1
|
Winful T, McCormack K, Mueller E, Chen L, Clemente MR, Torres JB. Exploring the legacy of African and Indigenous Caribbean admixture in Puerto Rico. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:194-209. [PMID: 37525538 DOI: 10.1002/ajpa.24814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVES From an anthropological genetic perspective, little is known about the ethnogenesis of African descendants in Puerto Rico. Furthermore, historical interactions between Indigenous Caribbean and African descendant peoples that may be reflected in the ancestry of contemporary populations are understudied. Given this dearth of genetic research and the precedence for Afro-Indigenous interactions documented by historical, archeological, and other lines of evidence, we sought to assess the biogeographic origins of African descendant Puerto Ricans and to query the potential for Indigenous ancestry within this community. MATERIALS AND METHODS Saliva samples were collected from 58 self-identified African descendant Puerto Ricans residing in Puerto Rico. We sequenced whole mitochondrial genomes and genotyped Y chromosome haplogroups for each male individual (n = 25). Summary statistics, comparative analyses, and network analysis were used to assess diversity and variation in haplogroup distribution between the sample and comparative populations. RESULTS As indicated by mitochondrial haplogroups, 66% had African, 5% had European, and 29% had Indigenous American matrilines. Along the Y chromosome, 52% had African, 28% had Western European, 16% had Eurasian, and, notably, 4% had Indigenous American patrilines. Both mitochondrial and Y chromosome haplogroup frequencies were significantly different from several comparative populations. DISCUSSION Biogeographic origins are consistent with historical accounts of African, Indigenous American, and European ancestry. However, this first report of Indigenous American paternal ancestry in Puerto Rico suggests distinctive features within African descendant communities on the island. Future studies expanding sampling and incorporating higher resolution genetic markers are necessary to more fully understand African descendant history in Puerto Rico.
Collapse
Affiliation(s)
- Taiye Winful
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | - Katie McCormack
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | - Elsa Mueller
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | - Lijuan Chen
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Jada Benn Torres
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Aizpurua-Iraola J, Rasal R, Prieto L, Comas D, Bonet N, Casals F, Calafell F, Vásquez P. Population analysis of complete mitogenomes for 334 samples from El Salvador. Forensic Sci Int Genet 2023; 66:102906. [PMID: 37364481 DOI: 10.1016/j.fsigen.2023.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
The use of mitochondrial DNA (mtDNA) in the field of forensic genetics is widely spread mainly due to its advantages when identifying highly degraded samples. In this sense, massive parallel sequencing has made the analysis of the whole mitogenome more accessible, noticeably increasing the informativeness of mtDNA haplotypes. The civil war (1980-1992) in El Salvador caused many deaths and disappearances (including children) all across the country and the economic and social instability after the war forced many people to emigration. For this reason, different organizations have collected DNA samples from relatives with the aim of identifying missing people. Thus, we present a dataset containing 334 complete mitogenomes from the Salvadoran general population. To the best of our knowledge, this is the first publication of a nationwide forensic-quality complete mitogenome database of any Latin American country. We found 293 different haplotypes, with a random match probability of 0.0041 and 26.6 mean pairwise differences, which is similar to other Latin American populations, and which represent a marked improvement from the values obtained with just control region sequences. These haplotypes belong to 54 different haplogroups, being 91% of them of Native American origin. Over a third (35.9%) of the individuals carried at least a heteroplasmic site (excluding length heteroplasmies). Ultimately, the present database aims to represent mtDNA haplotype diversity in the general Salvadoran populations as a basis for the identification of people that disappeared during or after the civil war.
Collapse
Affiliation(s)
- Julen Aizpurua-Iraola
- Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Departament de Medicina i Ciències de la Vida, Barcelona, Spain
| | - Raquel Rasal
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Lourdes Prieto
- Instituto de Ciencias Forenses, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Comisaría General de Policía Científica. DNA Laboratory, Madrid, Spain
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Departament de Medicina i Ciències de la Vida, Barcelona, Spain
| | - Núria Bonet
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Departament de Medicina i Ciències de la Vida, Barcelona, Spain
| | - Patricia Vásquez
- Asociación Pro-Búsqueda de Niñas y Niños Desaparecidos de El Salvador, San Salvador, El Salvador
| |
Collapse
|
3
|
De Oliveira TC, Secolin R, Lopes-Cendes I. A review of ancestrality and admixture in Latin America and the caribbean focusing on native American and African descendant populations. Front Genet 2023; 14:1091269. [PMID: 36741309 PMCID: PMC9893294 DOI: 10.3389/fgene.2023.1091269] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Genomics can reveal essential features about the demographic evolution of a population that may not be apparent from historical elements. In recent years, there has been a significant increase in the number of studies applying genomic epidemiological approaches to understand the genetic structure and diversity of human populations in the context of demographic history and for implementing precision medicine. These efforts have traditionally been applied predominantly to populations of European origin. More recently, initiatives in the United States and Africa are including more diverse populations, establishing new horizons for research in human populations with African and/or Native ancestries. Still, even in the most recent projects, the under-representation of genomic data from Latin America and the Caribbean (LAC) is remarkable. In addition, because the region presents the most recent global miscegenation, genomics data from LAC may add relevant information to understand population admixture better. Admixture in LAC started during the colonial period, in the 15th century, with intense miscegenation between European settlers, mainly from Portugal and Spain, with local indigenous and sub-Saharan Africans brought through the slave trade. Since, there are descendants of formerly enslaved and Native American populations in the LAC territory; they are considered vulnerable populations because of their history and current living conditions. In this context, studying LAC Native American and African descendant populations is important for several reasons. First, studying human populations from different origins makes it possible to understand the diversity of the human genome better. Second, it also has an immediate application to these populations, such as empowering communities with the knowledge of their ancestral origins. Furthermore, because knowledge of the population genomic structure is an essential requirement for implementing genomic medicine and precision health practices, population genomics studies may ensure that these communities have access to genomic information for risk assessment, prevention, and the delivery of optimized treatment; thus, helping to reduce inequalities in the Western Hemisphere. Hoping to set the stage for future studies, we review different aspects related to genetic and genomic research in vulnerable populations from LAC countries.
Collapse
Affiliation(s)
- Thais C. De Oliveira
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Rodrigo Secolin
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
4
|
Gómez R, Vilar MG, Meraz-Ríos MA, Véliz D, Zúñiga G, Hernández-Tobías EA, Figueroa-Corona MDP, Owings AC, Gaieski JB, Schurr TG. Y chromosome diversity in Aztlan descendants and its implications for the history of Central Mexico. iScience 2021; 24:102487. [PMID: 34036249 PMCID: PMC8138773 DOI: 10.1016/j.isci.2021.102487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/08/2020] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
Native Mexican populations are crucial for understanding the genetic ancestry of Aztec descendants and coexisting ethnolinguistic groups in the Valley of Mexico and elucidating the population dynamics of the prehistoric colonization of the Americas. Mesoamerican societies were multicultural in nature and also experienced significant admixture during Spanish colonization of the region. Despite these facts, Native Mexican Y chromosome diversity has been greatly understudied. To further elucidate their genetic history, we conducted a high-resolution Y chromosome analysis with Chichimecas, Nahuas, Otomies, Popolocas, Tepehuas, and Totonacas using 19 Y-short tandem repeat and 21 single nucleotide polymorphism loci. We detected enormous paternal genetic diversity in these groups, with haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 being identified. These data affirmed the southward colonization of the Americas via Beringia and connected Native Mexicans with indigenous populations from South-Central Siberia and Canada. They also suggested that multiple population dispersals gave rise to Y chromosome diversity in these populations. Enormous Y chromosome diversity observed in Native Mexican populations. Haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 were identified. Patterns of Y chromosome diversity not shaped by ethnicity, geography, or language. Multiple population dispersals contributed to Y chromosome diversity in Mexico.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Toxicología, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Miguel G Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA.,National Geographic Society, Washington, DC 20005, USA
| | | | - David Véliz
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile.,Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas, Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Gerardo Zúñiga
- Departamento de Zoología, Laboratorio de Variación Biológica y Evolución, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Amanda C Owings
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | - Jill B Gaieski
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | | |
Collapse
|
5
|
Baeta M, Prieto-Fernández E, Núñez C, Kleinbielen T, Villaescusa P, Palencia-Madrid L, Alvarez-Gila O, Martínez-Jarreta B, de Pancorbo MM. Study of 17 X-STRs in Native American and Mestizo populations of Central America for forensic and population purposes. Int J Legal Med 2021; 135:1773-1776. [PMID: 33742257 DOI: 10.1007/s00414-021-02536-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
In the present work, an extensive analysis of the X-chromosomal pool of Native American and Mestizo groups of Central America (Guatemala, El Salvador, Nicaragua, and Panama) has been carried out. Allele and haplotype frequency databases, as well as other forensic parameters for these populations, are presented. The admixture analysis supports the tri-hybrid composition in terms of ancestry in the Mestizo populations, with a predominant Native American contribution (54-69%), followed by European (19-28%) and African contributions (12-19%). Pairwise FST genetic distances highlight the genetic proximity between the northernmost Central American populations, especially among admixed populations. The unique and complex nature of this area, where populations from different origins intercrossed, as well as the informativity of X-STR data, highpoint the great interest of this genetic study. Furthermore, the X-chromosome databases for Central American populations here provided will be not only useful for forensic and population purposes not only in the target countries but also in the host countries.
Collapse
Affiliation(s)
- Miriam Baeta
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Endika Prieto-Fernández
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carolina Núñez
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Tamara Kleinbielen
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Oscar Alvarez-Gila
- Department of Medieval, Early Modern and American History, Faculty of Letters, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| |
Collapse
|
6
|
Pujol F, Jaspe RC, Loureiro CL, Chemin I. Hepatitis B virus American genotypes: Pathogenic variants ? Clin Res Hepatol Gastroenterol 2020; 44:825-835. [PMID: 32553521 DOI: 10.1016/j.clinre.2020.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) chronic infection is responsible for almost 900.000 deaths each year, due to cirrhosis or hepatocellular carcinoma (HCC). Ten HBV genotypes have been described (A-J). HBV genotype F and H circulate in America. HBV genotypes have been further classified in subgenotypes. There is a strong correlation between the genetic admixture of the American continent and the frequency of genotypes F or H: a high frequency of these genotypes is found in countries with a population with a higher ratio of Amerindian to African genetic admixture. The frequency of occult HBV infection in Amerindian communities from Latin America seems to be higher than the one found in other HBV-infected groups, but its association with American genotypes is unknown. There is growing evidence that some genotypes might be associated with a faster evolution to HCC. In particular, HBV genotype F has been implicated in a frequent and rapid progression to HCC. However, HBV genotype H has been associated to a less severe progression of disease. This study reviews the diversity and frequency of autochthonous HBV variants in the Americas and evaluates their association to severe progression of disease. Although no significant differences were found in the methylation pattern between different genotypes and subgenotypes of the American types, basal core promoter mutations might be more frequent in some subgenotypes, such as F1b and F2, than in other American subgenotypes or genotype H. F1b and probably F2 may be associated with a severe presentation of liver disease as opposed to a more benign course for subgenotype F4 and genotype H. Thus, preliminary evidence suggests that not all of the American variants are associated with a rapid progression to HCC.
Collapse
Affiliation(s)
- Flor Pujol
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela.
| | - Rossana C Jaspe
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela
| | - Carmen L Loureiro
- Laboratorio de Virología Molecular, CMBC, IVIC, Apdo 20632, Caracas 1020A, Venezuela
| | - Isabelle Chemin
- INSERM U1052, CNRS 5286, Université de Lyon, Université Claude Bernard Lyon 1, centre Léon Bérard, centre de recherche en cancérologie de Lyon, 69000, Lyon, France
| |
Collapse
|
7
|
Mendisco F, Pemonge MH, Romon T, Lafleur G, Richard G, Courtaud P, Deguilloux MF. Tracing the genetic legacy in the French Caribbean islands: A study of mitochondrial and Y-chromosome lineages in the Guadeloupe archipelago. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:507-518. [PMID: 31599974 DOI: 10.1002/ajpa.23931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 08/22/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The history of the Caribbean region is marked by numerous and various successive migration waves that resulted in a global blending of African, European, and Amerindian lineages. As the origin and genetic composition of the current population of French Caribbean islands has not been studied to date, we used both mitochondrial DNA and Y-chromosome markers to complete the characterization of the dynamics of admixture in the Guadeloupe archipelago. MATERIALS AND METHODS We sequenced the mitochondrial hypervariable regions and genotyped mitochondrial and Y-chromosomal single nucleotide polymorphisms (SNPs) of 198 individuals from five localities of the Guadeloupe archipelago. RESULTS The maternal haplogroups revealed a blend of 85% African lineages (mainly traced to Western, West-Central, and South-Eastern Africa), 12.5% Eurasian lineages, and 0.5% Amerindian lineages. We highlighted disequilibria between European paternal contribution (44%) and European maternal contribution (7%), pointing out an important sexual asymmetry. Finally, the estimated Native American component was strikingly low and supported the near-extinction of native lineages in the region. DISCUSSION We confirmed that all historically known migratory events indeed left a visible genetic imprint in the contemporary Caribbean populations. The data gathered clearly demonstrated the significant impact of the transatlantic slave trade on the Guadeloupean population's constitution. Altogether, the data in our study confirm that in the Caribbean region, human population variation is correlated with colonial and postcolonial policies and unique island histories.
Collapse
Affiliation(s)
- Fanny Mendisco
- University of Bordeaux, UMR 5199 PACEA, Allée Geoffroy de St Hilaire, Pessac, France
| | - Marie-Hélène Pemonge
- University of Bordeaux, UMR 5199 PACEA, Allée Geoffroy de St Hilaire, Pessac, France
| | - Thomas Romon
- University of Bordeaux, UMR 5199 PACEA, Allée Geoffroy de St Hilaire, Pessac, France.,Centre de Gourbeyre, Institut National de Recherches Archéologiques Préventives Guadeloupe, Gourbeyre, France
| | - Gérard Lafleur
- Archives Départementales de la Guadeloupe, Société D'histoire de la Guadeloupe, Basse-Terre, France
| | - Gérard Richard
- Centre de Gourbeyre, Institut National de Recherches Archéologiques Préventives Guadeloupe, Gourbeyre, France
| | - Patrice Courtaud
- University of Bordeaux, UMR 5199 PACEA, Allée Geoffroy de St Hilaire, Pessac, France
| | | |
Collapse
|
8
|
Arrieta-Bolaños E, Madrigal-Sánchez JJ, Stein JE, Órlich-Pérez P, Moreira-Espinoza MJ, Paredes-Carias E, Vanegas-Padilla Y, Salazar-Sánchez L, Madrigal JA, Marsh SGE, Shaw BE. High-resolution HLA allele and haplotype frequencies in majority and minority populations of Costa Rica and Nicaragua: Differential admixture proportions in neighboring countries. HLA 2019; 91:514-529. [PMID: 29687625 DOI: 10.1111/tan.13280] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 02/03/2023]
Abstract
The HLA system shows the most extensive polymorphism in the human genome. Allelic and haplotypic frequencies of HLA genes vary dramatically across human populations. Due to a complex history of migration, populations in Latin America show a broad variety of admixture proportions, usually varying not only between countries, but also within countries. Knowledge of HLA allele and haplotype frequencies is essential for medical fields such as transplantation, but also serves as a means to assess genetic diversity and ancestry in human populations. Here, we have determined high-resolution HLA-A, -B, -C, and -DRB1 allele and haplotype frequencies in a sample of 713 healthy subjects from three Mestizo populations, one population of African descent, and Amerindians of five different groups from Costa Rica and Nicaragua and compared their profiles to a large set of indigenous populations from Iberia, Sub-Saharan Africa, and the Americas. Our results show a great degree of allelic and haplotypic diversity within and across these populations, with most extended haplotypes being private. Mestizo populations show alleles and haplotypes of putative European, Amerindian, and Sub-Saharan African origin, albeit with differential proportions. Despite some degree of gene flow, Amerindians and Afro-descendants show great similarity to other Amerindian and West African populations, respectively. This is the first comprehensive study reporting high-resolution HLA diversity in Central America, and its results will shed light into the genetic history of this region while also supporting the development of medical programs for organ and stem cell transplantation.
Collapse
Affiliation(s)
- E Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital, Essen, Germany.,Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,Centro de Investigaciones en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica
| | | | - J E Stein
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | - P Órlich-Pérez
- Centro de Investigaciones en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica.,División de Banco de Células Madre, Laboratorio Clínico, Hospital San Juan de Dios, San José, Costa Rica
| | - M J Moreira-Espinoza
- Departamento de Ciencias Morfológicas, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - E Paredes-Carias
- Departamento de Ciencias Morfológicas, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Y Vanegas-Padilla
- Departamento de Ciencias Morfológicas, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - L Salazar-Sánchez
- Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - J A Madrigal
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,Cancer Institute, University College London, London, UK
| | - S G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,Cancer Institute, University College London, London, UK
| | - B E Shaw
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK.,Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
9
|
Arrieta-Bolaños E, Madrigal-Sánchez JJ, Stein JE, Moreira-Espinoza MJ, Paredes-Carias E, Vanegas-Padilla Y, Salazar-Sánchez L, Madrigal JA, Marsh SGE, Shaw BE. 4-Locus high-resolution HLA allele and haplotype frequencies in admixed population from Nicaragua. Hum Immunol 2019; 80:417-418. [PMID: 31122740 DOI: 10.1016/j.humimm.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022]
Abstract
A total of 155 Nicaraguan Mestizos from across the country were genotyped at high-resolution for the human leukocyte antigen loci HLA-A, -B, -C, and -DRB1 using sequence-based typing methods. The respective allele and extended haplotype frequencies, as well as Hardy-Weinberg proportions were calculated. The most frequent extended haplotype identified was A*24:02:01-B*40:02:01-C*03:05-DRB1*04:07:01G, with an estimated frequency of 2.26%. No deviation from Hardy-Weinberg Equilibrium was detected at any of the loci studied. The HLA genotypic data of the population sample reported here are available publicly in the Allele Frequencies Net Database under the population name "Nicaragua Mestizo" and the identifier AFN3610.
Collapse
Affiliation(s)
- Esteban Arrieta-Bolaños
- Institute for Experimental Cellular Therapy, University Hospital, Essen, Germany; Anthony Nolan Research Institute, Royal Free Hospital, London, UK; Centro de Investigaciones en Hematología y Trastornos Afines (CIHATA), Universidad de Costa Rica, San José, Costa Rica.
| | | | - Jeremy E Stein
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK
| | | | - Edel Paredes-Carias
- Departamento de Ciencias Morfológicas, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | - Yondra Vanegas-Padilla
- Departamento de Ciencias Morfológicas, Universidad Nacional Autónoma de Nicaragua, León, Nicaragua
| | | | - J Alejandro Madrigal
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, Royal Free Campus, London, UK
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; UCL Cancer Institute, Royal Free Campus, London, UK
| | - Bronwen E Shaw
- Anthony Nolan Research Institute, Royal Free Hospital, London, UK; Center for International Blood and Marrow Transplant Research, Department of Medicine, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
10
|
Assessment of a subset of Slowly Mutating Y-STRs for forensic and evolutionary studies. Forensic Sci Int Genet 2018; 34:e7-e12. [DOI: 10.1016/j.fsigen.2018.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/22/2017] [Accepted: 03/19/2018] [Indexed: 11/21/2022]
|
11
|
Solé-Morata N, Villaescusa P, García-Fernández C, Font-Porterias N, Illescas MJ, Valverde L, Tassi F, Ghirotto S, Férec C, Rouault K, Jiménez-Moreno S, Martínez-Jarreta B, Pinheiro MF, Zarrabeitia MT, Carracedo Á, de Pancorbo MM, Calafell F. Analysis of the R1b-DF27 haplogroup shows that a large fraction of Iberian Y-chromosome lineages originated recently in situ. Sci Rep 2017; 7:7341. [PMID: 28779148 PMCID: PMC5544771 DOI: 10.1038/s41598-017-07710-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/28/2017] [Indexed: 11/28/2022] Open
Abstract
Haplogroup R1b-M269 comprises most Western European Y chromosomes; of its main branches, R1b-DF27 is by far the least known, and it appears to be highly prevalent only in Iberia. We have genotyped 1072 R1b-DF27 chromosomes for six additional SNPs and 17 Y-STRs in population samples from Spain, Portugal and France in order to further characterize this lineage and, in particular, to ascertain the time and place where it originated, as well as its subsequent dynamics. We found that R1b-DF27 is present in frequencies ~40% in Iberian populations and up to 70% in Basques, but it drops quickly to 6–20% in France. Overall, the age of R1b-DF27 is estimated at ~4,200 years ago, at the transition between the Neolithic and the Bronze Age, when the Y chromosome landscape of W Europe was thoroughly remodeled. In spite of its high frequency in Basques, Y-STR internal diversity of R1b-DF27 is lower there, and results in more recent age estimates; NE Iberia is the most likely place of origin of DF27. Subhaplogroup frequencies within R1b-DF27 are geographically structured, and show domains that are reminiscent of the pre-Roman Celtic/Iberian division, or of the medieval Christian kingdoms.
Collapse
Affiliation(s)
- Neus Solé-Morata
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Patricia Villaescusa
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carla García-Fernández
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Neus Font-Porterias
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - María José Illescas
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Laura Valverde
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesca Tassi
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Silvia Ghirotto
- Dipartimento di Scienze della Vita e Biotecnologie, Università di Ferrara, Ferrara, Italy
| | - Claude Férec
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France.,Université de Bretagne Occidentale, Brest, France.,Etablissement Français du Sang-Bretagne, Brest, France
| | - Karen Rouault
- Inserm, UMR 1078, Brest, France.,Laboratoire de Génétique Moléculaire, CHRU Brest, Hôpital Morvan, Brest, France
| | - Susana Jiménez-Moreno
- Forensic and Legal Medicine Area, Department of Pathology and Surgery, University Miguel Hernández, Elche, Spain
| | | | - Maria Fátima Pinheiro
- Forensic Genetics Department, National Institute of Legal Medicine and Forensic Sciences, Porto, Portugal
| | | | - Ángel Carracedo
- Genomic Medicine Group, CIBERER- University of Santiago de Compostela, Galician Foundation of Genomic Medicine (SERGAS), Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| |
Collapse
|
12
|
Marchi N, Hegay T, Mennecier P, Georges M, Laurent R, Whitten M, Endicott P, Aldashev A, Dorzhu C, Nasyrova F, Chichlo B, Ségurel L, Heyer E. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:627-640. [PMID: 28158897 DOI: 10.1002/ajpa.23151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. METHODS We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. RESULTS Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. CONCLUSIONS This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure.
Collapse
Affiliation(s)
- Nina Marchi
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Tatyana Hegay
- Uzbek Academy of Sciences, Institute of Immunology, Tashkent, Uzbekistan
| | - Philippe Mennecier
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Myriam Georges
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Romain Laurent
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Mark Whitten
- MPRG on Comparative Population Linguistics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Endicott
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Almaz Aldashev
- Institute molecular biology and medicine, Bishkek, 720040, Kyrgyzstan
| | | | - Firuza Nasyrova
- Laboratory of Plant Genetics, Institute of Botany, Plant Physiology and Genetics, TAS, Dushanbe, 734063, Tajikistan
| | - Boris Chichlo
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Laure Ségurel
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| | - Evelyne Heyer
- Eco-anthropologie et Ethnobiologie, UMR 7206 CNRS, MNHN, Univ Paris Diderot, Sorbonne Paris Cité, F-75016, Paris, France
| |
Collapse
|
13
|
Núñez C, Baeta M, Ibarbia N, Ortueta U, Jiménez-Moreno S, Blazquez-Caeiro JL, Builes JJ, Herrera RJ, Martínez-Jarreta B, de Pancorbo MM. 17 to 23: A novel complementary mini Y-STR panel to extend the Y-STR databases from 17 to 23 markers for forensic purposes. Electrophoresis 2017; 38:1016-1021. [PMID: 27987217 DOI: 10.1002/elps.201600313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/19/2016] [Accepted: 12/10/2016] [Indexed: 11/08/2022]
Abstract
A Y-STR multiplex system has been developed with the purpose of complementing the widely used 17 Y-STR haplotyping (AmpFlSTR Y Filer® PCR Amplification kit) routinely employed in forensic and population genetic studies. This new multiplex system includes six additional STR loci (DYS576, DYS481, DYS549, DYS533, DYS570, and DYS643) to reach the 23 Y-STR of the PowerPlex® Y23 System. In addition, this kit includes the DYS456 and DYS385 loci for traceability purposes. Male samples from 625 individuals from ten worldwide populations were genotyped, including three sample sets from populations previously published with the 17 Y-STR system to expand their current data. Validation studies demonstrated good performance of the panel set in terms of concordance, sensitivity, and stability in the presence of inhibitors and artificially degraded DNA. The results obtained for haplotype diversity and discrimination capacity with this multiplex system were considerably high, providing further evidences of the suitability of this novel Y-STR system for forensic purposes. Thus, the use of this multiplex for samples previously genotyped with 17 Y-STRs will be an efficient and low-cost alternative to complete the set of 23 Y-STRs and improve allele databases for population and forensic purposes.
Collapse
Affiliation(s)
- Carolina Núñez
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Avda. Miguel de Unamuno, Vitoria-Gasteiz, Spain
| | - Miriam Baeta
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Avda. Miguel de Unamuno, Vitoria-Gasteiz, Spain
| | - Nerea Ibarbia
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Avda. Miguel de Unamuno, Vitoria-Gasteiz, Spain
| | - Urko Ortueta
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Avda. Miguel de Unamuno, Vitoria-Gasteiz, Spain
| | - Susana Jiménez-Moreno
- Área Medicina Legal y Forense, Department of Patología y Cirugía, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | | | - Juan José Builes
- Laboratorios Genes Ltd., Medellín, Colombia.,Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Rene J Herrera
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, USA
| | | | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country UPV/EHU. Avda. Miguel de Unamuno, Vitoria-Gasteiz, Spain
| |
Collapse
|
14
|
Different Evolutionary History for Basque Diaspora Populations in USA and Argentina Unveiled by Mitochondrial DNA Analysis. PLoS One 2015; 10:e0144919. [PMID: 26659590 PMCID: PMC4679185 DOI: 10.1371/journal.pone.0144919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/25/2015] [Indexed: 11/23/2022] Open
Abstract
The Basque Diaspora in Western USA and Argentina represents two populations which have maintained strong Basque cultural and social roots in a completely different geographic context. Hence, they provide an exceptional opportunity to study the maternal genetic legacy from the ancestral Basque population and assess the degree of genetic introgression from the host populations in two of the largest Basque communities outside the Basque Country. For this purpose, we analyzed the complete mitochondrial DNA control region of Basque descendants living in Western USA (n = 175) and in Argentina (n = 194). The Diaspora populations studied here displayed a genetic diversity in their European maternal input which was similar to that of the Basque source populations, indicating that not important founder effects would have occurred. Actually, the genetic legacy of the Basque population still prevailed in their present-day maternal pools, by means of a haplogroup distribution similar to the source population characterized by the presence of autochthonous Basque lineages, such as U5b1f1a and J1c5c1. However, introgression of non-Basque lineages, mostly Native American, has been observed in the Diaspora populations, particularly in Argentina, where the quick assimilation of the newcomers would have favored a wider admixture with host populations. In contrast, a longer isolation of the Diaspora groups in USA, because of language and cultural differences, would have limited the introgression of local lineages. This study reveals important differences in the maternal evolutionary histories of these Basque Diaspora populations, which have to be taken into consideration in forensic and medical genetic studies.
Collapse
|
15
|
Grugni V, Battaglia V, Perego UA, Raveane A, Lancioni H, Olivieri A, Ferretti L, Woodward SR, Pascale JM, Cooke R, Myres N, Motta J, Torroni A, Achilli A, Semino O. Exploring the Y Chromosomal Ancestry of Modern Panamanians. PLoS One 2015; 10:e0144223. [PMID: 26636572 PMCID: PMC4670172 DOI: 10.1371/journal.pone.0144223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
Geologically, Panama belongs to the Central American land-bridge between North and South America crossed by Homo sapiens >14 ka ago. Archaeologically, it belongs to a wider Isthmo-Colombian Area. Today, seven indigenous ethnic groups account for 12.3% of Panama’s population. Five speak Chibchan languages and are characterized by low genetic diversity and a high level of differentiation. In addition, no evidence of differential structuring between maternally and paternally inherited genes has been reported in isthmian Chibchan cultural groups. Recent data have shown that 83% of the Panamanian general population harbour mitochondrial DNAs (mtDNAs) of Native American ancestry. Considering differential male/female mortality at European contact and multiple degrees of geographical and genetic isolation over the subsequent five centuries, the Y-chromosome Native American component is expected to vary across different geographic regions and communities in Panama. To address this issue, we investigated Y-chromosome variation in 408 modern males from the nine provinces of Panama and one indigenous territory (the comarca of Kuna Yala). In contrast to mtDNA data, the Y-chromosome Native American component (haplogroup Q) exceeds 50% only in three populations facing the Caribbean Sea: the comarca of Kuna Yala and Bocas del Toro province where Chibchan languages are spoken by the majority, and the province of Colón where many Kuna and people of mixed indigenous-African-and-European descent live. Elsewhere the Old World component is dominant and mostly represented by western Eurasian haplogroups, which signal the strong male genetic impact of invaders. Sub-Saharan African input accounts for 5.9% of male haplotypes. This reflects the consequences of the colonial Atlantic slave trade and more recent influxes of West Indians of African heritage. Overall, our findings reveal a local evolution of the male Native American ancestral gene pool, and a strong but geographically differentiated unidirectional sex bias in the formation of local modern Panamanian populations.
Collapse
Affiliation(s)
- Viola Grugni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Alessandro Perego
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Luca Ferretti
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Scott R. Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | | | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Natalie Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- Ancestry, Provo, Utah, United States of America
| | - Jorge Motta
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Antonio Torroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
16
|
Söchtig J, Álvarez-Iglesias V, Mosquera-Miguel A, Gelabert-Besada M, Gómez-Carballa A, Salas A. Genomic insights on the ethno-history of the Maya and the 'Ladinos' from Guatemala. BMC Genomics 2015; 16:131. [PMID: 25887241 PMCID: PMC4422311 DOI: 10.1186/s12864-015-1339-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Guatemala is a multiethnic and multilingual country located in Central America. The main population groups separate ‘Ladinos’ (mixed Native American-African-Spanish), and Native indigenous people of Maya descent. Among the present-day Guatemalan Maya, there are more than 20 different ethnic groups separated by different languages and cultures. Genetic variation of these communities still remains largely unexplored. The principal aim of this study is to explore the genetic variability of the Maya and ‘Ladinos’ from Guatemala by means of uniparental and ancestry informative markers (AIMs). Results Analyses of uniparental genetic markers indicate that Maya have a dominant Native American ancestry (mitochondrial DNA [mtDNA]: 100%; Y-chromosome: 94%). ‘Ladino’, however, show a clear gender-bias as indicated by the large European ancestry observed in the Y-chromosome (75%) compared to the mtDNA (0%). Autosomal polymorphisms (AIMs) also mirror this marked gender-bias: (i) Native American ancestry: 92% for the Maya vs. 55% for the ‘Ladino’, and (ii) European ancestry: 8% for the Maya vs. 41% for the ‘Ladino’. In addition, the impact of the Trans-Atlantic slave trade on the present-day Guatemalan population is very low (and only occurs in the ‘Ladino’; mtDNA: 9%; AIMs: 4%), in part mirroring the fact that Guatemala has a predominant orientation to the Pacific Ocean instead of a Caribbean one. Sequencing of entire Guatemalan mitogenomes has led to improved Native American phylogeny via the addition of new haplogroups that are mainly observed in Mesoamerica and/or the North of South America. Conclusions The data reveal the existence of a fluid gene flow in the Mesoamerican area and a predominant unidirectional flow towards South America, most likely occurring during the Pre-Classic (1800 BC-200 AD) and the Classic (200–1000 AD) Eras of the Mesoamerican chronology, coinciding with development of the most distinctive and advanced Mesoamerican civilization, the Maya. Phylogenetic features of mtDNA data also suggest a demographic scenario that is compatible with moderate local endogamy and isolation in the Maya combined with episodes of gene exchange between ethnic groups, suggesting an ethno-genesis in the Guatemalan Maya that is recent and supported on a cultural rather than a biological basis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1339-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jens Söchtig
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Ana Mosquera-Miguel
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Miguel Gelabert-Besada
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, CP 15872, Galicia, Spain.
| |
Collapse
|
17
|
Seo SB, Zeng X, Assidi M, LaRue B, King J, Sajantila A, Budowle B. High throughput whole mitochondrial genome sequencing by two platforms of massively parallel sequencing. BMC Genomics 2014. [PMCID: PMC4075720 DOI: 10.1186/1471-2164-15-s2-p7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Abstract
A general introduction to the origins and history of Latin American populations is followed by a systematic review of the data from molecular autosomal assessments of the ethnic/continental (European, African, Amerindian) ancestries for 24 Latin American countries or territories. The data surveyed are of varying quality but provide a general picture of the present constitution of these populations. A brief discussion about the applications of these results (admixture mapping) is also provided. Latin American populations can be viewed as natural experiments for the investigation of unique anthropological and epidemiological issues.
Collapse
Affiliation(s)
- Francisco Mauro Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS,
Brazil
| | - Mónica Sans
- Departamento de Antropología Biológica, Facultad de Humanidades y Ciencias de la Educación, Universidad de la República, Montevideo,
Uruguay
| |
Collapse
|
19
|
Battaglia V, Grugni V, Perego UA, Angerhofer N, Gomez-Palmieri JE, Woodward SR, Achilli A, Myres N, Torroni A, Semino O. The first peopling of South America: new evidence from Y-chromosome haplogroup Q. PLoS One 2013; 8:e71390. [PMID: 23990949 PMCID: PMC3749222 DOI: 10.1371/journal.pone.0071390] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2013] [Indexed: 01/13/2023] Open
Abstract
Recent progress in the phylogenetic resolution of the Y-chromosome phylogeny permits the male demographic dynamics and migratory events that occurred in Central and Southern America after the initial human spread into the Americas to be investigated at the regional level. To delve further into this issue, we examined more than 400 Native American Y chromosomes (collected in the region ranging from Mexico to South America) belonging to haplogroup Q – virtually the only branch of the Y phylogeny observed in modern-day Amerindians of Central and South America – together with 27 from Mongolia and Kamchatka. Two main founding lineages, Q1a3a1a-M3 and Q1a3a1-L54(xM3), were detected along with novel sub-clades of younger age and more restricted geographic distributions. The first was also observed in Far East Asia while no Q1a3a1-L54(xM3) Y chromosome was found in Asia except the southern Siberian-specific sub-clade Q1a3a1c-L330. Our data not only confirm a southern Siberian origin of ancestral populations that gave rise to Paleo-Indians and the differentiation of both Native American Q founding lineages in Beringia, but support their concomitant arrival in Mesoamerica, where Mexico acted as recipient for the first wave of migration, followed by a rapid southward migration, along the Pacific coast, into the Andean region. Although Q1a3a1a-M3 and Q1a3a1-L54(xM3) display overlapping general distributions, they show different patterns of evolution in the Mexican plateau and the Andean area, which can be explained by local differentiations due to demographic events triggered by the introduction of agriculture and associated with the flourishing of the Great Empires.
Collapse
Affiliation(s)
- Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Viola Grugni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Ugo Alessandro Perego
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | - Norman Angerhofer
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
| | | | - Scott Ray Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Alessandro Achilli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Natalie Myres
- Sorenson Molecular Genealogy Foundation, Salt Lake City, Utah, United States of America
- AncestryDNA, Provo, Utah, United States of America
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, Pavia, Italy
- Centro Interdipartimentale “Studi di Genere”, Università di Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
20
|
Melton PE, Baldi NF, Barrantes R, Crawford MH. Microevolution, migration, and the population structure of five Amerindian populations from Nicaragua and Costa Rica. Am J Hum Biol 2013; 25:480-90. [PMID: 23559443 DOI: 10.1002/ajhb.22382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This research examines the coevolution of languages and uniparental genetic marker (mitochondrial DNA [mtDNA] and nonrecombining Y-chromosome [NRY]) variation within five Lower Central American (Rama, Chorotega, Maléku, Zapatón-Huetar, and Abrojo-Guaymí) Amerindian groups. This pattern occurred since European contact. METHODS We examined mtDNA sequence variation from the hypervariable region 1 (HVS-1) and NRY genetic variation using short tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, and DYS439) and NRY haplogroups (Q1a3a, Q1a3*, C3b, R1b1b2, E1b1, G2a2, and I) identified through single-nucleotide polymorphisms. Phylogenetic analysis included multidimensional scaling (MDS), heterozygosity versus rii , and analysis of molecular variance (AMOVA). RESULTS Eighteen mtDNA haplotypes were characterized in 131 participants with 94.6% of these assigned to the Amerindian mtDNA subclades, A2 and B2. The Amerindian NRY haplogroup, Q1a3a, was present in all five groups and ranged from 85% (Zapatón-Huetar) to 35% (Chorotega). Four populations (Rama, Chorotega, Zapatón-Huetar, and Abrojo-Guaymí) were also characterized by the presence of NRY haplogroup R1b1b2 indicative of western European admixture. Seventy NRY STR haplotypes were identified of which 69 (97%) were population specific. MDS plots demonstrated genetic similarities between Mesoamericans and northern Chibchan Amerindian populations, absent in mtDNA analyses, which is further supported by heterozygosity versus rii results. CONCLUSIONS We conclude that although these linguistically related populations in geographic proximity demonstrate a high degree of paternal genetic differentiation, recent demographic events have dramatically altered the paternal genetic structure of the regions Amerindian populations.
Collapse
Affiliation(s)
- Phillip E Melton
- Centre for Genetic Origins of Health and Disease, University of Western Australia, Crawley, Australia.
| | | | | | | |
Collapse
|
21
|
Núñez C, Baeta M, Aznar JM, Sosa C, Casalod Y, Bolea M, Martínez de Pancorbo M, Martínez Jarreta B. Genetic diversity of 10 X chromosome STRs in an admixed population of Nicaragua. Forensic Sci Int Genet 2013; 7:e95-6. [PMID: 23523364 DOI: 10.1016/j.fsigen.2013.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/28/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
|
22
|
Alonso LA, Usaquén W. Y-chromosome and surname analysis of the native islanders of San Andrés and Providencia (Colombia). HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2013; 64:71-84. [PMID: 23290785 DOI: 10.1016/j.jchb.2012.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 11/20/2012] [Indexed: 11/30/2022]
Abstract
The Archipelago of San Andrés and Providencia is a Colombian Department in the western waters of the Caribbean Sea. Most of its inhabitants belong to the African-Colombian group known as raizal. This group has unique cultural traits that are derived from centuries of admixture of the primarily African slaves and European colonists. Currently, not much is known about the genetic profile of this population. Therefore, this study aimed to determine the Y-chromosome STR genetic structure and relationship to previously published reference populations. A total of 54 natives from the islands were selected based on the genealogical criterion of having three generations of ancestors born in the Archipelago. Seventeen Y-STRs were analyzed, supplemented by information on the first surname inherited. The genetic substructure hypothesis in the studied islands was tested, and no significant differences were found (p>0.05). Y-chromosome haplogroups were predicted, and E1b1a and R1b were the most commonly found haplogroups. They account for more than 80% of the sample. The E1b1a and R1ba haplogroups are common in the African and European populations, respectively. For comparative genetic analysis, genetic distances were calculated with respect to populations from the Caribbean, Colombia, Europe and Africa. We found greater similarity between the African and Caribbean populations. The surname analysis demonstrated that most of the time, the "raizales" with the same surname also shared the same Y-STR haplotype. This suggests that some kinship relationship exists between participants with the same surname, which was confirmed by the haplotype diversity levels found in the studied islands.
Collapse
Affiliation(s)
- Luz Angela Alonso
- Grupo de Genética de Poblaciones e Identificación, Institute of Genetics, Universidad Nacional de Colombia, Calle 53-37 Edificio 426, Bogota 111321, Colombia
| | | |
Collapse
|
23
|
Brucato N, Mazières S, Guitard E, Giscard PH, Bois E, Larrouy G, Dugoujon JM. The Hmong Diaspora: preserved South-East Asian genetic ancestry in French Guianese Asians. C R Biol 2012. [PMID: 23199638 DOI: 10.1016/j.crvi.2012.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The Hmong Diaspora is one of the widest modern human migrations. Mainly localised in South-East Asia, the United States of America, and metropolitan France, a small community has also settled the Amazonian forest of French Guiana. We have biologically analysed 62 individuals of this unique Guianese population through three complementary genetic markers: mitochondrial DNA (HVS-I/II and coding region SNPs), Y-chromosome (SNPs and STRs), and the Gm allotypic system. All genetic systems showed a high conservation of the Asian gene pool (Asian ancestry: mtDNA=100.0%; NRY=99.1%; Gm=96.6%), without a trace of founder effect. When compared across various Asian populations, the highest correlations were observed with Hmong-Mien groups still living in South-East Asia (Fst<0.05; P-value<0.05). Despite a long history punctuated by exodus, the French Guianese Hmong have maintained their original genetic diversity.
Collapse
Affiliation(s)
- Nicolas Brucato
- UMR 5288 CNRS, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université Paul-Sabatier Toulouse III, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Y chromosome haplogroup diversity in a Mestizo population of Nicaragua. Forensic Sci Int Genet 2012; 6:e192-5. [PMID: 22770600 DOI: 10.1016/j.fsigen.2012.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/10/2012] [Indexed: 11/23/2022]
Abstract
Y chromosome single nucleotide polymorphisms (Y-SNPs) are indispensable markers for haplogroup determination. Since Y chromosome haplogroups show a high specific geographical distribution, they play a major role in population genetics but can also benefit forensic investigations. Although haplogroup prediction methods based on Y chromosome short tandem repeats (Y-STRs) exist and are frequently used, precaution is required in this regard. In this study we determine the Y chromosome haplogroups of a Nicaraguan population using several Y-SNP multiplex reactions. Y chromosome haplogroups have been predicted before, but our results show that a confirmation with Y-SNP typings is necessary. These results have revealed a 4.8% of error in haplogroup prediction based on Y-STR haplotypes using Athey's Haplogroup Predictor. The Nicaraguan Mestizo population displays a majority of Eurasian lineages, mainly represented by haplogroup R-M207 (46.7%). Other Eurasian lineages have been observed, especially J-P209 (13.3%), followed by I-M170 (3.6%) and G-M201 (1.8%). Haplogroup E-P170 was also observed in 15.2% of the sample, particularly subhaplogroup E1b1b1-M35. Finally, the Native American haplogroup Q-M242 was found in 15.2% of the sample, with Q1a3a-M3 being the most frequent.
Collapse
|
25
|
Simms TM, Wright MR, Hernandez M, Perez OA, Ramirez EC, Martinez E, Herrera RJ. Y-chromosomal diversity in Haiti and Jamaica: Contrasting levels of sex-biased gene flow. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:618-31. [DOI: 10.1002/ajpa.22090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/04/2012] [Indexed: 11/06/2022]
|
26
|
Baeta M, Núñez C, Sosa C, Bolea M, Casalod Y, González-Andrade F, Roewer L, Martínez-Jarreta B. Mitochondrial diversity in Amerindian Kichwa and Mestizo populations from Ecuador. Int J Legal Med 2011; 126:299-302. [PMID: 22189782 DOI: 10.1007/s00414-011-0656-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022]
Abstract
This study presents mitochondrial DNA (mtDNA) data from 107 unrelated individuals from two of the major ethnic groups in Ecuador: Amerindian Kichwas (n = 65) and Mestizos (n = 42). We characterized the diversity of the matrilineal lineages of these Ecuadorian groups by analyzing the entire mtDNA control region. Different patterns of diversity were observed in the two groups as result of the unique historical and demographic events which have occurred in each population. Higher genetic diversity values were obtained for the Mestizo group than for the Amerindian group. Interestingly, only Native American lineages were detected in the two population samples, but with differences in the haplogroup distribution: Kichwa (A, 49%; B, 3%; C, 8%; and D, 40%) and Mestizo (A, 33%; B, 33%; C, 10%; and D, 24%). Analysis of the complete mtDNA control region proved to be useful to increase the discrimination power between individuals who showed common haplotypes in HVSI and HVSII segments; and added valuable information to the phylogenetic interpretation of mtDNA haplotypes.
Collapse
Affiliation(s)
- Miriam Baeta
- Laboratory of Forensic Genetics, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Simms TM, Martinez E, Herrera KJ, Wright MR, Perez OA, Hernandez M, Ramirez EC, McCartney Q, Herrera RJ. Paternal lineages signal distinct genetic contributions from British Loyalists and continental Africans among different Bahamian islands. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:594-608. [DOI: 10.1002/ajpa.21616] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/05/2011] [Indexed: 02/02/2023]
|
28
|
van Oven M, Vermeulen M, Kayser M. Multiplex genotyping system for efficient inference of matrilineal genetic ancestry with continental resolution. INVESTIGATIVE GENETICS 2011; 2:6. [PMID: 21429198 PMCID: PMC3078086 DOI: 10.1186/2041-2223-2-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/23/2011] [Indexed: 12/17/2022]
Abstract
Background In recent years, phylogeographic studies have produced detailed knowledge on the worldwide distribution of mitochondrial DNA (mtDNA) variants, linking specific clades of the mtDNA phylogeny with certain geographic areas. However, a multiplex genotyping system for the detection of the mtDNA haplogroups of major continental distribution that would be desirable for efficient DNA-based bio-geographic ancestry testing in various applications is still missing. Results Three multiplex genotyping assays, based on single-base primer extension technology, were developed targeting a total of 36 coding-region mtDNA variants that together differentiate 43 matrilineal haplo-/paragroups. These include the major diagnostic haplogroups for Africa, Western Eurasia, Eastern Eurasia and Native America. The assays show high sensitivity with respect to the amount of template DNA: successful amplification could still be obtained when using as little as 4 pg of genomic DNA and the technology is suitable for medium-throughput analyses. Conclusions We introduce an efficient and sensitive multiplex genotyping system for bio-geographic ancestry inference from mtDNA that provides resolution on the continental level. The method can be applied in forensics, to aid tracing unknown suspects, as well as in population studies, genealogy and personal ancestry testing. For more complete inferences of overall bio-geographic ancestry from DNA, the mtDNA system provided here can be combined with multiplex systems for suitable autosomal and, in the case of males, Y-chromosomal ancestry-sensitive DNA markers.
Collapse
Affiliation(s)
- Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|