and language profiles, chromosome microarray analysis and structural brain magnetic resonance (MR). Our aim was to compare the clinical profiles of children with CAS co-occurring with only language impairment with those who, in addition to language impairment, had other neurodevelopmental disorders. Expressive grammar was impaired in the majority of the sample in the context of similar alterations of speech, typical of the core symptoms of CAS. Moreover, children with complex comorbidities also showed more severe and persistent receptive language deficits. About 25% of the participants harbored copy number variations (CNVs) already described in association to neurodevelopmental disorders. CNVs occurred more frequently in children with complex comorbidities. MR structural/signal alterations were found in a small number of children and were of uncertain pathogenic significance. These results confirm that CAS needs multidimensional diagnostic and clinical management. The high frequency of language impairment has important implications for early care and demands a personalized treatment approach in which speech and language goals are consistently integrated.
Collapse
|
6
|
St George-Hyslop F, Kivisild T, Livesey FJ. The role of contactin-associated protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution. Front Mol Neurosci 2022; 15:1017144. [PMID: 36340692 PMCID: PMC9630569 DOI: 10.3389/fnmol.2022.1017144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is associated with multiple neurodevelopmental disorders, including autism spectrum disorder (ASD), intellectual disability (ID), and specific language impairment (SLI). Experimental work has shown that CNTNAP2 is important for neuronal development and synapse formation. There is also accumulating evidence for the differential use of CNTNAP2 in the human cerebral cortex compared with other primates. Here, we review the current literature on CNTNAP2, including what is known about its expression, disease associations, and molecular/cellular functions. We also review the evidence for its role in human brain evolution, such as the presence of eight human accelerated regions (HARs) within the introns of the gene. While progress has been made in understanding the function(s) of CNTNAP2, more work is needed to clarify the precise mechanisms through which CNTNAP2 acts. Such information will be crucial for developing effective treatments for CNTNAP2 patients. It may also shed light on the longstanding question of what makes us human.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
7
|
Andres EM, Neely HL, Hafeez H, Yasmin T, Kausar F, Basra MAR, Raza MH. Study of rare genetic variants in TM4SF20, NFXL1, CNTNAP2, and ATP2C2 in Pakistani probands and families with language impairment. Meta Gene 2021; 30. [PMID: 34540591 DOI: 10.1016/j.mgene.2021.100966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Language impairment (LI) is highly heritable and aggregates in families. Genetic investigation of LI has revealed many chromosomal regions and genes of interest, though very few studies have focused on rare variant analysis in non-English speaking or non-European samples. We selected four candidate genes (TM4SF20, NFXL1, CNTNAP2 and ATP2C2) strongly suggested for specific language impairment (SLI), a subtype of LI, and investigated rare protein coding variants through Sanger sequencing of probands with LI ascertained from Pakistan. The probands and their family members completed a speech and language family history questionnaire and a vocabulary measure, the Peabody Picture Vocabulary Test-fourth edition (PPVT-4), translated to Urdu, the national language of Pakistan. Our study aimed to determine the significance of rare variants in these SLI candidate genes through segregation analysis in a novel population with a high rate of consanguinity. In total, we identified 16 rare variants (according to the rare MAF in the global population in gnomAD v2.1.1 database exomes), including eight variants with a MAF <0.5 % in the South Asian population. Most of the identified rare variants aggregated in proband's families, one rare variant (c.*9T>C in CNTNAP2) co-segregated in a small family (PKSLI-64) and another (c.2465C>T in ATP2C2) co-segregated in the proband branch (PKSLI-27). The lack of complete co-segregation of most of the identified rare variants indicates that while these genes could be involved in overall risk for LI, other genes are likely involved in LI in this population. Future investigation of these consanguineous families has the potential to expand our understanding of gene function related to language acquisition and impairment.
Collapse
Affiliation(s)
- Erin M Andres
- University of Kansas, Child Language Doctoral Program
| | | | - Huma Hafeez
- School of Chemistry, University of the Punjab
| | | | | | | | | |
Collapse
|
8
|
Allison KM, Cordella C, Iuzzini-Seigel J, Green JR. Differential Diagnosis of Apraxia of Speech in Children and Adults: A Scoping Review. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:2952-2994. [PMID: 32783767 PMCID: PMC7890226 DOI: 10.1044/2020_jslhr-20-00061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 05/08/2023]
Abstract
Purpose Despite having distinct etiologies, acquired apraxia of speech (AOS) and childhood apraxia of speech (CAS) share the same central diagnostic challenge (i.e., isolating markers specific to an impairment in speech motor planning/programming). The purpose of this review was to evaluate and compare the state of the evidence on approaches to differential diagnosis for AOS and CAS and to identify gaps in each literature that could provide directions for future research aimed to improve clinical diagnosis of these disorders. Method We conducted a scoping review of literature published between 1997 and 2019, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guidelines. For both AOS and CAS, literature was charted and summarized around four main methodological approaches to diagnosis: speech symptoms, quantitative speech measures, impaired linguistic-motor processes, and neuroimaging. Results Results showed that similar methodological approaches have been used to study differential diagnosis of apraxia of speech in adults and children; however, the specific measures that have received the most research attention differ between AOS and CAS. Several promising candidate markers for AOS and CAS have been identified; however, few studies report metrics that can be used to assess their diagnostic accuracy. Conclusions Over the past two decades, there has been a proliferation of research identifying potential diagnostic markers of AOS and CAS. In order to improve clinical diagnosis of AOS and CAS, there is a need for studies testing the diagnostic accuracy of multiple candidate markers, better control over language impairment comorbidity, more inclusion of speech-disordered control groups, and an increased focus on translational work moving toward clinical implementation of promising measures.
Collapse
Affiliation(s)
- Kristen M. Allison
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA
| | - Claire Cordella
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Boston
| | - Jenya Iuzzini-Seigel
- Department of Speech Pathology and Audiology, Marquette University, Milwaukee, WI
| | - Jordan R. Green
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA
| |
Collapse
|
9
|
Miller HE, Guenther FH. Modelling speech motor programming and apraxia of speech in the DIVA/GODIVA neurocomputational framework. APHASIOLOGY 2020; 35:424-441. [PMID: 34108793 PMCID: PMC8183977 DOI: 10.1080/02687038.2020.1765307] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The Directions Into Velocities of Articulators (DIVA) model and its partner, the Gradient Order DIVA (GODIVA) model, provide neurobiologically grounded, computational accounts of speech motor control and motor sequencing, with applications for the study and treatment of neurological motor speech disorders. AIMS In this review, we provide an overview of the DIVA and GODIVA models and how they explain the interface between phonological and motor planning systems to build on previous models and provide a mechanistic accounting of apraxia of speech (AOS), a disorder of speech motor programming. MAIN CONTRIBUTION Combined, the DIVA and GODIVA models account for both the segmental and suprasegmental features that define AOS via damage to (i) a speech sound map, hypothesized to reside in left ventral premotor cortex, (ii) a phonological content buffer hypothesized to reside in left posterior inferior frontal sulcus, and/or (iii) the axonal projections between these regions. This account is in line with a large body of behavioural work, and it unifies several prior theoretical accounts of AOS. CONCLUSIONS The DIVA and GODIVA models provide an integrated framework for the generation and testing of both behavioural and neuroimaging hypotheses about the underlying neural mechanisms responsible for motor programming in typical speakers and in speakers with AOS.
Collapse
Affiliation(s)
- Hilary E. Miller
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA
| | - Frank H. Guenther
- Department of Speech, Language, & Hearing Sciences, Boston University, Boston, MA
- Department of Biomedical Engineering, Boston University, Boston, MA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
10
|
Scott R, Sánchez-Aguilera A, van Elst K, Lim L, Dehorter N, Bae SE, Bartolini G, Peles E, Kas MJH, Bruining H, Marín O. Loss of Cntnap2 Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior. Cereb Cortex 2020; 29:586-597. [PMID: 29300891 DOI: 10.1093/cercor/bhx341] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023] Open
Abstract
Contactin-associated protein-like 2 (Caspr2) is found at the nodes of Ranvier and has been associated with physiological properties of white matter conductivity. Genetic variation in CNTNAP2, the gene encoding Caspr2, has been linked to several neurodevelopmental conditions, yet pathophysiological effects of CNTNAP2 mutations on axonal physiology and brain myelination are unknown. Here, we have investigated mouse mutants for Cntnap2 and found profound deficiencies in the clustering of Kv1-family potassium channels in the juxtaparanodes of brain myelinated axons. These deficits are associated with a change in the waveform of axonal action potentials and increases in postsynaptic excitatory responses. We also observed that the normal process of myelination is delayed in Cntnap2 mutant mice. This later phenotype is a likely modulator of the developmental expressivity of the stereotyped motor behaviors that characterize Cntnap2 mutant mice. Altogether, our results reveal a mechanism linked to white matter conductivity through which mutation of CNTNAP2 may affect neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Ricardo Scott
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Alberto Sánchez-Aguilera
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Kim van Elst
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Nathalie Dehorter
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sung Eun Bae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Giorgia Bartolini
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martien J H Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
11
|
Falsaperla R, Pappalardo XG, Romano C, Marino SD, Corsello G, Ruggieri M, Parano E, Pavone P. Intronic Variant in CNTNAP2 Gene in a Boy With Remarkable Conduct Disorder, Minor Facial Features, Mild Intellectual Disability, and Seizures. Front Pediatr 2020; 8:550. [PMID: 33042910 PMCID: PMC7518065 DOI: 10.3389/fped.2020.00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction: Mutations in the contactin-associated protein-like 2 (CNTNAP2) gene (MIM#604569) encoding for CASPR2, a cell adhesion protein of the neurexin family, are known to be associated with autism, intellectual disability, and other neuropsychiatric disorders. A set of intronic deletions of CNTNAP2 gene has also been suggested to have a causative role in individuals with a wide phenotypic spectrum, including Pitt-Hopkins syndrome, cortical dysplasia-focal epilepsy syndrome, Tourette syndrome, language dysfunction, and abnormal behavioral manifestations. Case presentation: A 10-years-old boy was referred to the hospital with mild intellectual disability and language impairment. Moreover, the child exhibited minor facial features, epileptic seizures, and notable behavioral abnormalities including impulsivity, aggressivity, and hyperactivity suggestive of the diagnosis of disruptive, impulse-control and conduct disorder (CD). Array comparative genomic hybridization (CGH) revealed a copy number variant (CNV) deletion in the first intron of CNTNAP2 gene inherited from a healthy father. Conclusions: A comprehensive description of the phenotypic features of the child is provided, revealing a distinct and remarkable alteration of social behavior not previously reported in individuals affected by disorders related to CNTNAP2 gene disruptions. A possible causative link between the deletion of a non-coding regulatory region and the symptoms presented by the boy has been advanced.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Unit of Neonatology, University Hospital "Policlinico-Vittorio Emanuele, " Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Catania, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Catia Romano
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele, " Catania, Italy
| | - Simona Domenica Marino
- Unit of Neonatology, University Hospital "Policlinico-Vittorio Emanuele, " Catania, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro, " University of Palermo, Palermo, Italy
| | - Martino Ruggieri
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele, " Catania, Italy
| | - Enrico Parano
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Catania, Italy
| | - Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele, " Catania, Italy
| |
Collapse
|
12
|
Iuzzini-Seigel J. Motor Performance in Children With Childhood Apraxia of Speech and Speech Sound Disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3220-3233. [PMID: 31479382 DOI: 10.1044/2019_jslhr-s-18-0380] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose This study sought to determine if (a) children with childhood apraxia of speech (CAS), other speech sound disorders (SSDs), and typical development (TD) would perform differently on a standardized motor assessment and (b) whether comorbid language impairment would impact group differences. Method Speech, language, and motor abilities were assessed in children with CAS (n = 10), SSD (n = 16), and TD (n = 14) between the ages of 43 and 105 months. Motor skills were evaluated using the Movement Assessment Battery for Children-Second Edition (Henderson, Sugden, & Barnett, 2007), a behavioral assessment that is sensitive in identifying fine/gross motor impairments in children with a range of motor and learning abilities. Data were reanalyzed after reclassifying children by language ability. Results The CAS group performed below the normal limit on all components of the motor assessment and more poorly than the TD and SSD groups on Aiming and Catching and Balance. When children were reclassified by language ability, the comorbid CAS + language impairment group performed worse than the SSD-only and TD groups on Manual Dexterity and Balance and worse than the TD group on Aiming and Catching; all 7 children with CAS + language impairment evidenced performance in the disordered range compared to 1 of 3 children in the CAS-only group and 2 of 6 children in the SSD + language impairment group. Conclusions Children with CAS + language impairment appear to be at an increased risk for motor impairments, which may negatively impact social, academic, and vocational outcomes; referrals for motor screenings/assessments should be considered. Findings may suggest a higher order deficit that mediates cognitive-linguistic and motor impairments in this population.
Collapse
Affiliation(s)
- Jenya Iuzzini-Seigel
- Department of Speech Pathology and Audiology, Marquette University, Milwaukee, WI
| |
Collapse
|
13
|
Peter B, Dinu V, Liu L, Huentelman M, Naymik M, Lancaster H, Vose C, Schrauwen I. Exome Sequencing of Two Siblings with Sporadic Autism Spectrum Disorder and Severe Speech Sound Disorder Suggests Pleiotropic and Complex Effects. Behav Genet 2019; 49:399-414. [DOI: 10.1007/s10519-019-09957-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
|
14
|
Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet 2018; 14:e1007535. [PMID: 30586385 PMCID: PMC6324819 DOI: 10.1371/journal.pgen.1007535] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/08/2019] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is a member of the neurexin superfamily. CNTNAP2 was first implicated in the cortical dysplasia-focal epilepsy (CDFE) syndrome, a recessive disease characterized by intellectual disability, epilepsy, language impairments and autistic features. Associated SNPs and heterozygous deletions in CNTNAP2 were subsequently reported in autism, schizophrenia and other psychiatric or neurological disorders. We aimed to comprehensively examine evidence for the role of CNTNAP2 in susceptibility to psychiatric disorders, by the analysis of multiple classes of genetic variation in large genomic datasets. In this study we used: i) summary statistics from the Psychiatric Genomics Consortium (PGC) GWAS for seven psychiatric disorders; ii) examined all reported CNTNAP2 structural variants in patients and controls; iii) performed cross-disorder analysis of functional or previously associated SNPs; and iv) conducted burden tests for pathogenic rare variants using sequencing data (4,483 ASD and 6,135 schizophrenia cases, and 13,042 controls). The distribution of CNVs across CNTNAP2 in psychiatric cases from previous reports was no different from controls of the database of genomic variants. Gene-based association testing did not implicate common variants in autism, schizophrenia or other psychiatric phenotypes. The association of proposed functional SNPs rs7794745 and rs2710102, reported to influence brain connectivity, was not replicated; nor did predicted functional SNPs yield significant results in meta-analysis across psychiatric disorders at either SNP-level or gene-level. Disrupting CNTNAP2 rare variant burden was not higher in autism or schizophrenia compared to controls. Finally, in a CNV mircroarray study of an extended bipolar disorder family with 5 affected relatives we previously identified a 131kb deletion in CNTNAP2 intron 1, removing a FOXP2 transcription factor binding site. Quantitative-PCR validation and segregation analysis of this CNV revealed imperfect segregation with BD. This large comprehensive study indicates that CNTNAP2 may not be a robust risk gene for psychiatric phenotypes. Genetic mutations that disrupt both copies of the CNTNAP2 gene lead to severe disease, characterized by profound intellectual disability, epilepsy, language difficulties and autistic traits, leading to the hypothesis that this gene may also be involved in autism given some overlapping clinical features with this disease. Indeed, several large DNA deletions affecting one of the two copies of CNTNAP2 were found in some patients with autism, and later also in patients with schizophrenia, bipolar disorder, ADHD and epilepsy, suggesting that this gene was implicated in several psychiatric or neurologic diseases. Other studies considered genetic sequence variations that are common in the general population, and suggested that two such sequence variations in CNTNAP2 predispose to psychiatric diseases by influencing the functionality and connectivity of the brain. To better understand the involvement of CNTNAP2 in risk of mental illness, we performed several genetic analyses using a series of large publicly available or in-house datasets, comprising many thousands of patients and controls. Furthermore, we report the deletion of one copy of CNTNAP2 in two patients with bipolar disorder and one unaffected relative from an extended family where five relatives were affected with this condition. Despite the previous consideration of CNTNAP2 as a strong candidate gene for autism or schizophrenia, we show little evidence across multiple classes of DNA variation, that CNTNAP2 is likely to play a major role in risk of psychiatric diseases.
Collapse
|
15
|
Coton J, Labalme A, Till M, Bussy G, Krifi Papoz S, Lesca G, Heron D, Sanlaville D, Edery P, des Portes V, Rossi M. Characterization of two familial cases presenting with a syndromic specific learning disorder and carrying (17q;21q) unbalanced translocations. Clin Case Rep 2018; 6:827-834. [PMID: 29744066 PMCID: PMC5930267 DOI: 10.1002/ccr3.1450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 11/08/2022] Open
Abstract
Chromosomal microarray (CMA) can detect pathogenic copy number variations in 15–20% of individuals with intellectual disability and in 10% of patients with autism spectrum disorders. The diagnostic rate in specific learning disorders (SLD) is unknown. Our study emphasizes the usefulness of CMA in the diagnostic workout assessment of familial SLD.
Collapse
Affiliation(s)
- Julie Coton
- Centre de référence des anomalies du développement; Service de Génétique; Hospices Civils de Lyon; Bron France
| | - Audrey Labalme
- Centre de référence des anomalies du développement; Service de Génétique; Hospices Civils de Lyon; Bron France
| | - Marianne Till
- Centre de référence des anomalies du développement; Service de Génétique; Hospices Civils de Lyon; Bron France
| | - Gerald Bussy
- Service de Neuropédiatrie; Hospices Civils de Lyon; Bron France
- Service de Génétique; CHU de Saint Etienne; Saint Etienne France
| | | | - Gaetan Lesca
- Centre de référence des anomalies du développement; Service de Génétique; Hospices Civils de Lyon; Bron France
- Centre de Recherche en Neurosciences de Lyon; INSERM U1028 CNRS UMR5292, GENDEV Team; Bron France
| | - Delphine Heron
- Département de Génétique et Centre de Référence « Déficiences intellectuelles de causes rares »; AP-HP, Groupe Hospitalier Pitié-Salpêtrière et GRC-Génétique des Déficiences Intellectuelles de Causes rares; Université Pierre et Marie Curie; F-75013 Paris France
| | - Damien Sanlaville
- Centre de référence des anomalies du développement; Service de Génétique; Hospices Civils de Lyon; Bron France
- Centre de Recherche en Neurosciences de Lyon; INSERM U1028 CNRS UMR5292, GENDEV Team; Bron France
| | - Patrick Edery
- Centre de référence des anomalies du développement; Service de Génétique; Hospices Civils de Lyon; Bron France
- Centre de Recherche en Neurosciences de Lyon; INSERM U1028 CNRS UMR5292, GENDEV Team; Bron France
| | | | - Massimiliano Rossi
- Centre de référence des anomalies du développement; Service de Génétique; Hospices Civils de Lyon; Bron France
- Centre de Recherche en Neurosciences de Lyon; INSERM U1028 CNRS UMR5292, GENDEV Team; Bron France
| |
Collapse
|
16
|
Zuk J, Iuzzini-Seigel J, Cabbage K, Green JR, Hogan TP. Poor Speech Perception Is Not a Core Deficit of Childhood Apraxia of Speech: Preliminary Findings. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2018; 61:583-592. [PMID: 29450502 PMCID: PMC6195067 DOI: 10.1044/2017_jslhr-s-16-0106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/15/2017] [Indexed: 05/08/2023]
Abstract
PURPOSE Childhood apraxia of speech (CAS) is hypothesized to arise from deficits in speech motor planning and programming, but the influence of abnormal speech perception in CAS on these processes is debated. This study examined speech perception abilities among children with CAS with and without language impairment compared to those with language impairment, speech delay, and typically developing peers. METHOD Speech perception was measured by discrimination of synthesized speech syllable continua that varied in frequency (/dɑ/-/ɡɑ/). Groups were classified by performance on speech and language assessments and compared on syllable discrimination thresholds. Within-group variability was also evaluated. RESULTS Children with CAS without language impairment did not significantly differ in syllable discrimination compared to typically developing peers. In contrast, those with CAS and language impairment showed significantly poorer syllable discrimination abilities compared to children with CAS only and typically developing peers. Children with speech delay and language impairment also showed significantly poorer discrimination abilities, with appreciable within-group variability. CONCLUSIONS These findings suggest that speech perception deficits are not a core feature of CAS but rather occur with co-occurring language impairment in a subset of children with CAS. This study establishes the significance of accounting for language ability in children with CAS. SUPPLEMENTAL MATERIALS https://doi.org/10.23641/asha.5848056.
Collapse
Affiliation(s)
- Jennifer Zuk
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard University, Boston, MA
| | - Jenya Iuzzini-Seigel
- Department of Speech Pathology and Audiology, Marquette University, Harriet Barker Cramer Hall, Milwaukee, WI
| | - Kathryn Cabbage
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA
| | - Jordan R Green
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard University, Boston, MA
| | - Tiffany P Hogan
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA
| |
Collapse
|
17
|
Ross LA, Del Bene VA, Molholm S, Woo YJ, Andrade GN, Abrahams BS, Foxe JJ. Common variation in the autism risk gene CNTNAP2, brain structural connectivity and multisensory speech integration. BRAIN AND LANGUAGE 2017; 174:50-60. [PMID: 28738218 DOI: 10.1016/j.bandl.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/07/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Three lines of evidence motivated this study. 1) CNTNAP2 variation is associated with autism risk and speech-language development. 2) CNTNAP2 variations are associated with differences in white matter (WM) tracts comprising the speech-language circuitry. 3) Children with autism show impairment in multisensory speech perception. Here, we asked whether an autism risk-associated CNTNAP2 single nucleotide polymorphism in neurotypical adults was associated with multisensory speech perception performance, and whether such a genotype-phenotype association was mediated through white matter tract integrity in speech-language circuitry. Risk genotype at rs7794745 was associated with decreased benefit from visual speech and lower fractional anisotropy (FA) in several WM tracts (right precentral gyrus, left anterior corona radiata, right retrolenticular internal capsule). These structural connectivity differences were found to mediate the effect of genotype on audiovisual speech perception, shedding light on possible pathogenic pathways in autism and biological sources of inter-individual variation in audiovisual speech processing in neurotypicals.
Collapse
Affiliation(s)
- Lars A Ross
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Victor A Del Bene
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Ferkauf Graduate School of Psychology Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gizely N Andrade
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA
| | - Brett S Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center (CERC), Department of Pediatrics, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY 10461, USA; Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
18
|
De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med 2017; 20:172-180. [PMID: 28771244 PMCID: PMC5846809 DOI: 10.1038/gim.2017.83] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/24/2017] [Indexed: 02/04/2023] Open
Abstract
Purpose Hemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP. Methods We genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of “CNV-positive” trios. Results We detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders. Conclusion We found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.
Collapse
|
19
|
Iuzzini-Seigel J, Hogan TP, Green JR. Speech Inconsistency in Children With Childhood Apraxia of Speech, Language Impairment, and Speech Delay: Depends on the Stimuli. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:1194-1210. [PMID: 28395359 DOI: 10.1044/2016_jslhr-s-15-0184] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/20/2016] [Indexed: 05/03/2023]
Abstract
PURPOSE The current research sought to determine (a) if speech inconsistency is a core feature of childhood apraxia of speech (CAS) or if it is driven by comorbid language impairment that affects a large subset of children with CAS and (b) if speech inconsistency is a sensitive and specific diagnostic marker that can differentiate between CAS and speech delay. METHOD Participants included 48 children ranging between 4;7 to 17;8 (years;months) with CAS (n = 10), CAS + language impairment (n = 10), speech delay (n = 10), language impairment (n = 9), or typical development (n = 9). Speech inconsistency was assessed at phonemic and token-to-token levels using a variety of stimuli. RESULTS Children with CAS and CAS + language impairment performed equivalently on all inconsistency assessments. Children with language impairment evidenced high levels of speech inconsistency on the phrase "buy Bobby a puppy." Token-to-token inconsistency of monosyllabic words and the phrase "buy Bobby a puppy" was sensitive and specific in differentiating children with CAS and speech delay, whereas inconsistency calculated on other stimuli (e.g., multisyllabic words) was less efficacious in differentiating between these disorders. CONCLUSIONS Speech inconsistency is a core feature of CAS and is efficacious in differentiating between children with CAS and speech delay; however, sensitivity and specificity are stimuli dependent.
Collapse
|
20
|
Schaafsma SM, Gagnidze K, Reyes A, Norstedt N, Månsson K, Francis K, Pfaff DW. Sex-specific gene-environment interactions underlying ASD-like behaviors. Proc Natl Acad Sci U S A 2017; 114:1383-1388. [PMID: 28115688 PMCID: PMC5307430 DOI: 10.1073/pnas.1619312114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The male bias in the incidence of autism spectrum disorders (ASDs) is one of the most notable characteristics of this group of neurodevelopmental disorders. The etiology of this sex bias is far from known, but pivotal for understanding the etiology of ASDs in general. Here we investigate whether a "three-hit" (genetic load × environmental factor × sex) theory of autism may help explain the male predominance. We found that LPS-induced maternal immune activation caused male-specific deficits in certain social responses in the contactin-associated protein-like 2 (Cntnap2) mouse model for ASD. The three "hits" had cumulative effects on ultrasonic vocalizations at postnatal day 3. Hits synergistically affected social recognition in adulthood: only mice exposed to all three hits showed deficits in this aspect of social behavior. In brains of the same mice we found a significant three-way interaction on corticotropin-releasing hormone receptor-1 (Crhr1) gene expression, in the left hippocampus specifically, which co-occurred with epigenetic alterations in histone H3 N-terminal lysine 4 trimethylation (H3K4me3) over the Crhr1 promoter. Although it is highly likely that multiple (synergistic) interactions may be at work, change in the expression of genes in the hypothalamic-pituitary-adrenal/stress system (e.g., Crhr1) is one of them. The data provide proof-of-principle that genetic and environmental factors interact to cause sex-specific effects that may help explain the male bias in ASD incidence.
Collapse
Affiliation(s)
- Sara M Schaafsma
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Khatuna Gagnidze
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Anny Reyes
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Natalie Norstedt
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Karl Månsson
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Kerel Francis
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065
| |
Collapse
|
21
|
Iuzzini-Seigel J, Murray E. Speech Assessment in Children With Childhood Apraxia of Speech. ACTA ACUST UNITED AC 2017. [DOI: 10.1044/persp2.sig2.47] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article uses the International Classification of Functioning (ICF) framework to outline the assessment needs of children with apraxia of speech. Specifically, the level of breakdown for children with apraxia of speech—that of motor planning and programming at the level of body functions—is delineated using operationally defined criteria for greater diagnostic transparency.
Collapse
Affiliation(s)
- Jenya Iuzzini-Seigel
- Communication, Movement and Learning Lab, Department of Speech Pathology and Audiology, Marquette University
Milwaukee, WI
| | - Elizabeth Murray
- Faculty of Health Sciences, The University of Sydney
Lidcombe NSW, Australia
| |
Collapse
|
22
|
Smogavec M, Cleall A, Hoyer J, Lederer D, Nassogne MC, Palmer EE, Deprez M, Benoit V, Maystadt I, Noakes C, Leal A, Shaw M, Gecz J, Raymond L, Reis A, Shears D, Brockmann K, Zweier C. Eight further individuals with intellectual disability and epilepsy carrying bi-allelic CNTNAP2 aberrations allow delineation of the mutational and phenotypic spectrum. J Med Genet 2016; 53:820-827. [PMID: 27439707 DOI: 10.1136/jmedgenet-2016-103880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 06/25/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. METHODS Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. RESULTS We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. CONCLUSIONS By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Human Genetics, University Medical Center, Georg August University, Göttingen, Germany
| | - Alison Cleall
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Marie-Cécile Nassogne
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Woluwe-Saint-Lambert, Belgium
| | - Elizabeth E Palmer
- GOLD (Genetics of Learning and Disability) Service, Hunter Genetics, Waratah, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Marie Deprez
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Charleroi, Belgium
| | - Charlotte Noakes
- Oxford Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alejandro Leal
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Section of Genetics and Biotechnology, School of Biology and Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - Marie Shaw
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, the University of Adelaide, Adelaide, South Australia, Australia
| | - Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Deborah Shears
- Department of Clinical Genetics, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Knut Brockmann
- Interdisciplinary Pediatric Center for Children with Developmental Disabilities and Severe Chronic Disorders, University Medical Center, Georg August University, Göttingen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
23
|
Chilosi AM, Lorenzini I, Fiori S, Graziosi V, Rossi G, Pasquariello R, Cipriani P, Cioni G. Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children. BRAIN AND LANGUAGE 2015; 150:177-85. [PMID: 26552038 DOI: 10.1016/j.bandl.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 08/27/2015] [Accepted: 10/24/2015] [Indexed: 05/13/2023]
Abstract
Childhood apraxia of speech (CAS) is a neurogenic Speech Sound Disorder whose etiology and neurobiological correlates are still unclear. In the present study, 32 Italian children with idiopathic CAS underwent a comprehensive speech and language, genetic and neuroradiological investigation aimed to gather information on the possible behavioral and neurobiological markers of the disorder. The results revealed four main aggregations of behavioral symptoms that indicate a multi-deficit disorder involving both motor-speech and language competence. Six children presented with chromosomal alterations. The familial aggregation rate for speech and language difficulties and the male to female ratio were both very high in the whole sample, supporting the hypothesis that genetic factors make substantial contribution to the risk of CAS. As expected in accordance with the diagnosis of idiopathic CAS, conventional MRI did not reveal macrostructural pathogenic neuroanatomical abnormalities, suggesting that CAS may be due to brain microstructural alterations.
Collapse
Affiliation(s)
- Anna Maria Chilosi
- Dipartimento di Neuroscienze dell'Età Evolutiva, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, 56128 Pisa, Italy.
| | - Irene Lorenzini
- Laboratorio di Linguistica 'Giovanni Nencioni', Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Simona Fiori
- Dipartimento di Neuroscienze dell'Età Evolutiva, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, 56128 Pisa, Italy
| | - Valentina Graziosi
- Dipartimento di Neuroscienze dell'Età Evolutiva, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, 56128 Pisa, Italy
| | - Giuseppe Rossi
- Unità di Epidemiologia e Biostatistica, Istituto di Fisiologia Clinica Consiglio Nazionale delle Richerche, Via G.Moruzzi 1, 56124 Pisa, Italy
| | - Rosa Pasquariello
- Dipartimento di Neuroscienze dell'Età Evolutiva, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, 56128 Pisa, Italy
| | - Paola Cipriani
- Dipartimento di Neuroscienze dell'Età Evolutiva, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, 56128 Pisa, Italy
| | - Giovanni Cioni
- Dipartimento di Neuroscienze dell'Età Evolutiva, IRCCS Fondazione Stella Maris, Viale del Tirreno 331, 56128 Pisa, Italy; Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
24
|
Centanni TM, Green JR, Iuzzini-Seigel J, Bartlett CW, Hogan TP. Evidence for the multiple hits genetic theory for inherited language impairment: a case study. Front Genet 2015; 6:272. [PMID: 26379700 PMCID: PMC4547018 DOI: 10.3389/fgene.2015.00272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 11/20/2022] Open
Abstract
Communication disorders have complex genetic origins, with constellations of relevant gene markers that vary across individuals. Some genetic variants are present in healthy individuals as well as those affected by developmental disorders. Growing evidence suggests that some variants may increase susceptibility to these disorders in the presence of other pathogenic gene mutations. In the current study, we describe eight children with specific language impairment and four of these children had a copy number variant in one of these potential susceptibility regions on chromosome 15. Three of these four children also had variants in other genes previously associated with language impairment. Our data support the theory that 15q11.2 is a susceptibility region for developmental disorders, specifically language impairment.
Collapse
Affiliation(s)
- Tracy M Centanni
- Massachusetts General Hospital Institute of Health Professions, Boston, MA USA ; Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jordan R Green
- Massachusetts General Hospital Institute of Health Professions, Boston, MA USA
| | - Jenya Iuzzini-Seigel
- Massachusetts General Hospital Institute of Health Professions, Boston, MA USA ; Marquette University, Milwaukee, WI USA
| | | | - Tiffany P Hogan
- Massachusetts General Hospital Institute of Health Professions, Boston, MA USA
| |
Collapse
|