1
|
Wu W, Xue F, Huang C, Zhou Y, Lan G, Bi W, Liu J, Yu X, Li Z, Zhang L, Feng F, Gu J, Ma R, Qi D. Low Reproductivity of Giant Pandas May Be Associated with Increased Vaginal Escherichia-Shigella. Microorganisms 2024; 12:2500. [PMID: 39770702 PMCID: PMC11727807 DOI: 10.3390/microorganisms12122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
The poor reproductive capacity of giant pandas significantly hinders the development of captive populations, with 80.88% of adult individuals being unable to successfully become pregnant and deliver offspring. The disturbance of vaginal microbiota has been proven to potentially lead to miscarriage, abortion, and stillbirth in mammals. To elucidate the potential relationship between the vaginal microbiota and the reproductive capacity of giant pandas, we performed high-throughput sequencing of vaginal microbiota at the time of fertilization and conducted comparative analyses based on different pregnancy outcomes. We found that the microbial diversity in the delivery (D) group exceeded that in the non-delivery (ND) group and the vaginal microbial community structure was statistically different between the two groups. The vaginal microbiota in the delivery pandas consisted of unclassified Pseudomonadaceae which was gradually replaced by the Escherichia-Shigella type of vaginal microbiota in the ND group. A function predictions analysis showed that infectious disease, glycan biosynthesis, and metabolism were significantly enriched in the ND group. Additionally, an analysis of the microbial community phenotypic categories indicated that the ND group exhibited a significantly higher abundance of Gram-negative bacteria, facultative anaerobes, potential pathogens, and stress-tolerant species compared to the D group, predominantly driven by the elevated abundance of Escherichia-Shigella. Escherichia-Shigella can be used within LDA and ROC analyses to diagnostically distinguish the vaginal microflora associated with bad pregnancy outcomes during estrus. Our results will help to identify potential pathogens causing reproductive tract diseases, reduce the number of reproductive tract disease infections in pandas, and increase the birth rate of giant pandas in conservation breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (W.W.); (F.X.); (C.H.); (Y.Z.); (G.L.); (W.B.); (J.L.); (X.Y.); (Z.L.); (L.Z.); (F.F.); (J.G.)
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (W.W.); (F.X.); (C.H.); (Y.Z.); (G.L.); (W.B.); (J.L.); (X.Y.); (Z.L.); (L.Z.); (F.F.); (J.G.)
| |
Collapse
|
2
|
Onyango S, Mi JD, Koech A, Okiro P, Temmerman M, von Dadelszen P, Tribe RM, Omuse G, the PRECISE Network. Microbiota dynamics, metabolic and immune interactions in the cervicovaginal environment and their role in spontaneous preterm birth. Front Immunol 2023; 14:1306473. [PMID: 38196946 PMCID: PMC10774218 DOI: 10.3389/fimmu.2023.1306473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Differences in the cervicovaginal microbiota are associated with spontaneous preterm birth (sPTB), a significant cause of infant morbidity and mortality. Although establishing a direct causal link between cervicovaginal microbiota and sPTB remains challenging, recent advancements in sequencing technologies have facilitated the identification of microbial markers potentially linked to sPTB. Despite variations in findings, a recurring observation suggests that sPTB is associated with a more diverse and less stable vaginal microbiota across pregnancy trimesters. It is hypothesized that sPTB risk is likely to be modified via an intricate host-microbe interactions rather than due to the presence of a single microbial taxon or broad community state. Nonetheless, lactobacilli dominance is generally associated with term outcomes and contributes to a healthy vaginal environment through the production of lactic acid/maintenance of a low pH that excludes other pathogenic microorganisms. Additionally, the innate immunity of the host and metabolic interactions between cervicovaginal microbiota, such as the production of bacteriocins and the use of proteolytic enzymes, exerts a profound influence on microbial populations, activities, and host immune responses. These interplays collectively impact pregnancy outcomes. This review aims to summarize the complexity of cervicovaginal environment and microbiota dynamics, and associations with bacterial vaginosis and sPTB. There is also consideration on how probiotics may mitigate the risk of sPTB and bacterial vaginosis.
Collapse
Affiliation(s)
- Stanley Onyango
- Department of Pathology, Aga Khan University, Nairobi, Kenya
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Jia Dai Mi
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Angela Koech
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Patricia Okiro
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | - Marleen Temmerman
- Centre of Excellence Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - Peter von Dadelszen
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Rachel M. Tribe
- Faculty of Life Sciences and Medicine, Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Geoffrey Omuse
- Department of Pathology, Aga Khan University, Nairobi, Kenya
| | | |
Collapse
|
3
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Fowler SW, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. NPJ Biofilms Microbiomes 2023; 9:87. [PMID: 37985659 PMCID: PMC10661851 DOI: 10.1038/s41522-023-00454-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Vaginal microbial composition is associated with differential risk of urogenital infection. Although Lactobacillus spp. are thought to confer protection against infection, the lack of in vivo models resembling the human vaginal microbiota remains a prominent barrier to mechanistic discovery. Using 16S rRNA amplicon sequencing of C57BL/6J female mice, we found that vaginal microbial composition varies within and between colonies across three vivaria. Noting vaginal microbial plasticity in conventional mice, we assessed the vaginal microbiome of humanized microbiota mice (HMbmice). Like the community structure in conventional mice, HMbmice vaginal microbiota clustered into community state types but, uniquely, HMbmice communities were frequently dominated by Lactobacillus or Enterobacteriaceae. Compared to conventional mice, HMbmice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia. Although Escherichia and Lactobacillus both correlated with the absence of uterine GBS, vaginal pre-inoculation with exogenous HMbmouse-derived E. coli, but not Ligilactobacillus murinus, reduced vaginal GBS burden. Overall, HMbmice serve as a useful model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens.
Collapse
Affiliation(s)
- Marlyd E Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Vicki Mercado-Evans
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Jacob J Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Korinna Ruiz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Mallory B Ballard
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie W Fowler
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Ni J, Wang J, Zhao K, Chen Y, Xia S, Lai S. Vaginal Microbiome Dynamics of Cows in Different Parities. Animals (Basel) 2023; 13:2880. [PMID: 37760279 PMCID: PMC10525485 DOI: 10.3390/ani13182880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
At present, there is still room for research on the relationship between the vaginal microbiome and the reproductive health of dairy cows. In this study, high-throughput 16S rRNA sequencing technology was used to explore the differences of bacterial communities of dairy cows of different births, gain a deeper understanding of cow reproductive physiology, and maintain cow health. With the increase in parity, the number of vaginal flora decreased from 3511 to 469, but the number of species increased significantly, and Chao1 increased from 1226.41 ± 345.40 to 1467.76 ± 269.76. There was a significant difference in the number of vaginal microbiome functions between uncounted cows and calving cows. There was no significant difference in microbial diversity in calves. The relative abundance variation of vaginal microbiota in high-parity cows is less than that in low-parity cows. The amino acid metabolism of calves increased, the endocrine function of high-parity cows was enhanced, and the function of the vaginal microbiome increased after the first delivery, which gradually decreased with the increase in parity. This study also found that Methanobacteria and Caviibacter may be involved in amino acid metabolism and endocrine function, and they may play a key role in cow reproduction. This study provides an important theoretical basis for studying changes in vaginal microorganisms in dairy cows, improves the understanding of reproductive health and production performance, and provides a scientific basis for improving the reproductive management of dairy cows.
Collapse
Affiliation(s)
| | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (J.N.); (J.W.); (K.Z.); (Y.C.); (S.X.)
| |
Collapse
|
5
|
Tandon D, Shah N, Goriwale M, Karandikar K, Begum S, Patil AD, Munne K, Kamat S, Aranha C, Bhor VM. Mapping the vaginal microbiota variations in women from a community clinic in Mumbai, India. Indian J Med Microbiol 2023; 45:100393. [PMID: 37573043 DOI: 10.1016/j.ijmmb.2023.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE The vaginal microbiome contributes significantly to women's reproductive health and fluctuates due to various physiological and pathological factors. The study's objective is to map the vaginal microbiome of non-pregnant women and evaluate variations based on various potential factors influencing vaginal milieu. METHODS Fifty-two sexually active, non-pregnant women between 18 and 45 years were recruited from a community clinic and clinical history was recorded. Vaginal swabs were collected to assess the vaginal microbiome by sequencing the V3-V4 region of the 16S rRNA using the Illumina HiSeq platform, followed by data analysis with QIIME 2. Vaginal milieu was assessed by Nugent score and profiling cytokines in the cervico-vaginal lavage. RESULTS Lactobacillus iners (34.3%) were the most abundant species in all women. Significant changes in abundance of genera (Lactobacillus, Prevotella and Anaerococcus), expression of pro-inflammatory cytokine IFN-γ and changes in alpha and beta diversity was observed in women having asymptomatic bacterial vaginosis (BV). Differences in beta diversity were seen between healthy women and women exhibiting presence of Candida spp. Variations in the abundance of genera (Lactobacillus, Bifidobacterium, Porphyromonas) were observed in women who had delivery less than twelve months back, probably as more of these women (50%, 53.7%) had higher abnormal Nugent score. CONCLUSION Lactobacillus iners was the most prevalent vaginal species in women from a Mumbai community clinic. Maximum variations in the vaginal microbiome characterized by a perturbation of the Lactobacillus predominant vaginal microbiota are seen in those women who have asymptomatic BV and childbirth within last twelve months.
Collapse
Affiliation(s)
- Deepti Tandon
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| | - Nainisha Shah
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| | - Mayuri Goriwale
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| | - Kalyani Karandikar
- Department of Molecular Immunology and Microbiology, ICMR- National Institute for Research in Reproductive and Child Health (NIRRCH), Mumbai, Maharashtra, India.
| | - Shahina Begum
- Department of Biostatistics, ICMR-National Institute for Research in Reproductive and Child Health (NIRRCH), Maharashtra, India.
| | - Anushree D Patil
- Department of Clinical Research, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| | - Kiran Munne
- Department of Child Health Research, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| | - Sharmila Kamat
- Department of Child Health Research, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| | - Clara Aranha
- Department of Molecular Immunology and Microbiology, ICMR- National Institute for Research in Reproductive and Child Health (NIRRCH), Mumbai, Maharashtra, India.
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, ICMR- National Institute for Research in Reproductive and Child Health (NIRRCH), Mumbai, Maharashtra, India.
| |
Collapse
|
6
|
Hugon AM, Golos TG. Non-human primate models for understanding the impact of the microbiome on pregnancy and the female reproductive tract†. Biol Reprod 2023; 109:1-16. [PMID: 37040316 PMCID: PMC10344604 DOI: 10.1093/biolre/ioad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
The microbiome has been shown, or implicated to be involved, in multiple facets of human health and disease, including not only gastrointestinal health but also metabolism, immunity, and neurology. Although the predominant focus of microbiome research has been on the gut, other microbial communities such as the vaginal or cervical microbiome are likely involved in physiological homeostasis. Emerging studies also aim to understand the role of different microbial niches, such as the endometrial or placental microbial communities, on the physiology and pathophysiology of reproduction, including their impact on reproductive success and the etiology of adverse pregnancy outcomes (APOs). The study of the microbiome during pregnancy, specifically how changes in maternal microbial communities can lead to dysfunction and disease, can advance the understanding of reproductive health and the etiology of APOs. In this review, we will discuss the current state of non-human primate (NHP) reproductive microbiome research, highlight the progress with NHP models of reproduction, and the diagnostic potential of microbial alterations in a clinical setting to promote pregnancy health. NHP reproductive biology studies have the potential to expand the knowledge and understanding of female reproductive tract microbial communities and host-microbe or microbe-microbe interactions associated with reproductive health through sequencing and analysis. Furthermore, in this review, we aim to demonstrate that macaques are uniquely suited as high-fidelity models of human female reproductive pathology.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Amaral WZ, Lubach GR, Rendina DN, Phillips GJ, Lyte M, Coe CL. Significant Microbial Changes Are Evident in the Reproductive Tract of Pregnant Rhesus Monkeys at Mid-Gestation but Their Gut Microbiome Does Not Shift until Late Gestation. Microorganisms 2023; 11:1481. [PMID: 37374982 PMCID: PMC10304935 DOI: 10.3390/microorganisms11061481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Vaginal and rectal specimens were obtained from cycling, pregnant, and nursing rhesus monkeys to assess pregnancy-related changes in the commensal bacteria in their reproductive and intestinal tracts. Using 16S rRNA gene amplicon sequencing, significant differences were found only in the vagina at mid-gestation, not in the hindgut. To verify the apparent stability in gut bacterial composition at mid-gestation, the experiment was repeated with additional monkeys, and similar results were found with both 16S rRNA gene amplicon and metagenomic sequencing. A follow-up study investigated if bacterial changes in the hindgut might occur later in pregnancy. Gravid females were assessed closer to term and compared to nonpregnant females. By late pregnancy, significant differences in bacterial composition, including an increased abundance of 4 species of Lactobacillus and Bifidobacterium adolescentis, were detected, but without a shift in the overall community structure. Progesterone levels were assessed as a possible hormone mediator of bacterial change. The relative abundance of only some taxa (e.g., Bifidobacteriaceae) were specifically associated with progesterone. In summary, pregnancy changes the microbial profiles in monkeys, but the bacterial diversity in their lower reproductive tract is different from women, and the composition of their intestinal symbionts remains stable until late gestation when several Firmicutes become more prominent.
Collapse
Affiliation(s)
| | - Gabriele R. Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA; (G.R.L.); (D.N.R.)
| | - Danielle N. Rendina
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA; (G.R.L.); (D.N.R.)
- Health and Biosciences, International Flavors & Fragrances (IFF), Wilmington, DE 19803, USA
| | - Gregory J. Phillips
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.J.P.); (M.L.)
| | - Mark Lyte
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (G.J.P.); (M.L.)
| | - Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA; (G.R.L.); (D.N.R.)
| |
Collapse
|
8
|
The Connection between Immunocompetence and Reproduction in Wildlife. Life (Basel) 2023; 13:life13030785. [PMID: 36983939 PMCID: PMC10051471 DOI: 10.3390/life13030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Reproduction rate is important for the survival of animal populations. During gravidity, a trade-off occurs between the individual well-being of gravid females and investment in offspring. Due to the high synthesis and energy requirements for the growing fetus, other physiological activities are downregulated in pregnant females. This causes changes in the composition of the reproductive microbiome and a decreased immune response to presented antigens and pathogens. As a result, the immunocompetence of gravid wild animals declines. In general, therefore, increased infection rates during pregnancy can be observed in all wildlife species studied. In the course of evolution, however, this has apparently evolved as a suitable strategy to ensure the survival of the population as a whole.
Collapse
|
9
|
Mejia ME, Mercado-Evans V, Zulk JJ, Ottinger S, Ruiz K, Ballard MB, Britton RA, Patras KA. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527909. [PMID: 36798217 PMCID: PMC9934685 DOI: 10.1101/2023.02.09.527909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Vaginal microbiota composition is associated with differential risk of urogenital infection. Although vaginal Lactobacillus spp. are thought to confer protection through acidification, bacteriocin production, and immunomodulation, lack of an in vivo model system that closely resembles the human vaginal microbiota remains a prominent barrier to mechanistic discovery. We performed 16S rRNA amplicon sequencing of wildtype C57BL/6J mice, commonly used to study pathogen colonization, and found that the vaginal microbiome composition varies highly both within and between colonies from three distinct vivaria. Because of the strong influence of environmental exposure on vaginal microbiome composition, we assessed whether a humanized microbiota mouse ( HMb mice) would model a more human-like vaginal microbiota. Similar to humans and conventional mice, HMb mice vaginal microbiota clustered into five community state types ( h mCST). Uniquely, HMb mice vaginal communities were frequently dominated by Lactobacilli or Enterobacteriaceae . Compared to genetically-matched conventional mice, HMb mice were less susceptible to uterine ascension by urogenital pathobionts group B Streptococcus (GBS) and Prevotella bivia , but no differences were observed with uropathogenic E. coli . Specifically, vaginal Enterobacteriaceae and Lactobacillus were associated with the absence of uterine GBS. Anti-GBS activity of HMb mice vaginal E. coli and L. murinus isolates, representing Enterobacteriaceae and Lactobacillus respectively, were characterized in vitro and in vivo . Although L. murinus reduced GBS growth in vitro , vaginal pre-inoculation with HMb mouse-derived E. coli , but not L. murinus , conferred protection against vaginal GBS burden. Overall, the HMb mice are an improved model to elucidate the role of endogenous microbes in conferring protection against urogenital pathogens. IMPORTANCE An altered vaginal microbiota, typically with little to no levels of Lactobacillus , is associated with increased susceptibility to urogenital infections, although mechanisms driving this vulnerability are not fully understood. Despite known inhibitory properties of Lactobacillus against urogenital pathogens, clinical studies with Lactobacillus probiotics have shown mixed success. In this study, we characterize the impact of the vaginal microbiota on urogenital pathogen colonization using a humanized microbiota mouse model that more closely mimics the human vaginal microbiota. We found several vaginal bacterial taxa that correlated with reduced pathogen levels but showed discordant effects in pathogen inhibition between in vitro and in vivo assays. We propose that this humanized microbiota mouse platform is an improved model to describe the role of the vaginal microbiota in protection against urogenital pathogens. Furthermore, this model will be useful in testing efficacy of new probiotic strategies in the complex vaginal environment.
Collapse
|
10
|
Costagliola A, Liguori G, Nassauw LV. Neuronal control of the vagina in vertebrates: A review. Acta Histochem 2023; 125:151988. [PMID: 36566584 DOI: 10.1016/j.acthis.2022.151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND At present, there is an increased interest in the vaginal microbiome. It is believed that microbes play equally important roles in the vagina, including the modulation of neuronal pathways, as in the gut. However, in man as well as in animals, the vagina is the least well-studied part of the female reproductive system. The vagina, a fibromuscular tract, having two main functions, i.e., childbirth and sexual intercourse, is mainly innervated by the pudendal nerve and the pelvic splanchnic nerves (the uterovaginal nerve plexus) containing sympathetic, parasympathetic and nociceptive nerve fibers. Innervation density in the vaginal wall undergoes significant remodeling due to hormonally mediated physiological activity. Knowledge about expression and function of neuropeptides and neurotransmitters in the vaginal fibers is incomplete or not established. Most research concerning the neuroregulation of the vagina and the function and expression of neuropeptides and neurotransmitters, is performed in several vertebrate species, including large farm animals, rodents, domestic fowl and lizards. METHODS This review summarizes, on a bibliographic basis, the current knowledge on vaginal innervation and function of neuropeptides and neurotransmitters expressed in vaginal nerve fibers in several vertebrate species, including humans. The presence and role played by the local microbioma is also explored. CONCLUSION A thorough knowledge of the vaginal innervation is necessary to unravel the putative communication of the vaginal microbiome and vaginal nerve fibers, but also to understand the effects of vaginal pathologies and of administered drugs on the neuroregulation of the vagina.
Collapse
Affiliation(s)
- Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Delpino, 1, 80137 Naples, Italy.
| | - Giovanna Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Delpino, 1, 80137 Naples, Italy; Department of Prevention, ASL FG, Foggia, Italy.
| | - Luc Van Nassauw
- Laboratory of Human Anatomy & Embryology, Department ASTARC, Faculty of Medicine & Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
11
|
Female reproduction and the microbiota in mammals: Where are we? Theriogenology 2022; 194:144-153. [DOI: 10.1016/j.theriogenology.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|
12
|
Li Y, Yang F, Chen L, Duan S, Jin W, Liu Q, Xu H, Zhang W, Li Y, Wang J, He Z, Zhao Y. Intestinal microbial diversity in female rhesus ( Macaca mulatta) at different physiological periods. Front Microbiol 2022; 13:959315. [PMID: 36225360 PMCID: PMC9548999 DOI: 10.3389/fmicb.2022.959315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
To explore the relationship between the changes in the physiological period and the fecal microbial population of female rhesus monkeys by measuring microbial composition of fecal samples and the serum hormones. Blood and fecal samples were collected from six female adult rhesus monkeys during the menstrual period (MP), ovulation period (OP), and Luteal period (LP). Serum estradiol (E2) and progesterone (P) levels were determined by the chemiluminescence method and the stool samples were subjected to high-throughput 16S rRNA sequencing. The highest level of E2 and P secretions were during the MP, and LP, respectively. Stool samples produced valid sequences and the number of operational taxonomic unit/OTU was: 810056/3756 (MP), 845242/4159 (OP), 881560/3970 (LP). At the phylum level, the three groups of Firmicutes and Bacteroides accounted for > 95%. The dominant flora at the LP was Bacteroides (53.85%), the dominant flora at the MP and OP was Firmicutes, 64.08 and 56.53%, respectively. At the genus level, the dominant genus at the LP was Prevotella, the dominant genera at the MP were Prevotella, Oncococcus, Streptococcus, and Kurtella. The dominant genera at OP were Prevotella and Nocococcus. At the phylum level, P levels were negatively correlated to Firmicutes, Actinomycetes Actinobacteria, and Fibrobacteres, but positively correlated to Bacteroidetes. Likewise, E2 was positively correlated to Proteobacteria but negatively correlated to Euryarchaeota. At the genus level, P hormone showed a significant correlation with 16 bacterial species, and E2 was significantly correlated to seven bacterial species. Function prediction analysis revealed a high similarity between the MP and OP with six differentially functional genes (DFGs) between them and 11 DFGs between OP and LP (P < 0.05). Fecal microbiota types of female rhesus monkeys varied with different stages of the menstrual cycle, possibly related to changes in hormone levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
13
|
Argentini C, Fontana F, Alessandri G, Lugli GA, Mancabelli L, Ossiprandi MC, van Sinderen D, Ventura M, Milani C, Turroni F. Evaluation of Modulatory Activities of Lactobacillus crispatus Strains in the Context of the Vaginal Microbiota. Microbiol Spectr 2022; 10:e0273321. [PMID: 35266820 PMCID: PMC9045136 DOI: 10.1128/spectrum.02733-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
It has been widely reported that members of the genus Lactobacillus dominate the vaginal microbiota, which is represented by the most prevalent species Lactobacillus crispatus, Lactobacillus jensenii, Lactobacillus gasseri, and Lactobacillus iners. L. crispatus is furthermore considered an important microbial biomarker due to its professed beneficial implications on vaginal health. In order to identify molecular mechanisms responsible for health-promoting activities that are believed to be elicited by L. crispatus, we performed in silico investigations of the intraspecies biodiversity of vaginal microbiomes followed by in vitro experiments involving various L. crispatus strains along with other vaginal Lactobacillus species mentioned above. Specifically, we assessed their antibacterial activities against a variety of pathogenic microorganisms that are associated with vaginal infections. Moreover, coculture experiments of L. crispatus strains showing the most antibacterial activity against different pathogens revealed distinct ecological fitness and competitive properties with regard to other microbial colonizers. Interestingly, we observed that even phylogenetically closely related L. crispatus strains possess unique features in terms of their antimicrobial activities and associated competitive abilities, which suggests that they exert marked competition and evolutionary pressure within their specific environmental niche. IMPORTANCE The human vaginal microbiota includes all microorganisms that colonize the vaginal tract. In this context, a vaginal microbiota dominated by Lactobacillus and specifically by Lactobacillus crispatus is considered a hallmark of health. The role of L. crispatus in maintaining host health is linked to its modulatory activity toward other members of the vaginal ecosystem and toward the host. In this study, in vitro experiments followed by genetic analyses of the mechanisms used by L. crispatus in colonizing the vaginal ecological niche, particularly in the production of different antimicrobial compounds, were evaluated, highlighting some intriguing novel aspects concerning the genetic variability of this species. Our results indicate that this species has adapted to its niche and may still undergo adaptation to enhance its competitiveness for niche colonization.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria Cristina Ossiprandi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Comizzoli P, Power ML, Bornbusch SL, Muletz-Wolz CR. Interactions between reproductive biology and microbiomes in wild animal species. Anim Microbiome 2021; 3:87. [PMID: 34949226 PMCID: PMC8697499 DOI: 10.1186/s42523-021-00156-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Many parts of the animal body harbor microbial communities, known as animal-associated microbiomes, that affect the regulation of physiological functions. Studies in human and animal models have demonstrated that the reproductive biology and such microbiomes also interact. However, this concept is poorly studied in wild animal species and little is known about the implications to fertility, parental/offspring health, and survival in natural habitats. The objective of this review is to (1) specify the interactions between animals' reproductive biology, including reproductive signaling, pregnancy, and offspring development, and their microbiomes, with an emphasis on wild species and (2) identify important research gaps as well as areas for further studies. While microbiomes present in the reproductive tract play the most direct role, other bodily microbiomes may also contribute to facilitating reproduction. In fish, amphibians, reptiles, birds, and mammals, endogenous processes related to the host physiology and behavior (visual and olfactory reproductive signals, copulation) can both influence and be influenced by the structure and function of microbial communities. In addition, exposures to maternal microbiomes in mammals (through vagina, skin, and milk) shape the offspring microbiomes, which, in turn, affects health later in life. Importantly, for all wild animal species, host-associated microbiomes are also influenced by environmental variations. There is still limited literature on wild animals compared to the large body of research on model species and humans. However, the few studies in wild species clearly highlight the necessity of increased research in rare and endangered animals to optimize conservation efforts in situ and ex situ. Thus, the link between microbiomes and reproduction is an emerging and critical component in wild animal conservation.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Michael L. Power
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Sally L. Bornbusch
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Carly R. Muletz-Wolz
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| |
Collapse
|
15
|
An Insight into Vaginal Microbiome Techniques. Life (Basel) 2021; 11:life11111229. [PMID: 34833105 PMCID: PMC8623751 DOI: 10.3390/life11111229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
There is a unique microbial community in the female lower genital tract known as the vaginal microbiota, which varies in composition and density and provides significant benefits during pregnancy, reproductive cyclicity, healthy newborn delivery, protection from preterm birth, infections such as UTIs, bacterial vaginosis, and so on, and improves the efficacy of treatments for vaginal cancers. Methods: It is necessary to know how the vaginal microbiome is composed in order to make an accurate diagnosis of the diseases listed above. A microbiome’s members are difficult to classify, and the way microbial communities function and influence host–pathogen interactions are difficult to understand. More and more metagenomic studies are able to unravel such complexities due to advances in high-throughput sequencing and bioinformatics. When it comes to vaginal microbiota research, we’ll be looking at the use of modern techniques and strategies that can be used to investigate variations in vaginal microbiota in order to detect diseases earlier, better treat vaginal disorders, and boost women’s health. Discussion: The discussed techniques and strategies may improve the treatment of vaginal disorders and may be beneficial for women’s overall health.
Collapse
|
16
|
Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol 2021; 11:631972. [PMID: 33898328 PMCID: PMC8058480 DOI: 10.3389/fcimb.2021.631972] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The vaginal microbiome is an intricate and dynamic microecosystem that constantly undergoes fluctuations during the female menstrual cycle and the woman's entire life. A healthy vaginal microbiome is dominated by Lactobacillus which produce various antimicrobial compounds. Bacterial vaginosis (BV) is characterized by the loss or sharp decline in the total number of Lactobacillus and a corresponding marked increase in the concentration of anaerobic microbes. BV is a highly prevalent disorder of the vaginal microbiota among women of reproductive age globally. BV is confirmed to be associated with adverse gynecologic and obstetric outcomes, such as sexually transmitted infections, pelvic inflammatory disease, and preterm birth. Gardnerella vaginalis is the most common microorganism identified from BV. It is the predominant microbe in polymicrobial biofilms that could shelter G. vaginalis and other BV-associated microbes from adverse host environments. Many efforts have been made to increase our understanding of the vaginal microbiome in health and BV. Thus, improved novel and accurate diagnosis and therapeutic strategies for BV have been developed. This review covers the features of vaginal microbiome, BV, BV-associated diseases, and various strategies of diagnosis and treatment of BV, with an emphasis on recent research progresses.
Collapse
Affiliation(s)
| | | | | | - Rongguo Li
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Janiak MC, Montague MJ, Villamil CI, Stock MK, Trujillo AE, DePasquale AN, Orkin JD, Bauman Surratt SE, Gonzalez O, Platt ML, Martínez MI, Antón SC, Dominguez-Bello MG, Melin AD, Higham JP. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. MICROBIOME 2021; 9:68. [PMID: 33752735 PMCID: PMC7986251 DOI: 10.1186/s40168-021-01009-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND An individual's microbiome changes over the course of its lifetime, especially during infancy, and again in old age. Confounding factors such as diet and healthcare make it difficult to disentangle the interactions between age, health, and microbial changes in humans. Animal models present an excellent opportunity to study age- and sex-linked variation in the microbiome, but captivity is known to influence animal microbial abundance and composition, while studies of free-ranging animals are typically limited to studies of the fecal microbiome using samples collected non-invasively. Here, we analyze a large dataset of oral, rectal, and genital swabs collected from 105 free-ranging rhesus macaques (Macaca mulatta, aged 1 month-26 years), comprising one entire social group, from the island of Cayo Santiago, Puerto Rico. We sequenced 16S V4 rRNA amplicons for all samples. RESULTS Infant gut microbial communities had significantly higher relative abundances of Bifidobacterium and Bacteroides and lower abundances of Ruminococcus, Fibrobacter, and Treponema compared to older age groups, consistent with a diet high in milk rather than solid foods. The genital microbiome varied widely between males and females in beta-diversity, taxonomic composition, and predicted functional profiles. Interestingly, only penile, but not vaginal, microbiomes exhibited distinct age-related changes in microbial beta-diversity, taxonomic composition, and predicted functions. Oral microbiome composition was associated with age, and was most distinctive between infants and other age classes. CONCLUSIONS Across all three body regions, with notable exceptions in the penile microbiome, while infants were distinctly different from other age groups, microbiomes of adults were relatively invariant, even in advanced age. While vaginal microbiomes were exceptionally stable, penile microbiomes were quite variable, especially at the onset of reproductive age. Relative invariance among adults, including elderly individuals, is contrary to findings in humans and mice. We discuss potential explanations for this observation, including that age-related microbiome variation seen in humans may be related to changes in diet and lifestyle. Video abstract.
Collapse
Affiliation(s)
- Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Alberta, Canada.
- Department of Anthropology, New York University, New York, USA.
- School of Science, Engineering and Environment, University of Salford, Salford, UK.
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Catalina I Villamil
- School of Chiropractic, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | - Amber E Trujillo
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Allegra N DePasquale
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada
| | - Joseph D Orkin
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona, Spain
| | | | - Olga Gonzalez
- Disease Intervention and Prevention, Southwest National Primate Research Center, San Antonio, TX, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Susan C Antón
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Department of Anthropology, Rutgers University, New Brunswick, NJ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Alberta, Canada
| | - James P Higham
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| |
Collapse
|
18
|
Cheah FC, Lai CH, Tan GC, Swaminathan A, Wong KK, Wong YP, Tan TL. Intrauterine Gardnerella vaginalis Infection Results in Fetal Growth Restriction and Alveolar Septal Hypertrophy in a Rabbit Model. Front Pediatr 2021; 8:593802. [PMID: 33553066 PMCID: PMC7862757 DOI: 10.3389/fped.2020.593802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Gardnerella vaginalis (GV) is most frequently associated with bacterial vaginosis and is the second most common etiology causing intrauterine infection after Ureaplasma urealyticum. Intrauterine GV infection adversely affects pregnancy outcomes, resulting in preterm birth, fetal growth restriction, and neonatal pneumonia. The knowledge of how GV exerts its effects is limited. We developed an in vivo animal model to study its effects on fetal development. Materials and Methods: A survival mini-laparotomy was conducted on New Zealand rabbits on gestational day 21 (28 weeks of human pregnancy). In each dam, fetuses in the right uterine horn received intra-amniotic 0.5 × 102 colony-forming units of GV injections each, while their littermate controls in the left horn received sterile saline injections. A second laparotomy was performed seven days later. Assessment of the fetal pups, histopathology of the placenta and histomorphometric examination of the fetal lung tissues was done. Results: Three dams with a combined total of 12 fetuses were exposed to intra-amniotic GV, and 9 fetuses were unexposed. The weights of fetuses, placenta, and fetal lung were significantly lower in the GV group than the saline-inoculated control group [mean gross weight, GV (19.8 ± 3.8 g) vs. control (27.9 ± 1.7 g), p < 0.001; mean placenta weight, GV (5.5 ± 1.0 g) vs. control (6.5 ± 0.7 g), p = 0.027; mean fetal lung weight, GV (0.59 ± 0.11 g) vs. control (0.91 ± 0.08 g), p = 0.002. There was a two-fold increase in the multinucleated syncytiotrophoblasts in the placenta of the GV group than their littermate controls (82.9 ± 14.9 vs. 41.6 ± 13.4, p < 0.001). The mean alveolar septae of GV fetuses was significantly thicker than the control (14.8 ± 2.8 μm vs. 12.4 ± 3.8 μm, p = 0.007). Correspondingly, the proliferative index in the interalveolar septum was 1.8-fold higher in the GV group than controls (24.9 ± 6.6% vs. 14.2 ± 2.9%, p = 0.011). The number of alveoli and alveolar surface area did not vary between groups. Discussion: Low-dose intra-amniotic GV injection induces fetal growth restriction, increased placental multinucleated syncytiotrophoblasts and fetal lung re-modeling characterized by alveolar septal hypertrophy with cellular proliferative changes. Conclusion: This intra-amniotic model could be utilized in future studies to elucidate the acute and chronic effects of GV intrauterine infections.
Collapse
Affiliation(s)
- Fook-Choe Cheah
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Chee Hoe Lai
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Anushia Swaminathan
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Kon Ken Wong
- Department of Microbiology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Tian-Lee Tan
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Rosca AS, Castro J, Sousa LGV, Cerca N. Gardnerella and vaginal health: the truth is out there. FEMS Microbiol Rev 2020; 44:73-105. [PMID: 31697363 DOI: 10.1093/femsre/fuz027] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The human vagina is a dynamic ecosystem in which homeostasis depends on mutually beneficial interactions between the host and their microorganisms. However, the vaginal ecosystem can be thrown off balance by a wide variety of factors. Bacterial vaginosis (BV) is the most common vaginal infection in women of childbearing age but its etiology is not yet fully understood, with different controversial theories being raised over the years. What is generally accepted is that BV is often characterized by a shift in the composition of the normal vaginal microbiota, from a Lactobacillus species dominated microbiota to a mixture of anaerobic and facultative anaerobic bacteria. During BV, a polymicrobial biofilm develops in the vaginal microenvironment, being mainly composed of Gardnerella species. The interactions between vaginal microorganisms are thought to play a pivotal role in the shift from health to disease and might also increase the risk of sexually transmitted infections acquisition. Here, we review the current knowledge regarding the specific interactions that occur in the vaginal niche and discuss mechanisms by which these interactions might be mediated. Furthermore, we discuss the importance of novel strategies to fight chronic vaginal infections.
Collapse
Affiliation(s)
- Aliona S Rosca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lúcia G V Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
20
|
Morrill S, Gilbert NM, Lewis AL. Gardnerella vaginalis as a Cause of Bacterial Vaginosis: Appraisal of the Evidence From in vivo Models. Front Cell Infect Microbiol 2020; 10:168. [PMID: 32391287 PMCID: PMC7193744 DOI: 10.3389/fcimb.2020.00168] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Koch's postulates dictate the use of experimental models to illustrate features of human disease and provide evidence for a singular organism as the cause. The underlying cause(s) of bacterial vaginosis (BV) has been debated in the literature for over half a century. In 1955, it was first reported that a bacterium now known as Gardnerella vaginalis may be the cause of a condition (BV) resulting in higher vaginal pH, thin discharge, a fishy odor, and the presence of epithelial cells covered in bacteria. Here we review contemporary and historical studies on BV with a focus on reports of experimental infections in human or animal models using Gardnerella vaginalis. We evaluate experimental evidence for the hypothesis that G. vaginalis is sufficient to trigger clinical features of BV or relevant health complications associated with the condition. Additionally, we evaluate in vivo models of co-infection employing G. vaginalis together with other bacterial species to investigate evidence for the hypothesis that G. vaginalis may encourage colonization or virulence of other potential pathogens. Together, these studies paint a complex picture in which G. vaginalis has both direct and indirect roles in the features, health complications, and co-infections associated with BV. We briefly review the current taxonomic landscape and genetic diversity pertinent to Gardnerella and note the limitations of sequence-based studies using different marker genes and priming sites. Although much more study is needed to refine our understanding of how BV develops and persists within the human host, applications of the experimental aspects of Koch's postulates have provided an important glimpse into some of the causal relationships that may govern this condition in vivo.
Collapse
Affiliation(s)
- Sydney Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicole M Gilbert
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda L Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
21
|
Drea CM. Design, delivery and perception of condition-dependent chemical signals in strepsirrhine primates: implications for human olfactory communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190264. [PMID: 32306880 DOI: 10.1098/rstb.2019.0264] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The study of human chemical communication benefits from comparative perspectives that relate humans, conceptually and empirically, to other primates. All major primate groups rely on intraspecific chemosignals, but strepsirrhines present the greatest diversity and specialization, providing a rich framework for examining design, delivery and perception. Strepsirrhines actively scent mark, possess a functional vomeronasal organ, investigate scents via olfactory and gustatory means, and are exquisitely sensitive to chemically encoded messages. Variation in delivery, scent mixing and multimodality alters signal detection, longevity and intended audience. Based on an integrative, 19-species review, the main scent source used (excretory versus glandular) differentiates nocturnal from diurnal or cathemeral species, reflecting differing socioecological demands and evolutionary trajectories. Condition-dependent signals reflect immutable (species, sex, identity, genetic diversity, immunity and kinship) and transient (health, social status, reproductive state and breeding history) traits, consistent with socio-reproductive functions. Sex reversals in glandular elaboration, marking rates or chemical richness in female-dominant species implicate sexual selection of olfactory ornaments in both sexes. Whereas some compounds may be endogenously produced and modified (e.g. via hormones), microbial analyses of different odorants support the fermentation hypothesis of bacterial contribution. The intimate contexts of information transfer and varied functions provide important parallels applicable to olfactory communication in humans. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Christine M Drea
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708-0383, USA.,Department of Biology, Duke University, Durham, NC 27708-0383, USA
| |
Collapse
|
22
|
Rojas CA, Holekamp KE, Winters AD, Theis KR. Body site-specific microbiota reflect sex and age-class among wild spotted hyenas. FEMS Microbiol Ecol 2020; 96:5700710. [PMID: 31926016 DOI: 10.1093/femsec/fiaa007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Host-associated microbial communities, henceforth 'microbiota', can affect the physiology and behavior of their hosts. In mammals, host ecological, social and environmental variables are associated with variation in microbial communities. Within individuals in a given mammalian species, the microbiota also partitions by body site. Here, we build on this work and sequence the bacterial 16S rRNA gene to profile the microbiota at six distinct body sites (ear, nasal and oral cavities, prepuce, rectum and anal scent gland) in a population of wild spotted hyenas (Crocuta crocuta), which are highly social, large African carnivores. We inquired whether microbiota at these body sites vary with host sex or social rank among juvenile hyenas, and whether they differ between juvenile females and adult females. We found that the scent gland microbiota differed between juvenile males and juvenile females, whereas the prepuce and rectal microbiota differed between adult females and juvenile females. Social rank, however, was not a significant predictor of microbiota profiles. Additionally, the microbiota varied considerably among the six sampled body sites and exhibited strong specificity among individual hyenas. Thus, our findings suggest that site-specific niche selection is a primary driver of microbiota structure in mammals, but endogenous host factors may also be influential.
Collapse
Affiliation(s)
- Connie A Rojas
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, 293 Farm Lane, East Lansing, MI, 48824, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Rd, East Lansing, MI, 48824, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI, 48201, USA
| |
Collapse
|
23
|
Levy M, Bassis CM, Kennedy E, Yoest KE, Becker JB, Bell J, Berger MB, Bruns TM. The rodent vaginal microbiome across the estrous cycle and the effect of genital nerve electrical stimulation. PLoS One 2020; 15:e0230170. [PMID: 32163469 PMCID: PMC7067422 DOI: 10.1371/journal.pone.0230170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Treatment options are limited for the approximately 40% of postmenopausal women worldwide who suffer from female sexual dysfunction (FSD). Neural stimulation has shown potential as a treatment for genital arousal FSD, however the mechanisms for its improvement are unknown. One potential cause of some cases of genital arousal FSD are changes to the composition of the vaginal microbiota, which is associated with vulvovaginal atrophy. The primary hypothesis of this study was that neural stimulation may induce healthy changes in the vaginal microbiome, thereby improving genital arousal FSD symptoms. In this study we used healthy rats, which are a common animal model for sexual function, however the rat vaginal microbiome is understudied. Thus this study also sought to examine the composition of the rat vaginal microbiota. Treatment rats (n = 5) received 30 minutes of cutaneous electrical stimulation targeting the genital branch of the pudendal nerve, and Control animals (n = 4) had 30-minute sessions without stimulation. Vaginal lavage samples were taken during a 14-day baseline period including multiple estrous periods and after twice-weekly 30-minute sessions across a six-week trial period. Analysis of 16S rRNA gene sequences was used to characterize the rat vaginal microbiota in baseline samples and determine the effect of stimulation. We found that the rat vaginal microbiota is dominated by Proteobacteria, Firmicutes, and Actinobacteria, which changed in relative abundance during the estrous cycle and in relationship to each other. While the overall stimulation effects were unclear in these healthy rats, some Treatment animals had less alteration in microbiota composition between sequential samples than Control animals, suggesting that stimulation may help stabilize the vaginal microbiome. Future studies may consider additional physiological parameters, in addition to the microbiome composition, to further examine vaginal health and the effects of stimulation.
Collapse
Affiliation(s)
- Micah Levy
- Neuroscience, University of Michigan, Ann Arbor, Michigan, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christine M. Bassis
- Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric Kennedy
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Katie E. Yoest
- Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jill B. Becker
- Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jason Bell
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mitchell B. Berger
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Obstetrics and Gynecology, Main Line Health, Wynnewood, Pennsylvania, United States of America
| | - Tim M. Bruns
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Hong X, Fang S, Huang K, Yin J, Chen J, Xuan Y, Zhu J, Ma J, Qin P, Peng D, Wang N, Wang B. Characteristics of the vaginal microbiome in cross-border female sex workers in China: a case-control study. PeerJ 2019; 7:e8131. [PMID: 31803537 PMCID: PMC6886492 DOI: 10.7717/peerj.8131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/31/2019] [Indexed: 01/19/2023] Open
Abstract
Background Female sex workers (FSWs) are key groups in the transmission of sexual transmitted infections (STI), and vaginal microbiome variations play an important role in transmission. We aimed to explore the characteristics of vaginal microbiome among FSWs. Materials and Methods A total of 24 cross-border FSWs were randomly selected from a cross-sectional survey for female sex workers in southwest China. Thirty-seven female non-sex workers (FNSWs) were randomly selected from the gynecology clinic and health examination center. Vaginal swabs were collected, bacterial DNA extracted and 16S rRNA genes were sequenced. Differences in the vaginal microbiome between both groups were compared using bioinformatics analysis. Results One DNA sample was excluded due to unqualified concentration, therefore 60 samples were sequenced. FSWs had significantly different vaginal microbiota β diversity, but undifferentiated α diversity when compared with non-sex workers. The average relative abundance of Sneathia, Shigella, Neisseria, Chlamydia, Prevotella, Enterococcus and Ureaplasma among FSWs was higher than FNSWs, and relative abundance of Atopobium in FSWs was lower than FNSWs. The Lactobacillus genus was the major genus in both groups. At the species level, Lactobacllus crispatus, Lactobacllus gasseri and Lactobacllus jensenii, in female sex workers, were lower when compared to FNSWs. Conclusion There were distinct differences in vaginal bacteria variety between FSWs and FNSWs. Some disease-related genus were also more abundant in FSWs. Based on these observations, further research is required to identify microbiome communities related to high STI risks and other diseases in these cohorts.
Collapse
Affiliation(s)
- Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | | | - Kaiping Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Jianshuang Chen
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yan Xuan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Jing Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Jun Ma
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Pengfei Qin
- Department of Obstetrics and Gynecology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ning Wang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Lactation and menstruation shift the vaginal microbiota in captive rhesus monkeys to be more similar to the male urethral microbiota. Sci Rep 2019; 9:17399. [PMID: 31758047 PMCID: PMC6874612 DOI: 10.1038/s41598-019-53976-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
The vaginal microbiota of nonhuman primates differs substantially from humans in terms of Lactobacillus abundance, overall taxonomic diversity, and vaginal pH. Given these differences, it remains unclear in what way the nonhuman primate genital microbiota protects against pathogens, in particular sexually transmitted infections. Considering the effect that microbiota variations can have on disease acquisition and outcome, we examined endogenous and exogenous factors that influence the urogenital microbiota of male and female captive rhesus monkeys. The male urethral (n = 37) and vaginal (n = 194) microbiota of 11 breeding groups were examined in a cross-sectional study. During lactation and menstruation, the vaginal microbiota becomes significantly more diverse and more similar to the microbes observed in the male urethra. Group association and cage-mate (sexual partners) relationships were additionally associated with significant differences in the urogenital microbiota. Our results demonstrate that microbiota considerations are necessary in order to make informed selection of nonhuman primates as translational animal models.
Collapse
|
26
|
Heil BA, Paccamonti DL, Sones JL. Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiol Genomics 2019; 51:390-399. [PMID: 31251700 DOI: 10.1152/physiolgenomics.00045.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of the microbiome in humans, it has been studied in many mammalian species. Different microbiological communities with variable richness and diversity have been found among these species in distinct areas of the reproductive tract. Human studies have shown that the composition of the microbiome is dependent on body site and several host-related factors. Furthermore, specific phyla have been identified among the different species and within distinct areas of the female reproductive tract, but a "core" microbiome of the female reproductive tract has not been defined in any species. Moreover, the function of the microbiome in the reproductive tract is not yet fully understood. However, it has been suggested that a change in diversity of the microbiome and the presence or absence of specific microbial species might be useful indicators of pregnancy outcomes. Increased comprehensive knowledge of the microbiological communities in the female reproductive tract is needed since adverse outcomes represent a significant problem to many species, including livestock, exotic or endangered species, and humans. To the authors' knowledge, a review combining current female reproductive tract microbiome data among different mammalian species has not been published yet. Herein is a comprehensive review of what is known in the field of the female reproductive microbiome and how it correlates with reproductive success or failure in mammals. Further studies may lead to optimization of therapies in the treatment of reproductive tract infections and pregnancy failure, and may create opportunities for novel approaches for improving reproductive efficiency in animals and people.
Collapse
Affiliation(s)
- Babiche A Heil
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Dale L Paccamonti
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Jenny L Sones
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
27
|
Greene LK, Bornbusch SL, McKenney EA, Harris RL, Gorvetzian SR, Yoder AD, Drea CM. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am J Primatol 2019; 81:e22974. [PMID: 30932230 DOI: 10.1002/ajp.22974] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022]
Abstract
Research on animal microbiomes is increasingly aimed at determining the evolutionary and ecological factors that govern host-microbiome dynamics, which are invariably intertwined and potentially synergistic. We present three empirical studies related to this topic, each of which relies on the diversity of Malagasy lemurs (representing a total of 19 species) and the comparative approach applied across scales of analysis. In Study 1, we compare gut microbial membership across 14 species in the wild to test the relative importance of host phylogeny and feeding strategy in mediating microbiome structure. Whereas host phylogeny strongly predicted community composition, the same feeding strategies shared by distant relatives did not produce convergent microbial consortia, but rather shaped microbiomes in host lineage-specific ways, particularly in folivores. In Study 2, we compare 14 species of wild and captive folivores, frugivores, and omnivores, to highlight the importance of captive populations for advancing gut microbiome research. We show that the perturbational effect of captivity is mediated by host feeding strategy and can be mitigated, in part, by modified animal management. In Study 3, we examine various scent-gland microbiomes across three species in the wild or captivity and show them to vary by host species, sex, body site, and a proxy of social status. These rare data provide support for the bacterial fermentation hypothesis in olfactory signal production and implicate steroid hormones as mediators of microbial community structure. We conclude by discussing the role of scale in comparative microbial studies, the links between feeding strategy and host-microbiome coadaptation, the underappreciated benefits of captive populations for advancing conservation research, and the need to consider the entirety of an animal's microbiota. Ultimately, these studies will help move the field from exploratory to hypothesis-driven research.
Collapse
Affiliation(s)
- Lydia K Greene
- Duke University Program in Ecology, Duke University, Durham, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Primate Microbiome Project, Minneapolis, Minnesota
| | - Sally L Bornbusch
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina.,North Carolina Museum of Natural Sciences, Raleigh, North Carolina
| | - Rachel L Harris
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Sarah R Gorvetzian
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina
| | - Christine M Drea
- Duke University Program in Ecology, Duke University, Durham, North Carolina.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
28
|
Taylor MJ, Mannan RW, U'Ren JM, Garber NP, Gallery RE, Arnold AE. Age-related variation in the oral microbiome of urban Cooper's hawks (Accipiter cooperii). BMC Microbiol 2019; 19:47. [PMID: 30791867 PMCID: PMC6385412 DOI: 10.1186/s12866-019-1413-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/07/2019] [Indexed: 11/14/2022] Open
Abstract
Background Bird species worldwide are affected by trichomoniasis caused by the protist Trichomonas gallinae. In avivorous raptors such as Cooper’s hawks (Accipiter cooperii), nestlings are more susceptible than fledglings and adults. Previous research suggested a link between oral pH and susceptibility: the oral pH of fledgling and adult hawks is more than seven times more acidic than that of nestlings. We speculated that this age-specific difference in pH would correspond to age-specific differences in the oral microbiota of Cooper’s hawks. We examined the oral microbiomes of 31 healthy, wild Cooper’s hawks in Tucson, Arizona (USA). Individuals represented three age classes (nestlings, fledglings, and adults). We designed our study with multiple controls, replicated sampling, mock communities, and stringent quality-controls to address challenges that can limit the inferential quality of microbiome data sets. Results Richness of bacterial communities in oral cavities of Cooper’s hawks differed as a function of age but not as a function of sex, sampling date, or sampling location. Bacterial communities in oral cavities of nestlings differed from those of fledglings and adults, whereas communities in fledglings and adults did not differ from each other. Communities were similar in males and females and did not differ over the sampling season. Prevalence of acid-producing bacteria in fledgling and adults vs. nestlings is consistent with previous reports of age-specific variation in oral pH, but further research is needed to establish a causal link to pH levels or susceptibility to disease. Analyses of mock communities demonstrated high repeatability and showed that operon number and read abundance were highly correlated. Conclusions The oral microbiota of wild Cooper’s hawks differs between nestlings and older birds. Variation in the oral microbiome is consistent with differences in oral pH between nestlings and older individuals. Overall our study provides a first perspective on bacterial communities associated with oral cavities of a wild raptor. Electronic supplementary material The online version of this article (10.1186/s12866-019-1413-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael J Taylor
- School of Natural Resources and the Environment, The University of Arizona, Tucson, USA
| | - R William Mannan
- School of Natural Resources and the Environment, The University of Arizona, Tucson, USA
| | - Jana M U'Ren
- Department of Biosystems Engineering, The University of Arizona, Tucson, USA.,School of Plant Sciences, The University of Arizona, Tucson, USA
| | | | - Rachel E Gallery
- School of Natural Resources and the Environment, The University of Arizona, Tucson, USA.,Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, The University of Arizona, Tucson, USA. .,Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, USA.
| |
Collapse
|
29
|
Comizzoli P, Power M. Reproductive Microbiomes in Wild Animal Species: A New Dimension in Conservation Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:225-240. [PMID: 31471799 DOI: 10.1007/978-3-030-23633-5_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Communities of microbes have coevolved in animal organisms and are found in almost every part of the body. Compositions of those communities (microbiota) as well as their genomes and genes (microbiomes) are critical for functional regulations of the body organ systems-the digestive or 'gut' microbiome being the most described so far. Based on extensive research in humans, microbiomes in the reproductive tract may play a role in reproductive functions and pregnancy. However, in wild animal species, those microbiomes have been poorly studied, and as a result, little is known about their involvement in fertility or parental/offspring health. This emerging research area is highly relevant to conservation biology from captive breeding management to successful reintroduction or maintenance of wild populations. The objective of this chapter is to review current knowledge about reproductive microbiomes in healthy wild animal species. While recognizing the current technical limits of microbial identification in all animal species, we also explore the link between microbial communities (within female or male reproductive systems) and fertility, from conception to birth outcome. In addition, it is critical to understanding how reproductive microbiomes are affected by environmental factors (including captivity, contact with other individuals, or changes in the ecosystem) to optimize conservation efforts. Thus, reproductive microbiomes represent a novel dimension in conservation biology that will likely gain importance in the future.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.
| | - M Power
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| |
Collapse
|
30
|
Wallace JG, Potts RH, Szamosi JC, Surette MG, Sloboda DM. The murine female intestinal microbiota does not shift throughout the estrous cycle. PLoS One 2018; 13:e0200729. [PMID: 30011327 PMCID: PMC6047814 DOI: 10.1371/journal.pone.0200729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/02/2018] [Indexed: 01/12/2023] Open
Abstract
Pregnancy is accompanied by maternal physiological adaptations including metabolic, endocrine, immune, cardiovascular, skeletomuscular and neurological modifications that facilitate fetal and placental growth and development. Emerging evidence suggests that the maternal intestinal microbiota is modified over the course of healthy pregnancy. We have recently identified a maternal intestinal microbial shift within hours of conception; a shift that continued with advancing gestation. It is possible that maternal gut bacterial profiles might be associated with the known endocrine changes that accompany the female reproductive (estrous) cycle. Methods: To determine whether the estrous cycle influenced the shifts in the maternal intestinal microbiota, time-matched fecal pellets were collected daily for 3 consecutive estrous cycles from individually housed, non-pregnant female C57BL/6J mice (n = 10) fed a control diet. Estrous stage was identified by cell type predominance in vaginal cytological samples. The corresponding fecal pellets for each estrous stage were processed for bacterial 16S rRNA sequencing of the variable 3 (V3) region. Results: Estrous cycle stage accounted for a very small and not statistically significant proportion of the variation in the fecal microbiota according to PERMANOVA testing performed on Bray-Curtis dissimilarity scores. These values displayed no significant clustering of fecal microbial communities by estrous stage. Conclusion: The estrous cycle does not result in any significant shift in the intestinal microbial community in the reproductively mature, regularly cycling female mouse.
Collapse
Affiliation(s)
- Jessica G. Wallace
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Ryan H. Potts
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Jake C. Szamosi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Michael G. Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Deborah M. Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada
- Department of Pediatrics, McMaster University, Hamilton, Canada
- * E-mail:
| |
Collapse
|
31
|
Eastman AJ, Bergin IL, Chai D, Bassis CM, LeBar W, Oluoch GO, Liechty ER, Nyachieo A, Young VB, Aronoff DM, Patton DL, Bell JD. Impact of the Levonorgestrel-Releasing Intrauterine System on the Progression of Chlamydia trachomatis Infection to Pelvic Inflammatory Disease in a Baboon Model. J Infect Dis 2018; 217:656-666. [PMID: 29253201 PMCID: PMC5853867 DOI: 10.1093/infdis/jix545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Background Understanding the relationship between the levonorgestrel (LNG)-releasing intrauterine system (IUS) and sexually transmitted infections (STIs) is increasingly important as use of the LNG-IUS grows to include women at higher risk for STIs. This study assessed the impact of the LNG-IUS on development of Chlamydia trachomatis pelvic inflammatory disease, using a baboon model. Methods Baboons with and those without the LNG-IUS were cervically inoculated with C. trachomatis and monitored daily, and cervical and fallopian tube swab specimens were collected weekly for C. trachomatis quantitation by nucleic acid amplification testing and culture. Vaginal swab specimens were collected for cytokine analysis, and serum samples were obtained for detection of C. trachomatis antibodies. Results The LNG-IUS resulted in an increased C. trachomatis burden in the cervix, with the bacterial burden in the LNG-IUS group diverging from that in the non-LNG-IUS group by 6 weeks after infection. One of 7 baboons in the non-LNG-IUS group and 2 of 6 in the LNG-IUS group developed pelvic inflammatory disease, while 3 animals in each group met criteria suggestive of pelvic inflammatory disease. LNG-IUS increased baseline interleukin 8 levels but failed to further upregulate interleukin 8 during infection. In LNG-IUS recipients, early perturbations in the interleukin 1β axis corresponded to decreased C. trachomatis clearance and increased T-helper type 2 immune responses. Conclusion LNG-IUS use results in delayed clearance of C. trachomatis and might alter the reproductive tract immune environment.
Collapse
Affiliation(s)
- Alison J Eastman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor
| | - Daniel Chai
- Institute of Primate Research, National Museum of Kenya, Karen
| | - Christine M Bassis
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - William LeBar
- Department of Pathology, University of Michigan, Ann Arbor
| | - George O Oluoch
- Institute of Primate Research, National Museum of Kenya, Karen
| | - Emma R Liechty
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor
| | - Atunga Nyachieo
- Institute of Primate Research, National Museum of Kenya, Karen
| | - Vincent B Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - David M Aronoff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dorothy L Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle
| | - Jason D Bell
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor
| |
Collapse
|
32
|
Amaral WZ, Lubach GR, Kapoor A, Proctor A, Phillips GJ, Lyte M, Coe CL. Low Lactobacilli abundance and polymicrobial diversity in the lower reproductive tract of female rhesus monkeys do not compromise their reproductive success. Am J Primatol 2017; 79. [PMID: 28898440 DOI: 10.1002/ajp.22691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/15/2017] [Accepted: 08/10/2017] [Indexed: 02/01/2023]
Abstract
The lower reproductive tract of nonhuman primates is colonized with a diverse microbiota, resembling bacterial vaginosis (BV), a gynecological condition associated with negative reproductive outcomes in women. Our 4 aims were to: (i) assess the prevalence of low Lactobacilli and a BV-like profile in female rhesus monkeys; (ii) quantify cytokines in their cervicovaginal fluid (CVF); (iii) examine the composition and structure of their mucosal microbiota with culture-independent sequencing methods; and (iv) evaluate the potential influence on reproductive success. CVF specimens were obtained from 27 female rhesus monkeys for Gram's staining, and to determine acidity (pH), and quantify proinflammatory cytokines. Based on Nugent's classification, 40% had a score of 7 or higher, which would be indicative of BV in women. Nugent scores were significantly correlated with the pH of the CVF. Interleukin-1ß was present at high concentrations, but not further elevated by high Nugent scores. Vaginal swabs were obtained from eight additional females to determine microbial diversity by rRNA gene amplicon sequencing. At the phylum level, the Firmicutes/Bacteroidetes ratio was low. The relative abundance of Lactobacilli was also low (between 3% and 17%), and 11 other genera were present at >1%. However, neither the microbial diversity in the community structure, nor high Nugent scores, was associated with reduced fecundity. Female monkeys provide an opportunity to understand how reproductive success can be sustained in the presence of a diverse polymicrobial community in the reproductive tract.
Collapse
Affiliation(s)
- Wellington Z Amaral
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Amita Kapoor
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | | | | | - Mark Lyte
- College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
33
|
Miller EA, Livermore JA, Alberts SC, Tung J, Archie EA. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. MICROBIOME 2017; 5:8. [PMID: 28103920 PMCID: PMC5248513 DOI: 10.1186/s40168-017-0228-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/04/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND The vaginal microbiome is an important site of bacterial-mammalian symbiosis. This symbiosis is currently best characterized for humans, where lactobacilli dominate the microbial community and may help defend women against infectious disease. However, lactobacilli do not dominate the vaginal microbiota of any other mammal studied to date, raising key questions about the forces that shape the vaginal microbiome in non-human mammals. RESULTS We used Illumina sequencing of the bacterial 16S rRNA gene to investigate variation in the taxonomic composition of the vaginal microbiota in 48 baboons (Papio cynocephalus), members of a well-studied wild population in Kenya. Similar to prior studies, we found that the baboon vaginal microbiota was not dominated by lactobacilli. Despite this difference, and similar to humans, reproductive state was the dominant predictor of baboon vaginal microbiota, with pregnancy, postpartum amenorrhea, and ovarian cycling explaining 18% of the variance in community composition. Furthermore, among cycling females, a striking 39% of variance in community composition was explained by ovarian cycle phase, with an especially distinctive microbial community around ovulation. Periovulatory females exhibited the highest relative abundance of lactic acid-producing bacteria compared to any other phase, with a mean relative abundance of 44%. To a lesser extent, sexual behavior, especially a history of shared sexual partners, also predicted vaginal microbial similarity between baboons. CONCLUSIONS Despite striking differences in their dominant microbes, both human and baboon vaginal microbiota exhibit profound changes in composition in response to reproductive state, ovarian cycle phase, and sexual behavior. We found major shifts in composition during ovulation, which may have implications for disease risk and conception success. These findings highlight the need for future studies to account for fine-scale differences in reproductive state, particularly differences between the various phases of the ovarian cycle. Overall, our work contributes to an emerging understanding of the forces that explain intra- and inter-individual variation in the mammalian vaginal microbiome, with particular emphasis on its role in host health and disease risk.
Collapse
Affiliation(s)
- Elizabeth A Miller
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Joshua A Livermore
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Susan C Alberts
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Duke Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Duke Population Research Institute, Duke University, Durham, NC, USA
- Department of Biology, Duke University, Durham, NC, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
34
|
Yang X, Cheng G, Li C, Yang J, Li J, Chen D, Zou W, Jin S, Zhang H, Li D, He Y, Wang C, Wang M, Wang H. The normal vaginal and uterine bacterial microbiome in giant pandas (Ailuropoda melanoleuca). Microbiol Res 2017; 199:1-9. [PMID: 28454704 DOI: 10.1016/j.micres.2017.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/13/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
While the health effects of the colonization of the reproductive tracts of mammals by bacterial communities are widely known, there is a dearth of knowledge specifically in relation to giant panda microbiomes. In order to investigate the vaginal and uterine bacterial diversity of healthy giant pandas, we used high-throughput sequence analysis of portions of the 16S rRNA gene, based on samples taken from the vaginas (GPV group) and uteri (GPU group) of these animals. Results showed that the four most abundant phyla, which contained in excess of 98% of the total sequences, were Proteobacteria (59.2% for GPV and 51.4% for GPU), Firmicutes (34.4% for GPV and 23.3% for GPU), Actinobacteria (5.2% for GPV and 14.0% for GPU) and Bacteroidetes (0.3% for GPV and 10.3% for GPU). At the genus level, Escherichia was most abundant (11.0%) in the GPV, followed by Leuconostoc (8.7%), Pseudomonas (8.0%), Acinetobacter (7.3%), Streptococcus (6.3%) and Lactococcus (6.0%). In relation to the uterine samples, Janthinobacterium had the highest prevalence rate (20.2%), followed by Corynebacterium (13.2%), Streptococcus (19.6%), Psychrobacter (9.3%), Escherichia (7.5%) and Bacteroides (6.2%). Moreover, both Chao1 and abundance-based coverage estimator (ACE) species richness indices, which were operating at the same sequencing depth for each sample, demonstrated that GPV had more species richness than GPU, while Simpson and Shannon indices of diversity indicated that GPV had the higher bacterial diversity. These findings contribute to our understanding of the potential influence abnormal reproductive tract microbial communities have on negative pregnancy outcomes in giant pandas.
Collapse
Affiliation(s)
- Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education, Chengdu, Sichuan 610064, China
| | - Guangyang Cheng
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education, Chengdu, Sichuan 610064, China
| | - Caiwu Li
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan 623006, China
| | - Jiang Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education, Chengdu, Sichuan 610064, China
| | - Jianan Li
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education, Chengdu, Sichuan 610064, China
| | - Danyu Chen
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education, Chengdu, Sichuan 610064, China
| | - Wencheng Zou
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education, Chengdu, Sichuan 610064, China
| | - SenYan Jin
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan 623006, China
| | - Hemin Zhang
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan 623006, China.
| | - Desheng Li
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan 623006, China
| | - Yongguo He
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan 623006, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Wolong, Sichuan 623006, China
| | - Min Wang
- Wolong Nature Reserve Administration of Sicuan Province, Wolong, Sichuan 623006, China
| | - Hongning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education, Chengdu, Sichuan 610064, China.
| |
Collapse
|
35
|
Miller EA, Beasley DE, Dunn RR, Archie EA. Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique? Front Microbiol 2016; 7:1936. [PMID: 28008325 PMCID: PMC5143676 DOI: 10.3389/fmicb.2016.01936] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/17/2016] [Indexed: 01/09/2023] Open
Abstract
The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus, which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies (N = 21 mammals for pH and 14 mammals for lactobacilli relative abundance). We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4-7.8). Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli relative abundance and multiple metrics of STD or birth injury risk (P-values ranged from 0.13 to 0.99). Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non-human vaginal microbial communities and the importance of investigating both the physiological mechanisms and the broad evolutionary processes underlying human lactobacilli dominance.
Collapse
Affiliation(s)
- Elizabeth A Miller
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - DeAnna E Beasley
- Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga Chattanooga, TN, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State UniversityRaleigh, NC, USA; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of CopenhagenCopenhagen, Denmark
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre DameNotre Dame, IN, USA; Institute of Primate Research, National Museums of KenyaNairobi, Kenya
| |
Collapse
|
36
|
Shpigel NY, Adler-Ashkenazy L, Scheinin S, Goshen T, Arazi A, Pasternak Z, Gottlieb Y. Characterization and identification of microbial communities in bovine necrotic vulvovaginitis. Vet J 2016; 219:34-39. [PMID: 28093107 DOI: 10.1016/j.tvjl.2016.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 12/22/2022]
Abstract
Bovine necrotic vulvovaginitis (BNVV) is a severe and potentially fatal disease of post-partum cows that emerged in Israel after large dairy herds were merged. While post-partum cows are commonly affected by mild vulvovaginitis (BVV), in BNVV these benign mucosal abrasions develop into progressive deep necrotic lesions leading to sepsis and death if untreated. The etiology of BNVV is still unknown and a single pathogenic agent has not been found. We hypothesized that BNVV is a polymicrobial disease where the normally benign vaginal microbiome is remodeled and affects the local immune response. To this end, we compared the histopathological changes and the microbial communities using 16S rDNA metagenetic technique in biopsies taken from vaginal lesions in post-partum cows affected by BVV and BNVV. The hallmark of BNVV was the formation of complex polymicrobial communities in the submucosal fascia and abrogation of neutrophil recruitment in these lesions. Additionally, there was a marked difference in the composition of bacterial communities in the BNVV lesions in comparison to the benign BVV lesions. This difference was characterized by the abundance of Bacteroidetes and lower total community membership in BNVV. Indicator taxa for BNVV were Parvimonas, Porphyromonas, unclassified Veillonellaceae, Mycoplasma and Bacteroidetes, whereas unclassified Clostridiales was an indicator for BVV. The results support a polymicrobial etiology for BNVV.
Collapse
Affiliation(s)
- N Y Shpigel
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - L Adler-Ashkenazy
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - S Scheinin
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Hachaklait, Mutual Society for Veterinary Services, Caesarea Industrial Park, Israel
| | - T Goshen
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Hachaklait, Mutual Society for Veterinary Services, Caesarea Industrial Park, Israel
| | - A Arazi
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Z Pasternak
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Y Gottlieb
- The Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
37
|
NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES. J Zoo Wildl Med 2016; 47:671-5. [PMID: 27468049 DOI: 10.1638/2015-0203a.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13/24), followed by Staphylococcus epidermidis (41.7%, 10/24) and Escherichia coli (33.3%, 8/24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae , and Proteus mirabilis , were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with the disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), whereas 7.2% were multidrug resistant. This is the first report of the normal culturable vaginal bacterial flora of giant pandas and the antimicrobial susceptibility patterns of the isolates.
Collapse
|
38
|
Escallón C, Becker MH, Walke JB, Jensen RV, Cormier G, Belden LK, Moore IT. Testosterone levels are positively correlated with cloacal bacterial diversity and the relative abundance of Chlamydiae in breeding male rufous‐collared sparrows. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camilo Escallón
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Matthew H. Becker
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Jenifer B. Walke
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Roderick V. Jensen
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Guy Cormier
- Georgia Advanced Computing Resource Center The University of Georgia 4098C Stegeman Coliseum Athens Georgia 30602 USA
| | - Lisa K. Belden
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| | - Ignacio T. Moore
- Department of Biological Sciences Virginia Tech 2119 Derring Hall Blacksburg Virginia 24061 USA
| |
Collapse
|
39
|
Schlabritz-Loutsevitch N, Gygax SE, Dick E, Smith WL, Snider C, Hubbard G, Ventolini G. Vaginal Dysbiosis from an Evolutionary Perspective. Sci Rep 2016; 6:26817. [PMID: 27226349 PMCID: PMC4880931 DOI: 10.1038/srep26817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
Evolutionary approaches are powerful tools for understanding human disorders. The composition of vaginal microbiome is important for reproductive success and has not yet been characterized in the contexts of social structure and vaginal pathology in non-human primates (NHPs). We investigated vaginal size, vulvovaginal pathology and the presence of the main human subtypes of Lactobacillus spp./ BV-related species in the vaginal microflora of baboons (Papio spp.). We performed morphometric measurements of external and internal genitalia (group I, n = 47), analyzed pathology records of animals from 1999–2015 (group II, n = 64 from a total of 12,776), and evaluated vaginal swabs using polymerase chain reaction (PCR) (group III, n = 14). A total of 68 lesions were identified in 64 baboons. Lactobacillus iners, Gardnerella vaginalis, Atopobium vaginae, Megasphaera I, and Megasphaera II were not detected. L. jensenii, L. crispatus, and L. gasseri were detected in 2/14 (14.2%), 1/14 (7.1%), and 1/14 (7.1%) samples, respectively. BVAB2 was detected in 5/14 (35.7%) samples. The differences in the vaginal milieu between NHP and humans might be the factor associated with human-specific pattern of placental development and should be taken in consideration in NHP models of human pharmacology and microbiology.
Collapse
Affiliation(s)
| | - Scott E Gygax
- Femeris Women's Health Research Center, Genesis Biotechnology Group - Hamilton, New Jersey, USA
| | - Edward Dick
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - William L Smith
- Femeris Women's Health Research Center, Genesis Biotechnology Group - Hamilton, New Jersey, USA
| | - Cathy Snider
- Southwest National Primate Research Center, San Antonio, Texas, USA
| | - Gene Hubbard
- University of Texas Health Sciences Center, San Antonio, Texas, USA
| | - Gary Ventolini
- Texas Tech University Health Sciences Center at the Permian Basin, Odessa, Texas, USA
| |
Collapse
|
40
|
NORMAL VAGINAL BACTERIAL FLORA OF GIANT PANDAS (AILUROPODA MELANOLEUCA) AND THE ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF THE ISOLATES. J Zoo Wildl Med 2016; 47:374-8. [PMID: 27010307 DOI: 10.1638/2015-0203.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In order to study the typical vaginal bacterial flora of giant pandas (Ailuropoda melanoleuca), we took vaginal swabs for the sake of bacterial isolation, from 24 healthy female giant pandas. A total of 203 isolates were identified, representing a total of 17 bacterial species. The most common bacteria isolated were Lactobacillus spp. (54.2%, 13 of 24), followed by Staphylococcus epidermidis (41.7%, 10 of 24) and Escherichia coli (33.3%, 8 of 24). Some opportunistic pathogenic bacteria, such as Peptostreptococcus spp., Klebsiella pneumoniae, and Proteus mirabilis, were also isolated but showed no pathology. Antimicrobial susceptibility testing of aerobic bacterial isolates was performed with disk diffusion method. Of the 152 isolates, resistance was most frequently observed with chloramphenicol (17.8%), followed by tetracycline (14.5%), ciprofloxacin (12.5%), streptomycin (11.8%), and florfenicol (11.8%), while 7.2% were multidrug resistant. This is the first report of the normal vaginal culturable bacterial flora of giant pandas, followed by the antimicrobial susceptibility patterns of the isolates.
Collapse
|
41
|
Piyathilake CJ, Ollberding NJ, Kumar R, Macaluso M, Alvarez RD, Morrow CD. Cervical Microbiota Associated with Higher Grade Cervical Intraepithelial Neoplasia in Women Infected with High-Risk Human Papillomaviruses. Cancer Prev Res (Phila) 2016; 9:357-66. [PMID: 26935422 PMCID: PMC4869983 DOI: 10.1158/1940-6207.capr-15-0350] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/28/2016] [Indexed: 02/07/2023]
Abstract
It is increasingly recognized that microbes that reside in and on human body sites play major roles in modifying the pathogenesis of several diseases, including cancer. However, specific microbes or microbial communities that can be mechanistically linked to cervical carcinogenesis remain largely unexplored. The purpose of the study was to examine the association between cervical microbiota and high-grade cervical intraepithelial neoplasia (CIN 2+) in women infected with high-risk (HR) human papillomaviruses (HPV) and to assess whether the cervical microbiota are associated with oxidative DNA damage as indicated by the presence of cervical cells positive for 8-hydroxy-2'-deoxyguanosine. The study included 340 women diagnosed with CIN 2+ (cases) and 90 diagnosed with CIN 1 (non-cases). Microbiota composition was determined by Illumina sequencing of the 16S rRNA gene amplified from DNA extracted from cervical mucus samples. Measures of alpha/beta-diversity were not associated with either CIN severity or oxidative DNA damage. However, a cervical mucosal community type (CT) dominated by L. iners and unclassified Lactobacillus spp was associated with CIN 2+ (OR = 3.48; 95% CI, 1.27-9.55). Sequence reads mapping to Lactobacillaceae, Lactobacillus, L. reuteri, and several sub-genus level Lactobacillus operational taxonomic units were also associated with CIN 2+ when examined independently (effect size >2.0; P < 0.05). Our 16S rRNA sequencing results need confirmation in independent studies using whole-genome shotgun sequencing and that would allow sharpening the suggested associations at finer taxonomic levels. Our results provide little evidence that DNA oxidative damage mediates the effect of the microbiome on the natural history of HPV infection and CIN severity. Cancer Prev Res; 9(5); 357-66. ©2016 AACR.
Collapse
Affiliation(s)
- Chandrika J Piyathilake
- Department of Nutrition Sciences, The University of Alabama at Birmingham (UAB), Birmingham, Alabama.
| | - Nicholas J Ollberding
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ranjit Kumar
- University of Alabama at Birmingham (UAB) Center for Clinical & Translational Science
| | - Maurizio Macaluso
- Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ronald D Alvarez
- Department of Obstetrics and Gynecology, UAB, Birmingham, Alabama
| | - Casey D Morrow
- Department of Cell Developmental and Integrative Biology, UAB, Birmingham, Alabama
| |
Collapse
|
42
|
Liechty ER, Bergin IL, Bassis CM, Chai D, LeBar W, Young VB, Bell JD. The levonorgestrel-releasing intrauterine system is associated with delayed endocervical clearance of Chlamydia trachomatis without alterations in vaginal microbiota. Pathog Dis 2015; 73:ftv070. [PMID: 26371177 DOI: 10.1093/femspd/ftv070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Progestin-based contraception may impact women's susceptibility to sexually transmitted infection. We evaluated the effect of the levonorgestrel intrauterine system (LNG-IUS) on cervical persistence of Chlamydia trachomatis (CT) in a baboon model. Female olive baboons (Papio anubis) with or without an LNG-IUS received CT or sham inoculations. CT was detected in cervical epithelium with weekly nucleic acid amplification testing (NAAT) and culture. Presence of the LNG-IUS was associated with prolonged persistence of CT. Median time to post-inoculation clearance of CT as detected by NAAT was 10 weeks (range 7-12) for animals with an LNG-IUS and 3 weeks (range 0-12) for non-LNG-IUS animals (P = 0.06). Similarly, median time to post-inoculation clearance of CT by culture was 9 weeks (range 3-12) for LNG-IUS animals and 1.5 weeks (range 0-10) for non-LNG-IUS animals (P = 0.04). We characterized the community structure of the vaginal microbiota with the presence of the LNG-IUS to determine if alterations in CT colonization dynamics were associated with changes in vaginal commensal bacteria. Vaginal swabs were collected weekly for microbiome analysis. Endocervical CT infection was not correlated with alterations in the vaginal microbiota. Together, these results suggest that LNG-IUS may facilitate CT endocervical persistence through a mechanism distinct from vaginal microbial alterations.
Collapse
Affiliation(s)
- Emma R Liechty
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Christine M Bassis
- Department of Internal Medicine Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Chai
- Institute for Primate Research, Nairobi, Kenya
| | - William LeBar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vincent B Young
- Department of Internal Medicine Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, USA Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason D Bell
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Gohir W, Whelan FJ, Surette MG, Moore C, Schertzer JD, Sloboda DM. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother's periconceptional diet. Gut Microbes 2015; 6:310-20. [PMID: 26322500 PMCID: PMC4826136 DOI: 10.1080/19490976.2015.1086056] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shifts in the maternal gut microbiome have been implicated in metabolic adaptations to pregnancy. We investigated how pregnancy and diet interact to influence the composition of the maternal gut microbiota. Female C57BL/6 mice were fed either a control or a high fat diet for 8 weeks prior to mating. After confirmation of pregnancy, maternal weight gain and food intake were recorded. Fecal pellets were collected at 2 timepoints prior to mating (at the beginning of the experiment, and after 6 weeks of the specified diet) and at 4 timepoints during pregnancy (gestation day 0.5, 5.5, 10.5, and 15.5). The microbial composition and predicted metabolic functionality of the non-pregnant and pregnant gut was determined via sequencing of the variable 3 region of the 16S rRNA gene. Upon conception, differences in gut microbial communities were observed in both control and high fat-fed mice, including an increase in mucin-degrading bacteria. Control versus high fat-fed pregnant mice possessed the most profound changes to their maternal gut microbiota as indicated by statistically significant taxonomic differences. High fat-fed pregnant mice, when compared to control-fed animals, were found to be significantly enriched in microbes involved in metabolic pathways favoring fatty acid, ketone, vitamin, and bile synthesis. We show that pregnancy-induced changes in the female gut microbiota occur immediately at the onset of pregnancy, are vulnerable to modulation by diet, but are not dependent upon increases in maternal weight gain during pregnancy. High fat diet intake before and during pregnancy results in distinctive shifts in the pregnant gut microbiota in a gestational-age dependent manner and these shifts predict significant differences in the abundance of genes that favor lipid metabolism, glycolysis and gluconeogenic metabolic pathways over the course of pregnancy.
Collapse
Affiliation(s)
- Wajiha Gohir
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada
| | - Fiona J Whelan
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada
| | - Michael G Surette
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada,Department of Medicine; McMaster University, Hamilton, Canada
| | - Caroline Moore
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada,Department of Pediatrics and Obstetrics and Gynecology; McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry & Biomedical Sciences; McMaster University, Hamilton, Canada,Department of Pediatrics and Obstetrics and Gynecology; McMaster University, Hamilton, Canada,Correspondence to: Deborah M Sloboda;
| |
Collapse
|