1
|
Zhang F, Gao K, Zhang J, Li S, Li Y, Wang J, Wu Y, Jiang Y, Wu C. Bexarotene Promotes Neuroblastoma SH-SY5Y Cell Differentiation to Mature Neurons with Decreased Proliferation. Mol Neurobiol 2025:10.1007/s12035-025-04888-4. [PMID: 40229457 DOI: 10.1007/s12035-025-04888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Bexarotene is a retinoid X receptor (RXR) pharmacological agonist that has been demonstrated to treat cutaneous T-cell lymphoma and promising therapeutic potential for neurological diseases. But it still remains unclear whether bexarotene participates in regulation of neuroblastoma. Human neuroblastoma SH-SY5Y cells were used as a model to investigate the neuronal differentiation impact of bexarotene. Bexarotene-cultured SH-SY5Y cells showed changes in cell morphology, adopting pyramidal shapes and extending neurites, increased expression of neuronal marker β-tubulin III and mature neurons marker neurofilament M and upregulation of neuronal differentiation markers including growth-associated protein 43 (GAP43) and synaptophysin (SYP). SH-SY5Y cells induced by bexarotene increased the expression of GABAergic marker glutamate decarboxylase (GAD1) and dopaminergic marker TH, but not glutamatergic marker glutamate-ammonia ligase (GLUL) and cholinergic marker solute carrier family 18 member 1 (SLC18A1). Functional enrichment analysis of RNAseq data and subsequent cell experiments revealed that the PI3K-Akt axis is the dominant signaling pathway promoting the differentiation of SH-SY5Y cells into mature and functional neurons in response to bexarotene. Additionally, we observed that SH-SY5Y cells show reduced proliferation rates accompanied by decreased expression of cyclin-dependent kinase 6 (CDK6) and increased expression of cyclin-dependent kinase 1 (CDK1) following 7-day exposure to bexarotene, suggesting bexarotene induces a quiescent state in SH-SY5Y cells. SH-SY5Y cells can be induced to mature neurons with decreased proliferation induced by bexarotene via PI3K-Akt axis. It indicates bexarotene has the potential to treat neuroblastoma.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Junjiao Zhang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Sihan Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yue Li
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing, 100034, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| | - Congying Wu
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Tongzhou District, No.116 Cuiping West Street, Beijing, 101121, China.
| |
Collapse
|
2
|
Hua Z, Gong B, Li Z. Silencing YTHDF2 Induces Apoptosis of Neuroblastoma Cells In a Cell Line-Dependent Manner via Regulating the Expression of DLK1. Mol Neurobiol 2025:10.1007/s12035-025-04759-y. [PMID: 39979690 DOI: 10.1007/s12035-025-04759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children. The complications caused by traditional chemoradiotherapy seriously affect the quality of life of patients with NB. In this study, NGP, KCNR, and SH-SY5Y (SY5Y) cell lines were used. Retinoic acid (RA, 5 µM) was used to treat NB cells for 48 h. siRNAs were used to silence the expression of DLK1 or YTHDF2. Cell confluence was analyzed using IncuCyte ZOOM to evaluate cell proliferation of NB cells. RT-qPCR and western blotting were performed to detect the expression of target molecules. Annexin V/PI staining and Caspase-Glo 3/7 assay were performed to detect cell apoptosis. RNA m6A quantification, MeRIP-qPCR, and RIP-qPCR were performed. Results showed that RA treatment decreased the expression of DLK1 and YTHDF2 in NB cells, and low expression of DLK1 was correlated with good prognosis of patients. Knockdown of the expression of DLK1 or YTHDF2 inhibited cell proliferation and induced apoptosis of SY5Y cells, but not NGP and KCNR cells. Furthermore, we found that there are m6A modification sites in DLK1 mRNA, and the expression of m6A modified DLK1 mRNA increased after RA treatment, and YTHDF2 regulates the expression level of DLK1, and the expression of YTHDF2-bound DLK1 mRNA decreased after RA treatment. These suggest that YTHDF2 may regulate the proliferation and apoptosis of NB cells in a cell line-dependent manner by binding to the m6A modification site of DLK1 mRNA to affect its expression, and YTHDF2 and DLK1 are potential therapeutic targets for patients with NB.
Collapse
Affiliation(s)
- Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baocheng Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Lin H, Liao F, Liu J, Yang Z, Zhang J, Cheng J, Zhou H, Li S, Li L, Li Y, Zhuo Z, He J. Neuroblastoma susceptibility and association of N7-methylguanosine modification gene polymorphisms: multi-center case-control study. Pediatr Res 2025; 97:153-159. [PMID: 38871802 DOI: 10.1038/s41390-024-03318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/02/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Neuroblastoma (NB) is a common extracranial solid malignancy in children. The N7-methylguanosine (m7G) modification gene METTL1/WDR4 polymorphisms may serve as promising molecular markers for identifying populations susceptible to NB. METHODS TaqMan probes was usded to genotype METTL1/WDR4 single nucleotide polymorphisms (SNPs) in 898 NB patients and 1734 healthy controls. A logistic regression model was utilized to calculate the odds ratio (OR) and 95% confidence interval (CI), evaluating the association between genotype polymorphisms and NB susceptibility. The analysis was also stratified by age, sex, tumor origin site, and clinical stage. RESULTS Individual polymorphism of the METTL1/WDR4 gene investigated in this study did not show significant associations with NB susceptibility. However, combined genotype analysis revealed that carrying all 5 WDR4 protective genotypes was associated with a significantly lower NB risk compared to having 0-4 protective genotypes (AOR = 0.82, 95% CI = 0.69-0.96, P = 0.014). Further stratified analyses revealed that carrying 1-3 METTL1 risk genotypes, the WDR4 rs2156316 CG/GG genotype, the WDR4 rs2248490 CG/GG genotype, and having all five WDR4 protective genotypes were all significantly correlated with NB susceptibility in distinct subpopulations. CONCLUSIONS In conclusion, our findings suggest significant associations between m7G modification gene METTL1/WDR4 SNPs and NB susceptibility in specific populations. IMPACT Genetic variation in m7G modification gene is associated with susceptibility to NB. Single nucleotide polymorphisms in METTL1/WDR4 are associated with susceptibility to NB. Single nucleotide polymorphisms of METTL1/WDR4 can be used as a biomarker for screening NB susceptible populations.
Collapse
Affiliation(s)
- Huiran Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Fan Liao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, 030013, Shannxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, 410004, Hunan, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
4
|
Li S, Luo J, Liu J, He D. Pan-cancer single cell and spatial transcriptomics analysis deciphers the molecular landscapes of senescence related cancer-associated fibroblasts and reveals its predictive value in neuroblastoma via integrated multi-omics analysis and machine learning. Front Immunol 2024; 15:1506256. [PMID: 39703515 PMCID: PMC11655476 DOI: 10.3389/fimmu.2024.1506256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Cancer-associated fibroblasts (CAFs) are a diverse group of cells that significantly contribute to reshaping the tumor microenvironment (TME), and no research has systematically explored the molecular landscapes of senescence related CAFs (senes CAF) in NB. Methods We utilized pan-cancer single cell and spatial transcriptomics analysis to identify the subpopulation of senes CAFs via senescence related genes, exploring its spatial distribution characteristics. Harnessing the maker genes with prognostic significance, we delineated the molecular landscapes of senes CAFs in bulk-seq data. We established the senes CAFs related signature (SCRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms to precisely diagnose stage 4 NB and to predict prognosis in NB. Based on risk scores calculated by prognostic SCRS, patients were categorized into high and low risk groups according to median risk score. We conducted comprehensive analysis between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single cell level. Ultimately, we explore the biological function of the hub gene JAK1 in pan-cancer multi-omics landscape. Results Through integrated analysis of pan-cancer spatial and single-cell transcriptomics data, we identified distinct functional subgroups of CAFs and characterized their spatial distribution patterns. With marker genes of senes CAF and leave-one-out cross-validation, we selected RF algorithm to establish diagnostic SCRS, and SuperPC algorithm to develop prognostic SCRS. SCRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and clinic variables. We stratified NB patients into high and low risk group, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a different mutation landscape, and an enhanced sensitivity to immunotherapy. Single cell analysis reveals biologically cellular variations underlying model genes of SCRS. Spatial transcriptomics delineated the molecular variant expressions of hub gene JAK1 in malignant cells across cancers, while immunohistochemistry validated the differential protein levels of JAK1 in NB. Conclusion Based on multi-omics analysis and ML algorithms, we successfully developed the SCRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular landscapes of senes CAF and clinical utilization of SCRS.
Collapse
Affiliation(s)
- Shan Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Luo
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junhong Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Day Surgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Key Laboratory of Child Development and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei He
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Khan S, Alson D, Sun L, Maloney C, Sun D. Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures. Cancers (Basel) 2024; 16:3639. [PMID: 39518076 PMCID: PMC11545784 DOI: 10.3390/cancers16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes individuals to develop benign and malignant tumors of the nerve sheath. Understanding the signatures of cancer stem cells (CSCs) for NF1-associated tumors may facilitate the early detection of tumor progression. Background: Neural crest cells, the cell of origin of NF1-associated tumors, can initiate multiple tumor types, including melanoma, neuroblastoma, and schwannoma. CSCs within these tumors have been reported; however, identifying and targeting CSC populations remains a challenge. Results: This study aims to leverage existing studies on neural crest-derived CSCs to explore markers pertinent to NF1 tumorigenesis. By focusing on the molecular and cellular dynamics within these tumors, we summarize CSC signatures in tumor maintenance, progression, and treatment resistance. Conclusion: A review of these signatures in the context of NF1 will provide insights into NF1 tumor biology and pave the way for developing targeted therapies and improving treatment outcomes for NF1 patients.
Collapse
Affiliation(s)
- Sajjad Khan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Donia Alson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Li Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caroline Maloney
- Department of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daochun Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatric, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Children Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Zhang X, Zhang Y, Peng D, Shi X, Zhang Z, Wang J, Zhang X, Leng J, Li W. Adrenal ganglioneuroblastoma with metastasis near the renal hilum in an adult female: A case report and review of the literature. Oncol Lett 2024; 27:187. [PMID: 38486945 PMCID: PMC10938287 DOI: 10.3892/ol.2024.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Ganglioneuroblastoma (GNB), predominantly observed in children, is an uncommon malignant tumor in adults, with established treatment protocols notably lacking. The present study details the case of a 20-year-old woman who presented with a left adrenal gland mass, identified during a physical examination. Additionally, an unidentified mass was noted near the renal hilum in the preoperative evaluation. Following thorough preoperative preparation, both the primary adrenal gland mass and the renal hilar mass were surgically removed. The procedure concluded successfully. Pathological analysis confirmed that the left adrenal mass was a GNB and identified the renal hilar mass as a metastatic extension. Postoperative examination revealed a new formation at the original surgical site, later verified as a postoperative scar. Through the publication of a case report and extensive literature review, the present study aims to enhance our understanding of this condition, providing valuable diagnostic, therapeutic and post-recovery references for this rare adult disease.
Collapse
Affiliation(s)
- Xinzhang Zhang
- Department of Urology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650100, P.R. China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yiwen Zhang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Dan Peng
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xin Shi
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Zhuorui Zhang
- Department of Urology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650100, P.R. China
| | - Junfeng Wang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xue Zhang
- Department of Management Science and Information System, Faculty of Management and Economics, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Jinjun Leng
- Department of Urology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650100, P.R. China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650100, P.R. China
| |
Collapse
|
7
|
Li S, Mi T, Jin L, Liu Y, Zhang Z, Wang J, Wu X, Ren C, Wang Z, Kong X, Liu J, Luo J, He D. Integrative analysis with machine learning identifies diagnostic and prognostic signatures in neuroblastoma based on differentially DNA methylated enhancers between INSS stage 4 and 4S neuroblastoma. J Cancer Res Clin Oncol 2024; 150:148. [PMID: 38512513 PMCID: PMC10957705 DOI: 10.1007/s00432-024-05650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/10/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Accumulating evidence demonstrates that aberrant methylation of enhancers is crucial in gene expression profiles across several cancers. However, the latent effect of differently expressed enhancers between INSS stage 4S and 4 neuroblastoma (NB) remains elusive. METHODS We utilized the transcriptome and methylation data of stage 4S and 4 NB patients to perform Enhancer Linking by Methylation/Expression Relationships (ELMER) analysis, discovering a differently expressed motif within 67 enhancers between stage 4S and 4 NB. Harnessing the 67 motif genes, we established the INSS stage related signature (ISRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms across 113 and 101 ML combinations to precisely diagnose stage 4 NB among all NB patients and to predict the prognosis of NB patients. Based on risk scores calculated by prognostic ISRS, patients were categorized into high and low-risk groups according to median risk score. We conducted comprehensive comparisons between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single-cell analysis. Ultimately, we empirically validated the differential expressions of two ISRS model genes, CAMTA2 and FOXD1, through immunochemistry staining. RESULTS Through leave-one-out cross-validation, in both feature selection and model construction, we selected the random forest algorithm to diagnose stage 4 NB, and Enet algorithm to develop prognostic ISRS, due to their highest average C-index across five NB cohorts. After validations, the ISRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and several clinic variables. We stratified NB patients into high and low-risk group based on median risk score, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a decreased mutation landscape, and an enhanced sensitivity to immunotherapy. Single-cell analysis between two risk groups reveals biologically cellular variations underlying ISRS. Finally, we verified the significantly higher protein levels of CAMTA2 and FOXD1 in stage 4S NB, as well as their protective prognosis value in NB. CONCLUSION Based on multi-omics data and ML algorithms, we successfully developed the ISRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular mechanisms of spontaneous regression and clinical utilization of ISRS.
Collapse
Affiliation(s)
- Shan Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yimeng Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhaoying Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiangpan Kong
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Junyi Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
8
|
Liu S, Chen W, Zhao Y, Zong Y, Li J, He Z. Research Progress on Effects of Ginsenoside Rg2 and Rh1 on Nervous System and Related Mechanisms. Molecules 2023; 28:7935. [PMID: 38067664 PMCID: PMC10708332 DOI: 10.3390/molecules28237935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Neurological-related disorders are diseases that affect the body's neurons or peripheral nerve tissue, such as Parkinson's disease (PD) and Alzheimer's disease (AD). The development of neurological disorders can cause serious harm to the quality of life and functioning of the patient. The use of traditional therapeutic agents such as dopamine-promoting drugs, anticholinergic drugs, cholinesterase inhibitors, and NMDA receptor antagonists is often accompanied by a series of side effects such as drug resistance, cardiac arrhythmia, liver function abnormalities, and blurred vision. Therefore, there is an urgent need to find a therapeutic drug with a high safety profile and few side effects. Herbal medicines are rich in active ingredients that are natural macromolecules. Ginsenoside is the main active ingredient of ginseng, which has a variety of pharmacological effects and is considered to have potential value in the treatment of human diseases. Modern pharmacological studies have shown that ginsenosides Rg2 and Rh1 have strong pharmacological activities in the nervous system, with protective effects on nerve cells, improved resistance to neuronal injury, modulation of neural activity, resistance to cerebral ischemia/reperfusion injury, improvement of brain damage after eclampsia hemorrhage, improvement of memory and cognitive deficits, treatment of AD and vascular dementia, alleviation of anxiety, pain, and inhibition of ionic-like behavior. In this article, we searched the pharmacological research literature of Rg2 and Rh1 in the field of neurological diseases, summarized the latest research progress of the two ginsenosides, and reviewed the pharmacological effects and mechanisms of Rg2 and Rh1, which provided a new way of thinking for the research of the active ingredients in ginseng anti-neurological diseases and the development of new drugs.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| |
Collapse
|
9
|
Kim Y, Lee HM. CRISPR-Cas System Is an Effective Tool for Identifying Drug Combinations That Provide Synergistic Therapeutic Potential in Cancers. Cells 2023; 12:2593. [PMID: 37998328 PMCID: PMC10670858 DOI: 10.3390/cells12222593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Despite numerous efforts, the therapeutic advancement for neuroblastoma and other cancer treatments is still ongoing due to multiple challenges, such as the increasing prevalence of cancers and therapy resistance development in tumors. To overcome such obstacles, drug combinations are one of the promising applications. However, identifying and implementing effective drug combinations are critical for achieving favorable treatment outcomes. Given the enormous possibilities of combinations, a rational approach is required to predict the impact of drug combinations. Thus, CRISPR-Cas-based and other approaches, such as high-throughput pharmacological and genetic screening approaches, have been used to identify possible drug combinations. In particular, the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats) is a powerful tool that enables us to efficiently identify possible drug combinations that can improve treatment outcomes by reducing the total search space. In this review, we discuss the rational approaches to identifying, examining, and predicting drug combinations and their impact.
Collapse
Affiliation(s)
| | - Hyeong-Min Lee
- Department of Computational Biology, St. Jude Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
10
|
Clark-Corrigall J, Myssina S, Michaelis M, Cinatl J, Ahmed S, Carr-Wilkinson J, Carr-Wilkinson J. Elevated Expression of LGR5 and WNT Signaling Factors in Neuroblastoma Cells With Acquired Drug Resistance. Cancer Invest 2023; 41:173-182. [PMID: 36318235 DOI: 10.1080/07357907.2022.2136682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuroblastoma (NB) is a pediatric solid cancer with high fatality, relapses, and acquired resistance to chemotherapy, that requires new therapeutic approaches to improve survival. LGR5 is a receptor that potentiates WNT/signaling pathway and has been reported to promote development and survival in several adult cancers. In this study we investigated LGR5 expression in a panel of NB cell lines with acquired resistance to vincristine or doxorubicin. We show LGR5-LRP6 cooperation with enhanced expression in drug resistant NB cell lines compared to parental cells, suggesting a role for LGR5 in the emergence of drug resistance, warranting further investigation.
Collapse
Affiliation(s)
- John Clark-Corrigall
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Svetlana Myssina
- School of Nursing and Health Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Martin Michaelis
- School of Biosciences and Industrial Biotechnology Centre, University of Kent, Canterbury, UK
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | - Shafiq Ahmed
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jane Carr-Wilkinson
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Jane Carr-Wilkinson
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, United Kingdom
| |
Collapse
|
11
|
Parkinson LM, Gillen SL, Woods LM, Chaytor L, Marcos D, Ali FR, Carroll JS, Philpott A. The proneural transcription factor ASCL1 regulates cell proliferation and primes for differentiation in neuroblastoma. Front Cell Dev Biol 2022; 10:942579. [PMID: 36263020 PMCID: PMC9574099 DOI: 10.3389/fcell.2022.942579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022] Open
Abstract
Neuroblastoma is believed to arise from sympathetic neuroblast precursors that fail to engage the neuronal differentiation programme, but instead become locked in a pro-proliferative developmental state. Achaete-scute homolog 1 (ASCL1) is a proneural master regulator of transcription which modulates both proliferation and differentiation of sympathetic neuroblast precursor cells during development, while its expression has been implicated in the maintenance of an oncogenic programme in MYCN-amplified neuroblastoma. However, the role of ASCL1 expression in neuroblastoma is not clear, especially as its levels vary considerably in different neuroblastoma cell lines. Here, we have investigated the role of ASCL1 in maintaining proliferation and controlling differentiation in both MYCN amplified and Anaplastic Lymphoma Kinase (ALK)-driven neuroblastoma cells. Using CRISPR deletion, we generated neuroblastoma cell lines lacking ASCL1 expression, and these grew more slowly than parental cells, indicating that ASCL1 contributes to rapid proliferation of MYCN amplified and non-amplified neuroblastoma cells. Genome-wide analysis after ASCL1 deletion revealed reduced expression of genes associated with neuronal differentiation, while chromatin accessibility at regulatory regions associated with differentiation genes was also attenuated by ASCL1 knock-out. In neuroblastoma, ASCL1 has been described as part of a core regulatory circuit of developmental regulators whose high expression is maintained by mutual cross-activation of a network of super enhancers and is further augmented by the activity of MYC/MYCN. Surprisingly, ASCL1 deletion had little effect on the transcription of CRC gene transcripts in these neuroblastoma cell lines, but the ability of MYC/MYCN and CRC component proteins, PHOX2B and GATA3, to bind to chromatin was compromised. Taken together, our results demonstrate several roles for endogenous ASCL1 in neuroblastoma cells: maintaining a highly proliferative phenotype, regulating DNA binding of the core regulatory circuit genes to chromatin, while also controlling accessibility and transcription of differentiation targets. Thus, we propose a model where ASCL1, a key developmental regulator of sympathetic neurogenesis, plays a pivotal role in maintaining proliferation while simultaneously priming cells for differentiation in neuroblastoma.
Collapse
Affiliation(s)
- Lydia M. Parkinson
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Sarah L. Gillen
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Laura M. Woods
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Lewis Chaytor
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel Marcos
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Fahad R. Ali
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
12
|
Binlateh T, Reudhabibadh R, Prommeenate P, Hutamekalin P. Investigation of mechanisms underlying the inhibitory effects of metformin against proliferation and growth of neuroblastoma SH-SY5Y cells. Toxicol In Vitro 2022; 83:105410. [DOI: 10.1016/j.tiv.2022.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
13
|
Aiken TJ, Erbe AK, Zebertavage L, Komjathy D, Feils AS, Rodriguez M, Stuckwisch A, Gillies SD, Morris ZS, Birstler J, Rakhmilevich AL, Sondel PM. Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma. J Immunother Cancer 2022; 10:e004834. [PMID: 35618290 PMCID: PMC9125770 DOI: 10.1136/jitc-2022-004834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Most pediatric cancers are considered immunologically cold with relatively few responding to immune checkpoint inhibition. We recently described an effective combination radio-immunotherapy treatment regimen ( c ombination a daptive- i nnate immunotherapy r egimen (CAIR)) targeting adaptive and innate immunity in 9464D-GD2, an immunologically cold model of neuroblastoma. Here, we characterize the mechanism of CAIR and the role of major histocompatibility complex class I (MHC-I) in the treatment response. METHODS Mice bearing GD2-expressing 9464D-GD2 tumors were treated with CAIR (external beam radiotherapy, hu14.18-IL2 immunocytokine, CpG, anti-CD40, and anti-CTLA4) and tumor growth and survival were tracked. Depletion of specific immune cell lineages, as well as testing in immunodeficient R2G2 mice, were used to determine the populations necessary for treatment efficacy. Induction of MHC-I expression in 9464D-GD2 cells in response to interferon-γ (IFN-γ) and CAIR was measured in vitro and in vivo, respectively, by flow cytometry and quantitative real-time PCR. A cell line with IFN-γ-inducible MHC-I expression (9464D-GD2-I) was generated by transfecting a subclone of the parental cell line capable of expressing MHC-I with GD2 synthase and was used in vivo to assess the impact of MHC-I expression on responsiveness to CAIR. RESULTS CAIR cures some mice bearing small (50 mm3) but not larger (100 mm3) 9464D-GD2 tumors and these cured mice develop weak memory responses against tumor rechallenge. Early suppression of 9464D-GD2 tumors by CAIR does not require T or natural killer (NK) cells, but eventual tumor cures are NK cell dependent. Unlike the parental 9464D cell line, 9464D-GD2 cells have uniformly very low MHC-I expression at baseline and fail to upregulate expression in response to IFN-γ. In contrast, 9464D-GD2-I upregulates MHC-I in response to IFN-γ and is less responsive to CAIR. CONCLUSION Treatment with CAIR cures 9464D-GD2 tumors in a NK cell dependent manner and induction of MHC-I by tumors cells was associated with decreased efficacy. These results demonstrate that the early tumor response to this regimen is T and NK cell independent, but that NK cells have a role in generating lasting cures in the absence of MHC-I expression by tumor cells. Further strategies to better inhibit tumor outgrowth in this setting may require further NK activation or the ability to engage alternative immune effector cells.
Collapse
Affiliation(s)
- Taylor J Aiken
- Department of General Surgery, University of Wisconsin Hospitals and Clinics, Madison, Wisconsin, USA
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Zebertavage
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Komjathy
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arika S Feils
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Rodriguez
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ashley Stuckwisch
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jen Birstler
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Procès A, Luciano M, Kalukula Y, Ris L, Gabriele S. Multiscale Mechanobiology in Brain Physiology and Diseases. Front Cell Dev Biol 2022; 10:823857. [PMID: 35419366 PMCID: PMC8996382 DOI: 10.3389/fcell.2022.823857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that mechanics play a critical role in regulating brain function at different scales. Downstream integration of mechanical inputs into biochemical signals and genomic pathways causes observable and measurable effects on brain cell fate and can also lead to important pathological consequences. Despite recent advances, the mechanical forces that influence neuronal processes remain largely unexplored, and how endogenous mechanical forces are detected and transduced by brain cells into biochemical and genetic programs have received less attention. In this review, we described the composition of brain tissues and their pronounced microstructural heterogeneity. We discuss the individual role of neuronal and glial cell mechanics in brain homeostasis and diseases. We highlight how changes in the composition and mechanical properties of the extracellular matrix can modulate brain cell functions and describe key mechanisms of the mechanosensing process. We then consider the contribution of mechanobiology in the emergence of brain diseases by providing a critical review on traumatic brain injury, neurodegenerative diseases, and neuroblastoma. We show that a better understanding of the mechanobiology of brain tissues will require to manipulate the physico-chemical parameters of the cell microenvironment, and to develop three-dimensional models that can recapitulate the complexity and spatial diversity of brain tissues in a reproducible and predictable manner. Collectively, these emerging insights shed new light on the importance of mechanobiology and its implication in brain and nerve diseases.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Yohalie Kalukula
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
15
|
Giwa A, Rossouw SC, Fatai A, Gamieldien J, Christoffels A, Bendou H. Predicting amplification of MYCN using CpG methylation biomarkers in neuroblastoma. Future Oncol 2021; 17:4769-4783. [PMID: 34751044 DOI: 10.2217/fon-2021-0522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Neuroblastoma is the most common extracranial solid tumor in childhood. Amplification of MYCN in neuroblastoma is a predictor of poor prognosis. Materials and methods: DNA methylation data from the TARGET data matrix were stratified into MYCN amplified and non-amplified groups. Differential methylation analysis, clustering, recursive feature elimination (RFE), machine learning (ML), Cox regression analysis and Kaplan-Meier estimates were performed. Results and Conclusion: 663 CpGs were differentially methylated between the two groups. A total of 25 CpGs were selected by RFE for clustering and ML, and a 100% clustering accuracy was obtained. ML validation on three external datasets produced high accuracy scores of 100%, 97% and 93%. Eight survival-associated CpGs were also identified. Therapeutic interventions may need to be targeted to patient subgroups.
Collapse
Affiliation(s)
- Abdulazeez Giwa
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Sophia Catherine Rossouw
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Azeez Fatai
- Department of Biochemistry, Lagos State University, Nigeria
| | - Junaid Gamieldien
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Hocine Bendou
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| |
Collapse
|
16
|
Treffy RW, Rajan SG, Jiang X, Nacke LM, Malkana UA, Naiche LA, Bergey DE, Santana D, Rajagopalan V, Kitajewski JK, O'Bryan JP, Saxena A. Neuroblastoma differentiation in vivo excludes cranial tumors. Dev Cell 2021; 56:2752-2764.e6. [PMID: 34610330 PMCID: PMC10796072 DOI: 10.1016/j.devcel.2021.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023]
Abstract
Neuroblastoma (NB), the most common cancer in the first year of life, presents almost exclusively in the trunk. To understand why an early-onset cancer would have such a specific localization, we xenotransplanted human NB cells into discrete neural crest (NC) streams in zebrafish embryos. Here, we demonstrate that human NB cells remain in an undifferentiated, tumorigenic state when comigrating posteriorly with NC cells but, upon comigration into the head, differentiate into neurons and exhibit decreased survival. Furthermore, we demonstrate that this in vivo differentiation requires retinoic acid and brain-derived neurotrophic factor signaling from the microenvironment, as well as cell-autonomous intersectin-1-dependent phosphoinositide 3-kinase-mediated signaling, likely via Akt kinase activation. Our findings suggest a microenvironment-driven explanation for NB's trunk-biased localization and highlight the potential for induced differentiation to promote NB resolution in vivo.
Collapse
Affiliation(s)
- Randall W Treffy
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sriivatsan G Rajan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xinghang Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lynne M Nacke
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Usama A Malkana
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dani E Bergey
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dianicha Santana
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vinodh Rajagopalan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Ankur Saxena
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
17
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
18
|
Santoro JD, Kerr LM, Codden R, Casper TC, Greenberg BM, Waubant E, Kong SW, Mandl KD, Gorman MP. Increased Prevalence of Familial Autoimmune Disease in Children With Opsoclonus-Myoclonus Syndrome. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1079. [PMID: 34475249 PMCID: PMC8422990 DOI: 10.1212/nxi.0000000000001079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
Background and Objectives Opsoclonus-myoclonus syndrome (OMS) is a rare autoimmune disorder associated with neuroblastoma in children, although idiopathic and postinfectious etiologies are present in children and adults. Small cohort studies in homogenous populations have revealed elevated rates of autoimmunity in family members of patients with OMS, although no differentiation between paraneoplastic and nonparaneoplastic forms has been performed. The objective of this study was to investigate the prevalence of autoimmune disease in first-degree relatives of pediatric patients with paraneoplastic and nonparaneoplastic OMS. Methods A single-center cohort study of consecutively evaluated children with OMS was performed. Parents of patients were prospectively administered surveys on familial autoimmune disease. Rates of autoimmune disease in first-degree relatives of pediatric patients with OMS were compared using Fisher exact t test and χ2 analysis: (1) between those with and without a paraneoplastic cause and (2) between healthy and disease (pediatric multiple sclerosis [MS]) controls from the United States Pediatric MS Network. Results Thirty-five patients (18 paraneoplastic, median age at onset 19.0 months; 17 idiopathic, median age at onset 25.0 months) and 68 first-degree relatives (median age 41.9 years) were enrolled. One patient developed systemic lupus erythematosus 7 years after OMS onset. Paraneoplastic OMS was associated with a 50% rate of autoimmune disease in a first-degree relative compared with 29% in idiopathic OMS (p = 0.31). The rate of first-degree relative autoimmune disease per OMS case (14/35, 40%) was higher than healthy controls (86/709, 12%; p < 0.001) and children with pediatric MS (101/495, 20%; p = 0.007). Discussion In a cohort of pediatric patients with OMS, there were elevated rates of first-degree relative autoimmune disease, with no difference in rates observed between paraneoplastic and idiopathic etiologies, suggesting an autoimmune genetic contribution to the development of OMS in children.
Collapse
Affiliation(s)
- Jonathan D Santoro
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA.
| | - Lauren M Kerr
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Rachel Codden
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Theron Charles Casper
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Benjamin M Greenberg
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Emmanuelle Waubant
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Sek Won Kong
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Kenneth D Mandl
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| | - Mark P Gorman
- From the Department of Neurology (J.D.S.), Massachusetts General Hospital, Boston; Department of Neurology (J.D.S., J.M.K., M.P.G.), Boston Children's Hospital, MA; Harvard Medical School (J.D.S., K.D.M.), Boston, MA; Division of Neurology (J.D.S.), Department of Pediatrics, Children's Hospital of Los Angeles, CA; Department of Neurology (J.D.S.), Keck School of Medicine at the University of Southern California, Los Angeles; Department of Pediatrics (R.C., T.C.C.), University of Utah School of Medicine, Salt Lake City; Department of Neurology and Neurotherapeutics (B.M.G.), The University of Texas Southwestern Medical Center at Dallas, TX; UCSF Weill Institute for Neurosciences (E.W.), Department of Neurology, University of California San Francisco, CA; Computational Health Informatics Program (S.W.K., K.D.M.), Boston Children's Hospital, MA; and Department of Pediatrics (S.W.K., K.D.M.), Boston Children's Hospital, MA
| |
Collapse
|
19
|
Bergsneider B, Bailey E, Ahmed Y, Gogineni N, Huntley D, Montano X. Analysis of SARS-CoV-2 infection associated cell entry proteins ACE2, CD147, PPIA, and PPIB in datasets from non SARS-CoV-2 infected neuroblastoma patients, as potential prognostic and infection biomarkers in neuroblastoma. Biochem Biophys Rep 2021; 27:101081. [PMID: 34307909 PMCID: PMC8286873 DOI: 10.1016/j.bbrep.2021.101081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 10/25/2022] Open
Abstract
SARS-CoV-2 viral contagion has given rise to a worldwide pandemic. Although most children experience minor symptoms from SARS-CoV-2 infection, some have severe complications including Multisystem Inflammatory Syndrome in Children. Neuroblastoma patients may be at higher risk of severe infection as treatment requires immunocompromising chemotherapy and SARS-CoV-2 has demonstrated tropism for nervous cells. To date, there is no sufficient epidemiological data on neuroblastoma patients with SARS-CoV-2. Therefore, we evaluated datasets of non-SARS-CoV-2 infected neuroblastoma patients to assess for key genes involved with SARS-CoV-2 infection as possible neuroblastoma prognostic and infection biomarkers. We hypothesized that ACE2, CD147, PPIA and PPIB, which are associated with viral-cell entry, are potential biomarkers for poor prognosis neuroblastoma and SARS-CoV-2 infection. We have analysed three publicly available neuroblastoma gene expression datasets to understand the specific molecular susceptibilities that high-risk neuroblastoma patients have to the virus. Gene Expression Omnibus (GEO) GSE49711 and GEO GSE62564 are the microarray and RNA-Seq data, respectively, from 498 neuroblastoma samples published as part of the Sequencing Quality Control initiative. TARGET, contains microarray data from 249 samples and is part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. ACE2, CD147, PPIA and PPIB were identified through their involvement in both SARS-CoV-2 infection and cancer pathogenesis. In-depth statistical analysis using Kaplan-Meier, differential gene expression, and Cox multivariate regression analysis, demonstrated that overexpression of ACE2, CD147, PPIA and PPIB is significantly associated with poor-prognosis neuroblastoma samples. These results were seen in the presence of amplified MYCN, unfavourable tumour histology and in patients older than 18 months of age. Previously, we have shown that high levels of the nerve growth factor receptor NTRK1 together with low levels of the phosphatase PTPN6 and TP53 are associated with increased relapse-free survival of neuroblastoma patients. Interestingly, low levels of expression of ACE2, CD147, PPIA and PPIB are associated with this NTRK1-PTPN6-TP53 module, suggesting that low expression levels of these genes are associated with good prognosis. These findings have implications for clinical care and therapeutic treatment. The upregulation of ACE2, CD147, PPIA and PPIB in poor-prognosis neuroblastoma samples suggests that these patients may be at higher risk of severe SARS-CoV-2 infection. Importantly, our findings reveal ACE2, CD147, PPIA and PPIB as potential biomarkers and therapeutic targets for neuroblastoma.
Collapse
Affiliation(s)
- Brandon Bergsneider
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Elise Bailey
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Yusuf Ahmed
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Namrata Gogineni
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Derek Huntley
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Ximena Montano
- Innovation Hub, Comprehensive Cancer Centre, King's College London, Great Maze Pond, London, SE1 9RT, UK
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
20
|
Li J, Wang Y, Li L, Or PMY, Wai Wong C, Liu T, Ho WLH, Chan AM. Tumour-derived substrate-adherent cells promote neuroblastoma survival through secreted trophic factors. Mol Oncol 2021; 15:2011-2025. [PMID: 33932101 PMCID: PMC8334291 DOI: 10.1002/1878-0261.12969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/10/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumour in children. NB is highly heterogeneous and is comprised of a mixture of neuroblastic cancer cells and stromal cells. We previously reported that N‐type cells (neuroblastic cells) and S‐type cells (substrate‐adherent cells) in the SK‐N‐SH cell line shared almost identical genetic backgrounds. Sublines of N‐ and S‐type cells were isolated from an early passage (P35) of SK‐N‐SH. Sequencing analysis revealed that all sublines harboured the anaplastic lymphoma kinase (ALK) F1174L mutation, indicating that they were tumour derived. Surprisingly, over 74% resembled S‐type cells. In coculture experiments, S‐type cells protected N‐type cells from apoptosis induced by the oncogenic ALK inhibitor TAE684. Western blotting analyses showed that ALK, protein kinase A (AKT) and STAT3 signalling were stimulated in the cocultures. Furthermore, the conditioned medium from S‐type cells activated these downstream signalling molecules in the N‐type cells. The activation of STAT3 in the N‐type cells was ALK‐independent, while AKT was regulated by the ALK activation status. To identify the responsible soluble factors, we used a combination of transcriptomic and proteomic analysis and found that plasminogen activator inhibitor 1, secreted protein acidic and cysteine rich, periostin and galectin‐1 were potential mediators of STAT3 signalling. The addition of recombinant proteins to the tumour cells treated with the ALK inhibitor partially enhanced cell viability. Overall, the tumour‐derived S‐type cells prevented apoptosis in the N‐type cells via ALK‐independent STAT3 activation triggered by secreted factors. The inhibition of these factors in combination with ALK inhibition could provide a new direction for targeted therapies to treat high‐risk NB.
Collapse
Affiliation(s)
- Jing Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yubing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lisha Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Penelope M-Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne L H Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Kameneva P, Artemov AV, Kastriti ME, Faure L, Olsen TK, Otte J, Erickson A, Semsch B, Andersson ER, Ratz M, Frisén J, Tischler AS, de Krijger RR, Bouderlique T, Akkuratova N, Vorontsova M, Gusev O, Fried K, Sundström E, Mei S, Kogner P, Baryawno N, Kharchenko PV, Adameyko I. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet 2021; 53:694-706. [PMID: 33833454 PMCID: PMC7610777 DOI: 10.1038/s41588-021-00818-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thale K Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jörg Otte
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alek Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Bettina Semsch
- Department of Comparative Medicine, Karolinska Institutet, Solna, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology CS, Utrecht, the Netherlands
- Deptartment of Pathology, University Medical Center Utrecht CX, Utrecht, the Netherlands
| | - Thibault Bouderlique
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia
| | - Maria Vorontsova
- Endocrinology Research Centre, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- RIKEN Innovation Center, RIKEN, Yokohama, Japan
- Center for Life Science Technologies, RIKEN, Yokohama, Japan
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Afanasyeva EA, Gartlgruber M, Ryl T, Decaesteker B, Denecker G, Mönke G, Toprak UH, Florez A, Torkov A, Dreidax D, Herrmann C, Okonechnikov K, Ek S, Sharma AK, Sagulenko V, Speleman F, Henrich KO, Westermann F. Kalirin-RAC controls nucleokinetic migration in ADRN-type neuroblastoma. Life Sci Alliance 2021; 4:e201900332. [PMID: 33658318 PMCID: PMC8017594 DOI: 10.26508/lsa.201900332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The migrational propensity of neuroblastoma is affected by cell identity, but the mechanisms behind the divergence remain unknown. Using RNAi and time-lapse imaging, we show that ADRN-type NB cells exhibit RAC1- and kalirin-dependent nucleokinetic (NUC) migration that relies on several integral components of neuronal migration. Inhibition of NUC migration by RAC1 and kalirin-GEF1 inhibitors occurs without hampering cell proliferation and ADRN identity. Using three clinically relevant expression dichotomies, we reveal that most of up-regulated mRNAs in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells are associated with low-risk characteristics. The computational analysis shows that, in a context of overall gene set poverty, the upregulomes in RAC1- and kalirin-GEF1-suppressed ADRN-type cells are a batch of AU-rich element-containing mRNAs, which suggests a link between NUC migration and mRNA stability. Gene set enrichment analysis-based search for vulnerabilities reveals prospective weak points in RAC1- and kalirin-GEF1-suppressed ADRN-type NB cells, including activities of H3K27- and DNA methyltransferases. Altogether, these data support the introduction of NUC inhibitors into cancer treatment research.
Collapse
Affiliation(s)
- Elena A Afanasyeva
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Moritz Gartlgruber
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Tatsiana Ryl
- Department of Neurosurgery, University of Duisburg Essen, Essen, Germany
| | - Bieke Decaesteker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Geertrui Denecker
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Gregor Mönke
- European Molecular Biology Laboratories, Heidelberg, Germany
| | - Umut H Toprak
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Andres Florez
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
- Center for Systems Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Alica Torkov
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Daniel Dreidax
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Carl Herrmann
- Group of Cancer Regulatory Genomics B086, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Department of Pediatric Neurooncology, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Faculty of Engineering, Lund University, Lund, Sweden
| | - Ashwini Kumar Sharma
- Institute for Pharmacy and Molecular Biotechnology and BioQuant, Heidelberg University, Heidelberg, Germany
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vitaliya Sagulenko
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, and Cancer Research Institute Ghent, Ghent, Belgium
| | - Kai-Oliver Henrich
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| | - Frank Westermann
- Department of Neuroblastoma Genomics, Hopp-Children's Cancer Center at the (NCT) Nationales Centrum für Tumorerkrankungen Heidelberg (KiTZ), Heidelberg, Germany
| |
Collapse
|
23
|
Proteomic investigation of Cbl and Cbl-b in neuroblastoma cell differentiation highlights roles for SHP-2 and CDK16. iScience 2021; 24:102321. [PMID: 33889818 PMCID: PMC8050387 DOI: 10.1016/j.isci.2021.102321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma is a highly heterogeneous embryonal solid tumor of the sympathetic nervous system. As some tumors can be treated to undergo differentiation, investigating this process can guide differentiation-based therapies of neuroblastoma. Here, we studied the role of E3 ubiquitin ligases Cbl and Cbl-b in regulation of long-term signaling responses associated with extracellular signal-regulated kinase phosphorylation and neurite outgrowth, a morphological marker of neuroblastoma cell differentiation. Using quantitative mass spectrometry (MS)-based proteomics, we analyzed how the neuroblastoma cell line proteome, phosphoproteome, and ubiquitylome were affected by Cbl and Cbl-b depletion. To quantitatively assess neurite outgrowth, we developed a high-throughput microscopy assay that was applied in combination with inhibitor studies to pinpoint signaling underlying neurite outgrowth and to functionally validate proteins identified in the MS data sets. Using this combined approach, we identified a role for SHP-2 and CDK16 in Cbl/Cbl-b-dependent regulation of extracellular signal-regulated kinase phosphorylation and neurite outgrowth, highlighting their involvement in neuroblastoma cell differentiation. Multi-layered proteomics captures cellular changes induced by Cbl/Cbl-b depletion SHP-2 and CDK16 protein and phosphorylation levels increase upon Cbl/Cbl-b depletion SHP-2 and CDK16 regulate phospho-ERK and neurite outgrowth in neuroblastoma cells Inhibition of SHP-2 or CDK16 reverts Cbl/Cbl-b knockdown effects on differentiation
Collapse
|
24
|
Sowińska M, Szeliga M, Morawiak M, Ziemińska E, Zabłocka B, Urbańczyk-Lipkowska Z. Peptide Dendrimers with Non-Symmetric Bola Structure Exert Long Term Effect on Glioblastoma and Neuroblastoma Cell Lines. Biomolecules 2021; 11:435. [PMID: 33804286 PMCID: PMC8000084 DOI: 10.3390/biom11030435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). Neuroblastoma (NB) is one of the most common cancers of childhood derived from the neural crest cells. The survival rate for patients with GBM and high-risk NB is poor; therefore, novel therapeutic approaches are needed. Increasing evidence suggests a dual role of redox-active compounds in both tumorigenesis and cancer treatment. Therefore, in this study, polyfunctional peptide-based dendrimeric molecules of the bola structure carrying residues with antiproliferative potential on one side and the antioxidant residues on the other side were designed. METHODS We synthesized non-symmetric bola dendrimers and assessed their radical scavenging potency as well as redox capability. The influence of dendrimers on viability of rat primary cerebellar neurons (CGC) and normal human astrocytes (NHA) was determined by propidium iodide staining and cell counting. Cytotoxicity against human GBM cell lines, T98G and LN229, and NB cell line SH-SY5Y was assessed by cell counting and colony forming assay. RESULTS Testing of CGC and NHA viability allowed to establish a range of optimal dendrimers structure and concentration for further evaluation of their impact on two human GBM and one human NB cell lines. According to ABTS, DPPH, FRAP, and CUPRAC antioxidant tests, the most toxic for normal cells were dendrimers with high charge and an excess of antioxidant residues (Trp and PABA) on both sides of the bola structure. At 5 μM concentration, most of the tested dendrimers neither reduced rat CGC viability below 50-40%, nor harmed human neurons (NHA). The same dose of compounds 16 or 22, after 30 min treatment decreased the number of SH-SY5Y and LN229 cells, but did not affect the number of T98G cells 48 h post treatment. However, either compound significantly reduced the number of colonies formed by SH-SY5Y, LN229, and T98G cells measured 14 days after treatment. CONCLUSIONS Peptide dendrimers with non-symmetric bola structure are excellent scaffolds for design of molecules with pro/antioxidant functionality. Design of molecules with an excess of positive charges and antioxidant residues rendered molecules with high neurotoxicity. Single, 30 min exposition of the GBM and NB cell lines to the selected bola dendrimers significantly suppressed their clonogenic potential.
Collapse
Affiliation(s)
- Marta Sowińska
- Institute of Organic Chemistry PAS, 01-224 Warsaw, Poland; (M.S.); (M.M.)
| | - Monika Szeliga
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | - Maja Morawiak
- Institute of Organic Chemistry PAS, 01-224 Warsaw, Poland; (M.S.); (M.M.)
| | - Elżbieta Ziemińska
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | - Barbara Zabłocka
- Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland; (E.Z.); (B.Z.)
| | | |
Collapse
|
25
|
Metallothionein-3 promotes cisplatin chemoresistance remodelling in neuroblastoma. Sci Rep 2021; 11:5496. [PMID: 33750814 PMCID: PMC7943580 DOI: 10.1038/s41598-021-84185-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.
Collapse
|
26
|
Yuan H, Liu F, Ma T, Zeng Z, Zhang N. miR-338-3p inhibits cell growth, invasion, and EMT process in neuroblastoma through targeting MMP-2. Open Life Sci 2021; 16:198-209. [PMID: 33817311 PMCID: PMC7968531 DOI: 10.1515/biol-2021-0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to explore the regulatory mechanisms of miR-338-3p and matrix metalloproteinase-2 (MMP-2) in neuroblastoma. Putative target interaction regions of miR-338-3p on MMP-2 were predicted by miRcode and miRbase bioinformatics tools. Relative expression of miRNA-338-3p and MMP-2 in neuroblastoma tissues and GI-LI-N and SK-N-SH cells was determined by reverse transcription polymerase chain reaction experiment. Furthermore, the cell proliferation was determined by Cell Counting Kit-8 assay, the cell apoptosis rate was analyzed by flow cytometry assay, and the cell invasion was evaluated by transwell assay. miR-338-3p expression was downregulated, whereas MMP-2 expression was upregulated in metastasis tissue site compared to that in primary tissue site in total. Furthermore, miR-338-3p overexpression suppressed proliferation, invasion, and epithelial-mesenchymal transition (EMT) of neuroblastoma cells but promoted apoptosis, and the knockdown of MMP-2 triggered similar effects. Furthermore, MMP-2 was directly targeted by miR-338-3p, and overexpression of MMP-2 rescued the inhibitory effects of miR-338-3p on human neuroblastoma cell progression. Collectively, these data demonstrated that miR-338-3p could suppress cell growth, invasion, and EMT pathway and induce apoptosis in neuroblastoma cells by targeting MMP-2. MiR-338-3p sponged MMP-2 to regulate the PI3K/AKT pathway in human neuroblastoma cells.
Collapse
Affiliation(s)
- Haibin Yuan
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| | - Fengli Liu
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| | - Tongsheng Ma
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| | - Zhandong Zeng
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| | - Ning Zhang
- Department of Neonatal Surgery, Xuzhou Children's Hospital, No.18 Sudi North Road, Quanshan District, 221001, Xuzhou, China
| |
Collapse
|
27
|
Demir AB, Aktas S, Altun Z, Ercetin P, Aktas TC, Olgun N. Questioning How to Define the "Ultra-High-Risk" Subgroup of Neuroblastoma Patients. Folia Biol (Praha) 2021; 67:1-9. [PMID: 34273261 DOI: 10.14712/fb2021067010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Neuroblastic tumours exhibit heterogeneity, which results in different therapeutic outcomes. Neuroblastoma is categorized into three major risk groups (low, intermediate, high risk). Recent identification of new genes raised the possibility of new biomarkers to identify sub-risk groups. In this retrospective cross-sectional study, we aimed to assess new biomarkers defining the ultra-high-risk subgroup within the high-risk group that differ in clinical situation with very bad prognosis. Twenty-five low- and 29 high-risk groups of patients were analysed for their expression of ALK, ATRX, HIF1a, HIF2a (EPAS), H2AFX, and ETV5 genes at the RNA level. Immunohistochemistry was performed to confirm the protein expression level of ALK. The risk group of patients was determined according to the International Neuroblastoma Risk Group Stratification System. Spearman correlation analysis and Mann-Whitney-U nonparametric test were used to assess the importance of expression levels among the groups. P < 0.05 was considered as significant. Sensitivity of the results was checked by ROC curve analysis. All analysed genes were found to be highly expressed in the high-risk group compared to the low-risk group, except for ETV5. When the ultra-high-risk and highrisk groups were compared, ALK was found to be highly expressed in the ultra-high-risk group. Our results show that ALK may be a candidate gene whose mRNA expression levels can distinguish the ultrahigh- risk subgroup of patients in the high-risk group of patients with non-familial neuroblastoma.
Collapse
Affiliation(s)
- A B Demir
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
- Department of Basic Medical Sciences, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - S Aktas
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Z Altun
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - P Ercetin
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - T C Aktas
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - N Olgun
- Department of Clinical Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
28
|
Ali FR, Marcos D, Chernukhin I, Woods LM, Parkinson LM, Wylie LA, Papkovskaia TD, Davies JD, Carroll JS, Philpott A. Dephosphorylation of the Proneural Transcription Factor ASCL1 Re-Engages a Latent Post-Mitotic Differentiation Program in Neuroblastoma. Mol Cancer Res 2020; 18:1759-1766. [PMID: 33046535 PMCID: PMC7614603 DOI: 10.1158/1541-7786.mcr-20-0693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Pediatric cancers often resemble trapped developmental intermediate states that fail to engage the normal differentiation program, typified by high-risk neuroblastoma arising from the developing sympathetic nervous system. Neuroblastoma cells resemble arrested neuroblasts trapped by a stable but aberrant epigenetic program controlled by sustained expression of a core transcriptional circuit of developmental regulators in conjunction with elevated MYCN or MYC (MYC). The transcription factor ASCL1 is a key master regulator in neuroblastoma and has oncogenic and tumor-suppressive activities in several other tumor types. Using functional mutational approaches, we find that preventing CDK-dependent phosphorylation of ASCL1 in neuroblastoma cells drives coordinated suppression of the MYC-driven core circuit supporting neuroblast identity and proliferation, while simultaneously activating an enduring gene program driving mitotic exit and neuronal differentiation. IMPLICATIONS: These findings indicate that targeting phosphorylation of ASCL1 may offer a new approach to development of differentiation therapies in neuroblastoma. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/18/12/1759/F1.large.jpg.
Collapse
Affiliation(s)
- Fahad R Ali
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Daniel Marcos
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laura M Woods
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Lydia M Parkinson
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Luke A Wylie
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | | | - John D Davies
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Center, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
29
|
Ertugrul MS, Nadaroglu H, Nalci OB, Hacimuftuoglu A, Alayli A. Preparation of CoS nanoparticles-cisplatin bio-conjugates and investigation of their effects on SH-SY5Y neuroblastoma cell line. Cytotechnology 2020; 72:10.1007/s10616-020-00432-5. [PMID: 33095405 PMCID: PMC7695799 DOI: 10.1007/s10616-020-00432-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022] Open
Abstract
Neuroblastoma is one of the most widely seen under the age of 15 tumors that occur in the adrenal medulla and sympathetic ganglia. Cisplatin, an antineoplastic drug, is a Platinum-based compound and is known to inhibit the proliferation of neuroblastoma cells. Effective applications of nanoparticles in biomedical areas such as biomolecular, antimicrobial detection and diagnosis, tissue engineering, theranostics, biomarking, drug delivery, and anti-cancer have been investigated in many studies. This study aims to prepare the bioconjugates of CoS (cobalt sulfide) nanoparticles (NPs) with cisplatin combination groups and to evaluate their effects on the neuroblastoma cell line. Nanoparticle synthesis was done using the green synthesis technique using Punica granatum plant extract. The size and shape of CoS NPs were characterized by SEM, FT-IR, and XRD. Zeta potential was confirmed by the DLS study. For this purpose, the SH-SY5Y neuroblastoma cell line was cultured in a suitable cell culture medium. Cisplatin 5 µg and different concentrations (Cisplatin + CoS NPs bioconjugates (5, 10, 25, 50, 75 μg) doses were applied to SH-SY5Y neuroblastoma cell lines for 24 h. TAC, TOS and MTT tests were performed 24 h after the application. According to the MTT test results, cisplatin and CoS NP combinations reduced the proliferation of neuroblastoma cells by 78 to 57% compared to the cisplatin control. From the findings obtained; the most effective Bio-conjugate group was Cisplatin 5 μg/mL + CoS 75 μg/mL.
Collapse
Affiliation(s)
- Muhammed Sait Ertugrul
- Department of Pharmacology, Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Science, Ataturk University, 25240, Erzurum, Turkey.
- Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, 25240, Erzurum, Turkey.
| | - Ozge Balpinar Nalci
- Department of Medical Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Azize Alayli
- Department of Nursing, Faculty of Health Sciences, Sakarya University of Applied Sciences, 54187, Sakarya, Turkey
| |
Collapse
|
30
|
Staged resection of a bilateral thoracic and bilateral adrenal neuroblastoma. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2020. [DOI: 10.1016/j.epsc.2020.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Gizak A, Duda P, Pielka E, McCubrey JA, Rakus D. GSK3 and miRNA in neural tissue: From brain development to neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118696. [PMID: 32165184 DOI: 10.1016/j.bbamcr.2020.118696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRs) are small RNAs modulating gene expression and creating intricate regulatory networks that are dysregulated in many pathological states, including neurodegenerative disorders. In silico analyses denote a multifunctional kinase glycogen synthase kinase-3 (GSK3) as a putative target of numerous miRs identified in neural tissue. GSK3 is engaged in almost all aspects of neuronal development and functioning. Moreover, there is an autoregulatory feedback between GSK3 and miRNAs as the kinase can influence biogenesis of miRs. Members of the miR-GSK3 axes might thus represent convenient therapeutic targets in neuropathologies that display its abnormal regulation. This review summarizes the present knowledge about direct interactions of GSK3 and miRs in brain, and their putative roles in pathogenesis of neurodegenerative and neuropsychiatric disorders. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.
Collapse
Affiliation(s)
- Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland.
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| | - Ewa Pielka
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Wrocław 50-137, Poland
| |
Collapse
|
32
|
Salgado-Polo F, van Veen M, van den Broek B, Jalink K, Leyton-Puig D, Perrakis A, Moolenaar WH, Matas-Rico E. Sequence-dependent trafficking and activity of GDE2, a GPI-specific phospholipase promoting neuronal differentiation. J Cell Sci 2020; 133:jcs235044. [PMID: 31932507 PMCID: PMC7033719 DOI: 10.1242/jcs.235044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
GDE2 (also known as GDPD5) is a multispanning membrane phosphodiesterase with phospholipase D-like activity that cleaves select glycosylphosphatidylinositol (GPI)-anchored proteins and thereby promotes neuronal differentiation both in vitro and in vivo GDE2 is a prognostic marker in neuroblastoma, while loss of GDE2 leads to progressive neurodegeneration in mice; however, its regulation remains unclear. Here, we report that, in immature neuronal cells, GDE2 undergoes constitutive endocytosis and travels back along both fast and slow recycling routes. GDE2 trafficking is directed by C-terminal tail sequences that determine the ability of GDE2 to cleave GPI-anchored glypican-6 (GPC6) and induce a neuronal differentiation program. Specifically, we define a GDE2 truncation mutant that shows aberrant recycling and is dysfunctional, whereas a consecutive deletion results in cell-surface retention and gain of GDE2 function, thus uncovering distinctive regulatory sequences. Moreover, we identify a C-terminal leucine residue in a unique motif that is essential for GDE2 internalization. These findings establish a mechanistic link between GDE2 neuronal function and sequence-dependent trafficking, a crucial process gone awry in neurodegenerative diseases.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Fernando Salgado-Polo
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Michiel van Veen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Daniela Leyton-Puig
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wouter H Moolenaar
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Elisa Matas-Rico
- Division of Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
33
|
Spector LG, Olshan AF. Birth Defects and Cancer in Childhood-Dual Diseases of Development. JAMA Oncol 2019; 5:1105-1107. [PMID: 31219505 DOI: 10.1001/jamaoncol.2019.1207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota Medical School, Minneapolis
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill
| |
Collapse
|
34
|
Becker J, Wilting J. WNT Signaling in Neuroblastoma. Cancers (Basel) 2019; 11:cancers11071013. [PMID: 31331081 PMCID: PMC6679057 DOI: 10.3390/cancers11071013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
The term WNT (wingless-type MMTV integration site family) signaling comprises a complex molecular pathway consisting of ligands, receptors, coreceptors, signal transducers and transcriptional modulators with crucial functions during embryonic development, including all aspects of proliferation, morphogenesis and differentiation. Its involvement in cancer biology is well documented. Even though WNT signaling has been divided into mainly three distinct branches in the past, increasing evidence shows that some molecular hubs can act in various branches by exchanging interaction partners. Here we discuss developmental and clinical aspects of WNT signaling in neuroblastoma (NB), an embryonic tumor with an extremely broad clinical spectrum, ranging from spontaneous differentiation to fatal outcome. We discuss implications of WNT molecules in NB onset, progression, and relapse due to chemoresistance. In the light of the still too high number of NB deaths, new pathways must be considered.
Collapse
Affiliation(s)
- Juergen Becker
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany.
| | - Joerg Wilting
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| |
Collapse
|
35
|
Deng J, Jiang P, Yang T, Huang M, Qi W, Zhou T, Yang Z, Zou Y, Gao G, Yang X. Targeting β3-adrenergic receptor signaling inhibits neuroblastoma cell growth via suppressing the mTOR pathway. Biochem Biophys Res Commun 2019; 514:295-300. [PMID: 31030945 DOI: 10.1016/j.bbrc.2019.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
Neuroblastoma (NB), the most common extracranial solid tumor in childhood, always leads to an unfavorable prognosis. β3-adrenergic receptor (β3-AR) signaling plays an important role in lipid metabolism. Although previous studies have focused mainly on the role of β2-AR in tumor cells; there are few studies about the cancer-related function of β3-AR. Herein, we showed that β3-AR expression was significantly increased in clinical NB tissue compared with that in the less malignant ganglioneuroma (GN) and ganglioneuroblastoma (GNB) tissues. Further cellular assays demonstrated that treatment of NB cells with SR59230A (a specific β3-AR antagonist) suppressed NB cells growth and colony formation, and siRNA knockdown of β3-AR expression also inhibited NB cell proliferation. The mechanistic study revealed that β3-AR knockdown and SR59230A inhibited the phosphorylation and thereby the activation of the mTOR/p70S6K pathway. Activation of the mTOR pathway with the activator MHY1485 reversed the inhibitory effect of SR59230A on NB cell growth. Above all, our study clarifies a novel regulatory role of β3-AR in NB cell growth and provides a potent therapeutic strategy for this disease by specific targeting of the β3-AR pathway.
Collapse
Affiliation(s)
- Jing Deng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ping Jiang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Tianyou Yang
- Program of Molecular Medicine, Department of Internal Medicine, Affiliated Guangzhou Women and Childrens' Medical Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Mao Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yan Zou
- Program of Molecular Medicine, Department of Internal Medicine, Affiliated Guangzhou Women and Childrens' Medical Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Guoquan Gao
- Program of Molecular Medicine, Department of Internal Medicine, Affiliated Guangzhou Women and Childrens' Medical Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Xia Yang
- Program of Molecular Medicine, Department of Internal Medicine, Affiliated Guangzhou Women and Childrens' Medical Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-Sen University), Guangzhou, China.
| |
Collapse
|
36
|
Vivancos Stalin L, Gualandi M, Schulte JH, Renella R, Shakhova O, Mühlethaler-Mottet A. Expression of the Neuroblastoma-Associated ALK-F1174L Activating Mutation During Embryogenesis Impairs the Differentiation of Neural Crest Progenitors in Sympathetic Ganglia. Front Oncol 2019; 9:275. [PMID: 31058082 PMCID: PMC6477091 DOI: 10.3389/fonc.2019.00275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma (NB) is an embryonal malignancy derived from the abnormal differentiation of the sympathetic nervous system. The Anaplastic Lymphoma Kinase (ALK) gene is frequently altered in NB, through copy number alterations and activating mutations, and represents a predisposition in NB-genesis when mutated. Our previously published data suggested that ALK activating mutations may impair the differentiation potential of neural crest (NC) progenitor cells. Here, we demonstrated that the expression of the endogenous ALK gene starts at E10.5 in the developing sympathetic ganglia (SG). To decipher the impact of deregulated ALK signaling during embryogenesis on the formation and differentiation of sympathetic neuroblasts, Sox10-Cre;LSL-ALK-F1174L embryos were produced to restrict the expression of the human ALK-F1174L transgene to migrating NC cells (NCCs). First, ALK-F1174L mediated an embryonic lethality at mid-gestation and an enlargement of SG with a disorganized architecture in Sox10-Cre;LSL-ALK-F1174L embryos at E10.5 and E11.5. Second, early sympathetic differentiation was severely impaired in Sox10-Cre;LSL-ALK-F1174L embryos. Indeed, their SG displayed a marked increase in the proportion of NCCs and a decrease of sympathetic neuroblasts at both embryonic stages. Third, neuronal and noradrenergic differentiations were blocked in Sox10-Cre;LSL-ALK-F1174L SG, as a reduced proportion of Phox2b+ sympathoblasts expressed βIII-tubulin and almost none were Tyrosine Hydroxylase (TH) positive. Finally, at E10.5, ALK-F1174L mediated an important increase in the proliferation of Phox2b+ progenitors, affecting the transient cell cycle exit observed in normal SG at this embryonic stage. Altogether, we report for the first time that the expression of the human ALK-F1174L mutation in NCCs during embryonic development profoundly disturbs early sympathetic progenitor differentiation, in addition to increasing their proliferation, both mechanisms being potential crucial events in NB oncogenesis.
Collapse
Affiliation(s)
- Lucie Vivancos Stalin
- Pediatric Hematology-Oncology Research Laboratory, DFME, University Hospital of Lausanne, CHUV-UNIL, Lausanne, Switzerland
| | - Marco Gualandi
- Translational Oncology, Department of Hematology and Oncology, University Hospital Zürich, Zurich, Switzerland
| | - Johannes Hubertus Schulte
- Department of Pediatric Hematology, Oncology and SCT, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Berlin, Germany.,German Cancer Consortium, Partner Site Berlin and German Cancer Research Center, Heidelberg, Germany
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, DFME, University Hospital of Lausanne, CHUV-UNIL, Lausanne, Switzerland
| | - Olga Shakhova
- Translational Oncology, Department of Hematology and Oncology, University Hospital Zürich, Zurich, Switzerland
| | - Annick Mühlethaler-Mottet
- Pediatric Hematology-Oncology Research Laboratory, DFME, University Hospital of Lausanne, CHUV-UNIL, Lausanne, Switzerland
| |
Collapse
|
37
|
Taghizadehghalehjoughi A, Sezen S, Hacimuftuoglu A, Güllüce M. Vincristine combination with Ca +2 channel blocker increase antitumor effects. Mol Biol Rep 2019; 46:2523-2528. [PMID: 30903573 DOI: 10.1007/s11033-019-04706-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
In this study, it was aimed to determine the effects of Amlodipine, a calcium channel blocker and vincristine (VCR) an antineoplastic, on human neuroblastomas using different doses. The cytotoxicity assays of the study were performed using the MTT method depending on time and concentration. After obtaining the mixture (up to 85% for SH-SY5Y) and sufficient branches (cortex neurons), the cells were treated with amlodipine (10 µM) and vincristine (0.5, 1 and 2 µg) at different concentrations for 24 h. MTT assay was performed by the commercially available kit (Sigma Aldrich, USA). Cells were harvested, washed and stained with PI and Annexin V, respectively, according to the manufacturer's protocol (Biovision, USA). Than analyzes were carried out. The results were quite impressive. When amlodipine (10 µM) was administered alone there was little change compared to the control. However, all doses of amlodipine (10 µM) and vincristine (0.5, 1 and 2 µg) were greater than the deaths in the doses alone (0.5, 1 and 2 µg) of vincristine alone. (P < 0.05). As a result, the combination of vincristine and amlodipine is more effective than vincristine alone in reducing the viability of cancer cells.
Collapse
Affiliation(s)
- Ali Taghizadehghalehjoughi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erzurum, Turkey.,Department of Medical Pharmacology, Atatürk Univeristy, Erzurum, Turkey
| | - Selma Sezen
- Department of Medical Pharmacology, Atatürk Univeristy, Erzurum, Turkey.
| | | | - Medine Güllüce
- Department of Biology, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
38
|
Zhang D, Babayan L, Ho H, Heaney AP. Chromogranin A regulates neuroblastoma proliferation and phenotype. Biol Open 2019; 8:8/3/bio036566. [PMID: 30833285 PMCID: PMC6451332 DOI: 10.1242/bio.036566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a commonly encountered solid tumor in early childhood with high neuroplasticity, and differentiation therapy is hypothesized to lead to tumor mass shrinkage and/or symptom relief. CgA is a tissue specific protein restricted to the diffuse neuroendocrine system, and widely expressed in neuroblastomas. Using knockdown and knockout approaches to deplete CgA levels, we demonstrated that CgA loss inhibits SH-SY5Y cell proliferation and leads to a morphological shift with increased expression of Schwann and extracellular matrix specific molecules, and suppression of chromaffin features. We further confirmed the effects of CgA in a series of neuroblastoma cells with [BE(2)-M17 and IMR-32] and without (SK-N-SH) N-Myc amplification. We demonstrated that CgA depletion reduced IGF-II and IGFBP-2 expression, increased IGFBP-3 levels, and suppresses IGF downstream signaling as evidenced by reduced AKT/ERK pathway activation. This was further supported by an increased anti-proliferative effect of the ERK inhibitor in the CgA depleted cells. In an in vivo xenograft neuroblastoma model, CgA knockdown led to increased S-phenotypic marker expression at both protein and mRNA levels. Together these results suggest that CgA maintains IGF secretion and intracellular signaling to regulate proliferation and differentiation in neuroblastomas.
Collapse
Affiliation(s)
- Dongyun Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Lilit Babayan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Hillary Ho
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Anthony P Heaney
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA .,Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| |
Collapse
|
39
|
The presence of Y674/Y675 phosphorylated NTRK1 via TP53 repression of PTPN6 expression as a potential prognostic marker in neuroblastoma. Hum Pathol 2018; 86:182-192. [PMID: 30594749 DOI: 10.1016/j.humpath.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023]
Abstract
The tumor suppressor TP53 promotes nerve growth factor receptor (NTRK1) -Y674/Y675 phosphorylation (NTRK1-pY674/pY675) via repression of the NTRK1 phosphatase PTPN6 in a ligand-independent manner, resulting in suppression of breast cancer cell proliferation. Moreover, NTRK1-pY674/pY675 together with low levels of PTPN6 and TP53 expression is associated with favorable disease-free survival of breast cancer patients. We determined whether in neuroblastoma this protein expression pattern impacts relapse-free survival (RFS). NTRK1-pY674/pY675, PTPN6, and TP53 expression was assessed in 98 neuroblastoma samples by immunohistochemistry. Association between expression levels and RFS was investigated by multivariate and Kaplan-Meier analysis. Mutant or wild-type TP53 was identified by sequencing tumor DNA. Tumors expressing NTRK1-pY674/pY675 and low or undetectable levels of PTPN6 and TP53 were significantly associated with 5-year RFS (P = .014) when the dataset was stratified by MYCN amplification, segmental chromosomal abnormalities and histology. Similar results were observed with tumors expressing wild-type TP53, NTRK1-pY674/pY675 and low or undetectable levels of PTPN6. Kaplan-Meier analysis demonstrated a significant correlation (P = .004), with a 50% probability of RFS (median survival 4.73 years) when present compared with 19.51% (median survival 11.63 months) when absent. Similar results were seen with non-amplified MYCN or unfavorable/undifferentiating samples and tumors from patients aged 18 months or less. Importantly, NTRK1-pY674/pY675 is an independent predictor of improved RFS. These results strongly suggest that NTRK1-pY674/pY675 together with wild-type TP53 and undetectable or low levels of PTPN6 expression is a potential biomarker of improved RFS of neuroblastoma patients. The predictive value of NTRK1-pY674/pY675 together with wild-type TP53 and low PTPN6 expression could contribute to neuroblastoma patient prognosis.
Collapse
|
40
|
Lerra L, Farfalla A, Sanz B, Cirillo G, Vittorio O, Voli F, Le Grand M, Curcio M, Nicoletta FP, Dubrovska A, Hampel S, Iemma F, Goya GF. Graphene Oxide Functional Nanohybrids with Magnetic Nanoparticles for Improved Vectorization of Doxorubicin to Neuroblastoma Cells. Pharmaceutics 2018; 11:E3. [PMID: 30583524 PMCID: PMC6359315 DOI: 10.3390/pharmaceutics11010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin⁻human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44⁻0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.
Collapse
Affiliation(s)
- Luigi Lerra
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Annafranca Farfalla
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Beatriz Sanz
- nB nanoSacale Biomagnetics SL, 50012 Zaragoza, Spain.
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-Oncoray, 01307 Dresden, Germany.
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende (CS), Italy.
| | - Gerardo F Goya
- Institute of Nanoscience of Aragon (INA), Department of Condensed Matter Physics, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
41
|
Sharawat IK, Saini AG, Kasinathan A, Mandava SS, Sankhyan N. Neuroblastoma, opsoclonus-myoclonus ataxia syndrome and neonatal lupus with congenital heart block: is there an association? Lupus 2018; 27:2298-2299. [PMID: 30282557 DOI: 10.1177/0961203318804339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- I K Sharawat
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - A G Saini
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - A Kasinathan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - S S Mandava
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - N Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
42
|
Liu DS, Xu TL. Cell-Type Identification in the Autonomic Nervous System. Neurosci Bull 2018; 35:145-155. [PMID: 30171526 DOI: 10.1007/s12264-018-0284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
The autonomic nervous system controls various internal organs and executes crucial functions through sophisticated neural connectivity and circuits. Its dysfunction causes an imbalance of homeostasis and numerous human disorders. In the past decades, great efforts have been made to study the structure and functions of this system, but so far, our understanding of the classification of autonomic neuronal subpopulations remains limited and a precise map of their connectivity has not been achieved. One of the major challenges that hinder rapid progress in these areas is the complexity and heterogeneity of autonomic neurons. To facilitate the identification of neuronal subgroups in the autonomic nervous system, here we review the well-established and cutting-edge technologies that are frequently used in peripheral neuronal tracing and profiling, and discuss their operating mechanisms, advantages, and targeted applications.
Collapse
Affiliation(s)
- Di-Shi Liu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tian-Le Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
43
|
Motofei IG. Biology of Cancer; From Cellular Cancerogenesis to Supracellular Evolution of Malignant Phenotype. Cancer Invest 2018; 36:309-317. [DOI: 10.1080/07357907.2018.1477955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ion G. Motofei
- Department of Surgery/Oncology, Carol Davila University, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
44
|
Ram Kumar RM, Schor NF. Methylation of DNA and chromatin as a mechanism of oncogenesis and therapeutic target in neuroblastoma. Oncotarget 2018; 9:22184-22193. [PMID: 29774131 PMCID: PMC5955135 DOI: 10.18632/oncotarget.25084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB), a developmental cancer, is often fatal, emphasizing the need to understand its pathogenesis and identify new therapeutic targets. The heterogeneous pathological and clinical phenotype of NB underscores the cryptic biological and genetic features of this tumor that result in outcomes ranging from rapid progression to spontaneous regression. Despite recent genome-wide mutation analyses, most primary NBs do not harbor driver mutations, implicating epigenetically-mediated gene regulatory mechanisms in the initiation and maintenance of NB. Aberrant epigenomic mechanisms, as demonstrated by global changes in DNA methylation signatures, acetylation, re-distribution of histone marks, and change in the chromatin architecture, are hypothesized to play a role in NB oncogenesis. This paper reviews the evidence for, putative mechanisms underlying, and prospects for therapeutic targeting of NB oncogenesis related to DNA methylation.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Pediatrics and Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nina Felice Schor
- Department of Pediatrics and Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Current affiliation: National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Bieerkehazhi S, Chen Z, Zhao Y, Yu Y, Zhang H, Vasudevan SA, Woodfield SE, Tao L, Yi JS, Muscal JA, Pang JC, Guan S, Zhang H, Nuchtern JG, Li H, Li H, Yang J. Novel Src/Abl tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abl signaling. Oncotarget 2018; 8:1469-1480. [PMID: 27903968 PMCID: PMC5352070 DOI: 10.18632/oncotarget.13643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/12/2016] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Aberrant activation of the non-receptor tyrosine kinases Src and c-Abl contributes to the progression of NB. Thus, targeting these kinases could be a promising strategy for NB therapy. In this paper, we report that the potent dual Src/Abl inhibitor bosutinib exerts anti-tumor effects on NB. Bosutinib inhibited NB cell proliferation in a dose-dependent manner and suppressed colony formation ability of NB cells. Mechanistically, bosutinib effectively decreased the activity of Src/Abl and PI3K/AKT/mTOR, MAPK/ERK, and JAK/STAT3 signaling pathways. In addition, bosutinib enhanced doxorubicin (Dox)- and etoposide (VP-16)-induced cytotoxicity in NB cells. Furthermore, bosutinib demonstrated anti-tumor efficacy in an orthotopic xenograft NB mouse model in a similar mechanism as of that in vitro. In summary, our results reveal that Src and c-Abl are potential therapeutic targets in NB and that the novel Src/Abl inhibitor bosutinib alone or in combination with other chemotherapeutic agents may be a valuable therapeutic option for NB patients.
Collapse
Affiliation(s)
- Shayahati Bieerkehazhi
- Department of Labour Hygiene and Sanitary Science, College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zhenghu Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P. R. China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sanjeev A Vasudevan
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah E Woodfield
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ling Tao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joanna S Yi
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jodi A Muscal
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan C Pang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Biosciences, Weiss School of Natural Sciences, Rice University, Houston, Texas 77005, USA
| | - Shan Guan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hong Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jed G Nuchtern
- Division of Pediatric Surgery, Texas Children's Hospital Department of Surgery, Michael E. DeBakey Department of Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Huiwu Li
- Cancer Prevention and Research Institute, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
46
|
Wang J, Huang S, Tian R, Chen J, Gao H, Xie C, Shan Y, Zhang Z, Gu S, Xu M. The protective autophagy activated by GANT-61 in MYCN amplified neuroblastoma cells is mediated by PERK. Oncotarget 2018; 9:14413-14427. [PMID: 29581853 PMCID: PMC5865679 DOI: 10.18632/oncotarget.24214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
The proto-oncogene MYC can trigger the unfolded protein response (UPR). The double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), one of three primary branches of the UPR, is a key regulator of autophagy, promoting tumorigenesis. Upon activation of PERK, there is an increase in phosphorylation of the eukaryotic initiation factor-2 alpha (eIF2α), which in turn, activates the transcription factor-4 (ATF4), responsible for an increased expression of LC3, a common autophagy marker. PERK is repressed upon GLI1 and GLI2 induction. GANT-61 is an inhibitor of GLI1 and GLI2, known to reduce autophagy in MYCN non-amplified, but not in MYCN amplified neuroblastoma (NB) cells. In our study, we tested the effect of the joint administration of a PERK inhibitor (GSK2606414) and the GLI inhibitor GANT-61 to MYCN amplified and MYCN non-amplified NB cells. Our results suggest that inhibition of PERK impairs GANT-61 induced autophagy in NB cells with MYCN amplification, but had no effect on the MYCN non-amplified NB cells. In summary, PERK seems to be a good therapeutic target for NB. Inhibition of PERK reduces autophagy in MYCN amplified NB cells, thus amplifying the efficacy of the GLI inhibitor GANT-61 in reducing proliferation of this type of cancer cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Siqi Huang
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ruicheng Tian
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jing Chen
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Hongxiang Gao
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Chenjie Xie
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Yuhua Shan
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhen Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Song Gu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Min Xu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
47
|
Schor NF. A Life at the Interface: The 2017 Hower Award Lecture. Pediatr Neurol 2018; 80:3-7. [PMID: 29290520 PMCID: PMC5857216 DOI: 10.1016/j.pediatrneurol.2017.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Nina F. Schor
- University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
48
|
Sagnella SM, Trieu J, Brahmbhatt H, MacDiarmid JA, MacMillan A, Whan RM, Fife CM, McCarroll JA, Gifford AJ, Ziegler DS, Kavallaris M. Targeted Doxorubicin-Loaded Bacterially Derived Nano-Cells for the Treatment of Neuroblastoma. Mol Cancer Ther 2018; 17:1012-1023. [PMID: 29491149 DOI: 10.1158/1535-7163.mct-17-0738] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/12/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Abstract
Advanced stage neuroblastoma is an aggressive disease with limited treatment options for patients with drug-resistant tumors. Targeted delivery of chemotherapy for pediatric cancers offers promise to improve treatment efficacy and reduce toxicity associated with systemic chemotherapy. The EnGeneIC Dream Vector (EDVTM) is a nanocell, which can package chemotherapeutic drugs and target tumors via attachment of bispecific proteins to the surface of the nanocell. Phase I trials in adults with refractory tumors have shown an acceptable safety profile. Herein we investigated the activity of EGFR-targeted and doxorubicin-loaded EDVTM (EGFREDVTMDox) for the treatment of neuroblastoma. Two independent neuroblastoma cell lines with variable expression of EGFR protein [SK-N-BE(2), high; SH-SY-5Y, low] were used. EGFREDVTMDox induced apoptosis in these cells compared to control, doxorubicin, or non-doxorubicin loaded EGFREDVTM In three-dimensional tumor spheroids, imaging and fluorescence life-time microscopy revealed that EGFREDVTMDox had a marked enhancement of doxorubicin penetration compared to doxorubicin alone, and improved penetration compared to non-EGFR-targeted EDVTMDox, with enhanced spheroid penetration leading to increased apoptosis. In two independent orthotopic human neuroblastoma xenograft models, short-term studies (28 days) of tumor-bearing mice led to a significant decrease in tumor size in EGFREDVTMDox-treated animals compared to control, doxorubicin, or non-EGFR EDVTMDox There was increased TUNEL staining of tumors at day 28 compared to control, doxorubicin, or non-EGFR EDVTMDox Moreover, overall survival was increased in neuroblastoma mice treated with EGFREDVTMDox (P < 0007) compared to control. Drug-loaded bispecific-antibody targeted EDVsTM offer a highly promising approach for the treatment of aggressive pediatric malignancies such as neuroblastoma. Mol Cancer Ther; 17(5); 1012-23. ©2018 AACR.
Collapse
Affiliation(s)
- Sharon M Sagnella
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, University of New South Wales Sydney, New South Wales, Australia.,EnGeneIC Ltd., Sydney, New South Wales, Australia
| | - Jennifer Trieu
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, University of New South Wales Sydney, New South Wales, Australia
| | | | | | - Alex MacMillan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Christopher M Fife
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, University of New South Wales Sydney, New South Wales, Australia
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, University of New South Wales Sydney, New South Wales, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for NanoMedicine, University of New South Wales Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Greensher JE, Louie J, Fish JD. Therapeutic plasma exchange for a case of refractory opsoclonus myoclonus ataxia syndrome. Pediatr Blood Cancer 2018; 65. [PMID: 28926689 DOI: 10.1002/pbc.26819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/04/2017] [Accepted: 08/24/2017] [Indexed: 12/30/2022]
Abstract
Opsoclonus myoclonus ataxia syndrome (OMAS) can be refractory to standard therapies and devastating. Alternative treatments are imperative. A 14-month-old male diagnosed with neuroblastoma and paraneoplastic OMAS achieved complete cancer remission with chemotherapy. The OMAS, however, persisted over the subsequent 4 years despite numerous immune-modulatory and immunosuppressive therapies. The patient ultimately achieved complete remission following therapeutic plasma exchange (TPE) combined with rituximab and intravenous immunoglobulin. After three asymptomatic years, he relapsed. Upon reintroducing TPE and rituximab plus oral prednisolone, the patient rapidly achieved a second complete remission. This case offers proof-of-principle for the potential efficacy of TPE for neuroblastoma-associated OMAS.
Collapse
Affiliation(s)
| | - James Louie
- Hofstra Northwell School of Medicine, Hempstead, New York.,Department of Pathology, Transfusion Medicine, Long Island Jewish Medical Center, New Hyde Park, New York
| | - Jonathan D Fish
- Hofstra Northwell School of Medicine, Hempstead, New York.,Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Steven and Alexandra, Cohen Children's Medical Center, New Hyde Park, New York
| |
Collapse
|
50
|
Merlos Rodrigo MA, Dostalova S, Buchtelova H, Strmiska V, Michalek P, Krizkova S, Vicha A, Jencova P, Eckschlager T, Stiborova M, Heger Z, Adam V. Comparative gene expression profiling of human metallothionein-3 up-regulation in neuroblastoma cells and its impact on susceptibility to cisplatin. Oncotarget 2017; 9:4427-4439. [PMID: 29435113 PMCID: PMC5796984 DOI: 10.18632/oncotarget.23333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Human metallothionein-3 (hMT-3), also known as growth inhibitory factor, is predominantly expressed in the central nervous system. hMT-3 is presumed to participate in the processes of heavy metal detoxification, regulation of metabolism and protection against oxidative damage of free radicals in the central nervous system; thus, it could play important neuromodulatory and neuroprotective roles. However, the primary functions of hMT-3 and the mechanism underlying its multiple functions in neuroblastoma have not been elucidated so far. First, we confirmed relatively high expression of hMT-3 encoding mRNA in biopsies (n = 23) from high-risk neuroblastoma subjects. Therefore, we focused on investigation of the impact of hMT-3 up-regulation in N-Myc amplifying neuroblastoma cells. The differentially up-regulated genes involved in biological pathways related to cellular senescence and cell cycle were identified using electrochemical microarray with consequent bioinformatic processing. Further, as experimental verification of microarray data, the cytotoxicity of the cisplatin (CDDP) was examined in hMT-3 and mock cells by MTT and clonogenic assays. Overall, our data strongly suggest that up-regulation of hMT-3 positively correlates with the genes involved in oncogene-induced senescence (CDKN2B and ANAPC5) or apoptosis (CASP4). Moreover, we identified a significant increase in chemoresistance to cisplatin (CDDP) due to hMT-3 up-regulation (24IC50: 7.5 vs. 19.8 μg/ml), indicating its multipurpose biological significance.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Ales Vicha
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Pavla Jencova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, CZ-128 40 Prague 2, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00 Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, CZ-616 00 Brno, Czech Republic
| |
Collapse
|