1
|
Paliakkara J, Ellenberg S, Ursino A, Smith AA, Evans J, Strayhorn J, Faraone SV, Zhang-James Y. A systematic review of the etiology and neurobiology of intermittent explosive disorder. Psychiatry Res 2025; 347:116410. [PMID: 40023093 DOI: 10.1016/j.psychres.2025.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Intermittent Explosive Disorder (IED) is characterized by repeated inability to control aggressive impulses. Although the etiology and neurobiology of impulsive anger and impulse control disorders have been reviewed, no systematic review on these aspects has been published for IED specifically. We conducted a systematic search in seven electronic databases for publications about IED, screened by two authors, and retained twenty-four studies for the review. Our findings highlight a multifactorial etiology and neurobiology of IED, emphasizing the role of the amygdala and orbitofrontal cortex in emotional regulation and impulse control, and supporting interventions that target serotonergic signaling. Research also shows that childhood trauma and adverse family environment may significantly contribute to the development of IED. Yet, genetic studies focusing on IED were largely lacking, despite many examining the genetics underlying aggression as a general trait or other related disorders. Future research using consistently defined IED as a phenotype is required to better understand the etiology and underlying mechanisms and assist in informing the development of more effective interventions for IED.
Collapse
Affiliation(s)
- John Paliakkara
- Norton College of Medicine at SUNY Upstate Medical University, 766 Irving Ave, Syracuse, NY 13210, USA.
| | - Stacy Ellenberg
- Norton College of Medicine at Upstate Medical University, Adult Psychiatry Clinic Psychiatry and Behavioral Sciences, 713 Harrison Street, Syracuse, NY 13210 USA.
| | - Andrew Ursino
- Norton College of Medicine at Upstate Medical University, Adult Psychiatry Clinic Psychiatry and Behavioral Sciences, 713 Harrison Street, Syracuse, NY 13210 USA; Clinical & Forensic Psychology, 1101 Erie Blvd. East, Suite 207, Syracuse, NY 13210 USA.
| | - Abigail A Smith
- Health Sciences Library, Norton College of Medicine at SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - James Evans
- Health Sciences Library, Norton College of Medicine at SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Joseph Strayhorn
- Norton College of Medicine at Upstate Medical University, Clinical Psychology Psychiatry and Behavioral Sciences, 719 Harrison Street, Syracuse, NY 13210 USA.
| | - Stephen V Faraone
- Norton College of Medicine at SUNY Upstate Medical University, Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Institute for Human Performance, 505 Irving Ave, Syracuse, NY 13210 USA.
| | - Yanli Zhang-James
- Norton College of Medicine at SUNY Upstate Medical University, Department of Psychiatry and Behavioral Sciences, Institute for Human Performance, 505 Irving Ave, Syracuse, NY 13210 USA.
| |
Collapse
|
2
|
Song Y, Yoon M. Melatonin effects on animal behavior: circadian rhythm, stress response, and modulation of behavioral patterns. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:1-16. [PMID: 39974791 PMCID: PMC11833209 DOI: 10.5187/jast.2024.e105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 02/21/2025]
Abstract
Melatonin plays a crucial role in various behavioral and physiological aspects of animals, including regulating their circadian rhythms. This review provides a comprehensive evaluation of the multifaceted effects of melatonin on animal behavior, such as temperament, stress, and aggression regulation. The focus is on the complex interactions between melatonin and the hormonal and neurotransmitter systems, highlighting how melatonin interacts with cortisol, serotonin, and dopamine to influence behavior. Additionally, it investigates the effects of melatonin on the hypothalamic-pituitary-gonada (HPG) axis and stress responses, emphasizing its potential to improve stress management and social interactions, thereby enhancing animal welfare. The review also examines the seasonal variations of melatonin and its impact on aggression and reproductive activities related to photoperiods, as well as its effects on learning and memory to suggest improvements in animal training methods and practices. Furthermore, it discusses the influence of melatonin on appetite and physical activity regulation, implying its involvement in metabolic processes. In conclusion, further research is needed to elucidate the complex mechanisms underlying the extensive influence of melatonin on animal behavior. Through this review, the aim is to integrate the overall knowledge about melatonin and animal behavioral temperament and to propose new research areas for animal management based on behavioral and hormonal regulation.
Collapse
Affiliation(s)
- Yubin Song
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Minjung Yoon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal
Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
3
|
Pezzoli P, McCrory EJ, Viding E. Shedding Light on Antisocial Behavior Through Genetically Informed Research. Annu Rev Psychol 2025; 76:797-819. [PMID: 39441883 DOI: 10.1146/annurev-psych-021524-043650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Antisocial behavior (ASB) refers to a set of behaviors that violate social norms and disregard the well-being and rights of others. In this review, we synthesize evidence from studies using genetically informed designs to investigate the genetic and environmental contributions to individual differences in ASB. We review evidence from studies using family data (twin and adoption studies) and measured DNA (candidate gene and genome-wide association studies) that have informed our understanding of ASB. We describe how genetically informative designs are especially suited to investigate the nature of environmental risk and the forms of gene-environment interplay. We also highlight clinical and legal implications, including how insights from genetically informed research can help inform prevention and intervention, and we discuss some challenges and opportunities within this field of research.
Collapse
Affiliation(s)
- Patrizia Pezzoli
- Division of Psychology and Language Sciences, University College London, London, United Kingdom;
| | - Eamon J McCrory
- Division of Psychology and Language Sciences, University College London, London, United Kingdom;
| | - Essi Viding
- Division of Psychology and Language Sciences, University College London, London, United Kingdom;
| |
Collapse
|
4
|
Su C, Zhang L, Pan Y, Jiao J, Luo P, Chang X, Zhang H, Si X, Chen W, Huang Y. Enhancing aggression in Henan gamecocks via augmentation of serotonergic-dopaminergic signaling and attenuation of neuroimmune response. Poult Sci 2024; 103:104055. [PMID: 39190992 PMCID: PMC11395772 DOI: 10.1016/j.psj.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Animal aggression is one of the most conserved behaviors. Excessive and inappropriate aggression was a serious social concern across species. After long-term selection under strict stress conditions, Henan gamecock serves as a good model for studying aggressive behavior. In this research, we constructed a Henan game chicken backcross population containing 25% Rhode Island Red (RIR), and conducted brain transcriptomics and serum metabolomics analyses on Henan gamecock (HGR) through its comparison with its female encounters (HGH) and the male backcross birds (BGR). The study revealed that seven differential metabolites in serum and 172 differentially expressed genes in the brain were commonly shared in both HGR vs. HGH and HGR vs. BGR comparisons. They exhibited the same patterns of modulation in Henan gamecocks, following either HGH < HGR > BGR or HGH > HGR < BGR style. Therein, some neurological genes involving in serotonergic and dopaminergic signaling were upregulated, while the levels of many genes related with neuro-immune function were decreased in Henan gamecock. In addition, many unknown genes specifically or highly expressed in the brain of the Henan gamecock were identified. These genes are potentially key candidates for enhancing the bird's aggression. Multi-omics joint analysis revealed that tyrosine metabolism and neuroactive ligand-receptor interaction were commonly affected. Overall, our results propose that the aggressiveness of Henan gamecocks can be heightened by the activation of the serotonergic-dopaminergic metabolic process in the brain, which concurrently impairs the neuroimmune system. Further research is needed to identify the function of these unknown genes on the bird's aggressive behavior.
Collapse
Affiliation(s)
- Chuanchen Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Lin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Yuxian Pan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Jingya Jiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Xinghai Chang
- Henan Changxing Agriculture and Animal Husbandry co., LTD, Kaifeng, Henan 475000, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China.
| |
Collapse
|
5
|
Paliakkara J, Ellenberg S, Ursino A, Smith AA, Evans J, Strayhorn J, Faraone SV, Zhang-James Y. A Systematic Review of the Etiology and Neurobiology of Intermittent Explosive Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.12.24313573. [PMID: 39314952 PMCID: PMC11419216 DOI: 10.1101/2024.09.12.24313573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Intermittent Explosive Disorder (IED) is characterized by repeated inability to control aggressive impulses. Although the etiology and neurobiology of impulsive anger and impulse control disorders have been reviewed, no systematic review on these aspects has been published for IED specifically. We conducted a systematic search in seven electronic databases for publications about IED, screened by two authors, and retained twenty-four studies for the review. Our findings highlight a multifactorial etiology and neurobiology of IED, emphasizing the role of the amygdala and orbitofrontal cortex in emotional regulation and impulse control, and supporting interventions that target serotonergic signaling. Research also shows that childhood trauma and adverse family environment may significantly contribute to the development of IED. Yet, genetic studies focusing on IED were largely lacking, despite many examining the genetics underlying aggression as a general trait or other related disorders. Future research using consistently defined IED as a phenotype is required to better understand the etiology and underlying mechanisms and assist in informing the development of more effective interventions for IED.
Collapse
Affiliation(s)
- John Paliakkara
- Norton College of Medicine at SUNY Upstate Medical University, 766 Irving Ave, Syracuse, NY 13210, Syracuse, NY 13210 USA
| | - Stacy Ellenberg
- Norton College of Medicine at Upstate Medical University, Adult Psychiatry Clinic Psychiatry and Behavioral Sciences, 713 Harrison Street, Syracuse, NY 13210 USA
| | - Andrew Ursino
- Norton College of Medicine at Upstate Medical University, Adult Psychiatry Clinic Psychiatry and Behavioral Sciences, 713 Harrison Street, Syracuse, NY 13210 USA
- Clinical & Forensic Psychology, 1101 Erie Blvd. East, Suite 207, Syracuse, NY 13210 USA
| | - Abigail A Smith
- Health Sciences Library, Norton College of Medicine at SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - James Evans
- Health Sciences Library, Norton College of Medicine at SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Joseph Strayhorn
- Norton College of Medicine at Upstate Medical University, Clinical Psychology Psychiatry and Behavioral Sciences, 719 Harrison Street, Syracuse, NY 13210 USA
| | - Stephen V. Faraone
- Norton College of Medicine at SUNY Upstate Medical University, Departments of Psychiatry and Behavioral Sciences and Neuroscience and Physiology, Institute for Human Performance, 505 Irving Ave, Syracuse, NY 13210 USA
| | - Yanli Zhang-James
- Norton College of Medicine at SUNY Upstate Medical University, Department of Psychiatry and Behavioral Sciences, Institute for Human Performance, 505 Irving Ave, Syracuse, NY 13210 USA
| |
Collapse
|
6
|
Davtalab Esmaeili E, Ghaffari A, R Kalankesh L, Zeinalzadeh AH, Dastgiri S. Familial aggregation of traffic risky behaviours among pedestrians: a cross-sectional study in northwestern Iran. Inj Prev 2024:ip-2023-045137. [PMID: 38768981 DOI: 10.1136/ip-2023-045137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE This study aims to assess the familial aggregation of traffic risky behaviours among pedestrians and describe the sociodemographic profile of pedestrians in northwestern Iran. METHODS A cross-sectional study was conducted among 933 pedestrians in 2023. Participants were selected using stratified random sampling. Traffic risky behaviour was measured using a validated instrument among heads of households and their first relatives. The generalised estimating equations were computed to estimate the adjusted OR and 95% CI for familial aggregation of traffic risky behaviours. RESULTS Of the total sample, 52.2% and 27.7% of the participants were male and aged 41-50, respectively. The majority of respondents were categorised in middle socioeconomic class (36.9%). The OR for familial aggregation of traffic risky behaviours was 1.42 (95% CI 1.07 to 1.89), indicating that the presence of traffic risky behaviours in at least one family member increased the likelihood of similar behaviour in other members. Fathers showing violation behaviours were associated by 1.98-fold increase in violation behaviours among their offspring. Similarly, the existence of violation behaviour in one sibling increased the odds of violation behaviour among other siblings (OR 1.99, 95% CI 1.18 to 3.73). CONCLUSIONS This study revealed the familial aggregation of traffic risky behaviours of pedestrians, with father-offspring and sibling aggregations emerging as prominent components of familial aggregation. The findings suggested that family-based prevention programmes may yield greater effectiveness than individual-based approaches. As such, implementing targeted interventions focusing on family might have a substantial impact on reducing pedestrian traffic risky behaviours.
Collapse
Affiliation(s)
| | - Alireza Ghaffari
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila R Kalankesh
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hossein Zeinalzadeh
- Social Determinants of Health Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Dastgiri
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Kanarik M, Sakala K, Matrov D, Kaart T, Roy A, Ziegler GC, Veidebaum T, Lesch KP, Harro J. MAOA methylation is associated with impulsive and antisocial behaviour: dependence on allelic variation, family environment and diet. J Neural Transm (Vienna) 2024; 131:59-71. [PMID: 37507512 DOI: 10.1007/s00702-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Congenital absence of monoamine oxidase A (MAO-A) activity predisposes to antisocial impulsive behaviour, and the MAOA uVNTR low-expressing genotype (MAOA-L) together with childhood maltreatment is associated with similar phenotypes in males. A possible explanation of how family environment may lead to such behaviour involves DNA methylation. We have assessed MAOA methylation and impulsive/antisocial behaviour in 121 males from the Estonian Children Personality Behaviour and Health Study. Of the 12 CpG sites measured, methylation levels at the locus designated CpG3 were significantly lower in subjects with antisocial behaviour involving police contact. CpG3 methylation was lower in subjects with alcohol use disorder by age 25, but only in MAOA-H genotype. No correlation between MAOA CpG3 methylation levels and adaptive impulsivity was found at age 15, but in MAOA-L genotype a positive correlation appeared by age 18. By age 25, this positive correlation was no longer observed in subjects with better family relationships but had increased further with experience of adversity within the family. MAOA CpG3 methylation had different developmental dynamics in relation to maladaptive impulsivity. At age 18, a positive correlation was observed in MAOA-L genotype with inferior family relationships and a negative correlation was found in MAOA-H with superior home environment; both of these associations had disappeared by age 25. CpG3 methylation was associated with dietary intake of several micronutrients, most notable was a negative correlation with the intake of zinc, but also with calcium, potassium and vitamin E; a positive correlation was found with intake of phosphorus. In conclusion, MAOA CpG3 methylation is related to both maladaptive and adaptive impulsivity in adolescence in MAOA-L males from adverse home environment. By young adulthood, this relationship with maladaptive impulsivity had disappeared but with adaptive impulsivity strengthened. Thus, MAOA CpG3 methylation may serve as a marker for adaptive developmental neuroplasticity in MAOA-L genotype. The mechanisms involved may include dietary factors.
Collapse
Affiliation(s)
- Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia
| | - Katre Sakala
- National Institute for Health Development, Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Denis Matrov
- Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, Estonia
| | - Arunima Roy
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | | | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of Chemistry, Faculty of Science and Technology, University of Tartu, Ravila 14A Chemicum, 50411, Tartu, Estonia.
| |
Collapse
|
8
|
Antón-Galindo E, Cabana-Domínguez J, Torrico B, Corominas R, Cormand B, Fernàndez-Castillo N. The pleiotropic contribution of genes in dopaminergic and serotonergic pathways to addiction and related behavioral traits. Front Psychiatry 2023; 14:1293663. [PMID: 37937232 PMCID: PMC10627163 DOI: 10.3389/fpsyt.2023.1293663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Co-occurrence of substance use disorders (SUD) and other behavioral conditions, such as stress-related, aggressive or risk-taking behaviors, in the same individual has been frequently described. As dopamine (DA) and serotonin (5-HT) have been previously identified as key neurotransmitters for some of these phenotypes, we explored the genetic contribution of these pathways to SUD and these comorbid phenotypes in order to better understand the genetic relationship between them. Methods We tested the association of 275 dopaminergic genes and 176 serotonergic genes with these phenotypes by performing gene-based, gene-set and transcriptome-wide association studies in 11 genome-wide association studies (GWAS) datasets on SUD and related behaviors. Results At the gene-wide level, 68 DA and 27 5-HT genes were found to be associated with at least one GWAS on SUD or related behavior. Among them, six genes had a pleiotropic effect, being associated with at least three phenotypes: ADH1C, ARNTL, CHRNA3, HPRT1, HTR1B and DRD2. Additionally, we found nominal associations between the DA gene sets and SUD, opioid use disorder, antisocial behavior, irritability and neuroticism, and between the 5-HT-core gene set and neuroticism. Predicted gene expression correlates in brain were also found for 19 DA or 5-HT genes. Discussion Our study shows a pleiotropic contribution of dopaminergic and serotonergic genes to addiction and related behaviors such as anxiety, irritability, neuroticism and risk-taking behavior, highlighting a role for DA genes, which could explain, in part, the co-occurrence of these phenotypes.
Collapse
Affiliation(s)
- Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judit Cabana-Domínguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Roser Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
9
|
van der Laan CM, van de Weijer SG, Pool R, Hottenga JJ, van Beijsterveldt TC, Willemsen G, Bartels M, Nivard MG, Boomsma DI. Direct and Indirect Genetic Effects on Aggression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:958-968. [PMID: 37881547 PMCID: PMC10593934 DOI: 10.1016/j.bpsgos.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 10/27/2023] Open
Abstract
Background Family members resemble each other in their propensity for aggression. In twin studies, approximately 50% of the variance in aggression can be explained by genetic influences. However, if there are genotype-environment correlation mechanisms, such as environmental manifestations of parental and sibling genotypes, genetic influences may partly reflect environmental influences. In this study, we investigated the importance of indirect polygenic score (PGS) effects on aggression. Methods We modeled the effect of PGSs based on 3 genome-wide association studies: early-life aggression, educational attainment, and attention-deficit/hyperactivity disorder (ADHD). The associations with aggression were tested in a within- and between-family design (37,796 measures from 7740 individuals, ages 3-86 years [mean = 14.20 years, SE = 12.03], from 3107 families, 55% female) and in a transmitted/nontransmitted PGS design (42,649 measures from 6653 individuals, ages 3-61 years [mean = 11.81 years, SE = 8.68], from 3024 families, 55% female). All participants are enrolled in the Netherlands Twin Register. Results We found no evidence for contributions of indirect PGS effects on aggression in either a within- and between-family design or a transmitted/nontransmitted PGS design. Results indicate significant direct effects on aggression for the PGSs based on early-life aggression, educational attainment, and ADHD, although explained variance was low (within- and between-family: early-life aggression R2 = 0.3%, early-life ADHD R2 = 0.6%, educational attainment R2 = 0.7%; transmitted/nontransmitted PGSs: early-life aggression R2 = 0.2%, early-life ADHD R2 = 0.9%, educational attainment R2 = 0.5%). Conclusions PGSs included in the current study had a direct (but no indirect) effect on aggression, consistent with results of previous twin and family studies. Further research involving other PGSs for aggression and related phenotypes is needed to determine whether this conclusion generalizes to overall genetic influences on aggression.
Collapse
Affiliation(s)
- Camiel M. van der Laan
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, the Netherlands
| | | | - René Pool
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | | | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Michel G. Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Hawes DJ, Gardner F, Dadds MR, Frick PJ, Kimonis ER, Burke JD, Fairchild G. Oppositional defiant disorder. Nat Rev Dis Primers 2023; 9:31. [PMID: 37349322 DOI: 10.1038/s41572-023-00441-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
Oppositional defiant disorder (ODD) is a disruptive behaviour disorder involving an ongoing pattern of angry/irritable mood, argumentative/defiant behaviour and vindictiveness. Onset is typically before 8 years of age, although ODD can be diagnosed in both children and adults. This disorder is associated with substantial social and economic burden, and childhood ODD is one of the most common precursors of other mental health problems that can arise across the lifespan. The population prevalence of ODD is ~3 to 5%. A higher prevalence in males than females has been reported, particularly before adolescence. No single risk factor accounts for ODD. The development of this disorder seems to arise from the interaction of genetic and environmental factors, and mechanisms embedded in social relationships are understood to contribute to its maintenance. The treatment of ODD is often successful, and relatively brief parenting interventions produce large sized treatment effects in early childhood. Accordingly, ODD represents an important focus for research, practice and policy concerning early intervention and prevention in mental health.
Collapse
Affiliation(s)
- David J Hawes
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia.
| | - Frances Gardner
- Centre for Evidence-Based Intervention, Department of Social Policy and Intervention, University of Oxford, Oxford, UK
| | - Mark R Dadds
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Paul J Frick
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Eva R Kimonis
- Parent-Child Research Clinic, School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Jeffrey D Burke
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
11
|
Li S, Ma X, Zhang Y. Intergenerational transmission of aggression: A meta-analysis of relationship between interparental conflict and aggressive behavior of children and youth. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-022-04219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Odintsova VV, Hagenbeek FA, van der Laan CM, van de Weijer S, Boomsma DI. Genetics and epigenetics of human aggression. HANDBOOK OF CLINICAL NEUROLOGY 2023; 197:13-44. [PMID: 37633706 DOI: 10.1016/b978-0-12-821375-9.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
There is substantial variation between humans in aggressive behavior, with its biological etiology and molecular genetic basis mostly unknown. This review chapter offers an overview of genomic and omics studies revealing the genetic contribution to aggression and first insights into associations with epigenetic and other omics (e.g., metabolomics) profiles. We allowed for a broad phenotype definition including studies on "aggression," "aggressive behavior," or "aggression-related traits," "antisocial behavior," "conduct disorder," and "oppositional defiant disorder." Heritability estimates based on family and twin studies in children and adults of this broadly defined phenotype of aggression are around 50%, with relatively small fluctuations around this estimate. Next, we review the genome-wide association studies (GWAS) which search for associations with alleles and also allow for gene-based tests and epigenome-wide association studies (EWAS) which seek to identify associations with differently methylated regions across the genome. Both GWAS and EWAS allow for construction of Polygenic and DNA methylation scores at an individual level. Currently, these predict a small percentage of variance in aggression. We expect that increases in sample size will lead to additional discoveries in GWAS and EWAS, and that multiomics approaches will lead to a more comprehensive understanding of the molecular underpinnings of aggression.
Collapse
Affiliation(s)
- Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands; Mental Health Division, Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Mental Health Division, Amsterdam Public Health (APH) Research Institute, Amsterdam, The Netherlands
| | - Camiel M van der Laan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, The Netherlands
| | - Steve van de Weijer
- Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Reproduction and Development (AR&D) Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Peng SX, Pei J, Rinaldi B, Chen J, Ge YH, Jia M, Wang J, Delahaye-Duriez A, Sun JH, Zang YY, Shi YY, Zhang N, Gao X, Milani D, Xu X, Sheng N, Gerard B, Zhang C, Bayat A, Liu N, Yang JJ, Shi YS. Dysfunction of AMPA receptor GluA3 is associated with aggressive behavior in human. Mol Psychiatry 2022; 27:4092-4102. [PMID: 35697757 DOI: 10.1038/s41380-022-01659-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Inappropriate aggression in humans hurts the society, families and individuals. The genetic basis for aggressive behavior, however, remains largely elusive. In this study, we identified two rare missense variants in X-linked GRIA3 from male patients who showed syndromes featuring aggressive outbursts. Both G630R and E787G mutations in AMPA receptor GluA3 completely lost their ion channel functions. Furthermore, a guanine-repeat single nucleotide polymorphism (SNP, rs3216834) located in the first intron of human GRIA3 gene was found to regulate GluA3 expression with longer guanine repeats (rs3216834-10G/-11G) suppressing transcription compared to the shorter ones (-7G/-8G/-9G). Importantly, the distribution of rs3216834-10G/-11G was elevated in a male violent criminal sample from Chinese Han population. Using GluA3 knockout mice, we showed that the excitatory neurotransmission and neuronal activity in the medial prefrontal cortex (mPFC) was impaired. Expressing GluA3 back into the mPFC alleviated the aggressive behavior of GluA3 knockout mice, suggesting that the defects in mPFC explained, at least partially, the neural mechanisms underlying the aggressive behavior. Therefore, our study provides compelling evidence that dysfunction of AMPA receptor GluA3 promotes aggressive behavior.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Jingwen Pei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yu-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Min Jia
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Wang
- Minister of Education Key Laboratory of Modern Toxicology, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Andrée Delahaye-Duriez
- Consultations de génétique, Hôpital Jean Verdier, Assistance Publique des Hôpitaux de Paris, Bondy, 93140, France
- NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, 75019, France
- UFR SMBH, Université Sorbonne Paris Nord, Bobigny, 93000, France
| | - Jia-Hui Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yan-Yu Zang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Yong-Yun Shi
- Department of Orthopaedics, Luhe People's Hospital Affiliated to Yangzhou University, Nanjing, 211500, China
| | - Ning Zhang
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Xijia Xu
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Benedicte Gerard
- Laboratoires de diagnostic genetique, Institut de genetique Medicale d'Alsace, Hopitaux Universitaires de Strasbourg, Strasbourg, 67000, France
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Allan Bayat
- Danish Epilepsy Centre, Department of Genetics and Personalized Medicine, Dianalund, 4293, Denmark
- Institute for Regional Health Services Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Na Liu
- Department of Medical Psychology, Nanjing Medical University affiliated Nanjing Brain Hospital, Nanjing, 210029, China.
| | - Jian-Jun Yang
- Department of Anesthesiology and Perioperative Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210032, China.
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210032, China.
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China.
| |
Collapse
|
14
|
Palumbo S, Mariotti V, Vellucci S, Antonelli K, Anderson N, Harenski C, Pietrini P, Kiehl KA, Pellegrini S. HTR1B genotype and psychopathy: Main effect and interaction with paternal maltreatment. Psychoneuroendocrinology 2022; 144:105861. [PMID: 35853382 DOI: 10.1016/j.psyneuen.2022.105861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 01/30/2023]
Abstract
Psychopathy is a condition characterized by atypical emotions and socially maladaptive behavioral patterns. Among incarcerated people, psychopathy has been associated with higher rates of crimes, recidivism, and resistance to treatment. Many studies have indicated significant heritability of psychopathic traits, but little is known about the specific contribution of genes and their interaction with adverse experiences in life. Considering the primary role that serotonin plays in cognition and emotion, we investigated TPH2-rs4570625, 5-HTTLPR, MAOA-uVNTR, HTR1B-rs13212041 and HTR2A-rs6314 as risk factors for psychopathy in the largest sample of institutionalized individuals studied so far, consisting of 793 US White male incarcerated adults, and in a replication sample of 168 US White male incarcerated adolescents. In a subgroup of the adult sample, the interaction between genetics and parenting style, assessed by the Measure of Parental Style (MOPS) questionnaire, was also evaluated. The HTR1B-rs13212041-T/T genotype, as compared to HTR1B-rs13212041-C allele, predicted higher psychopathy scores in both the adult and the adolescent samples. The interaction between HTR1B-rs13212041-T/T genotype and paternal MOPS scores, investigated in a subgroup of the adult sample, was an even stronger predictor of higher levels of psychopathy than either the genetics or the environment taken individually. Overall, these data, obtained in two independent samples, shed new light on neurobiological correlates of psychopathy with promising implications both at a clinical and forensic level.
Collapse
Affiliation(s)
- Sara Palumbo
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Veronica Mariotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Vellucci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Klizia Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nathaniel Anderson
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Carla Harenski
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Pietro Pietrini
- Molecular Mind Lab, IMT School for Advanced Studies, Lucca, Italy
| | - Kent A Kiehl
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - Silvia Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
15
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
16
|
Kleine Deters R, Ruisch IH, Faraone SV, Hartman CA, Luman M, Franke B, Oosterlaan J, Buitelaar JK, Naaijen J, Dietrich A, Hoekstra PJ. Polygenic risk scores for antisocial behavior in relation to amygdala morphology across an attention deficit hyperactivity disorder case-control sample with and without disruptive behavior. Eur Neuropsychopharmacol 2022; 62:63-73. [PMID: 35914510 DOI: 10.1016/j.euroneuro.2022.07.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022]
Abstract
Antisocial and aggressive behaviors show considerable heritability and are central to disruptive behavior disorders (DBDs), but are also frequently observed in attention deficit hyperactivity disorder (ADHD). While the amygdala is implicated as a key neural structure, it remains unclear whether common genetic variants underlie this brain-behavior association. We hypothesized that polygenic (risk) scores for antisocial and aggressive behaviors (ASB-PRS) would be related to amygdala morphology. Using the Broad Antisocial Behavior Consortium genome-wide association study (GWAS; mostly population based cohorts), we calculated ASB-PRS in the NeuroIMAGE I ADHD case-control sample with varying levels of DBD symptomatology (n=679 from 379 families, aged 7 - 29). We first investigated associations of several ASB-PRS p value thresholds with the presence of DBD symptoms and self-reported antisocial behavior (ASB) to determine the threshold for further analyses. This PRS was then related to amygdala volume and shape using regression and vertex-wise analyses. Our results showed associations of ASB-PRS with the presence of DBD symptoms, self-reported ASB, and left basolateral amygdala shape, independent of ADHD symptom severity and ADHD-PRS, with a relative outward displacement of the vertices. No associations of ASB-PRS, DBD symptoms or self-reported ASB with amygdala volume were found. Our results indicate that genetic risk for antisocial and aggressive behaviors is related to amygdala shape alterations, and point to genetic sharing across different DBD and ASB and aggression-related phenotypes as a spectrum of genetically related quantitative traits. Additionally, our findings support the utility of vertex-based shape analyses in genetic studies of ASB, aggression, and DBDs.
Collapse
Affiliation(s)
- Renee Kleine Deters
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Accare Child Study Center, Groningen, the Netherlands.
| | - I Hyun Ruisch
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Accare Child Study Center, Groningen, the Netherlands
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marjolein Luman
- Emma Children's Hospital Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Emma Neuroscience Group, Amsterdam Reproduction & Development research institute, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Clinical Neuropsychology Section, Amsterdam, the Netherlands
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jaap Oosterlaan
- Emma Children's Hospital Amsterdam UMC, University of Amsterdam, Department of Pediatrics, Emma Neuroscience Group, Amsterdam Reproduction & Development research institute, Amsterdam, the Netherlands; Vrije Universiteit Amsterdam, Clinical Neuropsychology Section, Amsterdam, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jilly Naaijen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Andrea Dietrich
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Accare Child Study Center, Groningen, the Netherlands
| | - Pieter J Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry, Groningen, the Netherlands; Accare Child Study Center, Groningen, the Netherlands
| |
Collapse
|
17
|
Wang M, Peng C, Chang H, Yu M, Rong F, Yu Y. Interaction between Sirtuin 1 (SIRT1) polymorphisms and childhood maltreatment on aggression risk in Chinese male adolescents. J Affect Disord 2022; 309:37-44. [PMID: 35427711 DOI: 10.1016/j.jad.2022.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/22/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Aggressive behavior is a highly prevalent and serious public health problem among adolescents. However, the etiology and pathogenesis of aggressive behavior remain unclear. Childhood maltreatment is an acknowledged factor for aggressive behavior. SIRT1 is closely related to the occurrence and development of psychiatric disorders. We aimed to reveal the interactive effect between SIRT1 and childhood maltreatment on aggressive behavior among Chinese adolescents. METHODS Aggressive behavior and childhood maltreatment were evaluated by the Buss and Warren's Aggression Questionnaire (BWAQ) and short form Childhood Trauma Questionnaire (CTQ-SF), respectively. This study comprised 436 aggression cases and 435 controls. Four SIRT1 tagSNPs were selected for genotyping. Interaction between SIRT1 and childhood maltreatment was estimated by logistic regression models. RESULTS Individuals carrying SIRT1 rs4746720 minor allele and TAAC haplotype derived from SIRT1 variants was associated with reduced aggression risk when childhood maltreatment occurred (all P < 0.01). An antagonistic additive interaction between SIRT1 rs4746720 and childhood maltreatment on aggressive behavior (S = 0.421; 95%CI: 0.234 to 0.758) was further testified. No main effect of the SIRT1 SNPs or the haplotype block was observed (all P > 0.05). LIMITATIONS Since participants were only males, our findings were unable to be directly extended to females. Cross-sectional design, self-reported measurements and limited sample size were adopted. CONCLUSION This study provides the first evidence of SIRT1 × childhood maltreatment interaction on aggressive behavior in male adolescents. The minor allele of SIRT1 rs4746720 presents a protective effect on combination with childhood maltreatment on the risk of aggressive behavior.
Collapse
Affiliation(s)
- Mengni Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Peng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjuan Chang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Yu
- Taizhou People's Hospital, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fajuan Rong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizhen Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Aldhshan MS, Mizuno TM. Effect of environmental enrichment on aggression and the expression of brain-derived neurotrophic factor transcript variants in group-housed male mice. Behav Brain Res 2022; 433:113986. [DOI: 10.1016/j.bbr.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
|
19
|
Yang W, Ma L, Hai DM, Liu N, Yang JM, Lan XB, Du J, Yang LS, Sun T, Yu JQ. Hippocampal Proteomic Analysis in Male Mice Following Aggressive Behavior Induced by Long-Term Administration of Perampanel. ACS OMEGA 2022; 7:19388-19400. [PMID: 35721950 PMCID: PMC9202264 DOI: 10.1021/acsomega.2c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
Antiepileptic drugs have been shown to be associated with inducing or exacerbating adverse psychotropic reaction, including aggressive behavior. Perampanel, the first pharmacological compound approved by the FDA in 2012, is an effective antiepileptic drug for intractable epilepsy but induces severe aggression. So far, the underlying molecular mechanisms of aggression induced by perampanel remain incompletely understood. In the present study, a model of aggressive behavior based on the clinical use of perampanel was established and resident-intruder test and open field test were performed. Changes in hippocampal protein profiles were detected by tandem mass tag (TMT) proteomics. The behavioral results indicated that long-term use of perampanel increased the aggressive behavior of C57BL/6J mice. Proteomic analysis revealed that 93 proteins were significantly altered in the hippocampus of the perampanel-treated group (corrected p < 0.05), which were divided into multiple functional groups, mainly related to synaptic function, synaptogenesis, postsynaptic density protein, neurite outgrowth, AMPA-type glutamate receptor immobilization, and others. Bioinformatic analysis showed that differentially expressed proteins were involved in synaptic plasticity and the Ras signaling pathway. Furthermore, validation results by western blot demonstrated that glutamate receptor 1 (GluA1) and phosphorylation of mitogen-activated protein kinase (ERK1/2) were notably up-regulated, and synaptophysin (Syn) and postsynaptic density 95 (PSD95) were down-regulated in perampanel-treated mice. Therefore, our results provide valuable insight into the molecular mechanisms of aggressive behavior induced by perampanel, as well as potential options for safety treatment of perampanel in the future.
Collapse
Affiliation(s)
- Wu Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
- Department
of Emergency, General Hospital of Ningxia
Medical University, Yinchuan 750004, Ningxia, PR China
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Dong-Mei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Juan Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Li-Shan Yang
- Department
of Emergency, General Hospital of Ningxia
Medical University, Yinchuan 750004, Ningxia, PR China
| | - Tao Sun
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
- Ningxia Key Laboratory of Cerebrocranial
Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| | - Jian Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
- Ningxia
Hui Medicine Modern Engineering Research Center and Collaborative
Innovation Center, Ningxia Medical University, Yinchuan 750004, Ningxia, PR China
| |
Collapse
|
20
|
The Impact of Probiotic Bacillus subtilis on Injurious Behavior in Laying Hens. Animals (Basel) 2022; 12:ani12070870. [PMID: 35405859 PMCID: PMC8997090 DOI: 10.3390/ani12070870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Injurious behavior prevention is a critical issue in the poultry industry due to increasing social stress, leading to negative effects on bird production and survivability, consequently enhancing gut microbiota dysbiosis and neuroinflammation via the microbiota–gut–brain axis. Probiotics have been used as potential therapeutic psychobiotics to treat or improve neuropsychiatric disorders or symptoms by boosting cognitive and behavioral processes and reducing stress reactions in humans and various experimental animals. The current data will first report that probiotic Bacillus subtilis reduces stress-induced injurious behavior in laying hens via regulating microbiota–gut–brain function with the potential to be an alternative to beak trimming during poultry egg production. Abstract Intestinal microbiota functions such as an endocrine organ to regulate host physiological homeostasis and behavioral exhibition in stress responses via regulating the gut–brain axis in humans and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism, have been used as dietary supplements or functional foods to target gut microbiota (microbiome) for the prevention or therapeutic treatment of mental diseases including social stress-induced psychiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of the probiotics may present in laying hens due to the intestinal microbiota having a similar function between avian and mammals. In laying hens, some management practices such as hens reared in conventional cages or at a high stocking density may cause stress, leading to injurious behaviors such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing the poultry industry due to negative effects on hen health and welfare with devastating economic consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or reduce injurious behavior in laying hens.
Collapse
|
21
|
The Relationship between Androgen Receptor Gene Polymorphism, Aggression and Social Status in Young Men and Women. Behav Sci (Basel) 2022; 12:bs12020042. [PMID: 35200293 PMCID: PMC8869512 DOI: 10.3390/bs12020042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
In both sexes, aggression has been described as a critical trait to acquire social status. Still, almost uniquely in men, the link between aggressiveness and the genetic background of testosterone sensitivity measured from the polymorphism in the androgen receptor (AR) gene has been previously investigated. We assessed the relevance of the AR gene to understand aggression and how aggressiveness affects social status in a cross-sectional study of 195 participants, for the first time in both young men and women. We estimated polymorphism sequences from saliva and measured aggression and self-perceived social status. Unfortunately, the results did not support our prediction because we did not find any of the expected relationships. Therefore, the results suggest that the genetic association between aggressive mechanisms and polymorphism of the AR gene is less straightforward than expected, at least in men, and seems to indicate that aggression is not usually used to gain social status in our population.
Collapse
|
22
|
Childhood parenting and adolescent internalizing and externalizing symptoms: Moderation by multilocus hypothalamic-pituitary-adrenal axis-related genetic variation. Dev Psychopathol 2022; 35:524-536. [PMID: 35094737 DOI: 10.1017/s0954579421001620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genetic variants that regulate hypothalamic-pituitary-adrenal (HPA) axis function have been demonstrated to moderate the association between parenting and mental health. However, extant research has focused primarily on (i) effects of individual genes or (ii) maternal as opposed to paternal parenting. Using a multilocus genetic profile score (MGPS) approach, the current study is the first to examine the moderation effect of multilocus HPA-axis related genetic variants on the association of both maternal and paternal parenting with adolescent internalizing and externalizing symptoms. In a sample of 772 Chinese Han adolescents (Mage = 16.48 ± 1.40 years; 50.1% girls), a theory-driven MGPS was calculated using six polymorphisms within HPA-axis related genes (CRHR1, NR3C1, NR3C2, FKBP5, COMT, and HT1RA). Results showed that the MGPS interacted with both maternal and paternal parenting in the association with adolescent internalizing symptoms, but not externalizing symptoms. Consistent with the differential susceptibility model, adolescents with high versus low MGPS exhibited not only more internalizing symptoms when exposed to low quality of parenting but also less internalizing symptoms when exposed to high quality of parenting. The current findings highlight the potential value of using a multilocus approach to understanding gene-by-environment interaction (G×E) effects underlying mental health. Within such G×E effects, not only maternal but also paternal parenting should be addressed.
Collapse
|
23
|
Klimova NV, Chadaeva IV, Shichevich SG, Kozhemyakina RV. Differential expression of 10 genes in the hypothalamus of two generations of rats selected for a reaction to humans. Vavilovskii Zhurnal Genet Selektsii 2022; 25:208-215. [PMID: 35083397 PMCID: PMC8698098 DOI: 10.18699/vj21.50-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
Individual behavioral differences are due to an interaction of the genotype and the environment. Phenotypic manifestation of aggressive behavior depends on the coordinated expression of gene ensembles. Nonetheless,
the identification of these genes and of combinations of their mutual influence on expression remains a difficult
task. Using animal models of aggressive behavior (gray rats that were selected for a reaction to humans; tame and
aggressive rat strains), we evaluated the expression of 10 genes potentially associated with aggressiveness according
to the literature: Cacna1b, Cacna2d3, Drd2, Egr1, Gad2, Gria2, Mapk1, Nos1, Pomc, and Syn1. To identify the genes most
important for the manifestation of aggressiveness, we analyzed the expression of these genes in two generations of
rats: 88th and 90th. Assessment of gene expression levels was carried out by real-time PCR in the hypothalamus of
tame and aggressive rats. This analysis confirmed that 4 out of the 10 genes differ in expression levels between aggressive rats and tame rats in both generations. Specifically, it was shown that the expression of the Cacna1b, Drd2,
Egr1, and Gad2 genes does not differ between the two generations (88th vs 90th) within each strain, but significantly
differs between the strains: in the tame rats of both generations, the expression levels of these genes are significantly
lower as compared to those in the aggressive rats. Therefore, these genes hold promise for further studies on behavioral characteristics. Thus, we confirmed polygenic causes of phenotypic manifestation of aggressive reactions.
Collapse
Affiliation(s)
- N V Klimova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I V Chadaeva
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S G Shichevich
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - R V Kozhemyakina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Eusebi PG, Sevane N, O'Rourke T, Pizarro M, Boeckx C, Dunner S. Age Effects Aggressive Behavior: RNA-Seq Analysis in Cattle with Implications for Studying Neoteny Under Domestication. Behav Genet 2022; 52:141-153. [PMID: 35032285 PMCID: PMC8860811 DOI: 10.1007/s10519-021-10097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
The reactive type of aggression is regulated mostly by the brain's prefrontal cortex; however, the molecular changes underlying aggressiveness in adults have not been fully characterized. We used an RNA-seq approach to investigate differential gene expression in the prefrontal cortex of bovines from the aggressive Lidia breed at different ages: young three-year old and adult four-year-old bulls. A total of 50 up and 193 down-regulated genes in the adult group were identified. Furthermore, a cross-species comparative analysis retrieved 29 genes in common with previous studies on aggressive behaviors, representing an above-chance overlap with the differentially expressed genes in adult bulls. We detected changes in the regulation of networks such as synaptogenesis, involved in maintenance and refinement of synapses, and the glutamate receptor pathway, which acts as excitatory driver in aggressive responses. The reduced reactive aggression typical of domestication has been proposed to form part of a retention of juvenile traits as adults (neoteny).
Collapse
Affiliation(s)
- Paulina G Eusebi
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Natalia Sevane
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Thomas O'Rourke
- Universitat de Barcelona, Gran Vía de les Corts Catalanes 585, 08007, Barcelona, Spain.,UBICS, Carrer Martí Franqués 1, 08028, Barcelona, Spain
| | - Manuel Pizarro
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Cedric Boeckx
- Universitat de Barcelona, Gran Vía de les Corts Catalanes 585, 08007, Barcelona, Spain.,UBICS, Carrer Martí Franqués 1, 08028, Barcelona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Susana Dunner
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| |
Collapse
|
25
|
Dugré JR, Potvin S. The origins of evil: From lesions to the functional architecture of the antisocial brain. Front Psychiatry 2022; 13:969206. [PMID: 36386969 PMCID: PMC9640636 DOI: 10.3389/fpsyt.2022.969206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decades, a growing body of evidence has suggested that some individuals may exhibit antisocial behaviors following brain lesions. Recently, some authors have shown that lesions underpinning antisocial behaviors may disrupt a particular brain network during resting-state. However, it remains unknown whether these brain lesions may alter specific mental processes during tasks. Therefore, we conducted meta-analytic co-activation analyses on lesion masks of 17 individuals who acquired antisocial behaviors following their brain lesions. Each lesion mask was used as a seed of interest to examine their aberrant co-activation network using a database of 143 whole-brain neuroimaging studies on antisocial behaviors (n = 5,913 subjects). We aimed to map the lesion brain network that shows deficient activity in antisocial population against a null distribution derived from 655 control lesions. We further characterized the lesion-based meta-analytic network using term-based decoding (Neurosynth) as well as receptor/transporter density maps (JuSpace). We found that the lesion meta-analytic network included the amygdala, orbitofrontal cortex, ventro- and dorso-medial prefrontal cortex, fusiform face area, and supplementary motor area (SMA), which correlated mainly with emotional face processing and serotoninergic system (5-HT1A and 5-HTT). We also investigated the heterogeneity in co-activation networks through data-driven methods and found that lesions could be grouped in four main networks, encompassing emotional face processing, general emotion processing, and reward processing. Our study shows that the heterogeneous brain lesions underpinning antisocial behaviors may disrupt specific mental processes, which further increases the risk for distinct antisocial symptoms. It also highlights the importance and complexity of studying brain lesions in relationship with antisocial behaviors.
Collapse
Affiliation(s)
- Jules R Dugré
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Stéphane Potvin
- Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.,Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
26
|
Tully J, Frey A, Fotiadou M, Kolla NJ, Eisenbarth H. Psychopathy in women: insights from neuroscience and ways forward for research. CNS Spectr 2021; 28:1-13. [PMID: 34906266 DOI: 10.1017/s1092852921001085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Psychopathy is a severe form of personality disturbance, resulting in a detrimental impact on individuals, healthcare systems, and society as a whole. Until relatively recently, most research in psychopathy has focused on male samples, not least because of its link with criminal behavior and the large proportion of violent crime committed by men. However, psychopathy in women also leads to considerable problems at an individual and societal level, including substance misuse, poor treatment outcomes, and contribution to ever-increasing numbers of female prisoners. Despite this, due to relative neglect, most research into adult female psychopathy is underpowered and outdated. We argue that the field needs revitalizing, with a focus on the developmental nature of the condition and neurocognitive research. Recent work international consortia into conduct disorder in female youth-a precursor of psychopathy in female adults-gives cause for optimism. Here, we outline key strategies for enriching research in this important field with contemporary approaches to other psychiatric conditions.
Collapse
Affiliation(s)
- John Tully
- Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
| | - Annalena Frey
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | | | - Nathan J Kolla
- Department of Psychiatry, University of Toronto, Ontario, Canada and Research and Academics, Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada
| | - Hedwig Eisenbarth
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
27
|
The Modulatory Role of Serotonin on Human Impulsive Aggression. Biol Psychiatry 2021; 90:447-457. [PMID: 34266672 DOI: 10.1016/j.biopsych.2021.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
The hypothesis of chronically low brain serotonin levels as pathophysiologically linked to impulsive aggression has been around for several decades. Whereas the theory was initially based on indirect methods to probe serotonin function, our understanding of the neural mechanisms involved in impulsive aggression has progressed with recent advances in neuroimaging. The review integrates evidence based on data from several neuroimaging domains in humans. In vivo molecular neuroimaging findings demonstrate associations between impulsive aggression and high serotonin 1B and serotonin 4 receptor binding, high serotonin transporter levels, and low monoamine oxidase A levels, suggesting that low interstitial serotonin levels are a neurobiological risk factor for impulsive aggressive behavior. Imaging genetics suggests that serotonergic-related genetic polymorphisms associate with antisocial behavior, and some evidence indicates that the low-expressing monoamine oxidase A genotype specifically predisposes to impulsive aggression, which may be mediated by effects on corticolimbic function. Interventions that (presumably) alter serotonin levels have effects on brain activity within brain regions involved in impulsive aggression, notably the amygdala, dorsal striatum, anterior cingulate, insula, and prefrontal cortex. Based on these findings, we propose a model for the modulatory role of serotonin in impulsive aggression. Future studies should ensure that clinical features unique for impulsive aggression are appropriately assessed, and we propose investigations of knowledge gaps that can help confirm, refute, or modify our proposed model of impulsive aggression.
Collapse
|
28
|
Farrow E, Chiocchetti AG, Rogers JC, Pauli R, Raschle NM, Gonzalez-Madruga K, Smaragdi A, Martinelli A, Kohls G, Stadler C, Konrad K, Fairchild G, Freitag CM, Chechlacz M, De Brito SA. SLC25A24 gene methylation and gray matter volume in females with and without conduct disorder: an exploratory epigenetic neuroimaging study. Transl Psychiatry 2021; 11:492. [PMID: 34561420 PMCID: PMC8463588 DOI: 10.1038/s41398-021-01609-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
Conduct disorder (CD), a psychiatric disorder characterized by a repetitive pattern of antisocial behaviors, results from a complex interplay between genetic and environmental factors. The clinical presentation of CD varies both according to the individual's sex and level of callous-unemotional (CU) traits, but it remains unclear how genetic and environmental factors interact at the molecular level to produce these differences. Emerging evidence in males implicates methylation of genes associated with socio-affective processes. Here, we combined an epigenome-wide association study with structural neuroimaging in 51 females with CD and 59 typically developing (TD) females to examine DNA methylation in relation to CD, CU traits, and gray matter volume (GMV). We demonstrate an inverse pattern of correlation between CU traits and methylation of a chromosome 1 region in CD females (positive) as compared to TD females (negative). The identified region spans exon 1 of the SLC25A24 gene, central to energy metabolism due to its role in mitochondrial function. Increased SLC25A24 methylation was also related to lower GMV in multiple brain regions in the overall cohort. These included the superior frontal gyrus, prefrontal cortex, and supramarginal gyrus, secondary visual cortex and ventral posterior cingulate cortex, which are regions that have previously been implicated in CD and CU traits. While our findings are preliminary and need to be replicated in larger samples, they provide novel evidence that CU traits in females are associated with methylation levels in a fundamentally different way in CD and TD, which in turn may relate to observable variations in GMV across the brain.
Collapse
Affiliation(s)
- Elizabeth Farrow
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Andreas G. Chiocchetti
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jack C. Rogers
- grid.6572.60000 0004 1936 7486School of Psychology and Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Ruth Pauli
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Nora M. Raschle
- grid.7400.30000 0004 1937 0650Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | | | | | - Anne Martinelli
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gregor Kohls
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Aachen, Germany
| | | | - Kerstin Konrad
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Aachen, Germany
| | - Graeme Fairchild
- grid.7340.00000 0001 2162 1699Department of Psychology, University of Bath, Bath, UK
| | - Christine M. Freitag
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Magdalena Chechlacz
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Stephane A. De Brito
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
van der Laan CM, Morosoli-García JJ, van de Weijer SGA, Colodro-Conde L, Lupton MK, Mitchell BL, McAloney K, Parker R, Burns JM, Hickie IB, Pool R, Hottenga JJ, Martin NG, Medland SE, Nivard MG, Boomsma DI. Continuity of Genetic Risk for Aggressive Behavior Across the Life-Course. Behav Genet 2021; 51:592-606. [PMID: 34390460 PMCID: PMC8390412 DOI: 10.1007/s10519-021-10076-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
We test whether genetic influences that explain individual differences in aggression in early life also explain individual differences across the life-course. In two cohorts from The Netherlands (N = 13,471) and Australia (N = 5628), polygenic scores (PGSs) were computed based on a genome-wide meta-analysis of childhood/adolescence aggression. In a novel analytic approach, we ran a mixed effects model for each age (Netherlands: 12-70 years, Australia: 16-73 years), with observations at the focus age weighted as 1, and decaying weights for ages further away. We call this approach a 'rolling weights' model. In The Netherlands, the estimated effect of the PGS was relatively similar from age 12 to age 41, and decreased from age 41-70. In Australia, there was a peak in the effect of the PGS around age 40 years. These results are a first indication from a molecular genetics perspective that genetic influences on aggressive behavior that are expressed in childhood continue to play a role later in life.
Collapse
Affiliation(s)
- Camiel M van der Laan
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- The Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, The Netherlands.
| | | | - Steve G A van de Weijer
- The Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, The Netherlands
| | | | | | | | - Kerrie McAloney
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jane M Burns
- Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - René Pool
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Jouke-Jan Hottenga
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michel G Nivard
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Womack SR, Clifford S, Wilson MN, Shaw DS, Lemery-Chalfant K. Genetic Moderation of the Association Between Early Family Instability and Trajectories of Aggressive Behaviors from Middle Childhood to Adolescence. Behav Genet 2021; 51:476-491. [PMID: 34085180 DOI: 10.1007/s10519-021-10069-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
The present study tested models of polygenic by environment interaction between early childhood family instability and polygenic risk for aggression predicting developmental trajectories of aggression from middle childhood to adolescence. With a longitudinal sample of 515 racially and ethnically diverse children from low-income families, primary caregivers reported on multiple components of family instability annually from child ages 2-5 years. A conservative polygenic risk score (p = 0.05) was generated based on a prior meta-genome wide association study. Trajectories of aggression were identified using a curve of factors model based on a composite of primary caregiver, alternate caregiver, and teacher reports at five ages from 7.5 to 14 years. The family instability by polygenic interaction predicted growth in children's aggression such that children with lower levels of family instability and lower polygenic risk exhibited a steeper decline in aggression from 7.5 to 14. Findings support the need to model gene-environment interplay to elucidate the role of genetics in the development of aggressive behaviors.
Collapse
Affiliation(s)
- Sean R Womack
- Department of Psychology, University of Virginia, Millmont Building 316, 1023 Millmont Street, Charlottesville, VA, 22904, USA.
| | - Sierra Clifford
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Melvin N Wilson
- Department of Psychology, University of Virginia, Millmont Building 316, 1023 Millmont Street, Charlottesville, VA, 22904, USA
| | - Daniel S Shaw
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
31
|
Checknita D, Tiihonen J, Hodgins S, Nilsson KW. Associations of age, sex, sexual abuse, and genotype with monoamine oxidase a gene methylation. J Neural Transm (Vienna) 2021; 128:1721-1739. [PMID: 34424394 PMCID: PMC8536631 DOI: 10.1007/s00702-021-02403-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Epigenome-wide studies report higher methylation among women than men with decreasing levels with age. Little is known about associations of sex and age with methylation of monoamine oxidase A (MAOA). Methylation of the first exonic and partial first intronic region of MAOA has been shown to strengthen associations of interactions of MAOA-uVNTR genotypes and adversity with aggression and substance misuse. Our study examined associations of sex and age with MAOA first exon and intron methylation levels in 252 women and 157 men aged 14–73 years. Participants included adolescents recruited at a substance misuse clinic, their siblings and parents, and healthy women. Women showed ~ 50% higher levels of exonic, and ~ 15% higher intronic, methylation than men. Methylation levels were similar between younger (M = 22.7 years) and older (M = 46.1 years) participants, and stable across age. Age modified few associations of methylation levels with sex. MAOA genotypes modified few associations of methylation with sex and age. Higher methylation levels among women were not explained by genotype, nor interaction of genotype and sexual abuse. Findings were similar after adjusting for lifetime diagnoses of substance dependence (women = 24.3%; men = 34.2%). Methylation levels were higher among women who experienced sexual abuse than women who did not. Results extend on prior studies by showing that women display higher levels of methylation than men within first intronic/exonic regions of MAOA, which did not decrease with age in either sex. Findings were not conditioned by genotype nor interactions of genotype and trauma, and indicate X-chromosome inactivation.
Collapse
Affiliation(s)
- David Checknita
- Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden. .,Centre for Clinical Research, Västmanland County Council, Uppsala University, Uppsala, Sweden.
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden.,Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden.,Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio, Finland
| | - Sheilagh Hodgins
- Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden.,Département de Psychiatrie et Addictologie, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Kent W Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Västmanland County Council, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Ip HF, van der Laan CM, Krapohl EML, Brikell I, Sánchez-Mora C, Nolte IM, St Pourcain B, Bolhuis K, Palviainen T, Zafarmand H, Colodro-Conde L, Gordon S, Zayats T, Aliev F, Jiang C, Wang CA, Saunders G, Karhunen V, Hammerschlag AR, Adkins DE, Border R, Peterson RE, Prinz JA, Thiering E, Seppälä I, Vilor-Tejedor N, Ahluwalia TS, Day FR, Hottenga JJ, Allegrini AG, Rimfeld K, Chen Q, Lu Y, Martin J, Soler Artigas M, Rovira P, Bosch R, Español G, Ramos Quiroga JA, Neumann A, Ensink J, Grasby K, Morosoli JJ, Tong X, Marrington S, Middeldorp C, Scott JG, Vinkhuyzen A, Shabalin AA, Corley R, Evans LM, Sugden K, Alemany S, Sass L, Vinding R, Ruth K, Tyrrell J, Davies GE, Ehli EA, Hagenbeek FA, De Zeeuw E, Van Beijsterveldt TCEM, Larsson H, Snieder H, Verhulst FC, Amin N, Whipp AM, Korhonen T, Vuoksimaa E, Rose RJ, Uitterlinden AG, Heath AC, Madden P, Haavik J, Harris JR, Helgeland Ø, Johansson S, Knudsen GPS, Njolstad PR, Lu Q, Rodriguez A, Henders AK, Mamun A, Najman JM, Brown S, Hopfer C, Krauter K, Reynolds C, Smolen A, Stallings M, Wadsworth S, Wall TL, Silberg JL, Miller A, Keltikangas-Järvinen L, Hakulinen C, Pulkki-Råback L, Havdahl A, Magnus P, Raitakari OT, et alIp HF, van der Laan CM, Krapohl EML, Brikell I, Sánchez-Mora C, Nolte IM, St Pourcain B, Bolhuis K, Palviainen T, Zafarmand H, Colodro-Conde L, Gordon S, Zayats T, Aliev F, Jiang C, Wang CA, Saunders G, Karhunen V, Hammerschlag AR, Adkins DE, Border R, Peterson RE, Prinz JA, Thiering E, Seppälä I, Vilor-Tejedor N, Ahluwalia TS, Day FR, Hottenga JJ, Allegrini AG, Rimfeld K, Chen Q, Lu Y, Martin J, Soler Artigas M, Rovira P, Bosch R, Español G, Ramos Quiroga JA, Neumann A, Ensink J, Grasby K, Morosoli JJ, Tong X, Marrington S, Middeldorp C, Scott JG, Vinkhuyzen A, Shabalin AA, Corley R, Evans LM, Sugden K, Alemany S, Sass L, Vinding R, Ruth K, Tyrrell J, Davies GE, Ehli EA, Hagenbeek FA, De Zeeuw E, Van Beijsterveldt TCEM, Larsson H, Snieder H, Verhulst FC, Amin N, Whipp AM, Korhonen T, Vuoksimaa E, Rose RJ, Uitterlinden AG, Heath AC, Madden P, Haavik J, Harris JR, Helgeland Ø, Johansson S, Knudsen GPS, Njolstad PR, Lu Q, Rodriguez A, Henders AK, Mamun A, Najman JM, Brown S, Hopfer C, Krauter K, Reynolds C, Smolen A, Stallings M, Wadsworth S, Wall TL, Silberg JL, Miller A, Keltikangas-Järvinen L, Hakulinen C, Pulkki-Råback L, Havdahl A, Magnus P, Raitakari OT, Perry JRB, Llop S, Lopez-Espinosa MJ, Bønnelykke K, Bisgaard H, Sunyer J, Lehtimäki T, Arseneault L, Standl M, Heinrich J, Boden J, Pearson J, Horwood LJ, Kennedy M, Poulton R, Eaves LJ, Maes HH, Hewitt J, Copeland WE, Costello EJ, Williams GM, Wray N, Järvelin MR, McGue M, Iacono W, Caspi A, Moffitt TE, Whitehouse A, Pennell CE, Klump KL, Burt SA, Dick DM, Reichborn-Kjennerud T, Martin NG, Medland SE, Vrijkotte T, Kaprio J, Tiemeier H, Davey Smith G, Hartman CA, Oldehinkel AJ, Casas M, Ribasés M, Lichtenstein P, Lundström S, Plomin R, Bartels M, Nivard MG, Boomsma DI. Genetic association study of childhood aggression across raters, instruments, and age. Transl Psychiatry 2021; 11:413. [PMID: 34330890 PMCID: PMC8324785 DOI: 10.1038/s41398-021-01480-x] [Show More Authors] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 04/11/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association meta-analysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis (AGGoverall) was 3.31% (SE = 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P = 1.6E-06), PCDH7 (P = 2.0E-06), and IPO13 (P = 2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from rg = 0.46 between self- and teacher-assessment to rg = 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range [Formula: see text]: 0.19-1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg = ~-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range [Formula: see text]: 0.46-0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.
Collapse
Affiliation(s)
- Hill F Ip
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Camiel M van der Laan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for the Study of Crime and Law Enforcement, Amsterdam, The Netherlands
| | - Eva M L Krapohl
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Sánchez-Mora
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Beate St Pourcain
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Koen Bolhuis
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Teemu Palviainen
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
| | - Hadi Zafarmand
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tetyana Zayats
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fazil Aliev
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Faculty of Business, Karabuk University, Karabuk, Turkey
| | - Chang Jiang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Carol A Wang
- Faculty of Medicine and Health, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Gretchen Saunders
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Anke R Hammerschlag
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Daniel E Adkins
- Department of Sociology, College of Social and Behavioral Science, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Richard Border
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA
| | - Roseann E Peterson
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph A Prinz
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Division of Metabolic Diseases and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Natàlia Vilor-Tejedor
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation (FPM), Barcelona, Spain
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrea G Allegrini
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kaili Rimfeld
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Qi Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joanna Martin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - María Soler Artigas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Rovira
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Bosch
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Español
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Josep Antoni Ramos Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Judith Ensink
- Department of Child and Adolescent Psychiatry, Academic Medical Center, Amsterdam, The Netherlands
- De Bascule, Academic Centre for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
| | - Katrina Grasby
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - José J Morosoli
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiaoran Tong
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Shelby Marrington
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Christel Middeldorp
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child Health Research Centre, the University of Queensland, Brisbane, QLD, Australia
- Children's Health Queensland Hospital and Health Service, Child and Youth Mental Health Service, Brisbane, QLD, Australia
| | - James G Scott
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Metro North Mental Health, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, St Lucia, QLD, Australia
| | - Anna Vinkhuyzen
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Andrey A Shabalin
- Department of Psychiatry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robin Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Karen Sugden
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Lærke Sass
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Vinding
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kate Ruth
- Genetics of Complex Traits, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, UK
| | - Jess Tyrrell
- Genetics of Complex Traits, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, UK
| | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, USA
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eveline De Zeeuw
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Orebro University, Orebro, Sweden
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Child and Adolescent Mental Health Centre, Mental Health Services Capital Region, Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alyce M Whipp
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
| | - Tellervo Korhonen
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands
| | | | | | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Jennifer R Harris
- Division of Health Data and Digitalisation, The Norwegian Institute of Public Health, Oslo, Norway
| | - Øyvind Helgeland
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalization, The Norwegian Institute of Public Health, Bergen, Norway
| | - Stefan Johansson
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gun Peggy S Knudsen
- Division of Health Data and Digitalisation, The Norwegian Institute of Public Health, Oslo, Norway
| | | | - Qing Lu
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Alina Rodriguez
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- School of Psychology, University of Lincoln, Lincolnshire, UK
| | - Anjali K Henders
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Abdullah Mamun
- Institute for Social Science Research, University of Queensland, Long Pocket, QLD, Australia
| | - Jackob M Najman
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Sandy Brown
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | | - Kenneth Krauter
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Chandra Reynolds
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Andrew Smolen
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Michael Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Sally Wadsworth
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Tamara L Wall
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Judy L Silberg
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Allison Miller
- Department of Pathology and Biomedical Science, and Carney Centre for Pharmacogenomics, University of Otago Christchurch, Christchurch Central City, New Zealand
| | | | - Christian Hakulinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura Pulkki-Råback
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alexandra Havdahl
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Louise Arseneault
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University of Munich Medical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Joseph Boden
- Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, Christchurch Central City, New Zealand
| | - John Pearson
- Biostatistics and Computational Biology Unit, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch Central City, New Zealand
| | - L John Horwood
- Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, Christchurch Central City, New Zealand
| | - Martin Kennedy
- Department of Pathology and Biomedical Science, and Carney Centre for Pharmacogenomics, University of Otago Christchurch, Christchurch Central City, New Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, University of Otago, Dunedin, New Zealand
| | - Lindon J Eaves
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Hermine H Maes
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human & Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - John Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - William E Copeland
- Department of Psychiatry, College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Gail M Williams
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Naomi Wray
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - William Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Avshalom Caspi
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Terrie E Moffitt
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychology and Neuroscience and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Andrew Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Craig E Pennell
- Faculty of Medicine and Health, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, USA
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tanja Vrijkotte
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLife, University of Helsinki, Helsinki, Finland
- Department of Public Health, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Catharina A Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine J Oldehinkel
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Miquel Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
- Centre for Ethics, Law and Mental Health, University of Gothenburg, Gothenburg, Sweden
| | - Robert Plomin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - Michel G Nivard
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Eusebi PG, Sevane N, O'Rourke T, Pizarro M, Boeckx C, Dunner S. Gene expression profiles underlying aggressive behavior in the prefrontal cortex of cattle. BMC Genomics 2021; 22:245. [PMID: 33827428 PMCID: PMC8028707 DOI: 10.1186/s12864-021-07505-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aggressive behavior is an ancient and conserved trait, habitual for most animals in order to eat, protect themselves, compete for mating and defend their territories. Genetic factors have been shown to play an important role in the development of aggression both in animals and humans, displaying moderate to high heritability estimates. Although such types of behaviors have been studied in different animal models, the molecular architecture of aggressiveness remains poorly understood. This study compared gene expression profiles of 16 prefrontal cortex (PFC) samples from aggressive and non-aggressive cattle breeds: Lidia, selected for agonistic responses, and Wagyu, selected for tameness. RESULTS A total of 918 up-regulated and 278 down-regulated differentially expressed genes (DEG) were identified, representing above-chance overlap with genes previously identified in studies of aggression across species, as well as those implicated in recent human evolution. The functional interpretation of the up-regulated genes in the aggressive cohort revealed enrichment of pathways such as Alzheimer disease-presenilin, integrins and the ERK/MAPK signaling cascade, all implicated in the development of abnormal aggressive behaviors and neurophysiological disorders. Moreover, gonadotropins, are up-regulated as natural mechanisms enhancing aggression. Concomitantly, heterotrimeric G-protein pathways, associated with low reactivity mental states, and the GAD2 gene, a repressor of agonistic reactions associated with PFC activity, are down-regulated, promoting the development of the aggressive responses selected for in Lidia cattle. We also identified six upstream regulators, whose functional activity fits with the etiology of abnormal behavioral responses associated with aggression. CONCLUSIONS These transcriptional correlates of aggression, resulting, at least in part, from controlled artificial selection, can provide valuable insights into the complex architecture that underlies naturally developed agonistic behaviors. This analysis constitutes a first important step towards the identification of the genes and metabolic pathways that promote aggression in cattle and, providing a novel model species to disentangle the mechanisms underlying variability in aggressive behavior.
Collapse
Affiliation(s)
- Paulina G Eusebi
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Natalia Sevane
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Thomas O'Rourke
- Universitat de Barcelona, Gran Vía de les Corts Catalanes 585, 08007, Barcelona, Spain.,UBICS, Carrer Martí Franqués 1, 08028, Barcelona, Spain
| | - Manuel Pizarro
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | - Cedric Boeckx
- Universitat de Barcelona, Gran Vía de les Corts Catalanes 585, 08007, Barcelona, Spain.,UBICS, Carrer Martí Franqués 1, 08028, Barcelona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Susana Dunner
- Universidad Complutense de Madrid, Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| |
Collapse
|
34
|
Kai N, Ueda S. Induction of aberrant agonistic behavior by a combination of serotonergic and dopaminergic manipulation in rats. Brain Struct Funct 2021; 226:1253-1267. [PMID: 33625560 DOI: 10.1007/s00429-021-02238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/09/2021] [Indexed: 11/24/2022]
Abstract
Serotonin (5-HT) and dopamine (DA) are involved in the regulation of social behaviors. However, the effects of their interactions on social behavior are not well understood. In this study, rats received a serotonergic neurotoxin injection into the raphe nuclei and/or systemic administration of L-3, 4-dihydroxyphenylalanine (L-DOPA), and their agonistic behaviors were investigated using the resident-intruder (RI) paradigm. Rats in the DA + /5-HT-group, which were administered both monoaminergic treatments, exhibited intense jump and flight responses to intruders. These behaviors were not observed in rats that received either 5-HT lesions or L-DOPA treatment only. To address the neural basis of these aberrant behaviors, we compared c-Fos immunoreactivity in the brain among the different groups. The DA + /5-HT-group had c-Fos activation in areas related to anti-predatory defensive behaviors, such as the ventromedial hypothalamic nucleus, premammillary nucleus, and periaqueductal gray. Moreover, this group had increased c-Fos expression in the ventroposterior part of the anterior olfactory nucleus (AOVP). To test the involvement of this area in the aberrant behaviors, cytotoxic lesions were performed in the AOVP prior to the monoaminergic treatments, and subsequent behaviors were examined using the RI test. The AOVP-lesioned DA + /5-HT-rats had attenuation of the aberrant behaviors. Together, these results suggest that the AOVP is involved in the generation of the aberrant defensive behaviors, and that 5-HT/DA balance is important in the regulation of social behaviors.
Collapse
Affiliation(s)
- Nobuyuki Kai
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 530 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 530 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
35
|
Mentis AFA, Dardiotis E, Katsouni E, Chrousos GP. From warrior genes to translational solutions: novel insights into monoamine oxidases (MAOs) and aggression. Transl Psychiatry 2021; 11:130. [PMID: 33602896 PMCID: PMC7892552 DOI: 10.1038/s41398-021-01257-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/16/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The pervasive and frequently devastating nature of aggressive behavior calls for a collective effort to understand its psychosocial and neurobiological underpinnings. Regarding the latter, diverse brain areas, neural networks, neurotransmitters, hormones, and candidate genes have been associated with antisocial and aggressive behavior in humans and animals. This review focuses on the role of monoamine oxidases (MAOs) and the genes coding for them, in the modulation of aggression. During the past 20 years, a substantial number of studies using both pharmacological and genetic approaches have linked the MAO system with aggressive and impulsive behaviors in healthy and clinical populations, including the recent discovery of MAALIN, a long noncoding RNA (lncRNA) regulating the MAO-A gene in the human brain. Here, we first provide an overview of the MAOs and their physiological functions, we then summarize recent key findings linking MAO-related enzymatic and gene activity and aggressive behavior, and, finally, we offer novel insights into the mechanisms underlying this association. Using the existing experimental evidence as a foundation, we discuss the translational implications of these findings in clinical practice and highlight what we believe are outstanding conceptual and methodological questions in the field. Ultimately, we propose that unraveling the specific role of MAO in aggression requires an integrated approach, where this question is pursued by combining psychological, radiological, and genetic/genomic assessments. The translational benefits of such an approach include the discovery of novel biomarkers of aggression and targeting the MAO system to modulate pathological aggression in clinical populations.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - Eleni Katsouni
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece.
- UNESCO Chair on Adolescent Health Care, Athens, Greece.
| |
Collapse
|
36
|
Johansson A, Rötkönen N, Jern P. Is the association between childhood maltreatment and aggressive behavior mediated by hostile attribution bias in women? A discordant twin and sibling study. Aggress Behav 2021; 47:28-37. [PMID: 32853475 PMCID: PMC7754152 DOI: 10.1002/ab.21928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms behind aggressive behavior (AGG) is vital so that effective prevention and intervention strategies can be developed. Maltreated children are hypothesized to be prone to social information processing biases, such as hostile attribution bias (HAB), which, in turn, may increase the likelihood of behaving aggressively. The first aim of the present study was to replicate findings regarding associations between childhood maltreatment (CM), HAB, and aggression in a population-based sample of Finnish female twins and their sisters (N = 2,167). However, these associations might not be causal but instead confounded by familial factors, shared between the variables. The second aim was, thus, to test the associations when potential confounding by familial (genetic or common environmental) effects were controlled for using a multilevel discordant twin and sibling design within (a) 379 pairs of twins (npairs = 239) or siblings (npairs = 140), and (b) within the 131 monozygotic (MZ) twin pairs. Consistent with previous studies, HAB mediated the association between CM and AGG when familial confounding was uncontrolled. No support was found for the mediation when controlling for familial confounding. Between-pair associations were found between CM and AGG, and between CM and HAB. In addition, within-pair associations were found between HAB and AGG, and between CM and AGG, however, these were nonsignificant in the discordant MZ analysis, offering the most stringent control of familial confounding. The results indicate the necessity of taking familial confounding into account when investigating the development of AGG.
Collapse
Affiliation(s)
- Ada Johansson
- Department of Psychology, Faculty of Arts, Psychology and Theology Åbo Akademi University Turku Finland
| | - Nicola Rötkönen
- Department of Psychology, Faculty of Arts, Psychology and Theology Åbo Akademi University Turku Finland
| | - Patrick Jern
- Department of Psychology, Faculty of Arts, Psychology and Theology Åbo Akademi University Turku Finland
| |
Collapse
|
37
|
Dinić BM, Smederevac S, Sadiković S, Oljača M, Vučinić N, Prinz M, Budimlija Z. Twin study of laboratory-induced aggression. Aggress Behav 2020; 46:489-497. [PMID: 32656781 DOI: 10.1002/ab.21916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/09/2022]
Abstract
The aim of this study was to explore genetic and environmental contributions to laboratory-induced aggressive behavior. On a sample of 478 adult twins (316 monozygotic), the Competitive Reaction Time Task was used for aggression induction. The results showed that the initial, basic level of aggression could be explained by both shared (45%) and nonshared environmental factors (55%), while only nonshared environmental factors (100%) had a significant influence on changes in aggression as provocation increased. Genetic factors had no influence on laboratory-induced aggression. The results highlight the importance of environmental factors in shaping situation-specific aggressive responses to provocation.
Collapse
Affiliation(s)
- Bojana M. Dinić
- Department of Psychology, Faculty of Philosophy University of Novi Sad Novi Sad Serbia
| | - Snežana Smederevac
- Department of Psychology, Faculty of Philosophy University of Novi Sad Novi Sad Serbia
| | - Selka Sadiković
- Department of Psychology, Faculty of Philosophy University of Novi Sad Novi Sad Serbia
| | - Milan Oljača
- Department of Psychology, Faculty of Philosophy University of Novi Sad Novi Sad Serbia
| | - Nataša Vučinić
- Department of Pharmacy, Faculty of Medicine University of Novi Sad Novi Sad Serbia
| | - Mechthild Prinz
- Department of Science, John Jay College of Criminal Justice City University of New York New York City New York
| | - Zoran Budimlija
- Department of Neurology NYU School of Medicine New York City New York
| |
Collapse
|
38
|
Kolla NJ, Bortolato M. The role of monoamine oxidase A in the neurobiology of aggressive, antisocial, and violent behavior: A tale of mice and men. Prog Neurobiol 2020; 194:101875. [PMID: 32574581 PMCID: PMC7609507 DOI: 10.1016/j.pneurobio.2020.101875] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over the past two decades, research has revealed that genetic factors shape the propensity for aggressive, antisocial, and violent behavior. The best-documented gene implicated in aggression is MAOA (Monoamine oxidase A), which encodes the key enzyme for the degradation of serotonin and catecholamines. Congenital MAOA deficiency, as well as low-activity MAOA variants, has been associated with a higher risk for antisocial behavior (ASB) and violence, particularly in males with a history of child maltreatment. Indeed, the interplay between low MAOA genetic variants and early-life adversity is the best-documented gene × environment (G × E) interaction in the pathophysiology of aggression and ASB. Additional evidence indicates that low MAOA activity in the brain is strongly associated with a higher propensity for aggression; furthermore, MAOA inhibition may be one of the primary mechanisms whereby prenatal smoke exposure increases the risk of ASB. Complementary to these lines of evidence, mouse models of Maoa deficiency and G × E interactions exhibit striking similarities with clinical phenotypes, proving to be valuable tools to investigate the neurobiological mechanisms underlying antisocial and aggressive behavior. Here, we provide a comprehensive overview of the current state of the knowledge on the involvement of MAOA in aggression, as defined by preclinical and clinical evidence. In particular, we show how the convergence of human and animal research is proving helpful to our understanding of how MAOA influences antisocial and violent behavior and how it may assist in the development of preventative and therapeutic strategies for aggressive manifestations.
Collapse
Affiliation(s)
- Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH) Research Imaging Centre, Toronto, ON, Canada; Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA; Translational Initiative on Antisocial Personality Disorder (TrIAD); Program of Research on Violence Etiology, Neurobiology, and Treatment (PReVENT).
| |
Collapse
|
39
|
Qing L, Gao C, Ji A, Lü X, Zhou L, Nie S. Association of mineralocorticoid receptor gene (NR3C2) hypermethylation in adult males with aggressive behavior. Behav Brain Res 2020; 398:112980. [PMID: 33250445 DOI: 10.1016/j.bbr.2020.112980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022]
Abstract
Aggressive behavior may have adaptive value under some environmental conditions. However, when it is extreme or improper, it may also lead to maladaptive results, seriously threatening human and social well-being. Aggressive behavior is a multifactorial disease, and the etiology is largely unknown. The stress-related hypothalamic-pituitary-adrenal (HPA) axis is a crucial system in the stress response that has emerged as a potential mechanism of aggressive behavior. The NR3C2 gene is an important regulator of the HPA axis: it is involved in regulating HPA axis activity and behavioral adaptation to stressors. Moreover, the epigenetic mechanism of DNA methylation has been suggested to mediate the development of aggressive behavior. However, the association between NR3C2 methylation and aggressive behavior has not been studied. In the present study, we assessed NR3C2 methylation (including three regions: promoter P1, exon 1α, and the sequence downstream of exon 1α) in peripheral blood DNA of adult males with aggressive behavior (n = 106) and healthy controls (n = 104). We found the NR3C2 gene to be associated with aggressive behavior, with hypermethylation detected in the entire aggressive behavior group as well as in the robbery subgroup compared to controls. In addition, analysis of methylation at 75 CpG sites revealed that some important CpG sites are associated with aggressive behavior. Our results suggest that HPA axis-related gene NR3C2 methylation is associated with aggressive behavior. These results lend support for using NR3C2 DNA methylation as a potential biomarker of aggressive behavior.
Collapse
Affiliation(s)
- Lili Qing
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Changqing Gao
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Aicen Ji
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Xin Lü
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China
| | - Li Zhou
- Mental Health Center of Yunnan Province, Kunming, Yunnan Province, People's Republic of China.
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
40
|
Chen SY, Oliveira HR, Schenkel FS, Pedrosa VB, Melka MG, Brito LF. Using imputed whole-genome sequence variants to uncover candidate mutations and genes affecting milking speed and temperament in Holstein cattle. J Dairy Sci 2020; 103:10383-10398. [PMID: 32952011 DOI: 10.3168/jds.2020-18897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
Milking speed (MS) and temperament (MT) are 2 workability traits of great importance in dairy cattle production and breeding. This is mainly due to an increased intensification of the worldwide production systems and greater adoption of precision technologies with less human-cattle interaction. Both MS and MT are heritable traits and thus, genomic selection is a promising tool to expedite their genetic progress. However, the genetic architecture and biological mechanisms underlying the phenotypic expression of these traits remain underexplored. In this study, we investigated the association of >5.7 million imputed whole-genome sequence variants with MT and MS in 4,381 and 4,219 North American Holstein cattle, respectively. The statistical analyses were performed using a mixed linear model fitting a polygenic effect. We detected 40 and 35 significant SNPs independently associated with MT and MS, respectively, which were distributed across 26 chromosomes. Eight candidate genes (GRIN3A, KCNJ3, BOSTAUV1R417, BOSTAUV1R419, MAP2K5, KCTD3, GAP43, and LSAMP) were suggested to play an important role in MT as they are involved in biologically relevant pathways, such as glutamatergic synapse, vomeronasal receptor and oxytocin signaling. Within their coding and upstream sequences, we used an independent data set to further detect or validate significantly differentiated SNP between cattle breeds with known differences in MT. There were fewer candidate genes potentially implicated in MS, but immunity-related genes (e.g., BOLA-NC1 and LOC512672), also identified in other populations, were validated in this study. The significant SNP and novel candidate genes identified contribute to a better understanding of the biological mechanisms underlying both traits in dairy cattle. This information will also be useful for the optimization of prediction of genomic breeding values by giving greater weights to SNP located in the genomic regions identified.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Melkaye G Melka
- Department of Animal and Food Science, University of Wisconsin River Falls, 54022
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907.
| |
Collapse
|
41
|
Intra-Group Lethal Gang Aggression in Domestic Pigs (Sus scrofa domesticus). Animals (Basel) 2020; 10:ani10081287. [PMID: 32731463 PMCID: PMC7459786 DOI: 10.3390/ani10081287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Aggression between pigs in pig husbandry is common during regrouping but rare in stable social groups. Farmers report the occurrence of lethal gang aggression in stable groups of pigs, whereby the group attacks one group member until it is dead. Our aim was to document this extreme type of aggression and to identify potential causes. Forty-two farmers, experiencing lethal gang aggression or not, filled out a survey about their farm management. From 91 victims, information was obtained on their injuries and body condition. Gang aggression occurred more on farms with deep straw bedding, a housing type commonly associated with better animal welfare. However, the presence of straw may also be related to other factors, which could not be disentangled here. Gang aggression did not relate to the genetic line, breeding company or feed type. It equally occurred between females and males and tended to occur more in winter. Victims were covered in injuries, but had a healthy body condition, whereas survivors had a lower body condition. Overall, the cause seems multi-factorial, and further research on the occurrence of lethal gang aggression is needed. Abstract Intraspecific coalitional aggression is rare among all species, especially within stable social groups. We report here numerous cases of intraspecific lethal gang aggression within stable groups of domestic pigs. The objective was to describe this extreme aggression and to identify potential causes. Management data were collected from farms with (n = 23) and without (n = 19) gang aggression. From one farm, 91 victims were assessed for skin injuries and body condition score. Lethal gang aggression was significantly associated with deep straw bedding, which may be related to various other factors. Gang aggression tended to occur more in winter, and was unrelated to genetic line, breeding company, group size or feed type. It occurred equally in female-only and mixed sex groups (male-only groups were not represented), from around eight weeks of age. Injuries typically covered the whole body and were more severe on the front of the body. Victims who survived had a lower body condition score and fewer injuries than victims found dead. There are still many unknowns as to why this abnormal social behaviour occurs and it deserves further research attention, both for its applied relevance to animal welfare as for the evolutionary background of lethal gang aggression.
Collapse
|
42
|
Dukas R, Yan JL, Scott AM, Sivaratnam S, Baxter CM. Artificial selection on sexual aggression: Correlated traits and possible trade-offs. Evolution 2020; 74:1112-1123. [PMID: 32372455 DOI: 10.1111/evo.13993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022]
Abstract
Forced copulation is an extreme form of sexual aggression that can affect the evolution of sex-specific anatomy, morphology, and behavior. To characterize mechanistic and evolutionary aspects of forced copulation, we artificially selected male fruit flies based on their ability to succeed in the naturally prevalent behavior of forced matings with newly eclosed (teneral) females. The low and high forced copulation lineages showed rapid divergence, with the high lineages ultimately showing twice the rates of forced copulation as the low lineages. While males from the high lineages spent more time aggressively pursuing and mounting teneral females, their behavior toward non-teneral and heterospecific females was similar to that of males from the low lineages. Males from the low and high lineages also showed similar levels of male-male aggression. This suggests little or no genetic correlations between sexual aggression and non-aggressive pursuit of females, and between male aggression toward females and males. Surprisingly however, males from the high lineages had twice as high mating success than males from the low lineages when allowed to compete for consensual mating with mature females. In further experiments, we found no evidence for trade-offs associated with high forced mating rates: males from the high lineages did not have lower longevity than males from the low lineages when housed with females, and four generations of relaxed selection did not lead to convergence in forced mating rates. Our data indicate complex interactions among forced copulation success and consensual mating behavior, which we hope to clarify in future genomic work.
Collapse
Affiliation(s)
- Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Janice L Yan
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Andrew M Scott
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Surabhi Sivaratnam
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Carling M Baxter
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
43
|
Ruisch IH, Dietrich A, Klein M, Faraone SV, Oosterlaan J, Buitelaar JK, Hoekstra PJ. Aggression based genome-wide, glutamatergic, dopaminergic and neuroendocrine polygenic risk scores predict callous-unemotional traits. Neuropsychopharmacology 2020; 45:761-769. [PMID: 31918432 PMCID: PMC7075955 DOI: 10.1038/s41386-020-0608-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/03/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Aggression and callous, uncaring, and unemotional (CU) traits are clinically related behavioral constructs caused by genetic and environmental factors. We performed polygenic risk score (PRS) analyses to investigate shared genetic etiology between aggression and these three CU-traits. Furthermore, we studied interactions of PRS with smoking during pregnancy and childhood life events in relation to CU-traits. Summary statistics for the base phenotype were derived from the EAGLE-consortium genome-wide association study of children's aggressive behavior and were used to calculate individual-level genome-wide and gene-set PRS in the NeuroIMAGE target-sample. Target phenotypes were 'callousness', 'uncaring', and 'unemotional' sumscores of the Inventory of Callous-Unemotional traits. A total of 779 subjects and 1,192,414 single-nucleotide polymorphisms were available for PRS-analyses. Gene-sets comprised serotonergic, dopaminergic, glutamatergic, and neuroendocrine signaling pathways. Genome-wide PRS showed evidence of association with uncaring scores (explaining up to 1.59% of variance; self-contained Q = 0.0306, competitive-P = 0.0015). Dopaminergic, glutamatergic, and neuroendocrine PRS showed evidence of association with unemotional scores (explaining up to 1.33, 2.00, and 1.20% of variance respectively; self-contained Q-values 0.037, 0.0115, and 0.0473 respectively, competitive-P-values 0.0029, 0.0002, and 0.0045 respectively). Smoking during pregnancy related to callousness scores while childhood life events related to both callousness and unemotionality. Moreover, dopaminergic PRS appeared to interact with childhood life events in relation to unemotional scores. Our study provides evidence suggesting shared genetic etiology between aggressive behavior and uncaring, and unemotional CU-traits in children. Gene-set PRS confirmed involvement of shared glutamatergic, dopaminergic, and neuroendocrine genetic variation in aggression and CU-traits. Replication of current findings is needed.
Collapse
Affiliation(s)
- I Hyun Ruisch
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands.
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marieke Klein
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Stephen V Faraone
- Department of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Jaap Oosterlaan
- Department of Clinical Neuropsychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Reinier Postlaan 12, 6525GC, Nijmegen, The Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
44
|
Hagenbeek FA, Roetman PJ, Pool R, Kluft C, Harms AC, van Dongen J, Colins OF, Talens S, van Beijsterveldt CEM, Vandenbosch MMLJZ, de Zeeuw EL, Déjean S, Fanos V, Ehli EA, Davies GE, Hottenga JJ, Hankemeier T, Bartels M, Vermeiren RRJM, Boomsma DI. Urinary Amine and Organic Acid Metabolites Evaluated as Markers for Childhood Aggression: The ACTION Biomarker Study. Front Psychiatry 2020; 11:165. [PMID: 32296350 PMCID: PMC7138132 DOI: 10.3389/fpsyt.2020.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/21/2020] [Indexed: 01/05/2023] Open
Abstract
Biomarkers are of interest as potential diagnostic and predictive instruments in personalized medicine. We present the first urinary metabolomics biomarker study of childhood aggression. We aim to examine the association of urinary metabolites and neurotransmitter ratios involved in key metabolic and neurotransmitter pathways in a large cohort of twins (N = 1,347) and clinic-referred children (N = 183) with an average age of 9.7 years. This study is part of ACTION (Aggression in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies), in which we developed a standardized protocol for large-scale collection of urine samples in children. Our analytical design consisted of three phases: a discovery phase in twins scoring low or high on aggression (N = 783); a replication phase in twin pairs discordant for aggression (N = 378); and a validation phase in clinical cases and matched twin controls (N = 367). In the discovery phase, 6 biomarkers were significantly associated with childhood aggression, of which the association of O-phosphoserine (β = 0.36; SE = 0.09; p = 0.004), and gamma-L-glutamyl-L-alanine (β = 0.32; SE = 0.09; p = 0.01) remained significant after multiple testing. Although non-significant, the directions of effect were congruent between the discovery and replication analyses for six biomarkers and two neurotransmitter ratios and the concentrations of 6 amines differed between low and high aggressive twins. In the validation analyses, the top biomarkers and neurotransmitter ratios, with congruent directions of effect, showed no significant associations with childhood aggression. We find suggestive evidence for associations of childhood aggression with metabolic dysregulation of neurotransmission, oxidative stress, and energy metabolism. Although replication is required, our findings provide starting points to investigate causal and pleiotropic effects of these dysregulations on childhood aggression.
Collapse
Affiliation(s)
- Fiona A. Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Peter J. Roetman
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | | | - Amy C. Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- The Netherlands Metabolomics Centre, Leiden, Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Olivier F. Colins
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
- Department Special Needs Education, Ghent University, Ghent, Belgium
| | | | | | | | - Eveline L. de Zeeuw
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, University of Toulouse, CNRS, Toulouse, France
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A. Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Gareth E. Davies
- Avera Institute for Human Genetics, Sioux Falls, SD, United States
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- The Netherlands Metabolomics Centre, Leiden, Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Robert R. J. M. Vermeiren
- Curium-LUMC, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
45
|
Deibel SH, McDonald RJ, Kolla NJ. Are Owls and Larks Different When it Comes to Aggression? Genetics, Neurobiology, and Behavior. Front Behav Neurosci 2020; 14:39. [PMID: 32256322 PMCID: PMC7092663 DOI: 10.3389/fnbeh.2020.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the contribution of circadian rhythms to aggression with a multifaceted approach incorporating genetics, neural networks, and behavior. We explore the hypothesis that chronic circadian misalignment is contributing to increased aggression. Genes involved in both circadian rhythms and aggression are discussed as a possible mechanism for increased aggression that might be elicited by circadian misalignment. We then discuss the neural networks underlying aggression and how dysregulation in the interaction of these networks evoked by circadian rhythm misalignment could contribute to aggression. The last section of this review will present recent human correlational data demonstrating the association between chronotype and/or circadian misalignment with aggression. With circadian rhythms and aggression being a burgeoning area of study, we hope that this review initiates more interest in this promising and topical area.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert J McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, AL, Canada
| | - Nathan J Kolla
- Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Shi Z, Malki A, Abdel-Salam ASG, Liu J, Zayed H. Association between Soft Drink Consumption and Aggressive Behaviour among a Quarter Million Adolescents from 64 Countries Based on the Global School-Based Student Health Survey (GSHS). Nutrients 2020; 12:nu12030694. [PMID: 32150827 PMCID: PMC7146469 DOI: 10.3390/nu12030694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/30/2022] Open
Abstract
Soft drink consumption has become a significant public health concern that is associated with various adverse health outcomes. We aim to examine the association between soft drink consumption and aggressive behavior among adolescents. We used open access data from 79 studies in 64 countries, including 263,890 adolescents aged 12–18 years who completed the global school-based student health survey (GSHS). Self-reported data on past 30-day carbonated soft drink consumption (number of times per day) and past 12-month physical fighting were utilized for analysis. Of the 263,890 participants (48% boys) aged 12–18 years, the weighted mean frequency of soft drink consumption varied from 0.5 in Kiribati to 2.5 times/day in Surname, while the weighted prevalence of frequent aggressive behavior varied from to 2.7% in Laos to 49.2% in Tuvalu. We found that each increment of soft drink consumption (time/day) was associated with an 11% (95%CI 10–13%) increase of the likelihood of frequent physical fighting. This result remained significant after adjusting for various covariates. In this large pooled sample of multinational data, there is a significant positive association between soft drink consumption and aggressive behavior among adolescents. Reducing soft drink consumption may help reduce aggressive behavior, a major risk factor for violence.
Collapse
Affiliation(s)
- Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, 2713 Doha, Qatar
- Correspondence: ; Tel.: +974-4403-6037
| | - Ahmed Malki
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, 2713 Doha, Qatar; (A.M.); (H.Z.)
| | - Abdel-Salam G Abdel-Salam
- Department of Mathematics, Statistics and Physics, College of Health Sciences, QU Health, Qatar University, 2713 Doha, Qatar;
| | - Jianghong Liu
- University of Pennsylvania School of Nursing, Philadelphia, PA 19104, USA;
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, 2713 Doha, Qatar; (A.M.); (H.Z.)
| |
Collapse
|
47
|
González-Giraldo Y, Forero DA. A functional SNP in the synaptic SNAP25 gene is associated with impulsivity in a Colombian sample. 3 Biotech 2020; 10:134. [PMID: 32154047 DOI: 10.1007/s13205-020-2110-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/02/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of the current study was to test the hypothesis that a functional polymorphism in the synaptosome associated protein 25 (SNAP25) gene could be associated with impulsivity scores in a sample of young Colombian subjects. Impulsivity has been postulated as an endophenotype for several psychiatric disorders of high epidemiological relevance. There is a need for the study of additional candidate genes for impulsivity. One hundred seventy-five young Colombian subjects completed the Spanish version of the short form of the Barratt Impulsiveness Scale (BIS-15S). A TaqMan assay was used to genotype a functional polymorphism (rs3746544) in the SNAP25 gene. A significant association was found between the functional polymorphism in the SNAP25 gene and impulsivity in the Colombian sample, with subjects carrying T/T and G/G genotypes showing lower mean scores in the non-planning subfactor (p = 0.02). This is the first report of an association of a functional polymorphism in the SNAP25 gene and a subfactor of the BIS-15S scale of impulsivity. In addition, this the first genetic study of impulsivity scores in a Latin American sample. Future studies should explore additional variants in brain-expressed miRNAs and in their binding sites as candidates for impulsivity in different populations.
Collapse
|
48
|
Monoamine oxidase A genotype and methylation moderate the association of maltreatment and aggressive behaviour. Behav Brain Res 2020; 382:112476. [DOI: 10.1016/j.bbr.2020.112476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022]
|
49
|
Genomics of human aggression: current state of genome-wide studies and an automated systematic review tool. Psychiatr Genet 2020; 29:170-190. [PMID: 31464998 DOI: 10.1097/ypg.0000000000000239] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are substantial differences, or variation, between humans in aggression, with its molecular genetic basis mostly unknown. This review summarizes knowledge on the genetic contribution to variation in aggression with the following three foci: (1) a comprehensive overview of reviews on the genetics of human aggression, (2) a systematic review of genome-wide association studies (GWASs), and (3) an automated tool for the selection of literature based on supervised machine learning. The phenotype definition 'aggression' (or 'aggressive behaviour', or 'aggression-related traits') included anger, antisocial behaviour, conduct disorder, and oppositional defiant disorder. The literature search was performed in multiple databases, manually and using a novel automated selection tool, resulting in 18 reviews and 17 GWASs of aggression. Heritability estimates of aggression in children and adults are around 50%, with relatively small fluctuations around this estimate. In 17 GWASs, 817 variants were reported as suggestive (P ≤ 1.0E), including 10 significant associations (P ≤ 5.0E). Nominal associations (P ≤ 1E) were found in gene-based tests for genes involved in immune, endocrine, and nervous systems. Associations were not replicated across GWASs. A complete list of variants and their position in genes and chromosomes are available online. The automated literature search tool produced literature not found by regular search strategies. Aggression in humans is heritable, but its genetic basis remains to be uncovered. No sufficiently large GWASs have been carried out yet. With increases in sample size, we expect aggression to behave like other complex human traits for which GWAS has been successful.
Collapse
|
50
|
Associations of multiple trauma types and MAOA with severe aggressive behavior and MAOA effects on training outcome. Eur Neuropsychopharmacol 2020; 30:66-74. [PMID: 28673475 DOI: 10.1016/j.euroneuro.2017.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 11/20/2022]
Abstract
Previous research showed that the disposition to react with disproportionate aggression in adults is influenced by an interaction between a variant in the X-chromosomal monoamine oxidase A gene (MAOA) and early traumatic events. Such studies have often focused on a single type of trauma, whereas we know that experiencing multiple trauma types is associated with more detrimental consequences. The differential susceptibility hypothesis suggests that individuals who are most susceptible to adversity, are also most likely to benefit from supportive experiences in childhood. Differences in susceptibility are thought to be partly genetically driven. In the present study we explored whether a genotype of MAOA linked to lower expression of the gene (MAOA-L) modified the effect of multiple types of trauma on aggression and/or altered responsiveness to treatment among adults with severe aggression. Forensic psychiatric outpatients (FPOs) (N=150) receiving treatment for aggression regulation problems were recruited. Traumatic events and aggression were measured using self-report. FPOs with multiple trauma types and those with the MAOA-L allele reported more severe levels of aggression. No interaction effects between MAOA genotype and trauma emerged. There were no differences in response to the intervention between FPOs with and without the MAOA-L variant, whereas FPOs with a single type of trauma showed the slowest reduction of aggression. FPOs with multiple types of trauma reported the highest levels of aggression over the course of treatment. Future research is needed to elucidate this association in further detail. The current study emphasized the importance of early recognition of early traumatic events.
Collapse
|