1
|
Santana-Cordón L, Afonso-Oramas D, Lemus-Mesa A, González-Gómez M, Barroso-Chinea P. Morphological study of neuropeptide Y expression in human and mouse anterior insular cortex: Overexpression in the insular cortex and nucleus accumbens in obese mice on a long-term obesogenic diet. Ann Anat 2023; 250:152127. [PMID: 37355144 DOI: 10.1016/j.aanat.2023.152127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND The anterior lobe of the insular cortex (aINS) is a cortical region that has reciprocal connections with limbic centers such as the anterior cingulate cortex, prefrontal cortex, amygdala and nucleus accumbens (NAc). In fact, the aINS has been involved in the integration of autonomic information for emotional and motivational functions. The compulsive consumption of drugs or high-fat foods induces alterations at both behavioural and brain levels. Brain reward circuits are altered in response to continued intake, in particular the dopaminergic projections from the ventral tegmental area (VTA) to the NAc. The aINS has multiple connections with the components of this system. In recent years, efforts have been made to better understand the fundamental role of the aINS in addiction, making it one of the key centres of interest for research into new treatments for addiction. OBJECTIVES The present work focuses on studying 1.- whether the human aINS expresses orexigenic peptides such as neuropeptide Y (NPY), a peptide known to induce hyperphagia, and which has been implicated in the onset and development of obesity, 2.- the long-term effect of an obesogenic diet on NPY expression in the aINS and NAc of C57BL/6 mice. METHODS A total of 17 female C57BL/6 J mice were used in this study. Female mice were fed ad libitum with water and, either a standard diet (SD) or a high-fat diet (HFD) to induce obesity. There were seven female mice on the SD and ten on the HFD. The duration of the experiment was 180 days. We also studied 3 human adult brains (1 male and 2 females, mean age 55.7 ± 5.2 years). The morphological study was performed using immunohistochemistry and double immunofluorescence techniques to study the neurochemical profile of NPY neurons of the aINS and NAc of humans and mice. RESULTS Our morphological analysis demonstrates for the first time the basal expression of NPY in different layers of the human cortex (II, III, IV, V/VI), in a pattern similar to previous studies in other species. Furthermore, we observed an increase in the number of NPY-positive cells and their intracytoplasmic signal in the aINS and NAc of the obese mice subjected to a long-term obesogenic diet. CONCLUSIONS To our knowledge, this is the first study to show the distribution and expression of NPY in the human INS and how its expression is altered after prolonged treatment with an obesogenic diet in obese mice. Our findings may contribute to the understanding of the pathophysiological mechanisms underlying obesity in regions related to the reward system and associated with uncontrolled intake of high-fat foods, thus facilitating the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Santana-Cordón
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain.
| | - Alejandro Lemus-Mesa
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain; Instituto Universitario de Neurociencias. Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
2
|
Raghanti MA, Miller EN, Jones DN, Smith HN, Munger EL, Edler MK, Phillips KA, Hopkins WD, Hof PR, Sherwood CC, Lovejoy CO. Hedonic eating, obesity, and addiction result from increased neuropeptide Y in the nucleus accumbens during human brain evolution. Proc Natl Acad Sci U S A 2023; 120:e2311118120. [PMID: 37695892 PMCID: PMC10515152 DOI: 10.1073/pnas.2311118120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
The nucleus accumbens (NAc) is central to motivation and action, exhibiting one of the highest densities of neuropeptide Y (NPY) in the brain. Within the NAc, NPY plays a role in reward and is involved in emotional behavior and in increasing alcohol and drug addiction and fat intake. Here, we examined NPY innervation and neurons of the NAc in humans and other anthropoid primates in order to determine whether there are differences among these various species that would correspond to behavioral or life history variables. We quantified NPY-immunoreactive axons and neurons in the NAc of 13 primate species, including humans, great apes, and monkeys. Our data show that the human brain is unique among primates in having denser NPY innervation within the NAc, as measured by axon length density to neuron density, even after accounting for brain size. Combined with our previous finding of increased dopaminergic innervation in the same region, our results suggest that the neurochemical profile of the human NAc appears to have rendered our species uniquely susceptible to neurophysiological conditions such as addiction. The increase in NPY specific to the NAc may represent an adaptation that favors fat intake and contributes to an increased vulnerability to eating disorders, obesity, as well as alcohol and drug dependence. Along with our findings for dopamine, these deeply rooted structural attributes of the human brain are likely to have emerged early in the human clade, laying the groundwork for later brain expansion and the development of cognitive and behavioral specializations.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Elaine N. Miller
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - Danielle N. Jones
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Heather N. Smith
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| | - Kimberley A. Phillips
- Department of Psychology, Trinity University, San Antonio, TX78212
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX78245
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX78602
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC20052
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC20052
| | - C. Owen Lovejoy
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH44242
- Brain Health Research Institute, Kent State University, Kent, OH44242
| |
Collapse
|
3
|
Banovac I, Sedmak D, Esclapez M, Petanjek Z. The Distinct Characteristics of Somatostatin Neurons in the Human Brain. Mol Neurobiol 2022; 59:4953-4965. [PMID: 35665897 DOI: 10.1007/s12035-022-02892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Somatostatin cells are frequently described as a major population of GABAergic neurons in the cerebral cortex. In this study, we performed a comprehensive analysis of their molecular expression, morphological features, and laminar distribution. We provided a detailed description of somatostatin neurons in the human prefrontal cortex, including their proportion in the total neuron population, laminar distribution, neurotransmitter phenotype, as well as their molecular and morphological characteristics using immunofluorescence and RNAscope in situ hybridization. We found that somatostatin neurons comprise around 7% of neocortical neurons in the human Brodmann areas 9 and 14r, without significant difference between the two regions. Somatostatin cells were NeuN positive and synthesized vesicular GABA transporter and glutamate decarboxylase 1 and 2, confirming their neuronal nature and GABAergic phenotype. Somatostatin cells in the upper cortical layers were small, had a high expression of somatostatin mRNA, a relatively low expression of somatostatin peptide, and co-expressed calbindin. In the lower cortical layers, somatostatin cells were larger with complex somato-dendritic morphology, typically showed a lower expression of somatostatin mRNA and a high expression of somatostatin peptide, and co-expressed neuronal nitric oxide synthase (nNOS) and neuropeptide Y (NPY), but not calbindin. Somatostatin neurons in the white matter co-expressed MAP2. Based on their somato-dendritic morphology, cortical somatostatin neurons could be classified into at least five subtypes. The somatostatin neurons of the human prefrontal cortex show remarkable morphological and molecular complexity, which implies that they have equally complex and distinct functions in the human brain.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.
| | - Monique Esclapez
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| |
Collapse
|
4
|
Lin ST, Li YZ, Sun XQ, Chen QQ, Huang SF, Lin S, Cai SQ. Update on the Role of Neuropeptide Y and Other Related Factors in Breast Cancer and Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:705499. [PMID: 34421823 PMCID: PMC8377469 DOI: 10.3389/fendo.2021.705499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023] Open
Abstract
Breast cancer and osteoporosis are common diseases that affect the survival and quality of life in postmenopausal women. Women with breast cancer are more likely to develop osteoporosis than women without breast cancer due to certain factors that can affect both diseases simultaneously. For instance, estrogen and the receptor activator of nuclear factor-κB ligand (RANKL) play important roles in the occurrence and development of these two diseases. Moreover, chemotherapy and hormone therapy administered to breast cancer patients also increase the incidence of osteoporosis, and in recent years, neuropeptide Y (NPY) has also been found to impact breast cancer and osteoporosis.Y1 and Y5 receptors are highly expressed in breast cancer, and Y1 and Y2 receptors affect osteogenic response, thus potentially highlighting a potential new direction for treatment strategies. In this paper, the relationship between breast cancer and osteoporosis, the influence of NPY on both diseases, and the recent progress in the research and treatment of these diseases are reviewed.
Collapse
Affiliation(s)
- Shu-ting Lin
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yi-zhong Li
- Department of Bone, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiao-qi Sun
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qian-qian Chen
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shun-fa Huang
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Si-qing Cai, ; Shu Lin,
| | - Si-qing Cai
- Department of Radiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Si-qing Cai, ; Shu Lin,
| |
Collapse
|
5
|
Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, Close JL, Long B, Johansen N, Penn O, Yao Z, Eggermont J, Höllt T, Levi BP, Shehata SI, Aevermann B, Beller A, Bertagnolli D, Brouner K, Casper T, Cobbs C, Dalley R, Dee N, Ding SL, Ellenbogen RG, Fong O, Garren E, Goldy J, Gwinn RP, Hirschstein D, Keene CD, Keshk M, Ko AL, Lathia K, Mahfouz A, Maltzer Z, McGraw M, Nguyen TN, Nyhus J, Ojemann JG, Oldre A, Parry S, Reynolds S, Rimorin C, Shapovalova NV, Somasundaram S, Szafer A, Thomsen ER, Tieu M, Quon G, Scheuermann RH, Yuste R, Sunkin SM, Lelieveldt B, Feng D, Ng L, Bernard A, Hawrylycz M, Phillips JW, Tasic B, Zeng H, Jones AR, Koch C, Lein ES. Conserved cell types with divergent features in human versus mouse cortex. Nature 2019; 573:61-68. [PMID: 31435019 PMCID: PMC6919571 DOI: 10.1038/s41586-019-1506-7] [Citation(s) in RCA: 1039] [Impact Index Per Article: 173.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nelson Johansen
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Osnat Penn
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeroen Eggermont
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Höllt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Allison Beller
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | - Charles Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Andrew L Ko
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
- Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA
| | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ahmed Mahfouz
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
| | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Medea McGraw
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
- Regional Epilepsy Center at Harborview Medical Center, Seattle, WA, USA
| | - Aaron Oldre
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Sheana Parry
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, San Diego, CA, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Boudewijn Lelieveldt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
6
|
Laminar Distribution of Neurochemically-Identified Interneurons and Cellular Co-expression of Molecular Markers in Epileptic Human Cortex. Neurosci Bull 2018; 34:992-1006. [PMID: 30171525 PMCID: PMC6246828 DOI: 10.1007/s12264-018-0275-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibitory GABAergic interneurons are fundamental elements of cortical circuits and play critical roles in shaping network activity. Dysfunction of interneurons can lead to various brain disorders, including epilepsy, schizophrenia, and anxiety. Based on the electrophysiological properties, cell morphology, and molecular identity, interneurons could be classified into various subgroups. In this study, we investigated the density and laminar distribution of different interneuron types and the co-expression of molecular markers in epileptic human cortex. We found that parvalbumin (PV) and somatostatin (SST) neurons were distributed in all cortical layers except layer I, while tyrosine hydroxylase (TH) and neuropeptide Y (NPY) were abundant in the deep layers and white matter. Cholecystokinin (CCK) neurons showed a high density in layers IV and VI. Neurons with these markers constituted ~7.2% (PV), 2.6% (SST), 0.5% (TH), 0.5% (NPY), and 4.4% (CCK) of the gray-matter neuron population. Double- and triple-labeling revealed that NPY neurons were also SST-immunoreactive (97.7%), and TH neurons were more likely to express SST (34.2%) than PV (14.6%). A subpopulation of CCK neurons (28.0%) also expressed PV, but none contained SST. Together, these results revealed the density and distribution patterns of different interneuron populations and the overlap between molecular markers in epileptic human cortex.
Collapse
|
7
|
Neurochemical Characterization of PSA-NCAM + Cells in the Human Brain and Phenotypic Quantification in Alzheimer’s Disease Entorhinal Cortex. Neuroscience 2018; 372:289-303. [DOI: 10.1016/j.neuroscience.2017.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/22/2017] [Accepted: 12/15/2017] [Indexed: 01/07/2023]
|
8
|
Chen S, Broqueres-You D, Yang G, Wang Z, Li Y, Yang F, Tan Y. Male sex may be associated with higher metabolic risk in first-episode schizophrenia patients: A preliminary study. Asian J Psychiatr 2016; 21:25-30. [PMID: 27208452 DOI: 10.1016/j.ajp.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/05/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND High incidence of metabolic syndrome has been evidenced in schizophrenia patients. However, gender-specific relationship with risk of metabolic disorders in first-episode schizophrenia has received poor systematic study. AIM We aimed at exploring the impact of sex difference on the parameters of glucolipid metabolism in first-episode psychosis schizophrenia (FEP) patients. METHODS We performed a post hoc analysis of data from our previously performed clinical trial. A total of 60 FEP patients and 28 healthy sex- and age-matched volunteers were included. Blood glucose and lipid metabolic profiles, as well as schizophrenia-related clinical symptoms were assessed. The body mass index, level of blood insulin and the homeostasis model assessment-insulin resistance index (HOMA-IR) were measured. RESULTS The FEP patients demonstrated significant increases in blood insulin concentration, insulin resistance and blood triglyceride when compared with healthy controls. In FEP patients, there were no differences in psychopathology measurements between the genders. BMI and HOMA-IR were significantly greater in male vs female FEP patients. In addition, a more severe dyslipidemia was also observed in male FEP patients, including an increased triglyceride level, an augmented LDL content and a decreased HDL concentration. Multivariate linear regression analysis demonstrated that the gender was significantly correlated to HOMA-IR. CONCLUSION These preliminary results suggest that male FEP patients may be more predisposed to insulin resistance and dyslipidemia than female FEP patients. These results could contribute to the understanding of prevention and treatment of metabolic syndrome in FEP patients.
Collapse
Affiliation(s)
- Song Chen
- Center for Biological Psychiatry, Beijing HuiLongGuan Hospital, Changping District, Beijing, PR China
| | - Dong Broqueres-You
- Center for Biological Psychiatry, Beijing HuiLongGuan Hospital, Changping District, Beijing, PR China
| | - Guigang Yang
- Center for Biological Psychiatry, Beijing HuiLongGuan Hospital, Changping District, Beijing, PR China
| | - Zhiren Wang
- Center for Biological Psychiatry, Beijing HuiLongGuan Hospital, Changping District, Beijing, PR China
| | - Yanli Li
- Center for Biological Psychiatry, Beijing HuiLongGuan Hospital, Changping District, Beijing, PR China
| | - Fude Yang
- Center for Biological Psychiatry, Beijing HuiLongGuan Hospital, Changping District, Beijing, PR China.
| | - Yunlong Tan
- Center for Biological Psychiatry, Beijing HuiLongGuan Hospital, Changping District, Beijing, PR China.
| |
Collapse
|
9
|
Mortazavi F, Wang X, Rosene DL, Rockland KS. White Matter Neurons in Young Adult and Aged Rhesus Monkey. Front Neuroanat 2016; 10:15. [PMID: 26941613 PMCID: PMC4761867 DOI: 10.3389/fnana.2016.00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/05/2016] [Indexed: 01/21/2023] Open
Abstract
In humans and non-human primates (NHP), white matter neurons (WMNs) persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR), temporal (TE), and parietal (Par) association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30 μm thickness), and neuronal density was assessed by systematic random sampling. Per 0.16 mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of putative WMN functions and their involvement in both corticothalamic and corticocortical circuitry.
Collapse
Affiliation(s)
- Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Xiyue Wang
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
10
|
Bauernfeind AL, Reyzer ML, Caprioli RM, Ely JJ, Babbitt CC, Wray GA, Hof PR, Sherwood CC. High spatial resolution proteomic comparison of the brain in humans and chimpanzees. J Comp Neurol 2015; 523:2043-61. [PMID: 25779868 DOI: 10.1002/cne.23777] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/03/2015] [Accepted: 03/11/2015] [Indexed: 12/30/2022]
Abstract
We performed high-throughput mass spectrometry at high spatial resolution from individual regions (anterior cingulate and primary motor, somatosensory, and visual cortices) and layers of the neocortex (layers III, IV, and V) and cerebellum (granule cell layer), as well as the caudate nucleus in humans and chimpanzees. A total of 39 mass spectrometry peaks were matched with probable protein identifications in both species, allowing for comparison in expression. We explored how the pattern of protein expression varies across regions and cortical layers to provide insights into the differences in molecular phenotype of these neural structures between species. The expression of proteins differed principally in a region- and layer-specific pattern, with more subtle differences between species. Specifically, human and chimpanzee brains were similar in their distribution of proteins related to the regulation of transcription and enzyme activity but differed in their expression of proteins supporting aerobic metabolism. Whereas most work assessing molecular expression differences in the brains of primates has been performed on gene transcripts, this dataset extends current understanding of the differential molecular expression that may underlie human cognitive specializations.
Collapse
Affiliation(s)
- Amy L Bauernfeind
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110.,Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, 63130.,Department of Anthropology, The George Washington University, Washington, DC, 20052
| | - Michelle L Reyzer
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - John J Ely
- MAEBIOS-TM, Alamogordo, New Mexico, 88310
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Gregory A Wray
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, 27708.,Department of Biology, Duke University, Durham, North Carolina, 27708.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, 27708
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029.,New York Consortium in Evolutionary Primatology, New York, New York
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, 20052
| |
Collapse
|
11
|
Homman-Ludiye J, Bourne JA. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution. Front Neural Circuits 2014; 8:79. [PMID: 25071460 PMCID: PMC4081835 DOI: 10.3389/fncir.2014.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Clayton, VIC, Australia
| | - James A Bourne
- Bourne Group, Australian Regenerative Medicine Institute, Monash University Clayton, VIC, Australia
| |
Collapse
|
12
|
Raghanti MA, Edler MK, Meindl RS, Sudduth J, Bohush T, Erwin JM, Stimpson CD, Hof PR, Sherwood CC. Humans and great apes share increased neocortical neuropeptide Y innervation compared to other haplorhine primates. Front Hum Neurosci 2014; 8:101. [PMID: 24616688 PMCID: PMC3937817 DOI: 10.3389/fnhum.2014.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
Neuropeptide Y (NPY) plays a role in a variety of basic physiological functions and has also been implicated in regulating cognition, including learning and memory. A decrease in neocortical NPY has been reported for Alzheimer's disease, schizophrenia, bipolar disorder, and depression, potentially contributing to associated cognitive deficits. The goal of the present analysis was to examine variation in neocortical NPY-immunoreactive axon and varicosity density among haplorhine primates (monkeys, apes, and humans). Stereologic methods were used to measure the ratios of NPY-expressing axon length density to total neuron density (ALv/Nv) and NPY-immunoreactive varicosity density to neuron density (Vv/Nv), as well as the mean varicosity spacing in neocortical areas 10, 24, 44, and 22 (Tpt) of humans, African great apes, New World monkeys, and Old World monkeys. Humans and great apes showed increased cortical NPY innervation relative to monkey species for ALv/Nv and Vv/Nv. Furthermore, humans and great apes displayed a conserved pattern of varicosity spacing across cortical areas and layers, with no differences between cortical layers or among cortical areas. These phylogenetic differences may be related to shared life history variables and may reflect specific cognitive abilities.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Melissa K. Edler
- Department of Anthropology, School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Richard S. Meindl
- Department of Anthropology, School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Jessica Sudduth
- Department of Anthropology, School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Tatiana Bohush
- Department of Anthropology, School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| | - Joseph M. Erwin
- Department of Anthropology, The George Washington UniversityWashington, DC, USA
| | - Cheryl D. Stimpson
- Department of Anthropology, The George Washington UniversityWashington, DC, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- New York Consortium in Evolutionary PrimatologyNew York, NY, USA
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington UniversityWashington, DC, USA
| |
Collapse
|
13
|
Nousen EK, Franco JG, Sullivan EL. Unraveling the mechanisms responsible for the comorbidity between metabolic syndrome and mental health disorders. Neuroendocrinology 2013; 98:254-66. [PMID: 24080959 PMCID: PMC4121390 DOI: 10.1159/000355632] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/10/2013] [Indexed: 12/25/2022]
Abstract
The increased prevalence and high comorbidity of metabolic syndrome (MetS) and mental health disorders (MHDs) have prompted investigation into the potential contributing mechanisms. There is a bidirectional association between MetS and MHDs including schizophrenia, bipolar disorder, depression, anxiety, attention-deficit/hyperactivity disorder, and autism spectrum disorders. Medication side effects and social repercussions are contributing environmental factors, but there are a number of shared underlying neurological and physiological mechanisms that explain the high comorbidity between these two disorders. Inflammation is a state shared by both disorders, and it contributes to disruptions of neuroregulatory systems (including the serotonergic, dopaminergic, and neuropeptide Y systems) as well as dysregulation of the hypothalamic-pituitary-adrenal axis. MetS in pregnant women also exposes the developing fetal brain to inflammatory factors that predispose the offspring to MetS and psychopathologies. Due to the shared nature of these conditions, treatment should address aspects of both mental health and metabolic disorders. Additionally, interventions that can interrupt the transfer of increased risk of the disorders to the next generation need to be developed. © 2013 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Elizabeth K. Nousen
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Juliana G. Franco
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Elinor L. Sullivan
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Biology, University of Portland, Portland, OR, USA
| |
Collapse
|