1
|
Islam R, Choudhary HH, Mehta H, Zhang F, Jovin TG, Hanafy KA. Development of a 3D Brain Model to Study Sex-Specific Neuroinflammation After Hemorrhagic Stroke. Transl Stroke Res 2025; 16:655-671. [PMID: 38558012 PMCID: PMC12045812 DOI: 10.1007/s12975-024-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Subarachnoid hemorrhage (SAH) accounts for 5% of stroke, with women having a decreased inflammatory response compared to men; however, this mechanism has yet to be identified. One hurdle in SAH research is the lack of human brain models. Studies in murine models are helpful, but human models should be used in conjunction for improved translatability. These observations lead us to develop a 3D system to study the sex-specific microglial and neuroglial function in a novel in vitro human SAH model and compare it to our validated in vivo SAH model. Our lab has developed a 3D, membrane-based in vitro cell culture system with human astrocytes, microglia, and neurons from both sexes. The 3D cultures were incubated with male and female cerebrospinal fluid from SAH patients in the Neuro-ICU. Furthermore, microglial morphology, erythrophagocytosis, microglial inflammatory cytokine production, and neuronal apoptosis were studied and compared with our murine SAH models. The human 3D system demonstrated intercellular interactions and proportions of the three cell types similar to the adult human brain. In vitro and in vivo models of SAH showed concordance in male microglia being more inflammatory than females via morphology and flow cytometry. On the contrary, both in vitro and in vivo models revealed that female microglia were more phagocytic and less prone to damaging neurons than males. One possible explanation for the increased phagocytic ability of female microglia was the increased expression of CD206 and MerTK. Our in vitro, human, 3D cell culture SAH model showed similar results to our in vivo murine SAH model with respect to microglial morphology, inflammation, and phagocytosis when comparing the sexes. A human 3D brain model of SAH may be a useful adjunct to murine models to improve translation to SAH patients.
Collapse
Affiliation(s)
- Rezwanul Islam
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ, USA
| | - Hadi Hasan Choudhary
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Hritik Mehta
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ, USA
| | - Feng Zhang
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ, USA
| | - Tudor G Jovin
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ, USA
| | - Khalid A Hanafy
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA.
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ, USA.
- Center for Neuroinflammation, Cooper Medical School at Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Nan C, Zhang Y, Zhang A, Shi Y, Yan D, Sun Z, Jin Q, Huo H, Zhuo Y, Zhao Z. Exosomes derived from human umbilical cord mesenchymal stem cells decrease neuroinflammation and facilitate the restoration of nerve function in rats suffering from intracerebral hemorrhage. Mol Cell Biochem 2025; 480:309-323. [PMID: 38459276 PMCID: PMC11695394 DOI: 10.1007/s11010-024-04954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-ex) have become a hopeful substitute for whole-cell therapy due to their minimal immunogenicity and tumorigenicity. The present study aimed to investigate the hypothesis that hUCMSC-ex can alleviate excessive inflammation resulting from intracerebral hemorrhage (ICH) and facilitate the rehabilitation of the nervous system in rats. In vivo, hemorrhagic stroke was induced by injecting collagenase IV into the striatum of rats using stereotactic techniques. hUCMSC-ex were injected via the tail vein at 6 h after ICH model establishment at a dosage of 200 µg. In vitro, astrocytes were pretreated with hUCMSC-ex and then stimulated with hemin (20 μmol/mL) to establish an ICH cell model. The expression of TLR4/NF-κB signaling pathway proteins and inflammatory factors, including TNF-α, IL-1β, and IL-10, was assessed both in vivo and in vitro to investigate the impact of hUCMSC-ex on inflammation. The neurological function of the ICH rats was evaluated using the corner turn test, forelimb placement test, Longa score, and Bederson score on the 1st, 3rd, and 5th day. Additionally, RT-PCR was employed to examine the mRNA expression of TLR4 following hUCMSC-ex treatment. The findings demonstrated that hUCMSC-ex downregulated the protein expression of TLR4, NF-κB/P65, and p-P65, reduced the levels of pro-inflammatory cytokines TNF-α and IL-1β, and increased the expression of the anti-inflammatory cytokine IL-10. Ultimately, the administration of hUCMSC-ex improved the behavioral performance of the ICH rats. However, the results of PT-PCR indicated that hUCMSC-ex did not affect the expression of TLR4 mRNA induced by ICH, suggesting that hUCMSCs-ex may inhibit TLR4 translation rather than transcription, thereby suppressing the TLR4/NF-κB signaling pathway. We can conclude that hUCMSC-ex mitigates hyperinflammation following ICH by inhibiting the TLR4/NF-κB signaling pathway. This study provides preclinical evidence for the potential future application of hUCMSC-ex in the treatment of cerebral injury.
Collapse
Affiliation(s)
- Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Aobo Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Dongdong Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhimin Sun
- Department of Neurosurgery, Third Hospital of Shijiazhuang, Shijiazhuang, 050000, Hebei, China
| | - Qianxu Jin
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Haoran Huo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yayu Zhuo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
3
|
Zhang B, Zou Y, Yuan Z, Jiang K, Zhang Z, Chen S, Zhou X, Wu Q, Zhang X. Efferocytosis: the resolution of inflammation in cardiovascular and cerebrovascular disease. Front Immunol 2024; 15:1485222. [PMID: 39660125 PMCID: PMC11628373 DOI: 10.3389/fimmu.2024.1485222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular and cerebrovascular diseases have surpassed cancer as significant global health challenges, which mainly include atherosclerosis, myocardial infarction, hemorrhagic stroke and ischemia stroke. The inflammatory response immediately following these diseases profoundly impacts patient prognosis and recovery. Efficient resolution of inflammation is crucial not only for halting the inflammatory process but also for restoring tissue homeostasis. Efferocytosis, the phagocytic clearance of dying cells by phagocytes, especially microglia and macrophages, plays a critical role in this resolution process. Upon tissue injury, phagocytes are recruited to the site of damage where they engulf and clear dying cells through efferocytosis. Efferocytosis suppresses the secretion of pro-inflammatory cytokines, stimulates the production of anti-inflammatory cytokines, modulates the phenotype of microglia and macrophages, accelerates the resolution of inflammation, and promotes tissue repair. It involves three main stages: recognition, engulfment, and degradation of dying cells. Optimal removal of apoptotic cargo by phagocytes requires finely tuned machinery and associated modifications. Key molecules in efferocytosis, such as 'Find-me signals', 'Eat-me signals', and 'Don't eat-me signals', have been shown to enhance efferocytosis following cardiovascular and cerebrovascular diseases. Moreover, various additional molecules, pathways, and mitochondrial metabolic processes have been identified to enhance prognosis and outcomes via efferocytosis in diverse experimental models. Impaired efferocytosis can lead to inflammation-associated pathologies and prolonged recovery periods. Therefore, this review consolidates current understanding of efferocytosis mechanisms and its application in cardiovascular and cerebrovascular diseases, proposing future research directions.
Collapse
Affiliation(s)
- Bingtao Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yan Zou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zixuan Yuan
- Department of Neurosurgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Jiang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhaoxiang Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shujuan Chen
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Wu
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Hu D, Yan C, Xie H, Wen X, He K, Ding Y, Zhao Y, Meng H, Li K, Yang Z. Perihematomal Neurovascular Protection: Blocking HSP90 Reduces Blood Infiltration Associated with Inflammatory Effects Following Intracerebral Hemorrhage in Rates. Transl Stroke Res 2024:10.1007/s12975-024-01289-y. [PMID: 39230786 DOI: 10.1007/s12975-024-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
The active hemorrhage surrounding the hematoma is caused by the infiltration of blood into the cerebral parenchyma through the ruptured vessel, including the compromised blood-brain barrier (BBB). This process is thought to be mainly driven by inflammation and serves as a significant pathological characteristic that contributes to the neurological deterioration observed in individuals with intracerebral hemorrhage (ICH). Heat shock protein 90 (HSP90) exhibits abnormally high expression levels in various diseases and is closely associated with the onset of inflammation. Here, we found that blocking HSP90 effectively alleviates the inflammatory damage to BBB and subsequent bleeding around the hematoma. We have observed increased HSP90 levels in the serum of patients with ICH and the perihematoma region in ICH rats. Treatment with anti-HSP90 drugs (Geldanamycin and radicicol) effectively reduced HSP90 levels, resulting in enhanced neurological outcomes, decreased hematoma volume, and prevented peripheral immune cells from adhering to the BBB and infiltrating the brain parenchyma surrounding the hematoma in ICH rats. Mechanistically, anti-HSP90 therapy alleviated BBB injury caused by ICH-induced inflammation by suppressing TLR4 signaling. The study highlights the potential of anti-HSP90 therapy in mitigating BBB disruption and hemorrhage surrounding the hematoma, providing new insights into the management of ICH by targeting HSP90.
Collapse
Affiliation(s)
- Di Hu
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Chao Yan
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Hesong Xie
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Xueyi Wen
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Kejing He
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Yan Ding
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Ying Zhao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Heng Meng
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| | - Keshen Li
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| | - Zhenguo Yang
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Bai C, Liu X, Wang F, Sun Y, Wang J, Liu J, Hao X, Zhou L, Yuan Y, Liu J. Identification of immune-related biomarkers for intracerebral hemorrhage diagnosis based on RNA sequencing and machine learning. Front Immunol 2024; 15:1421942. [PMID: 39281688 PMCID: PMC11392791 DOI: 10.3389/fimmu.2024.1421942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a severe stroke subtype with high morbidity, disability, and mortality rates. Currently, no biomarkers for ICH are available for use in clinical practice. We aimed to explore the roles of RNAs in ICH pathogenesis and identify potential diagnostic biomarkers. Methods We collected 233 individual blood samples from two independent cohorts, including 64 patients with ICH, 59 patients with ischemic stroke (IS), 60 patients with hypertension (HTN) and 50 healthy controls (CTRL) for RNA sequencing. Differentially expressed genes (DEGs) analysis, gene set enrichment analysis (GSEA), and weighted correlation network analysis (WGCNA) were performed to identify ICH-specific modules. The immune cell composition was evaluated with ImmuneCellAI. Multiple machine learning algorithms to select potential biomarkers for ICH diagnosis, and further validated by quantitative real-time polymerase chain reaction (RT-PCR). Receiver operating characteristic (ROC) curve analysis and decision curve analysis (DCA) were performed to evaluate the diagnostic value of the signature for ICH. Finally, we generated M1 and M2 macrophages to investigate the expression of candidate genes. Results In both cohorts, 519 mRNAs and 131 lncRNAs were consistently significantly differentially expressed between ICH patients and HTN controls. Gene function analysis suggested that immune system processes may be involved in ICH pathology. ImmuneCellAI analysis revealed that the abundances of 11 immune cell types were altered after ICH in both cohorts. WGCNA and GSEA identified 18 immune-related DEGs. Multiple algorithms identified an RNA panel (CKAP4, BCL6, TLR8) with high diagnostic value for discriminating ICH patients from HTN controls, CTRLs and IS patients (AUCs: 0.93, 0.95 and 0.82; sensitivities: 81.3%, 84.4% and 75%; specificities: 100%, 96% and 79.7%, respectively). Additionally, CKAP4 and TLR8 mRNA and protein levels decreased in RAW264.7 M1 macrophages and increased in RAW264.7 M2 macrophages, while BCL6 expression increased in M1 macrophages but not in M2 macrophages, which may provide potential therapeutic targets for ICH. Conclusions This study demonstrated that the expression levels of lncRNAs and mRNAs are associated with ICH, and an RNA panel (CKAP4, BCL6, TLR8) was developed as a potential diagnostic tool for distinguishing ICH from IS and controls, which could provide useful insight into ICH diagnosis and pathogenesis.
Collapse
Affiliation(s)
- Congxia Bai
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinran Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengjuan Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Yuan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Jiayun Liu
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Lee H, Lee J, Jung D, Oh H, Shin H, Choi B. Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke. Int J Mol Sci 2024; 25:7546. [PMID: 39062789 PMCID: PMC11277498 DOI: 10.3390/ijms25147546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic electrical stimulation, such as transcranial cortical stimulation and peripheral somatosensory stimulation, is used to improve motor function in patients with stroke. We hypothesized that these stimulations exert neuroprotective effects during the subacute phase of ischemic stroke by regulating novel common signaling pathways. Male C57BL/6J mouse models of ischemic stroke were treated with high-definition (HD)-transcranial alternating current stimulation (tACS; 20 Hz, 89.1 A/mm2), HD-transcranial direct current stimulation (tDCS; intensity, 55 A/mm2; charge density, 66,000 C/m2), or electroacupuncture (EA, 2 Hz, 1 mA) in the early stages of stroke. The therapeutic effects were assessed using behavioral motor function tests. The underlying mechanisms were determined using transcriptomic and other biomedical analyses. All therapeutic electrical tools alleviated the motor dysfunction caused by ischemic stroke insults. We focused on electrically stimulating common genes involved in apoptosis and cell death using transcriptome analysis and chose 11 of the most potent targets (Trem2, S100a9, Lgals3, Tlr4, Myd88, NF-kB, STAT1, IL-6, IL-1β, TNF-α, and Iba1). Subsequent investigations revealed that electrical stimulation modulated inflammatory cytokines, including IL-1β and TNF-α, by regulating STAT1 and NF-kB activation, especially in amoeboid microglia; moreover, electrical stimulation enhanced neuronal survival by activating neurotrophic factors, including BDNF and FGF9. Therapeutic electrical stimulation applied to the transcranial cortical- or periphery-nerve level to promote functional recovery may improve neuroprotection by modulating a common neuronal death pathway and upregulating neurotrophic factors. Therefore, combining transcranial cortical and peripheral somatosensory stimulation may exert a synergistic neuroprotective effect, further enhancing the beneficial effects on motor deficits in patients with ischemic stroke.
Collapse
Affiliation(s)
- Hongju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
| | - Juyeon Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dahee Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Harim Oh
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hwakyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byungtae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
7
|
Hay A, Popichak K, Moreno J, Zabel M. The Role of Glial Cells in Neurobiology and Prion Neuropathology. Cells 2024; 13:832. [PMID: 38786054 PMCID: PMC11119027 DOI: 10.3390/cells13100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Prion diseases are rare and neurodegenerative diseases that are characterized by the misfolding and infectious spread of the prion protein in the brain, causing progressive and irreversible neuronal loss and associated clinical and behavioral manifestations in humans and animals, ultimately leading to death. The brain has a complex network of neurons and glial cells whose crosstalk is critical for function and homeostasis. Although it is established that prion infection of neurons is necessary for clinical disease to occur, debate remains in the field as to the role played by glial cells, namely astrocytes and microglia, and whether these cells are beneficial to the host or further accelerate disease. Here, we review the current literature assessing the complex morphologies of astrocytes and microglia, and the crosstalk between these two cell types, in the prion-infected brain.
Collapse
Affiliation(s)
- Arielle Hay
- Division of Intramural Research, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Katriana Popichak
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.P.); (J.M.); (M.Z.)
| | - Julie Moreno
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.P.); (J.M.); (M.Z.)
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.P.); (J.M.); (M.Z.)
| |
Collapse
|
8
|
Luo Y, Zhao J. The dynamic changes of peripheral blood cell counts predict the clinical outcomes of aneurysmal subarachnoid hemorrhage. Heliyon 2024; 10:e29763. [PMID: 38681624 PMCID: PMC11053216 DOI: 10.1016/j.heliyon.2024.e29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) is a serious type of hemorrhagic stroke. It is very important to predict the prognosis at early phase. In this work, we intend to characterize early changes in peripheral blood cells after aSAH and explore the association between peripheral blood cells and clinical outcomes after aSAH. Methods aSAH patients admitted between December 2019 and September 2022 were enrolled. A retrospective observational study was performed. Total leukocytes, monocytes, neutrophils, erythrocytes, lymphocytes and platelets counts were recorded on the day of admission (day 1), day 3, day 5 and day 7. Statistical tests included Chi-square test, analysis of variance and multivariate logistic regression (MLR) models. 197 patients were analyzed. Results Leukocytes and neutrophils were higher in poor outcome groups from day 1 to day 7 and in delayed cerebral ischemia (DCI) groups from day 3 to day 7. Lymphocytes were higher at day 5 and day 7 in good outcome groups and no DCI groups. Neutrophil-to-lymphocyte ratio (NLR) was lower from day 3 to day 7 in good outcome groups and no DCI groups. Erythrocytes were higher from day 3 to day 7 in good outcome groups and no DCI groups. Lymphocytes were negatively related to poor outcomes on day 1 (OR = 0.457), indicating higher lymphocytes predicted good outcomes, Neutrophils were positively related to poor outcomes on day 3 (OR = 3.003) indicating higher neutrophils predicted poor outcomes. Lymphocytes were negatively related to DCI on day 5 (OR = 0.388) indicating higher lymphocytes predicted no DCI, Erythrocytes were negatively related to DCI on day 5 (OR = 0.335) and day 7 (OR = 0.204) indicating higher erythrocytes predicted no DCI. The improved ability of neutrophils, lymphocytes and erythrocytes to predict DCI or poor functional outcomes were revealed by ROC curve analysis. Conclusions The dynamic changes of peripheral blood cell counts were related to poor functional outcomes and DCI after aSAH. Elevated neutrophils, leukocytes, NLR, and decreased lymphocytes, erythrocytes were accompanied by DCI and poor outcome. Neutrophils, lymphocytes and erythrocytes counts could be beneficial to predict DCI and outcomes after aSAH.
Collapse
Affiliation(s)
- Yi Luo
- Department of Neurology, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
- Department of Stroke Center, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
| | - Jian Zhao
- Department of Neurosurgery, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
- Department of Stroke Center, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
| |
Collapse
|
9
|
Duan M, Xu Y, Li Y, Feng H, Chen Y. Targeting brain-peripheral immune responses for secondary brain injury after ischemic and hemorrhagic stroke. J Neuroinflammation 2024; 21:102. [PMID: 38637850 PMCID: PMC11025216 DOI: 10.1186/s12974-024-03101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
The notion that the central nervous system is an immunologically immune-exempt organ has changed over the past two decades, with increasing evidence of strong links and interactions between the central nervous system and the peripheral immune system, both in the healthy state and after ischemic and hemorrhagic stroke. Although primary injury after stroke is certainly important, the limited therapeutic efficacy, poor neurological prognosis and high mortality have led researchers to realize that secondary injury and damage may also play important roles in influencing long-term neurological prognosis and mortality and that the neuroinflammatory process in secondary injury is one of the most important influences on disease progression. Here, we summarize the interactions of the central nervous system with the peripheral immune system after ischemic and hemorrhagic stroke, in particular, how the central nervous system activates and recruits peripheral immune components, and we review recent advances in corresponding therapeutic approaches and clinical studies, emphasizing the importance of the role of the peripheral immune system in ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Mingxu Duan
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ya Xu
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanshu Li
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Department of Neurosurgery, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
Du Y, Wang J, Zhang J, Li N, Li G, Liu X, Lin Y, Wang D, Kang K, Bian L, Zhao X. Intracerebral hemorrhage-induced brain injury in mice: The role of peroxiredoxin 2-Toll-like receptor 4 inflammatory axis. CNS Neurosci Ther 2024; 30:e14681. [PMID: 38516845 PMCID: PMC10958402 DOI: 10.1111/cns.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Peroxiredoxin 2 (Prx2), an intracellular protein that regulates redox reactions, released from red blood cells is involved in inflammatory brain injury after intracerebral hemorrhage (ICH). Toll-like receptor 4 (TLR4) may be crucial in this process. This study investigated the role of the Prx2-TLR4 inflammatory axis in brain injury following experimental ICH in mice. METHODS First, C57BL/6 mice received an intracaudate injection of autologous arterial blood or saline and their brains were harvested on day 1 to measure Prx2 levels. Second, mice received an intracaudate injection of either recombinant mouse Prx2 or saline. Third, the mice were co-injected with autologous arterial blood and conoidin A, a Prx2 inhibitor, or vehicle. Fourth, the mice received a Prx2 injection and were treated with TAK-242, a TLR4 antagonist, or saline (intraperitoneally). Behavioral tests, magnetic resonance imaging, western blot, immunohistochemistry/immunofluorescence staining, and RNA sequencing (RNA-seq) were performed. RESULTS Brain Prx2 levels were elevated after autologous arterial blood injection. Intracaudate injection of Prx2 caused brain swelling, microglial activation, neutrophil infiltration, neuronal death, and neurological deficits. Co-injection of conoidin A attenuated autologous arterial blood-induced brain injury. TLR4 was expressed on the surface of microglia/macrophages and neutrophils and participated in Prx2-induced inflammation. TAK-242 treatment attenuated Prx2-induced inflammation and neurological deficits. CONCLUSIONS Prx2 can cause brain injury following ICH through the TLR4 pathway, revealing the Prx2-TLR4 inflammatory axis as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Du
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jinjin Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Jia Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Ning Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Guangshuo Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xinmin Liu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Yijun Lin
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Dandan Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Kaijiang Kang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Liheng Bian
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
- Center of Stroke, Beijing Institute for Brain DisordersBeijingChina
| |
Collapse
|
11
|
Wang P, Shen Y, Manaenko A, Liu F, Yang W, Xiao Z, Li P, Ran Y, Dang R, He Y, Wu Q, Xie P, Li Q. TMT-based quantitative proteomics reveals the protective mechanism of tenuigenin after experimental intracerebral hemorrhage in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117213. [PMID: 37739103 DOI: 10.1016/j.jep.2023.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tenuigenin (TNG) is an extract obtained from Polygalae Radix. It possesses anti-inflammatory, antioxidant, and neuroprotective properties. However, the potential mechanism of TNG in intracerebral hemorrhage (ICH) has not been well studied. AIM OF THE STUDY In the present study, we aimed to identify the prospective mechanism of TNG in treating ICH. MATERIALS AND METHODS A total of 120 mice were divided into five groups: Sham group, ICH + vehicle group, ICH + TNG(8 mg/kg), ICH + TNG(16 mg/kg), and ICH + TNG(32 mg/kg). The modified Garcia test and beam walking test were carried out at 24 h and 72 h after ICH. Brain water content, haematoma volume and hemoglobin content examinations were performed at 72 h after ICH. TMT-based quantitative proteomics combined with bioinformatics analysis methods was used to distinguish differentially expressed proteins (DEPs) to explore potential pharmacological mechanisms. Western blotting was performed to validate representative proteins. RESULTS Our results showed that the optimal dose of TNG was 16 mg/kg, which could markedly improve neurological functions, and reduce cerebral oedema, haematoma volume and hemoglobin levels 72 h after ICH. A total of 404 DEPs (353 up-and 51 downregulated) were identified in the ICH + vehicle vs. sham group, while 342 DEPs (306 up-and 36 downregulated) and 76 DEPs (28 up-and 48 downregulated) were quantified in the TNG vs. sham group and TNG vs. ICH + vehicle group, respectively. In addition, a total of 26 DEPs were selected according to strict criteria. Complement and coagulation cascades were the most significantly enriched pathways, and two proteins (MBL-C and Car1) were further validated as hub molecules. CONCLUSIONS Our results suggested that the therapeutic effects of TNG on ICH were closely associated with the complement system, and that MBL-C and Car1 might be potential targets of TNG for the treatment of ICH.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - YiQing Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - FangYu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - WenSong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - ZhongSong Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - PeiZheng Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - YuXin Ran
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - RuoZhi Dang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - QingYuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Li R, Song M, Zheng Y, Zhang J, Zhang S, Fan X. Naoxueshu oral liquid promotes hematoma absorption by targeting CD36 in M2 microglia via TLR4/MyD88/NF-κB signaling pathway in rats with intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117116. [PMID: 37659762 DOI: 10.1016/j.jep.2023.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Intracerebral hemorrhage (ICH) is a major public health issue that leads to elevated rates of death and disability and has few proven treatments. Naoxueshu oral liquid (NXS), a TCM patent drug, is widely used in patients with ICH. Although a series of clinical studies have confirmed the efficacy and safety of NXS, the underlying mechanism of hematoma absorption is unclear. AIM OF THE STUDY Our work aimed to elucidate the effect and mechanism of NXS on hematoma absorption in rats with ICH. MATERIALS AND METHODS Induction of ICH model in the rats with intracerebral injection of collagenase VII, followed by treatment with NXS and Edaravone as a control neuroprotection medication. Neural functional recovery was assessed using mNSS, foot fault test, corner test, forelimb grip-traction test, and adhesive removal test. Hematoma absorption was assessed by the spectrophotometric hemoglobin assay with Drabkin's reagent. The protein expression of CD36, M2 microglia marker (CD206 and YM-1) and TLR4/MyD88/NF-κB pathway related proteins were determined by Western blot and immunofluorescence. RESULTS NXS could significantly ameliorate the ICH recovery of neural and locomotor function as well as reduce hemorrhage volume. NXS could increase the expression of CD36 expressed in M2 microglia and promote M2 microglia polarization. Simultaneously, NXS significantly suppressed protein expressions of TLR4, MyD88, and NF-κB following ICH in rats. The results indicated that lipopolysaccharide (LPS), TLR4 specific agonist, could partially reverse the change in ICH rats administrated with NXS. CONCLUSIONS NXS promotes hematoma absorption by targeting CD36 expression in M2 microglia via TLR4/MyD88/NF-κB signaling pathway in rats with ICH. Collectively, current research provides a novel theoretical basis for the clinical application of NXS.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiaxue Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
13
|
Hanafy KA, Jovin TG. Brain FADE syndrome: the final common pathway of chronic inflammation in neurological disease. Front Immunol 2024; 15:1332776. [PMID: 38304427 PMCID: PMC10830639 DOI: 10.3389/fimmu.2024.1332776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Importance While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation. Observations A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson's disease, COVID, traumatic brain injury, and Alzheimer's disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them. Conclusions and relevance Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical "psychiatric medications" are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.
Collapse
Affiliation(s)
- Khalid A. Hanafy
- Cooper Neurological Institute and Cooper Medical School at Rowan University, Camden, NJ, United States
- Center for Neuroinflammation at Cooper Medical School at Rowan University, Camden, NJ, United States
| | - Tudor G. Jovin
- Cooper Neurological Institute and Cooper Medical School at Rowan University, Camden, NJ, United States
| |
Collapse
|
14
|
Rosas Almanza J, Stehlik KE, Page JJ, Xiong SH, Tabor EG, Aperi B, Patel K, Kodali R, Kurpad S, Budde MD, Tarima S, Swartz K, Kroner A. IL-12p40 promotes secondary damage and functional impairment after spinal cord contusional injury. J Neurosci Res 2022; 100:2213-2231. [PMID: 36089917 DOI: 10.1002/jnr.25122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 01/07/2023]
Abstract
Secondary damage obstructs functional recovery for individuals who have sustained a spinal cord injury (SCI). Two processes significantly contributing to tissue damage after trauma are spinal cord hemorrhage and inflammation: more specifically, the recruitment and activation of immune cells, frequently driven by pro-inflammatory factors. Cytokines are inflammatory mediators capable of modulating the immune response. While cytokines are necessary to elicit inflammation for proper healing, excessive inflammation can result in destructive processes. The pro-inflammatory cytokines IL-12 and IL-23 are pathogenic in multiple autoimmune diseases. The cytokine subunit IL-12p40 is necessary to form bioactive IL-12 and IL-23. In this study, we examined the relationship between spinal cord hemorrhage and IL-12-related factors, as well as the impact of IL-12p40 (IL-12/IL-23) on secondary damage and functional recovery after SCI. Using in vivo magnetic resonance imaging and protein tissue analyses, we demonstrated a positive correlation between IL-12 and tissue hemorrhage. Receptor and ligand subunits of IL-12 were significantly upregulated after injury and colocalized with astrocytes, demonstrating a myriad of opportunities for IL-12 to induce an inflammatory response. IL-12p40-/- mice demonstrated significantly improved functional recovery and reduced lesion sizes compared to wild-type mice. Targeted gene array analysis in wild-type and IL-12p40-/- female mice after SCI revealed an upregulation of genes associated with worsened recovery after SCI. Taken together, our data reveal a pathogenic role of IL-12p40 in the secondary damage after SCI, hindering functional recovery. IL-12p40 (IL-12/IL-23) is thus an enticing neuroinflammatory target for further study as a potential therapeutic target to benefit recovery in acute SCI.
Collapse
Affiliation(s)
- Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Kyle E Stehlik
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Justin J Page
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Shuana H Xiong
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Emma G Tabor
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Brandy Aperi
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Kishan Patel
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Rajiv Kodali
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Shekar Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Sergey Tarima
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karin Swartz
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Li Z, Khan S, Liu Y, Wei R, Yong VW, Xue M. Therapeutic strategies for intracerebral hemorrhage. Front Neurol 2022; 13:1032343. [PMID: 36408517 PMCID: PMC9672341 DOI: 10.3389/fneur.2022.1032343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 09/03/2023] Open
Abstract
Stroke is the second highest cause of death globally, with an increasing incidence in developing countries. Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes. ICH is associated with poor neurological outcomes and high mortality due to the combination of primary and secondary injury. Fortunately, experimental therapies are available that may improve functional outcomes in patients with ICH. These therapies targeting secondary brain injury have attracted substantial attention in their translational potential. Here, we summarize recent advances in therapeutic strategies and directions for ICH and discuss the barriers and issues that need to be overcome to improve ICH prognosis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| |
Collapse
|
16
|
Xia S, Zheng Y, Yan F, Chen G. MicroRNAs modulate neuroinflammation after intracerebral hemorrhage: Prospects for new therapy. Front Immunol 2022; 13:945860. [PMID: 36389834 PMCID: PMC9665326 DOI: 10.3389/fimmu.2022.945860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke. After ICH, blood components extravasate from vessels into the brain, activating immune cells and causing them to release a series of inflammatory mediators. Immune cells, together with inflammatory mediators, lead to neuroinflammation in the perihematomal region and the whole brain, and neuroinflammation is closely related to secondary brain injury as well as functional recovery of the brain. Despite recent progress in understanding the pathophysiology of ICH, there is still no effective treatment for this disease. MicroRNAs (miRNAs) are non-coding RNAs 17-25 nucleotides in length that are generated naturally in the human body. They bind complementarily to messenger RNAs and suppress translation, thus regulating gene expression at the post-transcriptional level. They have been found to regulate the pathophysiological process of ICH, particularly the neuroinflammatory cascade. Multiple preclinical studies have shown that manipulating the expression and activity of miRNAs can modulate immune cell activities, influence neuroinflammatory responses, and ultimately affect neurological functions after ICH. This implicates the potentially crucial roles of miRNAs in post-ICH neuroinflammation and indicates the possibility of applying miRNA-based therapeutics for this disease. Thus, this review aims to address the pathophysiological roles and molecular underpinnings of miRNAs in the regulation of neuroinflammation after ICH. With a more sophisticated understanding of ICH and miRNAs, it is possible to translate these findings into new pharmacological therapies for ICH.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Yang G, Fan X, Mazhar M, Guo W, Zou Y, Dechsupa N, Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front Mol Neurosci 2022; 15:1013706. [PMID: 36304999 PMCID: PMC9592761 DOI: 10.3389/fnmol.2022.1013706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in neurological diseases, including intracerebral hemorrhage (ICH). Microglia are activated to acquire either pro-inflammatory or anti-inflammatory phenotypes. After the onset of ICH, pro-inflammatory mediators produced by microglia at the early stages serve as a crucial character in neuroinflammation. Conversely, switching the microglial shift to an anti-inflammatory phenotype could alleviate inflammatory response and incite recovery. This review will elucidate the dynamic profiles of microglia phenotypes and their available shift following ICH. This study can facilitate an understanding of the self-regulatory functions of the immune system involving the shift of microglia phenotypes in ICH. Moreover, suggestions for future preclinical and clinical research and potential intervention strategies are discussed.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Acupuncture and Rehabilitation Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Wubin Guo
- Department of General Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yuanxia Zou
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Li Wang Nathupakorn Dechsupa
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Li Wang Nathupakorn Dechsupa
| |
Collapse
|
18
|
Wendimu MY, Hooks SB. Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 2022; 11:2091. [PMID: 35805174 PMCID: PMC9266143 DOI: 10.3390/cells11132091] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases (NDs) and plays a fundamental role in mediating the onset and progression of disease. Microglia, which function as first-line immune guardians of the central nervous system (CNS), are the central drivers of neuroinflammation. Numerous human postmortem studies and in vivo imaging analyses have shown chronically activated microglia in patients with various acute and chronic neuropathological diseases. While microglial activation is a common feature of many NDs, the exact role of microglia in various pathological states is complex and often contradictory. However, there is a consensus that microglia play a biphasic role in pathological conditions, with detrimental and protective phenotypes, and the overall response of microglia and the activation of different phenotypes depends on the nature and duration of the inflammatory insult, as well as the stage of disease development. This review provides a comprehensive overview of current research on the various microglia phenotypes and inflammatory responses in health, aging, and NDs, with a special emphasis on the heterogeneous phenotypic response of microglia in acute and chronic diseases such as hemorrhagic stroke (HS), Alzheimer's disease (AD), and Parkinson's disease (PD). The primary focus is translational research in preclinical animal models and bulk/single-cell transcriptome studies in human postmortem samples. Additionally, this review covers key microglial receptors and signaling pathways that are potential therapeutic targets to regulate microglial inflammatory responses during aging and in NDs. Additionally, age-, sex-, and species-specific microglial differences will be briefly reviewed.
Collapse
Affiliation(s)
| | - Shelley B. Hooks
- Hooks Lab, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
19
|
Song H, Xu N, Jin S. miR‑30e‑5p attenuates neuronal deficit and inflammation of rats with intracerebral hemorrhage by regulating TLR4. Exp Ther Med 2022; 24:492. [PMID: 35837037 PMCID: PMC9257744 DOI: 10.3892/etm.2022.11419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
microRNAs (miRNAs or miRs) have been reported to regulate the pathology of intracerebral hemorrhage (ICH). Therefore, the present study aimed to investigate the function of miR-30e-5p in rats with ICH with specific focus on Toll-like receptor (TLR)4. In the present study, collagenase type IV was used for the establishment of the ICH model in rats, prior to which the rats were injected with miR-30e-5p mimic or miR-30e-5p mimic + pcDNA3.1-TLR4 plasmid. The expression levels of miR-30e-5p and TLR4 were then measured using reverse transcription-quantitative PCR and western blotting. The potential interaction between miR-30e-5p and TLR4 was tested using the MicroRNA Target Prediction Database and dual-luciferase reporter and RNA immunoprecipitation assay. In addition, the concentration of TNF-α, IL-6 and IL-1β was measured using ELISA. The protein expression levels of TLR4/myeloid differentiation factor 88 (MyD88)/TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling-associated molecules were measured by western blotting. Following induction of ICH, miR-30e-5p expression was downregulated, while TLR4 expression was upregulated. By contrast, injection with miR-30e-5p mimic rescued neuronal function while suppressing neuronal inflammation in rats following ICH; these effects were reversed by co-overexpression of TLR4. Furthermore, overexpression of miR-30e-5p inactivated TLR4/MyD88/TRIF signaling in rats with ICH; this was also reversed by overexpression of TLR4. Taken together, these results suggested that overexpression of miR-30e-5p exerted a protective role against neuronal deficit and inflammation caused by ICH in rats by targeting TLR4 and inactivating TLR4/MyD88/TRIF signaling.
Collapse
Affiliation(s)
- Haipeng Song
- Department of Neurosurgery, Jinan First People's Hospital, Ji'nan, Shandong 250012, P.R. China
| | - Na Xu
- Department of Emergency, Jinan First People's Hospital, Ji'nan, Shandong 250012, P.R. China
| | - Shan Jin
- Department of Neurology, The 960th Hospital of The Chinese People's Liberation Army, Ji'nan, Shandong 250031, P.R. China
| |
Collapse
|
20
|
Espenhahn S, Godfrey KJ, Kaur S, McMorris C, Murias K, Tommerdahl M, Bray S, Harris AD. Atypical Tactile Perception in Early Childhood Autism. J Autism Dev Disord 2022:10.1007/s10803-022-05570-7. [PMID: 35482274 DOI: 10.1007/s10803-022-05570-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 11/24/2022]
Abstract
We assessed different aspects of tactile perception in young children (3-6 years) with autism. Autistic and neurotypical children completed vibrotactile tasks assessing reaction time, amplitude discrimination (sequential and simultaneous) and temporal discrimination (temporal order judgment and duration discrimination). Autistic children had elevated and more variable reaction times, suggesting slower perceptual-motor processing speed and/or greater distractibility. Children with autism also showed higher amplitude discrimination and temporal order judgement thresholds compared to neurotypical children. Tactile perceptual metrics did not associate with social or tactile sensitivities measured by parent-reports. Altered tactile behavioral responses appear in early childhood, can be quantified but appear dissociated from sensitivity. This implies these measures are complementary, but not necessarily related, phenomena of atypical tactile perception in autism.
Collapse
Affiliation(s)
- Svenja Espenhahn
- Department of Radiology, Cumming School of Medicine, University of Calgary Alberta Children's Hospital, Office B4-512 28 Oki Drive NW, T3B 6A8, Calgary, AB, Canada.,Owerko Centre, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate J Godfrey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Owerko Centre, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Sakshi Kaur
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Owerko Centre, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carly McMorris
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Owerko Centre, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Werklund School of Education, University of Calgary, Calgary, Alberta, Canada
| | - Kara Murias
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Owerko Centre, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Signe Bray
- Department of Radiology, Cumming School of Medicine, University of Calgary Alberta Children's Hospital, Office B4-512 28 Oki Drive NW, T3B 6A8, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Owerko Centre, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ashley D Harris
- Department of Radiology, Cumming School of Medicine, University of Calgary Alberta Children's Hospital, Office B4-512 28 Oki Drive NW, T3B 6A8, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Owerko Centre, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
21
|
Magid-Bernstein J, Girard R, Polster S, Srinath A, Romanos S, Awad IA, Sansing LH. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ Res 2022; 130:1204-1229. [PMID: 35420918 PMCID: PMC10032582 DOI: 10.1161/circresaha.121.319949] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity and mortality. This review article focuses on the epidemiology, cause, mechanisms of injury, current treatment strategies, and future research directions of ICH. Incidence of hemorrhagic stroke has increased worldwide over the past 40 years, with shifts in the cause over time as hypertension management has improved and anticoagulant use has increased. Preclinical and clinical trials have elucidated the underlying ICH cause and mechanisms of injury from ICH including the complex interaction between edema, inflammation, iron-induced injury, and oxidative stress. Several trials have investigated optimal medical and surgical management of ICH without clear improvement in survival and functional outcomes. Ongoing research into novel approaches for ICH management provide hope for reducing the devastating effect of this disease in the future. Areas of promise in ICH therapy include prognostic biomarkers and primary prevention based on disease pathobiology, ultra-early hemostatic therapy, minimally invasive surgery, and perihematomal protection against inflammatory brain injury.
Collapse
Affiliation(s)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sean Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
22
|
Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Role of DAMPs and of Leukocytes Infiltration in Ischemic Stroke: Insights from Animal Models and Translation to the Human Disease. Cell Mol Neurobiol 2022; 42:545-556. [PMID: 32996044 PMCID: PMC11441194 DOI: 10.1007/s10571-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Stroke is a leading cause of death and disability worldwide. Several mechanisms are involved in the pathogenesis of ischemic stroke (IS). The contributory role of the inflammatory and immunity processes was demonstrated both in vitro and in animal models, and was confirmed in humans. IS evokes an immediate inflammatory response that involves complex cellular and molecular mechanisms. All components of the innate and adaptive immunity systems are involved in several steps of the ischemic cascade. In the early phase, inflammatory and immune mechanisms contribute to the brain tissue damage, whereas, in the late phase, they participate to the tissue repair processes. In particular, damage-associated molecular patterns (DAMPs) appear critical for the promotion of altered blood brain barrier permeability, leukocytes infiltration, tissue edema and brain injury. Conversely, the activation of regulatory T lymphocytes (Tregs) plays protective effects. The identification of specific cellular/molecular elements belonging to the inflammatory and immune responses, contributing to the brain ischemic injury and tissue remodeling, offers the advantage to design adequate therapeutic strategies. In this article, we will present an overview of the knowledge on inflammatory and immunity processes in IS, with a particular focus on the role of DAMPs and leukocytes infiltration. We will discuss evidence obtained in preclinical models of IS and in humans. The main molecular mechanisms useful for the development of novel therapeutic approaches will be highlighted. The translation of experimental findings to the human disease is still a difficult step to pursue. Further investigations are required to fill up the existing gaps.
Collapse
Affiliation(s)
| | | | | | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
23
|
Song Y, Li K, Zhang Z, Liu Q, Wang Y, Qi J. Heme Oxygenase-1 may Mediate Early Inflammatory Response of Intracerebral Hemorrhage through Toll-like Receptor 4 Signaling Pathway. Curr Neurovasc Res 2022; 19:181-187. [PMID: 35702793 DOI: 10.2174/1567202619666220614153209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The aim of this study was to investigate whether heme oxygenase-1 (HO-1) promotes an early neuroinflammatory response after intracerebral hemorrhage (ICH) by regulating the toll-like receptor 4 (TLR4) signaling pathway. METHODS We used a stereotaxic instrument to induce a mouse model of ICH through collagenase. We divided the participants into a control group, an ICH group, and an ICH and zinc protoporphyrin IX (ZnPP) group. The temporal expression pattern and cell localization of HO-1 and TLR4 after the ICH were detected by immunofluorescence and western blot; after the expression of HO-1 was inhibited, the expression levels of the TLR4 protein, the downstream molecule myeloid differentiation factor 88 (MyD88), the Toll and interleukin-1 receptor (TIR) -domain-containing adapter-inducing interferon-β (TRIF) and the inflammatory factors were measured by western blotting. RESULTS Immunofluorescence showed that HO-1 and TLR4 had similar temporal expression patterns and cellular localization after ICH, and we found that inhibiting HO-1 reduces the expression of TLR4 protein pathways, including TLR4, MyD88, TRIF, and related inflammatory factors, by studying the inhibitor ZnPP. CONCLUSION These results indicate that HO-1 may promote early neuroinflammation after ICH through the TLR4/MyD88/TRIF signaling pathway.
Collapse
Affiliation(s)
- Yuejia Song
- Department of Endocrinology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Ke Li
- Department of Pathology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Zhen Zhang
- Department of Pathology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qi Liu
- Department of Pathology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yu Wang
- Department of Pathology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiping Qi
- Department of Pathology, First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
24
|
Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022; 23:2445. [PMID: 35269587 PMCID: PMC8910319 DOI: 10.3390/ijms23052445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (T.D.C.); (A.D.C.); (M.D.); (S.S.); (R.L.N.); (M.G.P.); (R.S.); (A.P.)
| |
Collapse
|
25
|
Lusk JB, Quinones QJ, Staats JS, Weinhold KJ, Grossi PM, Nimjee SM, Laskowitz DT, James ML. Coupling hematoma evacuation with immune profiling for analysis of neuroinflammation after primary intracerebral hemorrhage: a pilot study. World Neurosurg 2022; 161:162-168. [PMID: 35217228 DOI: 10.1016/j.wneu.2022.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To explore the use and feasibility of an integrated hematoma evacuation/tissue preservation system coupled with immune profiling to assess human ex vivo immune cell populations from brain hematoma samples after intracerebral hemorrhage (ICH) METHODS: In this non-randomized, non-controlled pilot/feasibility study of 7 patients with primary supratentorial ICH, a hematoma evacuation device and integrated tissue preservation system were utilized to obtain hematoma samples during surgical evacuation. Samples were processed, cryopreserved, and analyzed using flow cytometry to determine the relative distribution of immune cell populations compared to peripheral blood mononuclear cells from healthy control subjects RESULTS: This study demonstrates proof of concept for an integrated hematoma evacuation and sample preservation system to collect human brain hematoma samples for flow cytometry analysis after acute human ICH. Hematoma samples in our preliminary analysis demonstrated different makeup of white blood cells than peripheral blood from healthy controls. CONCLUSIONS Flow cytometry analysis of hematoma samples in ICH demonstrates the potential to provide important insights into neuroinflammation associated with ICH.
Collapse
Affiliation(s)
- Jay B Lusk
- School of Medicine, Duke University, Durham, NC; Fuqua School of Business, Duke University, Durham, NC.
| | | | - Janet S Staats
- Duke Immune Profiling Core, Department of Surgery, Duke University, Durham, NC
| | - Kent J Weinhold
- Duke Immune Profiling Core, Department of Surgery, Duke University, Durham, NC
| | | | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University, Columbus, OH
| | - Daniel T Laskowitz
- Department of Anesthesiology, Duke University, Durham NC; Department of Neurology, Duke University, Durham NC
| | - Michael L James
- Department of Anesthesiology, Duke University, Durham NC; Department of Neurology, Duke University, Durham NC
| |
Collapse
|
26
|
Lin J, Tan B, Li Y, Feng H, Chen Y. Sepsis-Exacerbated Brain Dysfunction After Intracerebral Hemorrhage. Front Cell Neurosci 2022; 15:819182. [PMID: 35126060 PMCID: PMC8814659 DOI: 10.3389/fncel.2021.819182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Sepsis susceptibility is significantly increased in patients with intracerebral hemorrhage (ICH), owing to immunosuppression and intestinal microbiota dysbiosis. To date, ICH with sepsis occurrence is still difficult for clinicians to deal with, and the mortality, as well as long-term cognitive disability, is still increasing. Actually, intracerebral hemorrhage and sepsis are mutually exacerbated via similar pathophysiological mechanisms, mainly consisting of systemic inflammation and circulatory dysfunction. The main consequence of these two processes is neural dysfunction and multiple organ damages, notably, via oxidative stress and neurotoxic mediation under the mediation of central nervous system activation and blood-brain barrier disruption. Besides, the comorbidity-induced multiple organ damages will produce numerous damage-associated molecular patterns and consequently exacerbate the severity of the disease. At present, the prospective views are about operating artificial restriction for the peripheral immune system and achieving cross-tolerance among organs via altering immune cell composition to reduce inflammatory damage.
Collapse
Affiliation(s)
- Jie Lin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Binbin Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Yuhong Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Hua Feng
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| | - Yujie Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University, Army Medical University, Chongqing, China
| |
Collapse
|
27
|
Abstract
Inflammation and its myriad pathways are now recognized to play both causal and consequential roles in vascular brain health. From acting as a trigger for vascular brain injury, as evidenced by the coronavirus disease 2019 (COVID-19) pandemic, to steadily increasing the risk for chronic cerebrovascular disease, distinct inflammatory cascades play differential roles in varying states of cerebrovascular injury. New evidence is regularly emerging that characterizes the role of specific inflammatory pathways in these varying states including those at risk for stroke and chronic cerebrovascular injury as well as during the acute, subacute, and repair phases of stroke. Here, we aim to highlight recent basic science and clinical evidence for many distinct inflammatory cascades active in these varying states of cerebrovascular injury. The role of cerebrovascular infections, spotlighted by the severe acute respiratory syndrome coronavirus 2 pandemic, and its association with increased stroke risk is also reviewed. Rather than converging on a shared mechanism, these emerging studies implicate varied and distinct inflammatory processes in vascular brain injury and repair. Recognition of the phasic nature of inflammatory cascades on varying states of cerebrovascular disease is likely essential to the development and implementation of an anti-inflammatory strategy in the prevention, treatment, and repair of vascular brain injury. Although advances in revascularization have taught us that time is brain, targeting inflammation for the treatment of cerebrovascular disease will undoubtedly show us that timing is brain.
Collapse
Affiliation(s)
- Katherine T Mun
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
28
|
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914:174660. [PMID: 34863710 DOI: 10.1016/j.ejphar.2021.174660] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidences suggest that inflammation plays a key role in the pathogenesis of stroke, a devastating disease second only to cardiac ischemia as a cause of death worldwide. Microglia are the first non-neuronal cells on the scene during the innate immune response to acute ischemic stroke. Microglia respond to acute brain injury by activating and developing classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotypes. M1 microglia produce pro-inflammatory cytokines to exacerbate neural death, astrocyte apoptosis, and blood brain barrier (BBB) disruption, while M2 microglia play the opposite role. NF-κB, a central regulator of the inflammatory response, was responsible for microglia M1 and M2 polarization. NF-κB p65 and p50 form a heterodimer to initiate a pro-inflammatory cytokine response, which enhances M1 activation and impair M2 response of microglia. TLR4, expressed on the surface of microglia, plays an important role in activating NF-κB, ultimately causing the M1 response of microglia. Therefore, modulation of microglial phenotypes via TLR4/NF-κB signaling pathway may be a promising therapeutic approach for ischemic stroke. Dietary (poly)phenols are present in various foods, which have shown promising protective effects on ischemic stroke. In vivo studies strongly suggest that many (poly)phenols have a pronounced impact on ischemic stroke, as demonstrated by lower neuroinflammation. Thus, this review focuses on the anti-inflammatory properties of dietary (poly)phenols and discusses their effects on the polarization of microglia through modulating TLR4/NF-κB signaling pathway in the ischemic stroke.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jieying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
29
|
Aronowski J, Sansing LH, Xi G, Zhang JH. Mechanisms of Damage After Cerebral Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Zhang J, Jiang H, Wu F, Chi X, Pang Y, Jin H, Sun Y, Zhang S. Neuroprotective Effects of Hesperetin in Regulating Microglia Polarization after Ischemic Stroke by Inhibiting TLR4/NF- κB Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9938874. [PMID: 34956584 PMCID: PMC8709759 DOI: 10.1155/2021/9938874] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to explore the influence of hesperidin on the polarization of microglia to clarify the key mechanism of regulating the polarization of M2 microglia. C57BL/6 mice were randomly divided into middle cerebral artery occlusion model group (MCAO group), MCAO + hesperidin treatment group (MCAO + hesperidin group), and sham group (sham operation group). The mice were assessed with neurological scores for their functional status. 2,3,5-Triphenyltetrazole chloride (TTC) was used to determine the volume of cerebral infarction. Hematoxylin and eosin (H&E) staining was performed to detect brain loss. The system with 1% O2, 5% CO2, and 92% N2 was applied to establish BV2 in vitro model induced by MCAO. TNF-α, IL-1β, TGF-β, and IL-10 levels of cytokines in the supernatant were detected by ELISA. RT-qPCR was used to detect mRNA levels of M1 iNOS, CD11b, CD32, and CD86, and mRNA levels of M2 CD206, Arg-1, and TGF-β. The Iba-1, iNOS, and Arg-1 of microglia and protein levels of TLR4 and p-NF-κB related to the pathway were detected by Western blot. After treatment with hesperidin, BV2 cells induced by MCAO in vitro can reduce the proinflammatory cytokines of TNF-α and IL-1β significantly, further upregulating anti-inflammatory cytokines of TGF-β, IL-10 while inhibiting TLR4 and p-NF-κB expression. The MCAO-induced BV2 cells treated by TLR-4 inhibitor TAK-242 and NF-κB inhibitor BAY 11-7082 had similar polarization effects to those treated with hesperidin. This study found that hesperetin gavage treatment can improve the neurological deficit and regulate the polarization of microglia in MCAO mice. In vitro experiments further verified that hesperidin plays a neuroprotective role by inhibiting the TLR4-NF-κB pathway, thus providing new targets and strategies for neuroprotection and nerve repair after ischemic stroke.
Collapse
Affiliation(s)
- Jiawen Zhang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Hao Jiang
- The Fifth Affiliated Hospital of Harbin Medical University, Qiqihar 161000, China
| | - Fang Wu
- Division of Liver Disease, Qiqihar Seventh Hospital, Qiqihar 161000, China
| | - Xiaofei Chi
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yu Pang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Hongwei Jin
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Yuyang Sun
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Shicun Zhang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
31
|
Chen X, Xie Y, Liu Z, Lin Y. Application of Programmable Tetrahedral Framework Nucleic Acid-Based Nanomaterials in Neurological Disorders: Progress and Prospects. Front Bioeng Biotechnol 2021; 9:782237. [PMID: 34900971 PMCID: PMC8662522 DOI: 10.3389/fbioe.2021.782237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
Tetrahedral framework nucleic acid (tFNA), a special DNA nanodevice, is widely applied in diverse biomedical fields. Due to its high programmability, biocompatibility, tissue permeability as well as its capacity for cell proliferation and differentiation, tFNA presents a powerful tool that could overcome potential barriers in the treatment of neurological disorders. This review evaluates recent studies on the use and progress of tFNA-based nanomaterials in neurological disorders.
Collapse
Affiliation(s)
- Xingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
TLR Signaling in Brain Immunity. Handb Exp Pharmacol 2021; 276:213-237. [PMID: 34761292 DOI: 10.1007/164_2021_542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Toll-like receptors (TLRs) comprise a group of transmembrane proteins with crucial roles in pathogen recognition, immune responses, and signal transduction. This family represented the first line of immune homeostasis in an evolutionarily conserved manner. Extensive researches in the past two decades had emphasized their structural and functional characteristics under both healthy and pathological conditions. In this review, we summarized the current understanding of TLR signaling in the central nervous system (CNS), which had been viewed as a previously "immune-privileged" but now "immune-specialized" area, with major implications for further investigation of pathological nature as well as potential therapeutic manipulation of TLR signaling in various neurological disorders.
Collapse
|
33
|
Bi R, Fang Z, You M, He Q, Hu B. Microglia Phenotype and Intracerebral Hemorrhage: A Balance of Yin and Yang. Front Cell Neurosci 2021; 15:765205. [PMID: 34720885 PMCID: PMC8549831 DOI: 10.3389/fncel.2021.765205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) features extremely high rates of morbidity and mortality, with no specific and effective therapy. And local inflammation caused by the over-activated immune cells seriously damages the recovery of neurological function after ICH. Fortunately, immune intervention to microglia has provided new methods and ideas for ICH treatment. Microglia, as the resident immune cells in the brain, play vital roles in both tissue damage and repair processes after ICH. The perihematomal activated microglia not only arouse acute inflammatory responses, oxidative stress, excitotoxicity, and cytotoxicity to cause neuron death, but also show another phenotype that inhibit inflammation, clear hematoma and promote tissue regeneration. The proportion of microglia phenotypes determines the progression of brain tissue damage or repair after ICH. Therefore, microglia may be a promising and imperative therapeutic target for ICH. In this review, we discuss the dual functions of microglia in the brain after an ICH from immunological perspective, elaborate on the activation mechanism of perihematomal microglia, and summarize related therapeutic drugs researches.
Collapse
Affiliation(s)
- Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Nie H, Jiang Z. Bone mesenchymal stem cell-derived extracellular vesicles deliver microRNA-23b to alleviate spinal cord injury by targeting toll-like receptor TLR4 and inhibiting NF-κB pathway activation. Bioengineered 2021; 12:8157-8172. [PMID: 34663169 PMCID: PMC8806461 DOI: 10.1080/21655979.2021.1977562] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bone mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are known for recovery of injured tissues. We investigated the possible mechanism of BMSC-EVs in spinal cord injury (SCI). EVs were isolated from BMSCs and injected into SCI rats to evaluate the recovery of hindlimb motor function. The spinal cord tissue was stained after modeling to analyze spinal cord structure and inflammatory cell infiltration and detect microRNA (miR)-23b expression. The activity of lipopolysaccharide (LPS)-induced BV2 inflammatory cells was detected. The protein contents of interleukin (IL)-6, IL-1β, IL-10 and tumor necrosis factor-α (TNF-α) in spinal cord and BV2 cells were measured. Western blot analysis was used to detect the level of toll-like receptor (TLR)4, p65, p-p65, iNOS, and Arg1 in spinal cord tissue and cells. TLR4 was overexpressed in rats and cells to evaluate the content of inflammatory cytokines. After EV treatment, the motor function of SCI rats was improved, SCI was relieved, and miR-23b expression was increased. After treatment with EV-miR-23b, iNOS, IL-6, IL-1β, and TNF-α contents were decreased, while Arg1 and IL-10 were increased. The levels of TLR4 and p-p65 in spinal cord and BV2 cells were decreased. The rescue experiments verified that after overexpression of TLR4, the activity of BV2 cells was decreased, the contents of IL-6, IL-1β, TNF-α, and p-p65 were increased, IL-10 was decreased, and SCI was aggravated. To conclude, The miR-23b delivered by BMSC-EVs targets TLR4 and inhibits the activation of NF-κB pathway, relieves the inflammatory response, so as to improve SCI in rats.
Collapse
Affiliation(s)
- Hongfei Nie
- Department of Pain Management, West China Hospital of Sichuan University, Chengdu Sichuan, China
| | - Zhensong Jiang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan Shandong, China
| |
Collapse
|
35
|
Zhang D, Shen X, Pang K, Yang Z, Yu A. VSIG4 alleviates intracerebral hemorrhage induced brain injury by suppressing TLR4-regulated inflammatory response. Brain Res Bull 2021; 176:67-75. [PMID: 34419512 DOI: 10.1016/j.brainresbull.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
AIMS Numerous evidence demonstrated that macrophage mediated inflammation contributed to brain injury following ICH, but the molecular mechanism had not been well studied. V-set immunoglobulin-domain-containing 4 (VSIG4), specifically expresses in resting tissue-resident macrophages, can deliver anti-inflammatory signals into various inflammatory diseases. However, the role of VSIG4 on ICH has not been reported. METHODS In the present study, we investigated the levels of VSIG4 in macrophages following ICH. Furthermore, Macrophage M1/M2 polarization, pro-inflammatory cytokine production, BBB disruption, brain water content and neurological function were examined in ICH mice. In addition, TLR4/NF-κβ downstream signals were also analyzed. RESULTS The results showed that VSIG4 levels of macrophage decreased following ICH, leading to macrophage M1 polarization. Up-regulation of VSIG4 inhibited macrophage M1 polarization, pro-inflammatory cytokine production, BBB disruption, as well as neurological deficits. Up-regulation of VSIG4 attenuated macrophage TLR4 levels following ICH. Co-IP demonstrated that VSIG4 could interact with TLR4 and inhibit its expression. CONCLUSIONS Our data demonstrated that VSIG4 was negatively correlated with TLR4 and involved in the pathogenesis of ICH, which prevented brain injury and attenuated deleterious inflammatory responses following ICH. In addition, the anti-inflammatory effect of VSIG4 was mainly through the blockage of TLR4/NF-κβ signaling.
Collapse
Affiliation(s)
- Dongzhu Zhang
- Department of Ultrasound, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Xue Shen
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Ke Pang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China.
| | - Anyong Yu
- Emergency Department of Emergency, Affiliated Hospital of Zunyi Medical University, Guizhou 563003, China.
| |
Collapse
|
36
|
Gusdon AM, Savarraj JPJ, Shihabeddin E, Paz A, Assing A, Ko SB, McCullough LD, Choi HA. Time Course of Peripheral Leukocytosis and Clinical Outcomes After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2021; 12:694996. [PMID: 34381415 PMCID: PMC8350167 DOI: 10.3389/fneur.2021.694996] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: Systemic inflammation after subarachnoid hemorrhage (SAH) is implicated in delayed cerebral ischemia (DCI) and adverse clinical outcomes. We hypothesize that early changes in peripheral leukocytes will be associated with outcomes after SAH. Methods: SAH patients admitted between January 2009 and December 2016 were enrolled into a prospective observational study and were assessed for Hunt Hess Scale (HHS) at admission, DCI, and modified Ranked Scale (mRS) at discharge. Total white blood cell (WBC) counts and each component of the differential cell count were determined on the day of admission (day 0) to 8 days after bleed (day 8). Global cerebral edema (GCE) was assessed on admission CT, and presence of any infection was determined. Statistical tests included student's t-test, Chi-square test, and multivariate logistic regression (MLR) models. Results: A total of 451 subjects were analyzed. Total WBCs and neutrophils decreased initially reaching a minimum at day 4–5 after SAH. Monocyte count increased gradually after SAH and peaked between day 6–8, while basophils and lymphocytes decreased initially from day 0 to 1 and steadily increased thereafter. Neutrophil to lymphocyte ratio (NLR) reached a peak on day 1 and decreased thereafter. WBCs, neutrophils, monocytes, and NLR were higher in patients with DCI and poor functional outcomes. WBCs, neutrophils, and NLR were higher in subjects who developed infections. In MLR models, neutrophils and monocytes were associated with DCI and worse functional outcomes, while NLR was only associated with worse functional outcomes. Occurrence of infection was associated with poor outcome. Neutrophils and NLR were associated with infection, while monocytes were not. Monocytes were higher in males, and ROC curve analysis revealed improved ability of monocytes to predict DCI and poor functional outcomes in male subjects. Conclusions: Monocytosis was associated with DCI and poor functional outcomes after SAH. The association between neutrophils and NLR and infection may impact outcomes. Early elevation in monocytes had an improved ability to predict DCI and poor functional outcomes in males, which was independent of the occurrence of infection.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Jude P J Savarraj
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Eyad Shihabeddin
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Atzhiry Paz
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Andres Assing
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Huimahn Alex Choi
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
37
|
Cai L, Hu F, Fu W, Yu X, Zhong W, Liu F, Wang T, Sui D. Ginsenoside Rg2 Ameliorates Brain Injury After Intracerebral Hemorrhage in a Rat Model of Preeclampsia. Reprod Sci 2021; 28:3431-3439. [PMID: 34270001 DOI: 10.1007/s43032-021-00692-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/04/2021] [Indexed: 11/26/2022]
Abstract
The incidence of maternal hemorrhagic stroke is elevated in women with preeclampsia during pregnancy. Panax ginseng is a traditional medicinal herb with numerous applications, and ginsenosides are the key bioactive compounds in Panax ginseng. This study aims to evaluate the effects of ginsenoside Rg2 on pregnancy outcomes and brain injury after intracerebral hemorrhage (ICH) in a rat model of preeclampsia. Preeclampsia was induced in rats by N(ω)-nitro-L-arginine methyl ester. Then, an ICH model was prepared by intrastriatal injection of bacterial collagenase. Ginsenoside Rg2 markedly elevated the survival ratio of fetuses. The placental and body weights were increased in the ginsenoside Rg2 group. Compared with the preeclampsia group, the Garcia test score of ginsenoside Rg2-treated rats was significantly increased. Ginsenoside Rg2 treatment ameliorated the ICH-induced augmentation of Evans blue extravasation, inhibited the ICH-induced elevation of brain water content, and reduced the interleukin-1β and tumor necrosis factor-α levels in the hemorrhagic hemisphere after ICH in preeclampsia model rats. Furthermore, ginsenoside Rg2 treatment not only inhibited augmentation of TLR-4, MyD88, p-IκBα, and p-NF-κB expression but also abated the reduction of occludin and claudin-5 expression in the hemorrhagic hemisphere. The findings indicated that ginsenoside Rg2 improved pregnancy outcomes in a rat model of preeclampsia without decreasing the blood pressure and urine protein level. The findings also demonstrated that ginsenoside Rg2 ameliorated ICH-induced neurological disorder and blood-brain barrier dysfunction in an animal model of preeclampsia by regulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liying Cai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Feifei Hu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun, 130021, People's Republic of China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun, 130021, People's Republic of China
| | - Weijie Zhong
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Fangcong Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, People's Republic of China.
| | - Dayuan Sui
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
38
|
Critical Role of Hemopexin Mediated Cytoprotection in the Pathophysiology of Sickle Cell Disease. Int J Mol Sci 2021; 22:ijms22126408. [PMID: 34203861 PMCID: PMC8232622 DOI: 10.3390/ijms22126408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating hemopexin is the primary protein responsible for the clearance of heme; therefore, it is a systemic combatant against deleterious inflammation and oxidative stress induced by the presence of free heme. This role of hemopexin is critical in hemolytic pathophysiology. In this review, we outline the current research regarding how the dynamic activity of hemopexin is implicated in sickle cell disease, which is characterized by a pathological aggregation of red blood cells and excessive hemolysis. This pathophysiology leads to symptoms such as acute kidney injury, vaso-occlusion, ischemic stroke, pain crises, and pulmonary hypertension exacerbated by the presence of free heme and hemoglobin. This review includes in vivo studies in mouse, rat, and guinea pig models of sickle cell disease, as well as studies in human samples. In summary, the current research indicates that hemopexin is likely protective against these symptoms and that rectifying depleted hemopexin in patients with sickle cell disease could improve or prevent the symptoms. The data compiled in this review suggest that further preclinical and clinical research should be conducted to uncover pathways of hemopexin in pathological states to evaluate its potential clinical function as both a biomarker and therapy for sickle cell disease and related hemoglobinopathies.
Collapse
|
39
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
40
|
Fu W, Ma L, Ju Y, Xu J, Li H, Shi S, Zhang T, Zhou R, Zhu J, Xu R, You C, Lin Y. Therapeutic siCCR2 Loaded by Tetrahedral Framework DNA Nanorobotics in Therapy for Intracranial Hemorrhage. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202101435] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wei Fu
- Department of Neurosurgery West China Hospital of Sichuan University Chengdu 610041 P. R. China
| | - Lu Ma
- Department of Neurosurgery West China Hospital of Sichuan University Chengdu 610041 P. R. China
| | - Yan Ju
- Department of Neurosurgery West China Hospital of Sichuan University Chengdu 610041 P. R. China
| | - Jianguo Xu
- Department of Neurosurgery West China Hospital of Sichuan University Chengdu 610041 P. R. China
| | - Hao Li
- Department of Neurosurgery West China Hospital of Sichuan University Chengdu 610041 P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
| | - Jianwei Zhu
- Department of Neurosurgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu 610072 China
| | - Ruxiang Xu
- Department of Neurosurgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu 610072 China
| | - Chao You
- Department of Neurosurgery West China Hospital of Sichuan University Chengdu 610041 P. R. China
- Department of Neurosurgery West China Hospital of Sichuan University China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- Department of Neurosurgery Sichuan Provincial People's Hospital University of Electronic Science and Technology of China Chengdu 610072 China
- College of Biomedical Engineering Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
41
|
Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int J Mol Sci 2021; 22:5132. [PMID: 34066240 PMCID: PMC8151992 DOI: 10.3390/ijms22105132] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Hemorrhage in the central nervous system (CNS), including intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and aneurysmal subarachnoid hemorrhage (aSAH), remains highly morbid. Trials of medical management for these conditions over recent decades have been largely unsuccessful in improving outcome and reducing mortality. Beyond its role in creating mass effect, the presence of extravasated blood in patients with CNS hemorrhage is generally overlooked. Since trials of surgical intervention to remove CNS hemorrhage have been generally unsuccessful, the potent neurotoxicity of blood is generally viewed as a basic scientific curiosity rather than a clinically meaningful factor. In this review, we evaluate the direct role of blood as a neurotoxin and its subsequent clinical relevance. We first describe the molecular mechanisms of blood neurotoxicity. We then evaluate the clinical literature that directly relates to the evacuation of CNS hemorrhage. We posit that the efficacy of clot removal is a critical factor in outcome following surgical intervention. Future interventions for CNS hemorrhage should be guided by the principle that blood is exquisitely toxic to the brain.
Collapse
Affiliation(s)
- Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Gregory J. Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Phelan Shea
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Nicole Wenger
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
- Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
42
|
Liu J, Liu L, Wang X, Jiang R, Bai Q, Wang G. Microglia: A Double-Edged Sword in Intracerebral Hemorrhage From Basic Mechanisms to Clinical Research. Front Immunol 2021; 12:675660. [PMID: 34025674 PMCID: PMC8135095 DOI: 10.3389/fimmu.2021.675660] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS). It is well established that microglia are activated and polarized to acquire different inflammatory phenotypes, either pro-inflammatory or anti-inflammatory phenotypes, which act as a critical component in the neuroinflammation following intracerebral hemorrhage (ICH). Microglia produce pro-inflammatory mediators at the early stages after ICH onset, anti-inflammatory microglia with neuroprotective effects appear to be suppressed. Previous research found that driving microglia towards an anti-inflammatory phenotype could restrict inflammation and engulf cellular debris. The principal objective of this review is to analyze the phenotypes and dynamic profiles of microglia as well as their shift in functional response following ICH. The results may further the understanding of the body's self-regulatory functions involving microglia following ICH. On this basis, suggestions for future clinical development and research are provided.
Collapse
Affiliation(s)
- Jiachen Liu
- Xiangya Medical College of Central South University, Changsha, China
| | - Lirong Liu
- Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Xiaoyu Wang
- Xiangya Medical College of Central South University, Changsha, China
| | - Rundong Jiang
- Xiangya Medical College of Central South University, Changsha, China
| | - Qinqin Bai
- Department of Neurology, Shanxi Medical University, Taiyuan, China
| | - Gaiqing Wang
- Department of Neurology, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, China
| |
Collapse
|
43
|
Fu YL, Harrison RE. Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Front Immunol 2021; 12:662063. [PMID: 33995386 PMCID: PMC8117099 DOI: 10.3389/fimmu.2021.662063] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Phagocytosis is an essential process for the uptake of large (>0.5 µm) particulate matter including microbes and dying cells. Specialized cells in the body perform phagocytosis which is enabled by cell surface receptors that recognize and bind target cells. Professional phagocytes play a prominent role in innate immunity and include macrophages, neutrophils and dendritic cells. These cells display a repertoire of phagocytic receptors that engage the target cells directly, or indirectly via opsonins, to mediate binding and internalization of the target into a phagosome. Phagosome maturation then proceeds to cause destruction and recycling of the phagosome contents. Key subsequent events include antigen presentation and cytokine production to alert and recruit cells involved in the adaptive immune response. Bridging the innate and adaptive immunity, macrophages secrete a broad selection of inflammatory mediators to orchestrate the type and magnitude of an inflammatory response. This review will focus on cytokines produced by NF-κB signaling which is activated by extracellular ligands and serves a master regulator of the inflammatory response to microbes. Macrophages secrete pro-inflammatory cytokines including TNFα, IL1β, IL6, IL8 and IL12 which together increases vascular permeability and promotes recruitment of other immune cells. The major anti-inflammatory cytokines produced by macrophages include IL10 and TGFβ which act to suppress inflammatory gene expression in macrophages and other immune cells. Typically, macrophage cytokines are synthesized, trafficked intracellularly and released in response to activation of pattern recognition receptors (PRRs) or inflammasomes. Direct evidence linking the event of phagocytosis to cytokine production in macrophages is lacking. This review will focus on cytokine output after engagement of macrophage phagocytic receptors by particulate microbial targets. Microbial receptors include the PRRs: Toll-like receptors (TLRs), scavenger receptors (SRs), C-type lectin and the opsonic receptors. Our current understanding of how macrophage receptor stimulation impacts cytokine production is largely based on work utilizing soluble ligands that are destined for endocytosis. We will instead focus this review on research examining receptor ligation during uptake of particulate microbes and how this complex internalization process may influence inflammatory cytokine production in macrophages.
Collapse
Affiliation(s)
- Yan Lin Fu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
44
|
Chen-Roetling J, Li Y, Cao Y, Yan Z, Lu X, Regan RF. Effect of hemopexin treatment on outcome after intracerebral hemorrhage in mice. Brain Res 2021; 1765:147507. [PMID: 33930375 DOI: 10.1016/j.brainres.2021.147507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/02/2023]
Abstract
Heme release from hemoglobin may contribute to secondary injury after intracerebral hemorrhage (ICH). The primary endogenous defense against heme toxicity is hemopexin, a 57 kDa glycoprotein that is depleted in the CNS after hemorrhagic stroke. We hypothesized that systemic administration of exogenous hemopexin would reduce perihematomal injury and improve outcome after experimental ICH. Intraperitoneal treatment with purified human plasma hemopexin beginning 2 h after striatal ICH induction and repeated daily for the following two days reduced blood-brain barrier disruption and cell death at 3 days. However, it had no effect on neurological deficits at 4 or 7 days or striatal cell viability at 8 days. Continuous daily hemopexin administration had no effect on striatal heme content at 3 or 7 days, and did not attenuate neurological deficits, inflammatory cell infiltration, or perihematomal cell viability at 8 days. These results suggest that systemic hemopexin treatment reduces early injury after ICH, but this effect is not sustained, perhaps due to an imbalance between striatal tissue heme and hemopexin content at later time points. Future studies should investigate its effect when administered by methods that more efficiently target CNS delivery.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - Yang Li
- Department of Emergency Medicine, University of Maryland School of Medicine, 110 S. Paca Street, 6(th) Floor, Suite 200, Baltimore, MD 21205, USA
| | - Yang Cao
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - Zhe Yan
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - Xiangping Lu
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA; Department of Emergency Medicine, University of Maryland School of Medicine, 110 S. Paca Street, 6(th) Floor, Suite 200, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Walsh KB, Zimmerman KD, Zhang X, Demel SL, Luo Y, Langefeld CD, Wohleb E, Schulert G, Woo D, Adeoye O. miR-181a Mediates Inflammatory Gene Expression After Intracerebral Hemorrhage: An Integrated Analysis of miRNA-seq and mRNA-seq in a Swine ICH Model. J Mol Neurosci 2021; 71:1802-1814. [PMID: 33755911 DOI: 10.1007/s12031-021-01815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Inflammation after ICH contributes to clinical outcomes, but the relevant molecular mechanisms remain poorly understood. In studies of peripheral leukocyte counts and mRNA-sequencing (mRNA-seq), our group previously reported that monocytes and Interleukin-8 (IL-8) were important contributors to post-ICH inflammation. microRNA (miRNA) are powerful regulators of gene expression and promising therapeutic targets. We now report findings from an integrated analysis of miRNA-seq and mRNA-seq in peripheral blood mononuclear cells (PBMCs) from a swine ICH model. In 10 pigs, one PBMC sample was collected immediately prior to ICH induction and a second 6 h later; miRNA-seq and mRNA-seq were completed for each sample. An aggregate score calculation determined which miRNA regulated the differentially expressed mRNA. Networks of molecular interactions were generated for the combined miRNA/target mRNA. A total of 227 miRNA were identified, and 46 were differentially expressed after ICH (FDR < 0.05). The anti-inflammatory miR-181a was decreased post-ICH, and it was the most highly connected miRNA in the miRNA/mRNA bioinformatic network analysis. miR-181a has interconnected pathophysiology with IL-8 and monocytes; in prior studies, we found that IL-8 and monocytes contributed to post-ICH inflammation and ICH clinical outcome, respectively. miR-181a was a significant mediator of post-ICH inflammation and is promising for further study, including as a potential therapeutic target. This investigation also demonstrated feasible methodology for miRNA-seq/mRNA-seq analysis in swine that is innovative, and with unique challenges, compared with transcriptomics research in more established species.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Kip D Zimmerman
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Stacie L Demel
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Grant Schulert
- Division of Pediatric Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
46
|
Bahadar GA, Shah ZA. Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology, and Cognitive Impairments. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:312-326. [PMID: 33622232 DOI: 10.2174/1871527320666210223145112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
There is a surge in diabetes incidence with an estimated 463 million individuals been diagnosed worldwide. Diabetes Mellitus (DM) is a major stroke-related comorbid condition that increases the susceptibility of disabling post-stroke outcomes. Although less common, intracerebral hemorrhage (ICH) is the most dramatic subtype of stroke that is associated with higher mortality, particularly in DM population. Previous studies have focused mainly on the impact of DM on ischemic stroke. Few studies have focused on impact of DM on ICH and discussed the blood-brain barrier disruption, brain edema, and hematoma formation. However, more recently, investigating the role of oxidative damage and reactive oxygen species (ROS) production in preclinical studies involving DM-ICH animal models has gained attention. But, little is known about the correlation between neuroinflammatory processes, glial cells activation, and peripheral immune cell invasion with DM-ICH injury. DM and ICH patients experience impaired abilities in multiple cognitive domains by relatively comparable mechanisms, which could get exacerbated in the setting of comorbidities. In this review, we discuss both the pathology of DM as a comorbid condition for ICH and the potential molecular therapeutic targets for the clinical management of the ICH and its recovery.
Collapse
Affiliation(s)
- Ghaith A Bahadar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614. United States
| |
Collapse
|
47
|
Wang M, Ye X, Hu J, Zhao Q, Lv B, Ma W, Wang W, Yin H, Hao Q, Zhou C, Zhang T, Wu W, Wang Y, Zhou M, Zhang CH, Cui G. NOD1/RIP2 signalling enhances the microglia-driven inflammatory response and undergoes crosstalk with inflammatory cytokines to exacerbate brain damage following intracerebral haemorrhage in mice. J Neuroinflammation 2020; 17:364. [PMID: 33261639 PMCID: PMC7708246 DOI: 10.1186/s12974-020-02015-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Secondary brain damage caused by the innate immune response and subsequent proinflammatory factor production is a major factor contributing to the high mortality of intracerebral haemorrhage (ICH). Nucleotide-binding oligomerization domain 1 (NOD1)/receptor-interacting protein 2 (RIP2) signalling has been reported to participate in the innate immune response and inflammatory response. Therefore, we investigated the role of NOD1/RIP2 signalling in mice with collagenase-induced ICH and in cultured primary microglia challenged with hemin. METHODS Adult male C57BL/6 mice were subjected to collagenase for induction of ICH model in vivo. Cultured primary microglia and BV2 microglial cells (microglial cell line) challenged with hemin aimed to simulate the ICH model in vitro. We first defined the expression of NOD1 and RIP2 in vivo and in vitro using an ICH model by western blotting. The effect of NOD1/RIP2 signalling on ICH-induced brain injury volume, neurological deficits, brain oedema, and microglial activation were assessed following intraventricular injection of either ML130 (a NOD1 inhibitor) or GSK583 (a RIP2 inhibitor). In addition, levels of JNK/P38 MAPK, IκBα, and inflammatory factors, including tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) expression, were analysed in ICH-challenged brain and hemin-exposed cultured primary microglia by western blotting. Finally, we investigated whether the inflammatory factors could undergo crosstalk with NOD1 and RIP2. RESULTS The levels of NOD1 and its adaptor RIP2 were significantly elevated in the brains of mice in response to ICH and in cultured primary microglia, BV2 cells challenged with hemin. Administration of either a NOD1 or RIP2 inhibitor in mice with ICH prevented microglial activation and neuroinflammation, followed by alleviation of ICH-induced brain damage. Interestingly, the inflammatory factors interleukin (IL)-1β and tumour necrosis factor-α (TNF-α), which were enhanced by NOD1/RIP2 signalling, were found to contribute to the NOD1 and RIP2 upregulation in our study. CONCLUSION NOD1/RIP2 signalling played an important role in the regulation of the inflammatory response during ICH. In addition, a vicious feedback cycle was observed between NOD1/RIP2 and IL-1β/TNF-α, which could to some extent result in sustained brain damage during ICH. Hence, our study highlights NOD1/RIP2 signalling as a potential therapeutic target to protect the brain against secondary brain damage during ICH.
Collapse
Affiliation(s)
- Miao Wang
- Department of Neurology, Xuzhou first People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 269 University Road, Tongshan District, Xuzhou, Jiangsu, China.,Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Xinchun Ye
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Jinxia Hu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Qiuchen Zhao
- Department of Neurology, Mass General Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
| | - Bingchen Lv
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Weijing Ma
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Weiwei Wang
- Department of Rehabilitation Medicine, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Hanhan Yin
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Qi Hao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Tao Zhang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Weifeng Wu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Yan Wang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Mingyue Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Cong-Hui Zhang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China
| | - Guiyun Cui
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, China.
| |
Collapse
|
48
|
Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol 2020; 19:1023-1032. [DOI: 10.1016/s1474-4422(20)30364-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
|
49
|
Dasari R, Bonsack F, Sukumari-Ramesh S. Brain injury and repair after intracerebral hemorrhage: The role of microglia and brain-infiltrating macrophages. Neurochem Int 2020; 142:104923. [PMID: 33248206 DOI: 10.1016/j.neuint.2020.104923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem characterized by cerebral bleeding. Despite recent advances in preclinical studies, there is no effective treatment for ICH making it the deadliest subtype of stroke. The lack of effective treatment options partly attributes to the complexity as well as poorly defined pathophysiology of ICH. The emerging evidence indicates the potential of targeting secondary brain damage and hematoma resolution for improving neurological outcomes after ICH. Herein, we provide an overview of our understanding of the functional roles of activated microglia and brain-infiltrating monocyte-derived macrophages in brain injury and repair after ICH. The clinical and preclinical aspects that we discuss in this manuscript are related to ICH that occurs in adults, but not in infants. Also, we attempt to identify the knowledge gap in the field for future functional studies given the potential of targeting microglia and brain-infiltrating macrophages for therapeutic intervention after ICH.
Collapse
Affiliation(s)
- Rajaneekar Dasari
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Frederick Bonsack
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
50
|
Molecular Correlates of Hemorrhage and Edema Volumes Following Human Intracerebral Hemorrhage Implicate Inflammation, Autophagy, mRNA Splicing, and T Cell Receptor Signaling. Transl Stroke Res 2020; 12:754-777. [PMID: 33206327 PMCID: PMC8421315 DOI: 10.1007/s12975-020-00869-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) volumes are major determinants of ICH outcomes as is the immune system which plays a significant role in damage and repair. Thus, we performed whole-transcriptome analyses of 18 ICH patients to delineate peripheral blood genes and networks associated with ICH volume, absolute perihematomal edema (aPHE) volume, and relative PHE (aPHE/ICH; rPHE). We found 440, 266, and 391 genes correlated with ICH and aPHE volumes and rPHE, respectively (p < 0.005, partial-correlation > |0.6|). These mainly represented inflammatory pathways including NF-κB, TREM1, and Neuroinflammation Signaling-most activated with larger volumes. Weighted Gene Co-Expression Network Analysis identified seven modules significantly correlated with these measures (p < 0.05). Most modules were enriched in neutrophil, monocyte, erythroblast, and/or T cell-specific genes. Autophagy, apoptosis, HIF-1α, inflammatory and neuroinflammatory response (including Toll-like receptors), cell adhesion (including MMP9), platelet activation, T cell receptor signaling, and mRNA splicing were represented in these modules (FDR p < 0.05). Module hub genes, potential master regulators, were enriched in neutrophil-specific genes in three modules. Hub genes included NCF2, NCF4, STX3, and CSF3R, and involved immune response, autophagy, and neutrophil chemotaxis. One module that correlated negatively with ICH volume correlated positively with rPHE. Its genes and hubs were enriched in T cell-specific genes including hubs LCK and ITK, Src family tyrosine kinases whose modulation improved outcomes and reduced BBB dysfunction following experimental ICH. This study uncovers molecular underpinnings associated with ICH and PHE volumes and pathophysiology in human ICH, where knowledge is scarce. The identified pathways and hub genes may represent novel therapeutic targets.
Collapse
|