1
|
Risi B, Caria F, Bertella E, Giovanelli G, Gatti S, Poli L, Gazzina S, Leggio U, Bozzoni V, Volonghi I, Allali NA, Ottelli E, Ferrari E, Marrello A, Ricci G, Siciliano G, Padovani A, Filosto M. Management of Pompe disease alongside and beyond ERT: a narrative review. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2025; 44:11-22. [PMID: 40183436 PMCID: PMC11978428 DOI: 10.36185/2532-1900-1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Background Pompe disease is a lysosomal storage disorder that primarily affects muscles, and its natural history has been transformed over the past 20 years by therapies designed to restore the deficient enzyme function, from the first enzyme replacement therapies (ERTs) to the gene therapy currently in development. However, despite these ground-breaking innovations, the importance of a multi-system and rehabilitative approach remains critical, as it addresses the complex systems involved in the disease and optimizes the success of pharmacological treatments. Methods We conducted a narrative review of the current pharmacological treatments approved for Pompe disease, as well as those undergoing clinical trials. We also reviewed international recommendations for managing respiratory, musculoskeletal, and cardiac function specially focusing on the late-onset form. Results There are no universally agreed guidelines for the multidisciplinary management and many recommendations are based on expert consensus and small interventional studies. Nevertheless, combined approaches involving ERT therapy along with specific rehabilitation and nutritional programs appear to yield beneficial effects. Conclusions Pompe disease, one of the first neuromuscular diseases to benefit from the approval of disease-modifying therapies, is a paradigm for the importance of an integrated therapeutic-rehabilitative approach.
Collapse
Affiliation(s)
- Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | | | - Simonetta Gatti
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
| | | | - Ugo Leggio
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
| | | | | | | | - Elisa Ottelli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | | | - Anna Marrello
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Padovani
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
- Unit of Neurology, ASST Spedali Civili, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Ziółkowska EA, Jablonka-Shariff A, Williams LL, Jansen MJ, Wang SH, Eultgen EM, Wood MD, Hunter DA, Sharma J, Sardiello M, Bradley RP, Whiteman IT, Reese R, Pestronk A, Sands MS, Heuckeroth RO, Snyder-Warwick AK, Cooper JD. Identifying and treating CLN3 disease outside the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635518. [PMID: 39975385 PMCID: PMC11838464 DOI: 10.1101/2025.01.29.635518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
CLN3 disease causes profound neurological deficits in affected children, but less well recognized are a variety of peripheral neuromuscular and gastrointestinal problems. We hypothesized that in addition to central nervous system (CNS) degeneration, CLN3 deficiency may also directly affect neuronal and/or glial cell populations in the rest of the body. Therefore, we examined the neuromuscular and enteric nervous system in Cln3 Δex7/8 mice. There was no overt sciatic nerve axon loss or demyelination in Cln3 Δex7/8 mice, but significant loss of terminal Schwann cells (tSCs) at lower limb neuromuscular junctions (NMJ), and progressive NMJ denervation. This was accompanied by pronounced myofiber atrophy, with fewer and displaced myofibril nuclei, with similar pathology seen in a human CLN3 muscle biopsy. Atrophy was also evident in bowel smooth muscle with Cln3 Δex7/8 mice displaying slow bowel transit, and significant loss of both enteric neurons and glial cells throughout the bowel. Similar enteric pathology was evident at autopsy in the small intestine and colon of a human CLN3 case. Neonatal administration of intravenous gene therapy to Cln3 Δex7/8 mice using an AAV9-hCLN3 vector completely prevented tSCs and NMJ pathology, atrophy of both skeletal and smooth muscle, positively impacted bowel transit and largely prevented the loss of enteric neurons and glia. These findings reveal an underappreciated, but profound, impact of CLN3 disease outside the CNS and suggest these novel aspects of disease may be treatable using gene therapy. Graphical abstract
Collapse
|
3
|
Fuller DD, Rana S, Thakre P, Benevides E, Pope M, Todd AG, Jensen VN, Vaught L, Cloutier D, Ribas RA, Larson RC, Gentry MS, Sun RC, Chandran V, Corti M, Falk DJ, Byrne BJ. Neonatal systemic gene therapy restores cardiorespiratory function in a rat model of Pompe disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627800. [PMID: 39763722 PMCID: PMC11702543 DOI: 10.1101/2024.12.10.627800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model (Gaa -/-) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old. Whole-body plethysmography showed that reduced inspiratory tidal volumes in Gaa -/- rats were corrected by AAV-GAA treatment. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI) revealed that AAV-GAA treatment normalized diaphragm muscle glycogen as well as glycans. Neurophysiological recordings of phrenic nerve output and immunohistochemical evaluation of the cervical spinal cord indicated a neurologic benefit of AAV-GAA treatment. In vivo magnetic resonance imaging demonstrated that impaired cardiac volumes in Gaa -/- rats were corrected by AAV-GAA treatment. Biochemical assays showed that AAV treatment increased GAA activity in the heart, diaphragm, quadriceps and spinal cord. We conclude that neonatal AAV9-DES-GAA therapy drives sustained, functional GAA expression and improved cardiorespiratory function in the Gaa -/- rat model of Pompe disease.
Collapse
Affiliation(s)
- David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Prajwal Thakre
- Department of Physical Therapy, University of Florida, Gainesville, FL
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Ethan Benevides
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Megan Pope
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Adrian G Todd
- Department of Pediatrics, University of Florida, Gainesville, FL
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Victoria N Jensen
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Lauren Vaught
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Denise Cloutier
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Roberto A Ribas
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Reece C Larson
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Vijay Chandran
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Manuela Corti
- Department of Pediatrics, University of Florida, Gainesville, FL
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Darin J Falk
- Department of Pediatrics, University of Florida, Gainesville, FL
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL
- Powell Gene Therapy Center, University of Florida, Gainesville, FL
| |
Collapse
|
4
|
George KA, Anding AL, van der Flier A, Tomassy GS, Berger KI, Zhang TY, Sardi SP. Pompe disease: Unmet needs and emerging therapies. Mol Genet Metab 2024; 143:108590. [PMID: 39418752 DOI: 10.1016/j.ymgme.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Pompe disease is a debilitating and life-threatening disease caused by aberrant accumulation of glycogen resulting from reduced acid alpha-glucosidase activity. The first treatment for Pompe disease, the enzyme replacement therapy, Myozyme® (recombinant human acid alpha-glucosidase, alglucosidase alfa), is a lifesaving treatment for the most severe form of the disease and provided clinically meaningful benefits to patients with milder phenotypes. Nonetheless, many patients display suboptimal responses or clinical decline following years of alglucosidase alfa treatment. The approval of avalglucosidase alfa (Nexviazyme®) and cipaglucosidase alfa (Pombiliti®) with miglustat (Opfolda®) represents a new generation of enzyme replacement therapies seeking to further improve patient outcomes beyond alglucosidase alfa. However, the emergence of a complicated new phenotype with central nervous system involvement following long-term treatment, coupled with known and anticipated unmet needs of patients receiving enzyme replacement therapy, has prompted development of innovative new treatments. This review provides an overview of the challenges of existing treatments and a summary of emerging therapies currently in preclinical or clinical development for Pompe disease and related lysosomal storage disorders. Key treatments include tissue-targeted enzyme replacement therapy, which seeks to enhance enzyme concentration in target tissues such as the central nervous system; substrate reduction therapy, which reduces intracellular glycogen concentrations via novel mechanisms; and gene therapy, which may restore endogenous production of deficient acid alpha-glucosidase. Each of these proposed treatments shows promise as a future therapeutic option to improve quality of life in Pompe disease by more efficiently treating the underlying cause of disease progression: glycogen accumulation.
Collapse
|
5
|
Sellier P, Vidal P, Bertin B, Gicquel E, Bertil-Froidevaux E, Georger C, van Wittenberghe L, Miranda A, Daniele N, Richard I, Gross DA, Mingozzi F, Collaud F, Ronzitti G. Muscle-specific, liver-detargeted adeno-associated virus gene therapy rescues Pompe phenotype in adult and neonate Gaa -/- mice. J Inherit Metab Dis 2024; 47:119-134. [PMID: 37204237 DOI: 10.1002/jimd.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.
Collapse
Affiliation(s)
- P Sellier
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - P Vidal
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - B Bertin
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - E Gicquel
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | | | | | | | | | | | - I Richard
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - D A Gross
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Mingozzi
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - F Collaud
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| | - G Ronzitti
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
- Genethon, Evry, France
| |
Collapse
|
6
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
7
|
Labella B, Cotti Piccinelli S, Risi B, Caria F, Damioli S, Bertella E, Poli L, Padovani A, Filosto M. A Comprehensive Update on Late-Onset Pompe Disease. Biomolecules 2023; 13:1279. [PMID: 37759679 PMCID: PMC10526932 DOI: 10.3390/biom13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Pompe disease (PD) is an autosomal recessive disorder caused by mutations in the GAA gene that lead to a deficiency in the acid alpha-glucosidase enzyme. Two clinical presentations are usually considered, named infantile-onset Pompe disease (IOPD) and late-onset Pompe disease (LOPD), which differ in age of onset, organ involvement, and severity of disease. Assessment of acid alpha-glucosidase activity on a dried blood spot is the first-line screening test, which needs to be confirmed by genetic analysis in case of suspected deficiency. LOPD is a multi-system disease, thus requiring a multidisciplinary approach for efficacious management. Enzyme replacement therapy (ERT), which was introduced over 15 years ago, changes the natural progression of the disease. However, it has limitations, including a reduction in efficacy over time and heterogeneous therapeutic responses among patients. Novel therapeutic approaches, such as gene therapy, are currently under study. We provide a comprehensive review of diagnostic advances in LOPD and a critical discussion about the advantages and limitations of current and future treatments.
Collapse
Affiliation(s)
- Beatrice Labella
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Stefano Cotti Piccinelli
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Barbara Risi
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Filomena Caria
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Simona Damioli
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Enrica Bertella
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| | - Loris Poli
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- Unit of Neurology, ASST Spedali Civili, 25100 Brescia, Italy;
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy; (B.L.); (S.C.P.); (A.P.)
- NeMO-Brescia Clinical Center for Neuromuscular Diseases, 25064 Brescia, Italy; (B.R.); (F.C.); (S.D.); (E.B.)
| |
Collapse
|
8
|
Roger AL, Sethi R, Huston ML, Scarrow E, Bao-Dai J, Lai E, Biswas DD, Haddad LE, Strickland LM, Kishnani PS, ElMallah MK. What's new and what's next for gene therapy in Pompe disease? Expert Opin Biol Ther 2022; 22:1117-1135. [PMID: 35428407 PMCID: PMC10084869 DOI: 10.1080/14712598.2022.2067476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Pompe disease is an autosomal recessive disorder caused by a deficiency of acid-α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. A lack of GAA leads to accumulation of glycogen in the lysosomes of cardiac, skeletal, and smooth muscle cells, as well as in the central and peripheral nervous system. Enzyme replacement therapy has been the standard of care for 15 years and slows disease progression, particularly in the heart, and improves survival. However, there are limitations of ERT success, which gene therapy can overcome. AREAS COVERED Gene therapy offers several advantages including prolonged and consistent GAA expression and correction of skeletal muscle as well as the critical CNS pathology. We provide a systematic review of the preclinical and clinical outcomes of adeno-associated viral mediated gene therapy and alternative gene therapy strategies, highlighting what has been successful. EXPERT OPINION Although the preclinical and clinical studies so far have been promising, barriers exist that need to be addressed in gene therapy for Pompe disease. New strategies including novel capsids for better targeting, optimized DNA vectors, and adjuctive therapies will allow for a lower dose, and ameliorate the immune response.
Collapse
Affiliation(s)
- Angela L. Roger
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ronit Sethi
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Meredith L. Huston
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Evelyn Scarrow
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Joy Bao-Dai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Elias Lai
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Debolina D. Biswas
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Léa El Haddad
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Laura M. Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina USA
| | - Mai K. ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
9
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
10
|
Stepankova K, Jendelova P, Machova Urdzikova L. Planet of the AAVs: The Spinal Cord Injury Episode. Biomedicines 2021; 9:613. [PMID: 34071245 PMCID: PMC8228984 DOI: 10.3390/biomedicines9060613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
The spinal cord injury (SCI) is a medical and life-disrupting condition with devastating consequences for the physical, social, and professional welfare of patients, and there is no adequate treatment for it. At the same time, gene therapy has been studied as a promising approach for the treatment of neurological and neurodegenerative disorders by delivering remedial genes to the central nervous system (CNS), of which the spinal cord is a part. For gene therapy, multiple vectors have been introduced, including integrating lentiviral vectors and non-integrating adeno-associated virus (AAV) vectors. AAV vectors are a promising system for transgene delivery into the CNS due to their safety profile as well as long-term gene expression. Gene therapy mediated by AAV vectors shows potential for treating SCI by delivering certain genetic information to specific cell types. This review has focused on a potential treatment of SCI by gene therapy using AAV vectors.
Collapse
Affiliation(s)
- Katerina Stepankova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14200 Prague, Czech Republic;
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
11
|
Phenotypic implications of pathogenic variant types in Pompe disease. J Hum Genet 2021; 66:1089-1099. [PMID: 33972680 DOI: 10.1038/s10038-021-00935-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Newborn screening and therapies for Pompe disease (glycogen storage disease type II, acid maltase deficiency) will continue to expand in the future. It is thus important to determine whether enzyme activity or type of pathogenic genetic variant in GAA can best predict phenotypic severity, particularly the presence of infantile-onset Pompe disease (IOPD) versus late-onset Pompe disease (LOPD). We performed a retrospective analysis of 23 participants with genetically-confirmed cases of Pompe disease. The following data were collected: clinical details including presence or absence of cardiomyopathy, enzyme activity levels, and features of GAA variants including exon versus intron location and splice site versus non-splice site. Several combinations of GAA variant types for individual participants had significant associations with disease subtype, cardiomyopathy, age at diagnosis, gross motor function scale (GMFS), and stability of body weight. The presence of at least one splice site variant (c.546 G > C/p.T182 = , c.1076-22 T > G, c.2646 + 2 T > A, and the classic c.-32-13T > G variant) was associated with LOPD, while the presence of non-splice site variants on both alleles was associated with IOPD. Enzyme activity levels in isolation were not sufficient to predict disease subtype or other major clinical features. To extend the findings of prior studies, we found that multiple types of splice site variants beyond the classic c.-32-13T > G variant are often associated with a milder phenotype. Enzyme activity levels continue to have utility for supporting the diagnosis when the genetic variants are ambiguous. It is important for newly diagnosed patients with Pompe disease to have complete genetic, cardiac, and neurological evaluations.
Collapse
|
12
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
13
|
Bragato C, Blasevich F, Ingenito G, Mantegazza R, Maggi L. Therapeutic efficacy of 3,4-Diaminopyridine phosphate on neuromuscular junction in Pompe disease. Biomed Pharmacother 2021; 137:111357. [PMID: 33724918 DOI: 10.1016/j.biopha.2021.111357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022] Open
Abstract
3,4-Diaminopyridine (3,4-DAP) and its phosphate form, 3,4-DAPP have been used efficiently in the past years to treat muscular weakness in myasthenic syndromes with neuromuscular junctions (NMJs) impairment. Pompe disease (PD), an autosomal recessive metabolic disorder due to a defect of the lysosomal enzyme α-glucosidase (GAA), presents some secondary symptoms that are related to neuromuscular transmission dysfunction, resulting in endurance and strength failure. In order to evaluate whether 3,4-DAPP could have a beneficial effect on this pathology, we took advantage of a transient zebrafish PD model that we previously generated and characterized. We investigated presynaptic and postsynaptic structures, NMJs at the electron microscopy level, and zebrafish behavior, before and after treatment with 3,4-DAPP. After drug administration, we observed an increase in the number of acetylcholine receptors an increment in the percentage of NMJs with normal structure and amelioration in embryo behavior, with recovery of typical movements that were lost in the embryo PD model. Our results revealed early NMJ impairment in Pompe zebrafish model with improvement after administration of 3,4-DAPP, suggesting its potential use as symptomatic drug in patients with Pompe disease.
Collapse
Affiliation(s)
- Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy.
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | | | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| |
Collapse
|
14
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M, Byrne BJ, Tremblay JP. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther 2020; 29:464-488. [PMID: 33309881 PMCID: PMC7854298 DOI: 10.1016/j.ymthe.2020.12.007] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center of Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapeutics, University of Florida, Gainesville, FL, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Salabarria
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
15
|
Salabarria SM, Nair J, Clement N, Smith BK, Raben N, Fuller DD, Byrne BJ, Corti M. Advancements in AAV-mediated Gene Therapy for Pompe Disease. J Neuromuscul Dis 2020; 7:15-31. [PMID: 31796685 PMCID: PMC7029369 DOI: 10.3233/jnd-190426] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pompe disease (glycogen storage disease type II) is caused by mutations in acid α-glucosidase (GAA) resulting in lysosomal pathology and impairment of the muscular and cardio-pulmonary systems. Enzyme replacement therapy (ERT), the only approved therapy for Pompe disease, improves muscle function by reducing glycogen accumulation but this approach entails several limitations including a short drug half-life and an antibody response that results in reduced efficacy. To address these limitations, new treatments such as gene therapy are under development to increase the intrinsic ability of the affected cells to produce GAA. Key components to gene therapy strategies include the choice of vector, promoter, and the route of administration. The efficacy of gene therapy depends on the ability of the vector to drive gene expression in the target tissue and also on the recipient's immune tolerance to the transgene protein. In this review, we discuss the preclinical and clinical studies that are paving the way for the development of a gene therapy strategy for patients with early and late onset Pompe disease as well as some of the challenges for advancing gene therapy.
Collapse
Affiliation(s)
- S M Salabarria
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - J Nair
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - N Clement
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - B K Smith
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - N Raben
- Laboratory of Protein Trafficking and Organelle Biology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - D D Fuller
- Department of Physical Therapy and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida, USA
| | - B J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| | - M Corti
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Floria, USA
| |
Collapse
|
16
|
Fusco AF, McCall AL, Dhindsa JS, Zheng L, Bailey A, Kahn AF, ElMallah MK. The Respiratory Phenotype of Pompe Disease Mouse Models. Int J Mol Sci 2020; 21:ijms21062256. [PMID: 32214050 PMCID: PMC7139647 DOI: 10.3390/ijms21062256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
Pompe disease is a glycogen storage disease caused by a deficiency in acid α-glucosidase (GAA), a hydrolase necessary for the degradation of lysosomal glycogen. This deficiency in GAA results in muscle and neuronal glycogen accumulation, which causes respiratory insufficiency. Pompe disease mouse models provide a means of assessing respiratory pathology and are important for pre-clinical studies of novel therapies that aim to treat respiratory dysfunction and improve quality of life. This review aims to compile and summarize existing manuscripts that characterize the respiratory phenotype of Pompe mouse models. Manuscripts included in this review were selected utilizing specific search terms and exclusion criteria. Analysis of these findings demonstrate that Pompe disease mouse models have respiratory physiological defects as well as pathologies in the diaphragm, tongue, higher-order respiratory control centers, phrenic and hypoglossal motor nuclei, phrenic and hypoglossal nerves, neuromuscular junctions, and airway smooth muscle. Overall, the culmination of these pathologies contributes to severe respiratory dysfunction, underscoring the importance of characterizing the respiratory phenotype while developing effective therapies for patients.
Collapse
|
17
|
Yambire KF, Rostosky C, Watanabe T, Pacheu-Grau D, Torres-Odio S, Sanchez-Guerrero A, Senderovich O, Meyron-Holtz EG, Milosevic I, Frahm J, West AP, Raimundo N. Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. eLife 2019; 8:51031. [PMID: 31793879 PMCID: PMC6917501 DOI: 10.7554/elife.51031] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Lysosomal acidification is a key feature of healthy cells. Inability to maintain lysosomal acidic pH is associated with aging and neurodegenerative diseases. However, the mechanisms elicited by impaired lysosomal acidification remain poorly understood. We show here that inhibition of lysosomal acidification triggers cellular iron deficiency, which results in impaired mitochondrial function and non-apoptotic cell death. These effects are recovered by supplying iron via a lysosome-independent pathway. Notably, iron deficiency is sufficient to trigger inflammatory signaling in cultured primary neurons. Using a mouse model of impaired lysosomal acidification, we observed a robust iron deficiency response in the brain, verified by in vivo magnetic resonance imaging. Furthermore, the brains of these mice present a pervasive inflammatory signature associated with instability of mitochondrial DNA (mtDNA), both corrected by supplementation of the mice diet with iron. Our results highlight a novel mechanism linking impaired lysosomal acidification, mitochondrial malfunction and inflammation in vivo.
Collapse
Affiliation(s)
- King Faisal Yambire
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Christine Rostosky
- European Neuroscience Institute, a Joint Initiative of the Max-Planck Institute and of the University Medical Center Goettingen, Goettingen, Germany
| | - Takashi Watanabe
- Biomedizinische NMR, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - David Pacheu-Grau
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Austin, United States
| | - Angela Sanchez-Guerrero
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany.,European Neuroscience Institute, a Joint Initiative of the Max-Planck Institute and of the University Medical Center Goettingen, Goettingen, Germany
| | - Ola Senderovich
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Esther G Meyron-Holtz
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Ira Milosevic
- European Neuroscience Institute, a Joint Initiative of the Max-Planck Institute and of the University Medical Center Goettingen, Goettingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Austin, United States
| | - Nuno Raimundo
- Institute of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
18
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
19
|
Clinical features of Pompe disease with motor neuronopathy. Neuromuscul Disord 2019; 29:903-906. [PMID: 31706699 DOI: 10.1016/j.nmd.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022]
Abstract
Pathological studies on rodent models and patients with Pompe disease have demonstrated the accumulation of glycogen in spinal motor neurons; however, this finding has rarely been evaluated clinically in patients with Pompe disease. In this study, we analyzed seven patients (age, 7-11 years) with Pompe disease who received long-term enzyme replacement therapy. In addition to traditional myopathy-related clinical and electrophysiological features, these patients often developed bilateral foot drop, distal predominant weakness of four limbs, and hypo- or areflexia with preserved sensory function. Electrophysiological studies showed not only reduced amplitudes of compound muscle action potential, but also absent or impersistent F waves and mixed small and large/giant polyphasic motor unit action potentials with normal sensory study. Muscle biopsy usually showed the existence of angular fingers, fiber type grouping or group atrophy. Taken together, these features support the co-existence of motor neuronopathy additionally to myopathy.
Collapse
|
20
|
Xu L, Ba H, Pei Y, Huang X, Liang Y, Zhang L, Huang H, Zhang C, Tang W. Comprehensive approach to weaning in difficult-to-wean infantile and juvenile-onset glycogen-storage disease type II patients: a case series. Ital J Pediatr 2019; 45:106. [PMID: 31439017 PMCID: PMC6704633 DOI: 10.1186/s13052-019-0692-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/30/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glycogen storage disease type II (GSD II) is caused by acid alpha-glucosidase (GAA) deficiency. Both infantile-onset and juvenile-onset GSD II lead to proximal muscle weakness and respiratory insufficiency and require mechanical ventilation. However, GSD II is also independently associated with delayed weaning from mechanical ventilation. This study aimed to describe a comprehensive approach including sequential invasive-noninvasive mechanical ventilation weaning and enzyme replacement therapy (ERT) in patients with weaning difficulties. CASE PRESENTATION We studied six difficult-to-wean GSD II (three juvenile-onset, three infantile-onset) patients at the First Affiliated Hospital, Sun Yat-sen University from October 2015 to December 2017. Difficulty in weaning was defined as follows: the need for more than three spontaneous breathing trials or more than 1 week to achieve successful weaning. All patients received comprehensive treatment including sequential invasive-noninvasive mechanical ventilation weaning, ERT and general treatment. Recombinant human acid alpha-glucosidase enzyme therapy (20 mg/kg every 14 days) was used after diagnosis, and Patients 1-6 received ERT for 15.5, 4.5, 2, 2.5, 17, and 2 months, respectively. The therapeutic effect of the comprehensive treatment was observed. The patients' respiratory function and limb muscle strength improved after each ERT session. Patients who successfully completed a spontaneous breathing trial could proceed to extubation, and then start non-invasive ventilation. The patients' age range at initial mechanical ventilation was 3-47 (median 26.5) months, duration of invasive ventilation was 1-36 (median 2.75) months, and duration of noninvasive ventilation was 0-0.6 (median 0.05) month. The patients' nutritional status improved after enhanced nutritional support. Patients 2, 3, and 5 were successfully weaned off the ventilator. Patient 1 underwent tracheal intubation after six weaning failures, and Patients 4 and 6 died after therapy was abandoned by their parents. DISCUSSION AND CONCLUSIONS Male sex, GSD II type, and the presence of malnutrition and neurological impairment may predict poor respiratory outcomes. The above-described comprehensive sequential invasive-noninvasive mechanical ventilation weaning strategy may increase the success rate of weaning from mechanical ventilation.
Collapse
Affiliation(s)
- Lingling Xu
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Hongjun Ba
- Department of Cardiovascular pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Yuxin Pei
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Xueqiong Huang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Yujian Liang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Lidan Zhang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Huimin Huang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| | - Wen Tang
- Department of PICU, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Second Road, Guangzhou, Guangdong 510080 People’s Republic of China
| |
Collapse
|
21
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
22
|
Byrne BJ, Fuller DD, Smith BK, Clement N, Coleman K, Cleaver B, Vaught L, Falk DJ, McCall A, Corti M. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:290. [PMID: 31392202 DOI: 10.21037/atm.2019.05.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pompe disease is a neuromuscular disease caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase leading to lysosomal and cytoplasmic glycogen accumulation in neurons and striated muscle. In the decade since availability of first-generation enzyme replacement therapy (ERT) a better understanding of the clinical spectrum of disease has emerged. The most severe form of early onset disease is typically identified with symptoms in the first year of life, known as infantile-onset Pompe disease (IOPD). Infants are described at floppy babies with cardiac hypertrophy in the first few months of life. A milder form with late onset (LOPD) of symptoms is mostly free of cardiac involvement with slower rate of progression. Glycogen accumulation in the CNS and skeletal muscle is observed in both IOPD and LOPD. In both circumstances, multi-system disease (principally motoneuron and myopathy) leads to progressive weakness with associated respiratory and feeding difficulty. In IOPD the untreated natural history leads to cardiorespiratory failure and death in the first year of life. In the current era of ERT clinical outcomes are improved, yet, many patients have an incomplete response and a substantial unmet need remains. Since the neurological manifestations of the disease are not amenable to peripheral enzyme replacement, we set out to better understand the pathophysiology and potential for treatment of disease manifestations using adeno-associated virus (AAV)-mediated gene transfer, with the first clinical gene therapy studies initiated by our group in 2006. This review focuses on the preclinical studies and clinical study findings which are pertinent to the development of a comprehensive gene therapy strategy for both IOPD and LOPD. Given the advent of newborn screening, a significant focus of our recent work has been to establish the basis for repeat administration of AAV vectors to enhance neuromuscular therapeutic efficacy over the life span.
Collapse
Affiliation(s)
- Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Nathalie Clement
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Kirsten Coleman
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Brian Cleaver
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | - Lauren Vaught
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| | | | - Angela McCall
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Manuela Corti
- Department of Pediatrics and Powell Gene Therapy Center, Gainesville, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Ronzitti G, Collaud F, Laforet P, Mingozzi F. Progress and challenges of gene therapy for Pompe disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:287. [PMID: 31392199 DOI: 10.21037/atm.2019.04.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pompe disease (PD) is a monogenic disorder caused by mutations in the acid alpha-glucosidase gene (Gaa). GAA is a lysosomal enzyme essential for the degradation of glycogen. Deficiency of GAA results in a severe, systemic disorder that, in its most severe form, can be fatal. About a decade ago, the prognosis of PD has changed dramatically with the marketing authorization of an enzyme replacement therapy (ERT) based on recombinant GAA. Despite the breakthrough nature of ERT, long-term follow-up of both infantile and late-onset Pompe disease patients (IOPD and LOPD, respectively), revealed several limitations of the approach. In recent years several investigational therapies for PD have entered preclinical and clinical development, with a few next generation ERTs entering late-stage clinical development. Gene therapy holds the potential to change dramatically the way we treat PD, based on the ability to express the Gaa gene long-term, ideally driving enhanced therapeutic efficacy compared to ERT. Several gene therapy approaches to PD have been tested in preclinical animal models, with a handful of early phase clinical trials started or about to start. The complexity of PD and of the endpoints used to measure efficacy of investigational treatments remains a challenge, however the hope is for a future with more therapeutic options for both IOPD and LOPD patients.
Collapse
Affiliation(s)
| | | | - Pascal Laforet
- Raymond Poincaré Teaching Hospital, APHP, Garches, France.,Nord/Est/Ile de France Neuromuscular Center, France
| | | |
Collapse
|
24
|
Chittoor-Vinod VG, Bazick H, Todd AG, Falk D, Morelli KH, Burgess RW, Foster TC, Notterpek L. HSP90 Inhibitor, NVP-AUY922, Improves Myelination in Vitro and Supports the Maintenance of Myelinated Axons in Neuropathic Mice. ACS Chem Neurosci 2019; 10:2890-2902. [PMID: 31017387 PMCID: PMC6588339 DOI: 10.1021/acschemneuro.9b00105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
![]()
Hereditary
demyelinating neuropathies linked to peripheral myelin
protein 22 (PMP22) involve the disruption of normal protein trafficking
and are therefore relevant targets for chaperone therapy. Using a
small molecule HSP90 inhibitor, EC137, in cell culture models, we
previously validated the chaperone pathway as a viable target for
therapy development. Here, we tested five commercially available inhibitors
of HSP90 and identified BIIB021 and AUY922 to support Schwann cell
viability and enhance chaperone expression. AUY922 showed higher efficacy,
compared to BIIB021, in enhancing myelin synthesis in dorsal root
ganglion explant cultures from neuropathic mice. For in vivo testing,
we randomly assigned 2–3 month old C22 and 6 week old Trembler
J (TrJ) mice to receive two weekly injections of either vehicle or
AUY922 (2 mg/kg). By the intraperitoneal (i.p.) route, the drug was
well-tolerated by all mice over the 5 month long study, without influence
on body weight or general grooming behavior. AUY922 improved the maintenance
of myelinated nerves of both neuropathic models and attenuated the
decline in rotarod performance and peak muscle force production in
C22 mice. These studies highlight the significance of proteostasis
in neuromuscular function and further validate the HSP90 pathway as
a therapeutic target for hereditary neuropathies.
Collapse
Affiliation(s)
- Vinita G. Chittoor-Vinod
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Hannah Bazick
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Adrian G. Todd
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida 32611, United States
| | - Darin Falk
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida 32611, United States
| | - Kathryn H. Morelli
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, United States
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Robert W. Burgess
- The Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469, United States
- The Jackson Laboratory, Bar Harbor, Maine 04609, United States
| | - Thomas C. Foster
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| | - Lucia Notterpek
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, 1149 Newell Drive, Box 100244, Gainesville, Florida 32610-0244, United States
| |
Collapse
|
25
|
Coblentz PD, Ahn B, Hayward LF, Yoo JK, Christou DD, Ferreira LF. Small-hairpin RNA and pharmacological targeting of neutral sphingomyelinase prevent diaphragm weakness in rats with heart failure and reduced ejection fraction. Am J Physiol Lung Cell Mol Physiol 2019; 316:L679-L690. [PMID: 30702345 DOI: 10.1152/ajplung.00516.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heart failure with reduced ejection fraction (HFREF) increases neutral sphingomyelinase (NSMase) activity and mitochondrial reactive oxygen species (ROS) emission and causes diaphragm weakness. We tested whether a systemic pharmacological NSMase inhibitor or short-hairpin RNA (shRNA) targeting NSMase isoform 3 (NSMase3) would prevent diaphragm abnormalities induced by HFREF caused by myocardial infarction. In the pharmacological intervention, we used intraperitoneal injection of GW4869 or vehicle. In the genetic intervention, we injected adeno-associated virus serotype 9 (AAV9) containing shRNA targeting NSMase3 or a scrambled sequence directly into the diaphragm. We also studied acid sphingomyelinase-knockout mice. GW4869 prevented the increase in diaphragm ceramide content, weakness, and tachypnea caused by HFREF. For example, maximal specific forces (in N/cm2) were vehicle [sham 31 ± 2 and HFREF 26 ± 2 ( P < 0.05)] and GW4869 (sham 31 ± 2 and HFREF 31 ± 1). Respiratory rates were (in breaths/min) vehicle [sham 61 ± 3 and HFREF 84 ± 11 ( P < 0.05)] and GW4869 (sham 66 ± 2 and HFREF 72 ± 2). AAV9-NSMase3 shRNA prevented heightening of diaphragm mitochondrial ROS and weakness [in N/cm2, AAV9-scrambled shRNA: sham 31 ± 2 and HFREF 27 ± 2 ( P < 0.05); AAV9-NSMase3 shRNA: sham 30 ± 1 and HFREF 30 ± 1] but displayed tachypnea. Both wild-type and ASMase-knockout mice with HFREF displayed diaphragm weakness. Our study suggests that activation of NSMase3 causes diaphragm weakness in HFREF, presumably through accumulation of ceramide and elevation in mitochondrial ROS. Our data also reveal a novel inhibitory effect of GW4869 on tachypnea in HFREF likely mediated by changes in neural control of breathing.
Collapse
Affiliation(s)
- Philip D Coblentz
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Linda F Hayward
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| | - Jeung-Ki Yoo
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Demetra D Christou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida , Gainesville, Florida
| |
Collapse
|
26
|
Lim JA, Yi H, Gao F, Raben N, Kishnani PS, Sun B. Intravenous Injection of an AAV-PHP.B Vector Encoding Human Acid α-Glucosidase Rescues Both Muscle and CNS Defects in Murine Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:233-245. [PMID: 30809555 PMCID: PMC6376130 DOI: 10.1016/j.omtm.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Abstract
Pompe disease, a severe and often fatal neuromuscular disorder, is caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The disease is characterized by the accumulation of excess glycogen in the heart, skeletal muscle, and CNS. Currently approved enzyme replacement therapy or experimental adeno-associated virus (AAV)-mediated gene therapy has little effect on CNS correction. Here we demonstrate that a newly developed AAV-PHP.B vector can robustly transduce both the CNS and skeletal muscles in GAA-knockout (GAAKO) mice. A single intravenous injection of an AAV-PHP.B vector expressing human GAA under the control of cytomegalovirus (CMV) enhancer-chicken β-actin (CB) promoter into 2-week-old GAAKO mice resulted in widespread GAA expression in the affected tissues. Glycogen contents were reduced to wild-type levels in the brain and heart, and they were significantly decreased in skeletal muscle by the AAV treatment. The histological assay showed no visible glycogen in any region of the brain and spinal cord of AAV-treated mice. In this study, we describe a set of behavioral tests that can detect early neurological deficits linked to extensive lysosomal glycogen accumulation in the CNS of untreated GAAKO mice. Furthermore, we demonstrate that the therapy can help prevent the development of these abnormalities.
Collapse
Affiliation(s)
- Jeong-A Lim
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Haiqing Yi
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
27
|
McCall AL, Stankov SG, Cowen G, Cloutier D, Zhang Z, Yang L, Clement N, Falk DJ, Byrne BJ. Reduction of Autophagic Accumulation in Pompe Disease Mouse Model Following Gene Therapy. Curr Gene Ther 2019; 19:197-207. [PMID: 31223086 DOI: 10.2174/1566523219666190621113807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pompe disease is a fatal neuromuscular disorder caused by a deficiency in acid α-glucosidase, an enzyme responsible for glycogen degradation in the lysosome. Currently, the only approved treatment for Pompe disease is enzyme replacement therapy (ERT), which increases patient survival, but does not fully correct the skeletal muscle pathology. Skeletal muscle pathology is not corrected with ERT because low cation-independent mannose-6-phosphate receptor abundance and autophagic accumulation inhibits the enzyme from reaching the lysosome. Thus, a therapy that more efficiently targets skeletal muscle pathology, such as adeno-associated virus (AAV), is needed for Pompe disease. OBJECTIVE The goal of this project was to deliver a rAAV9-coGAA vector driven by a tissue restrictive promoter will efficiently transduce skeletal muscle and correct autophagic accumulation. METHODS Thus, rAAV9-coGAA was intravenously delivered at three doses to 12-week old Gaa-/- mice. 1 month after injection, skeletal muscles were biochemically and histologically analyzed for autophagy-related markers. RESULTS At the highest dose, GAA enzyme activity and vacuolization scores achieved therapeutic levels. In addition, resolution of autophagosome (AP) accumulation was seen by immunofluorescence and western blot analysis of autophagy-related proteins. Finally, mice treated at birth demonstrated persistence of GAA expression and resolution of lysosomes and APs compared to those treated at 3 months. CONCLUSION In conclusion, a single systemic injection of rAAV9-coGAA ameliorates vacuolar accumulation and prevents autophagic dysregulation.
Collapse
Affiliation(s)
- Angela L McCall
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sylvia G Stankov
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Gabrielle Cowen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Denise Cloutier
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Zizhao Zhang
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States
| | - Lin Yang
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States
| | - Nathalie Clement
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Darin J Falk
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Abstract
Pompe disease is a rare and deadly muscle disorder. As a clinical entity, the disease has been known for over 75 years. While an optimist might be excited about the advances made during this time, a pessimist would note that we have yet to find a cure. However, both sides would agree that many findings in basic science-such as the Nobel prize-winning discoveries of glycogen metabolism, the lysosome, and autophagy-have become the foundation of our understanding of Pompe disease. The disease is a glycogen storage disorder, a lysosomal disorder, and an autophagic myopathy. In this review, we will discuss how these past discoveries have guided Pompe research and impacted recent therapeutic developments.
Collapse
Affiliation(s)
- Lara Kohler
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Corti M, Liberati C, Smith BK, Lawson LA, Tuna IS, Conlon TJ, Coleman KE, Islam S, Herzog RW, Fuller DD, Collins SW, Byrne BJ. Safety of Intradiaphragmatic Delivery of Adeno-Associated Virus-Mediated Alpha-Glucosidase (rAAV1-CMV-hGAA) Gene Therapy in Children Affected by Pompe Disease. HUM GENE THER CL DEV 2018; 28:208-218. [PMID: 29160099 DOI: 10.1089/humc.2017.146] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A first-in-human trial of diaphragmatic gene therapy (AAV1-CMV-GAA) to treat respiratory and neural dysfunction in early-onset Pompe disease was conducted. The primary objective of this study was to assess the safety of rAAV1-CMV-hGAA vector delivered to the diaphragm muscle of Pompe disease subjects with ventilatory insufficiency. Safety was assessed by measurement of change in serum chemistries and hematology, urinalysis, and immune response to GAA and AAV, as well as change in level of health. The data demonstrate that the AAV treatment was safe and there were no adverse events related to the study agent. Adverse events related to the study procedure were observed in subjects with lower baseline neuromuscular function. All adverse events were resolved before the end of the study, except for one severe adverse event determined not to be related to either the study agent or the study procedure. In addition, an anti-capsid and anti-transgene antibody response was observed in all subjects who received rAAV1-CMV-hGAA, except for subjects who received concomitant immunomodulation to manage reaction to enzyme replacement therapy, as per their standard of care. This observation is significant for future gene therapy studies and serves to establish a clinically relevant approach to blocking immune responses to both the AAV capsid protein and transgene product.
Collapse
Affiliation(s)
- Manuela Corti
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Cristina Liberati
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Barbara K Smith
- 2 Department of Physical Therapy, College of Public Health and Health Profession, University of Florida , Gainesville, Florida
| | - Lee Ann Lawson
- 3 Department of Endocrinology, College of Medicine, University of Florida , Gainesville, Florida
| | - Ibrahim S Tuna
- 4 Department of Radiology, College of Medicine, University of Florida , Gainesville, Florida
| | - Thomas J Conlon
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Kirsten E Coleman
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Saleem Islam
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Roland W Herzog
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - David D Fuller
- 2 Department of Physical Therapy, College of Public Health and Health Profession, University of Florida , Gainesville, Florida
| | - Shelley W Collins
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| | - Barry J Byrne
- 1 Department of Pediatrics, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
30
|
Keeler AM, Zieger M, Todeasa SH, McCall AL, Gifford JC, Birsak S, Choudhury SR, Byrne BJ, Sena-Esteves M, ElMallah MK. Systemic Delivery of AAVB1-GAA Clears Glycogen and Prolongs Survival in a Mouse Model of Pompe Disease. Hum Gene Ther 2018; 30:57-68. [PMID: 29901418 DOI: 10.1089/hum.2018.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pompe disease is an autosomal recessive glycogen storage disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption in muscle and the central nervous system (CNS). Adeno-associated virus (AAV) gene therapy is ideal for Pompe disease, since a single systemic injection may correct both muscle and CNS pathologies. Using the Pompe mouse (B6;129-GaaTm1Rabn/J), this study sought to explore if AAVB1, a newly engineered vector with a high affinity for muscle and CNS, reduces systemic weakness and improves survival in adult mice. Three-month-old Gaa-/- animals were injected with either AAVB1 or AAV9 vectors expressing GAA and tissues were harvested 6 months later. Both AAV vectors prolonged survival. AAVB1-treated animals had a robust weight gain compared to the AAV9-treated group. Vector genome levels, GAA enzyme activity, and histological analysis indicated that both vectors transduced the heart efficiently, leading to glycogen clearance, and transduced the diaphragm and CNS at comparable levels. AAVB1-treated mice had higher GAA activity and greater glycogen clearance in the tongue. Finally, AAVB1-treated animals showed improved respiratory function comparable to wild-type animals. In conclusion, AAVB1-GAA offers a promising therapeutic option for the treatment of muscle and CNS in Pompe disease.
Collapse
Affiliation(s)
- Allison M Keeler
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Marina Zieger
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sophia H Todeasa
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Angela L McCall
- 4 Department of Pediatrics, Duke University, Durham, North Carolina
| | - Jennifer C Gifford
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Samantha Birsak
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts
| | - Sourav R Choudhury
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Barry J Byrne
- 5 Department of Pediatrics, University of Florida, Gainesville, Florida.,6 Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Miguel Sena-Esteves
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,3 Department of Neurology, University of Massachusetts Medical School, Worcester Massachusetts
| | - Mai K ElMallah
- 1 Division of Pulmonary Medicine, Department of Pediatrics, University of Massachusetts Medical School, Worcester Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester Massachusetts.,4 Department of Pediatrics, Duke University, Durham, North Carolina
| |
Collapse
|
31
|
Falk DJ, Galatas T, Todd AG, Soto EP, Harris AB, Notterpek L. Locomotor and skeletal muscle abnormalities in trembler J neuropathic mice. Muscle Nerve 2017; 57:664-671. [PMID: 29023846 DOI: 10.1002/mus.25987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2017] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Patients with hereditary peripheral neuropathies exhibit characteristic deformities of the hands and feet and have difficulty ambulating. To examine to what extent neuropathic animals recapitulate these deficits, we studied trembler J (TrJ) mice, which model early-onset demyelinating neuropathy. METHODS A cohort of 4-month-old female wild type and neuropathic mice were evaluated for locomotor measurements, neuromuscular function, and skeletal muscle proteolysis and morphometry. RESULTS Utilizing the DigiGait imaging system, we identified pronounced alterations in forepaw and hindpaw angles and a decrease in hindpaw area on the treadmill in neuropathic rodents. Torque production by the tibialis anterior (TA) muscle was significantly weakened and was paralleled by a decrease in myofiber cross-sectional area and an increase in muscle tissue proteolysis. DISCUSSION Our findings in TrJ mice reflect the phenotypic presentation of the human neuropathy in which patients exhibit weakness of the TA muscle resulting in foot drop and locomotor abnormalities. Muscle Nerve 57: 664-671, 2018.
Collapse
Affiliation(s)
- Darin J Falk
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, 32610-0244, USA
| | - Tori Galatas
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA
| | - Adrian G Todd
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, 32610-0244, USA
| | - Elliott P Soto
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA
| | - Andrew B Harris
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA
| | - Lucia Notterpek
- Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida, 1149 Newell Drive, Box 100244 Gainesville, Florida, 32610-0244, USA.,Department of Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
32
|
van Bremen T, Send T, Sasse P, Bruegmann T. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function. J Muscle Res Cell Motil 2017; 38:331-337. [PMID: 28918572 DOI: 10.1007/s10974-017-9481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.
Collapse
Affiliation(s)
- Tobias van Bremen
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Thorsten Send
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany. .,Research Training Group 1873, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
33
|
Baligand C, Todd AG, Lee-McMullen B, Vohra RS, Byrne BJ, Falk DJ, Walter GA. 13C/ 31P MRS Metabolic Biomarkers of Disease Progression and Response to AAV Delivery of hGAA in a Mouse Model of Pompe Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:42-49. [PMID: 29018835 PMCID: PMC5626920 DOI: 10.1016/j.omtm.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/05/2017] [Indexed: 01/31/2023]
Abstract
The development of therapeutic clinical trials for glycogen storage disorders, including Pompe disease, has called for non-invasive and objective biomarkers. Glycogen accumulation can be measured in vivo with 13C MRS. However, clinical implementation remains challenging due to low signal-to-noise. On the other hand, the buildup of glycolytic intermediates may be detected with 31P MRS. We sought to identify new biomarkers of disease progression in muscle using 13C/31P MRS and 1H HR-MAS in a mouse model of Pompe disease (Gaa−/−). We evaluated the sensitivity of these MR biomarkers in vivo after treatment using an adeno-associated virus vector 2/9 encoding hGAA driven by the desmin promotor. 31P MRS showed significantly elevated phosphomonoesters (PMEs) in Gaa−/− compared to control at 2 (0.06 ± 0.02 versus 0.03 ± 0.01; p = 0.003), 6, 12, and 18 months of age. Correlative 1H HR-MAS measures in intact gastrocnemius muscles revealed high glucose-6-phosphate (G-6-P). After intramuscular AAV injections, glycogen, PME, and G-6-P were decreased within normal range. The changes in PME levels likely partly resulted from changes in G-6-P, one of the overlapping phosphomonoesters in the 31P MR spectra in vivo. Because 31P MRS is inherently more sensitive than 13C MRS, PME levels have greater potential as a clinical biomarker and should be considered as a complementary approach for future studies in Pompe patients.
Collapse
Affiliation(s)
- Celine Baligand
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Adrian G Todd
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Brittany Lee-McMullen
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Ravneet S Vohra
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Darin J Falk
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
34
|
Hordeaux J, Dubreil L, Robveille C, Deniaud J, Pascal Q, Dequéant B, Pailloux J, Lagalice L, Ledevin M, Babarit C, Costiou P, Jamme F, Fusellier M, Mallem Y, Ciron C, Huchet C, Caillaud C, Colle MA. Long-term neurologic and cardiac correction by intrathecal gene therapy in Pompe disease. Acta Neuropathol Commun 2017; 5:66. [PMID: 28874182 PMCID: PMC5585940 DOI: 10.1186/s40478-017-0464-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
Pompe disease is a lysosomal storage disorder caused by acid-α-glucosidase (GAA) deficiency, leading to glycogen storage. The disease manifests as a fatal cardiomyopathy in infantile form. Enzyme replacement therapy (ERT) has recently prolonged the lifespan of these patients, revealing a new natural history. The neurologic phenotype and the persistence of selective muscular weakness in some patients could be attributed to the central nervous system (CNS) storage uncorrected by ERT. GAA-KO 6neo/6neo mice were treated with a single intrathecal administration of adeno-associated recombinant vector (AAV) mediated gene transfer of human GAA at 1 month and their neurologic, neuromuscular, and cardiac function was assessed for 1 year. We demonstrate a significant functional neurologic correction in treated animals from 4 months onward, a neuromuscular improvement from 9 months onward, and a correction of the hypertrophic cardiomyopathy at 12 months. The regions most affected by the disease i.e. the brainstem, spinal cord, and the left cardiac ventricular wall all show enzymatic, biochemical and histological correction. Muscle glycogen storage is not affected by the treatment, thus suggesting that the restoration of muscle functionality is directly related to the CNS correction. This unprecedented global and long-term CNS and cardiac cure offer new perspectives for the management of patients.
Collapse
|
35
|
Peng J, Dalton J, Butt M, Tracy K, Kennedy D, Haroldsen P, Cahayag R, Zoog S, O'Neill CA, Tsuruda LS. Reveglucosidase alfa (BMN 701), an IGF2-Tagged rhAcid α-Glucosidase, Improves Respiratory Functional Parameters in a Murine Model of Pompe Disease. J Pharmacol Exp Ther 2017; 360:313-323. [PMID: 27856936 DOI: 10.1124/jpet.116.235952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/14/2016] [Indexed: 02/02/2023] Open
Abstract
Pompe disease is a rare neuromuscular disorder caused by an acid α-glucosidase (GAA) deficiency resulting in glycogen accumulation in muscle, leading to myopathy and respiratory weakness. Reveglucosidase alfa (BMN 701) is an insulin-like growth factor 2-tagged recombinant human acid GAA (rhGAA) that enhances rhGAA cellular uptake via a glycosylation-independent insulin-like growth factor 2 binding region of the cation-independent mannose-6-phosphate receptor (CI-MPR). The studies presented here evaluated the effects of Reveglucosidase alfa treatment on glycogen clearance in muscle relative to rhGAA, as well as changes in respiratory function and glycogen clearance in respiratory-related tissue in a Pompe mouse model (GAAtm1Rabn/J). In a comparison of glycogen clearance in muscle with Reveglucosidase alfa and rhGAA, Reveglucosidase alfa was more effective than rhGAA with 2.8-4.7 lower EC50 values, probably owing to increased cellular uptake. The effect of weekly intravenous administration of Reveglucosidase alfa on respiratory function was monitored in Pompe and wild-type mice using whole body plethysmography. Over 12 weeks of 20-mg/kg Reveglucosidase alfa treatment in Pompe mice, peak inspiratory flow (PIF) and peak expiratory flow (PEF) stabilized with no compensation in respiratory rate and inspiratory time during hypercapnic and recovery conditions compared with vehicle-treated Pompe mice. Dose-related decreases in glycogen levels in both ambulatory and respiratory muscles generally correlated to changes in respiratory function. Improvement of murine PIF and PEF were similar in magnitude to increases in maximal inspiratory and expiratory pressure observed clinically in late onset Pompe patients treated with Reveglucosidase alfa (Byrne et al., manuscript in preparation).
Collapse
Affiliation(s)
- Jeffrey Peng
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Jill Dalton
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Mark Butt
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Kristin Tracy
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Derek Kennedy
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Peter Haroldsen
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Rhea Cahayag
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Stephen Zoog
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Charles A O'Neill
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| | - Laurie S Tsuruda
- BioMarin Pharmaceutical Inc., Novato, California (J.P., K.T., P.H., R.C., S.Z., C.A.O., L.S.T.); MPI Research, Mattawan, Michigan (J.D.); Tox Path Specialists, LLC, Frederick, Maryland (M.B.); UltraGenyx Pharmaceutical Inc., Novato, California (D.K.)
| |
Collapse
|
36
|
Turner SMF, Falk DJ, Byrne BJ, Fuller DD. Transcriptome assessment of the Pompe (Gaa-/-) mouse spinal cord indicates widespread neuropathology. Physiol Genomics 2016; 48:785-794. [PMID: 27614205 PMCID: PMC6223572 DOI: 10.1152/physiolgenomics.00075.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022] Open
Abstract
Pompe disease, caused by deficiency of acid alpha-glucosidase (GAA), leads to widespread glycogen accumulation and profound neuromuscular impairments. There has been controversy, however, regarding the role of central nervous system pathology in Pompe motor dysfunction. We hypothesized that absence of GAA protein causes progressive activation of neuropathological signaling, including pathways associated with cell death. To test this hypothesis, genomic data (Affymetrix Mouse Gene Array 2.0ST) from the midcervical spinal cord in 6 and 16 mo old Pompe (Gaa-/-) mice were evaluated (Broad Institute Molecular Signature Database), along with spinal cord histology. The midcervical cord was selected because it contains phrenic motoneurons, and phrenic-diaphragm dysfunction is prominent in Pompe disease. Several clinically important themes for the neurologic etiology of Pompe disease emerged from this unbiased genomic assessment. First, pathways associated with cell death were strongly upregulated as Gaa-/- mice aged, and motoneuron apoptosis was histologically verified. Second, proinflammatory signaling was dramatically upregulated in the Gaa-/- spinal cord. Third, many signal transduction pathways in the Gaa-/- cervical cord were altered in a manner suggestive of impaired synaptic function. Notably, glutamatergic signaling pathways were downregulated, as were "synaptic plasticity pathways" including genes related to neuroplasticity. Fourth, many genes and pathways related to cellular metabolism are dysregulated. Collectively, the data unequivocally confirm that systemic absence of GAA induces a complex neuropathological cascade in the spinal cord. Most importantly, the results indicate that Pompe is a neurodegenerative condition, and this underscores the need for early therapeutic intervention capable of targeting the central nervous system.
Collapse
Affiliation(s)
- S M F Turner
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - D J Falk
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
- Department of Pediatrics, Divisions of Cellular and Molecular Therapy and Pediatric Cardiology, College of Medicine, University of Florida, Gainesville, Florida; and
- Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - B J Byrne
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
- Department of Pediatrics, Divisions of Cellular and Molecular Therapy and Pediatric Cardiology, College of Medicine, University of Florida, Gainesville, Florida; and
- Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - D D Fuller
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida;
- McKnight Brain Institute, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| |
Collapse
|
37
|
Saraiva J, Nobre RJ, Pereira de Almeida L. Gene therapy for the CNS using AAVs: The impact of systemic delivery by AAV9. J Control Release 2016; 241:94-109. [PMID: 27637390 DOI: 10.1016/j.jconrel.2016.09.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Several attempts have been made to discover the ideal vector for gene therapy in central nervous system (CNS). Adeno-associated viruses (AAVs) are currently the preferred vehicle since they exhibit stable transgene expression in post-mitotic cells, neuronal tropism, low risk of insertional mutagenesis and diminished immune responses. Additionally, the discovery that a particular serotype, AAV9, bypasses the blood-brain barrier has raised the possibility of intravascular administration as a non-invasive delivery route to achieve widespread CNS gene expression. AAV9 intravenous delivery has already shown promising results for several diseases in animal models, including lysosomal storage disorders and motor neuron diseases, opening the way to the first clinical trial in the field. This review presents an overview of clinical trials for CNS disorders using AAVs and will focus on preclinical studies based on the systemic gene delivery using AAV9.
Collapse
Affiliation(s)
- Joana Saraiva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal
| | - Luis Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Portugal.
| |
Collapse
|
38
|
Van Wassenhove LD, Mochly-Rosen D, Weinberg KI. Aldehyde dehydrogenase 2 in aplastic anemia, Fanconi anemia and hematopoietic stem cells. Mol Genet Metab 2016; 119:28-36. [PMID: 27650066 PMCID: PMC5082284 DOI: 10.1016/j.ymgme.2016.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022]
Abstract
Maintenance of the hematopoietic stem cell (HSC) compartment depends on the ability to metabolize exogenously and endogenously generated toxins, and to repair cellular damage caused by such toxins. Reactive aldehydes have been demonstrated to cause specific genotoxic injury, namely DNA interstrand cross-links. Aldehyde dehydrogenase 2 (ALDH2) is a member of a 19 isoenzyme ALDH family with different substrate specificities, subcellular localization, and patterns of expression. ALDH2 is localized in mitochondria and is essential for the metabolism of acetaldehyde, thereby placing it directly downstream of ethanol metabolism. Deficiency in ALDH2 expression and function are caused by a single nucleotide substitution and resulting amino acid change, called ALDH2*2. This genetic polymorphism affects 35-45% of East Asians (about ~560 million people), and causes the well-known Asian flushing syndrome, which results in disulfiram-like reactions after ethanol consumption. Recently, the ALDH2*2 genotype has been found to be associated with marrow failure, with both an increased risk of sporadic aplastic anemia and more rapid progression of Fanconi anemia. This review discusses the unexpected interrelationship between aldehydes, ALDH2 and hematopoietic stem cell biology, and in particular its relationship to Fanconi anemia.
Collapse
Affiliation(s)
| | - Daria Mochly-Rosen
- Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kenneth I Weinberg
- Division of Stem Cell Biology and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Turner SMF, Hoyt AK, ElMallah MK, Falk DJ, Byrne BJ, Fuller DD. Neuropathology in respiratory-related motoneurons in young Pompe (Gaa(-/-)) mice. Respir Physiol Neurobiol 2016; 227:48-55. [PMID: 26921786 PMCID: PMC4880056 DOI: 10.1016/j.resp.2016.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 12/25/2022]
Abstract
Respiratory and/or lingual dysfunction are among the first motor symptoms in Pompe disease, a disorder resulting from absence or dysfunction of the lysosomal enzyme acid α-glucosidase (GAA). Here, we histologically evaluated the medulla, cervical and thoracic spinal cords in 6 weeks old asymptomatic Pompe (Gaa(-/-)) mice to determine if neuropathology in respiratory motor regions has an early onset. Periodic acid-Schiff (PAS) staining indicated glycogen accumulation was exclusively occurring in Gaa(-/-) hypoglossal, mid-cervical and upper thoracic motoneurons. Markers of DNA damage (Tunel) and ongoing apoptosis (Cleaved Caspase 3) did not co-localize with PAS staining, but were prominent in a medullary region which included the nucleus tractus solitarius, and also in the thoracic spinal dorsal horn. We conclude that respiratory-related motoneurons are particularly susceptible to GAA deficiency and that neuronal glycogen accumulation and neurodegeneration may occur independently in early stage disease. The data support early therapeutic intervention in Pompe disease.
Collapse
Affiliation(s)
- Sara M F Turner
- Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States
| | - Aaron K Hoyt
- Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | - Mai K ElMallah
- Department of Pediatrics, Division of Pulmonary Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Darin J Falk
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL 32610, United States; Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States
| | - Barry J Byrne
- Department of Pediatrics, Child Health Research Institute, University of Florida, Gainesville, FL 32610, United States; Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States
| | - David D Fuller
- Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
40
|
Adamson-Small L, Potter M, Falk DJ, Cleaver B, Byrne BJ, Clément N. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol Ther Methods Clin Dev 2016; 3:16031. [PMID: 27222839 PMCID: PMC4863725 DOI: 10.1038/mtm.2016.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023]
Abstract
Recombinant adeno-associated vectors based on serotype 9 (rAAV9) have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV)-based production and purification process capable of generating greater than 1 × 10(14) rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 10(5) vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP) and good manufacturing practice (GMP) production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production.
Collapse
Affiliation(s)
- Laura Adamson-Small
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Mark Potter
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Darin J Falk
- Department of Pediatrics, Child Health Research Institute, University of Florida, Florida, USA
| | - Brian Cleaver
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
41
|
Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ. Targeted approaches to induce immune tolerance for Pompe disease therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15053. [PMID: 26858964 PMCID: PMC4729315 DOI: 10.1038/mtm.2015.53] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease.
Collapse
Affiliation(s)
- Phillip A Doerfler
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Sushrusha Nayak
- Department of Medicine, Karolinska Institute , Stockholm, Sweden
| | - Manuela Corti
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
42
|
Doerfler PA, Todd AG, Clément N, Falk DJ, Nayak S, Herzog RW, Byrne BJ. Copackaged AAV9 Vectors Promote Simultaneous Immune Tolerance and Phenotypic Correction of Pompe Disease. Hum Gene Ther 2016; 27:43-59. [PMID: 26603344 PMCID: PMC4741206 DOI: 10.1089/hum.2015.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/28/2015] [Indexed: 12/24/2022] Open
Abstract
Pompe disease is a progressive neuromuscular disorder caused by lysosomal accumulation of glycogen from a deficiency in acid alpha-glucosidase (GAA). Replacement of the missing enzyme is available by repeated protein infusions; however, efficacy is limited by immune response and inability to restore enzymatic function in the central nervous system. An alternative therapeutic option is adeno-associated virus (AAV)-mediated gene therapy, which results in widespread gene transfer and prolonged transgene expression. Both enzyme replacement therapy (ERT) and gene therapy can elicit anti-GAA immune reactions that dampen their effectiveness and pose life-threatening risks to patient safety. To modulate the immune responses related to gene therapy, we show that a human codon-optimized GAA (coGAA) driven by a liver-specific promoter (LSP) using AAV9 is capable of promoting immune tolerance in a Gaa(-/-) mouse model. Copackaging AAV9-LSP-coGAA with the tissue-restricted desmin promoter (AAV9-DES-coGAA) demonstrates the necessary cell autonomous expression in cardiac muscle, skeletal muscle, peripheral nerve, and the spinal cord. Simultaneous high-level expression in liver led to the expansion of GAA-specific regulatory T-cells (Tregs) and induction of immune tolerance. Transfer of Tregs into naïve recipients prevented pathogenic allergic reactions after repeated ERT challenges. Copackaged AAV9 also attenuated preexisting humoral and cellular immune responses, which enhanced the biochemical correction. Our data present a therapeutic design in which simultaneous administration of two copackaged AAV constructs may provide therapeutic benefit and resolve immune reactions in the treatment of multisystem disorders.
Collapse
Affiliation(s)
- Phillip A. Doerfler
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Adrian G. Todd
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Darin J. Falk
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| | - Sushrusha Nayak
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Stockholm, Sweden
| | - Roland W. Herzog
- Division of Cellular & Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida
| |
Collapse
|
43
|
Lim JA, Kakhlon O, Li L, Myerowitz R, Raben N. Pompe disease: Shared and unshared features of lysosomal storage disorders. Rare Dis 2015; 3:e1068978. [PMID: 26619007 PMCID: PMC4620984 DOI: 10.1080/21675511.2015.1068978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/29/2023] Open
Abstract
Pompe disease, an inherited deficiency of lysosomal acid α-glucosidase (GAA), is a severe metabolic myopathy with a wide range of clinical manifestations. It is the first recognized lysosomal storage disorder and the first neuromuscular disorder for which a therapy (enzyme replacement) has been approved. As GAA is the only enzyme that hydrolyses glycogen to glucose in the acidic environment of the lysosome, its deficiency leads to glycogen accumulation within and concomitant enlargement of this organelle. Since the introduction of the therapy, the overall understanding of the disease has progressed significantly, but the pathophysiology of muscle damage is still not fully understood. The emerging complex picture of the pathological cascade involves disturbance of calcium homeostasis, mitochondrial abnormalities, dysfunctional autophagy, accumulation of toxic undegradable materials, and accelerated production of lipofuscin deposits that are unrelated to aging. The relationship of Pompe disease to other lysosomal storage disorders and potential therapeutic interventions for Pompe disease are discussed.
Collapse
Affiliation(s)
- Jeong-A Lim
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| | - Or Kakhlon
- Department of Neurology; Hadassah-Hebrew University Medical Center ; Ein Kerem, Jerusalem, Israel
| | - Lishu Li
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| | - Rachel Myerowitz
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA ; St. Mary's College of Maryland ; St. Mary's City, MD USA
| | - Nina Raben
- Laboratory of Muscle Stem Cells and Gene Regulation; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institutes of Health ; Bethesda, MD USA
| |
Collapse
|