1
|
Record CJ, O'Connor A, Verbeek NE, van Rheenen W, Zamba Papanicolaou E, Peric S, Ligthart PC, Skorupinska M, van Binsbergen E, Campeau PM, Ivanovic V, Hennigan B, McHugh JC, Blake JC, Murakami Y, Laura M, Murphy SM, Reilly MM. Recessive Variants in PIGG Cause a Motor Neuropathy with Variable Conduction Block, Childhood Tremor, and Febrile Seizures: Expanding the Phenotype. Ann Neurol 2025; 97:388-396. [PMID: 39444079 PMCID: PMC11740278 DOI: 10.1002/ana.27113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
Biallelic variants in phosphatidylinositol glycan anchor biosynthesis, class G (PIGG) cause hypotonia, intellectual disability, seizures, and cerebellar features. We present 8 patients from 6 families with a childhood-onset motor neuropathy and neurophysiology demonstrating variable motor conduction block and temporal dispersion. All individuals had a childhood onset tremor, 5 of 8 had cerebellar involvement, and 6 of 8 had childhood febrile seizures. All individuals have biallelic PIGG variants, including the previously reported pathogenic variant Trp505*, plus 6 novel variants. Null enzyme activity is demonstrated via PIGO/PIGG double knockout system for Val339Gly and Gly19Glu, and residual activity for Trp505* due to read-through. Emm negative blood group status was confirmed in 1 family. PIGG should be considered in unsolved motor neuropathy. ANN NEUROL 2025;97:388-396.
Collapse
Affiliation(s)
- Christopher J. Record
- Centre for Neuromuscular Diseases, Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | | | - Nienke E. Verbeek
- Department of GeneticsUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Wouter van Rheenen
- Department of NeurologyUMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | | | - Stojan Peric
- Faculty of Medicine, University of BelgradeBelgradeSerbia
- Neurology Clinic, University Clinical Centre of SerbiaBelgradeSerbia
| | - Peter C. Ligthart
- Department of Immunohematology Diagnostic ServicesSanquin Diagnostic ServicesAmsterdamThe Netherlands
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | | | | | - Vukan Ivanovic
- Faculty of Medicine, University of BelgradeBelgradeSerbia
- Neurology Clinic, University Clinical Centre of SerbiaBelgradeSerbia
| | - Brian Hennigan
- Clinical Neurophysiology DepartmentTallaght University HospitalDublinIreland
| | - John C. McHugh
- Clinical Neurophysiology DepartmentTallaght University HospitalDublinIreland
- Clinical Neurophysiology DepartmentChildren's Health Ireland at CrumlinDublinIreland
| | - Julian C. Blake
- Centre for Neuromuscular Diseases, Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical NeurophysiologyNorfolk and Norwich University HospitalNorwichUK
| | - Yoshiko Murakami
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Sinéad M. Murphy
- Department of NeurologyTallaght University HospitalDublinIreland
- Academic Unit of Neurology, Trinity College DublinDublinIreland
| | - Mary M. Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
2
|
Pena IA, Shi JS, Chang SM, Yang J, Block S, Adelmann CH, Keys HR, Ge P, Bathla S, Witham IH, Sienski G, Nairn AC, Sabatini DM, Lewis CA, Kory N, Vander Heiden MG, Heiman M. SLC25A38 is required for mitochondrial pyridoxal 5'-phosphate (PLP) accumulation. Nat Commun 2025; 16:978. [PMID: 39856062 PMCID: PMC11760969 DOI: 10.1038/s41467-025-56130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown. In this study, we used a genome-wide CRISPR interference screen in erythroleukemia cells and organellar metabolomics to identify the mitochondrial inner membrane protein SLC25A38 as a regulator of mitochondrial pyridoxal 5'-phosphate. Loss of SLC25A38 causes depletion of mitochondrial, but not cellular, pyridoxal 5'-phosphate, and impairs cellular proliferation under both physiological and low vitamin B6 conditions. Metabolic changes associated with SLC25A38 loss suggest impaired mitochondrial pyridoxal 5'-phosphate-dependent enzymatic reactions, including serine to glycine conversion catalyzed by serine hydroxymethyltransferase-2 as well as ornithine aminotransferase. The proliferation defect of SLC25A38-null K562 cells in physiological and low vitamin B6 media can be explained by the loss of serine hydroxymethyltransferase-2-dependent production of one-carbon units and downstream de novo nucleotide synthesis. Our work points to a role for SLC25A38 in mitochondrial pyridoxal 5'-phosphate accumulation and provides insights into the pathology of congenital sideroblastic anemia.
Collapse
Affiliation(s)
- Izabella A Pena
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada.
| | - Jeffrey S Shi
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
| | - Sarah M Chang
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Jason Yang
- Department of Biology, MIT, Cambridge, MA, USA
| | - Samuel Block
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Charles H Adelmann
- Department of Biology, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Preston Ge
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Shveta Bathla
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Isabella H Witham
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry, IOCB, Prague, Czechia
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- UMass Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
| | - Nora Kory
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew G Vander Heiden
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Hong J, Lee D, Hwang A, Kim T, Ryu HY, Choi J. Rare disease genomics and precision medicine. Genomics Inform 2024; 22:28. [PMID: 39627904 PMCID: PMC11616305 DOI: 10.1186/s44342-024-00032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/16/2024] [Indexed: 12/06/2024] Open
Abstract
Rare diseases, though individually uncommon, collectively affect millions worldwide. Genomic technologies and big data analytics have revolutionized diagnosing and understanding these conditions. This review explores the role of genomics in rare disease research, the impact of large consortium initiatives, advancements in extensive data analysis, the integration of artificial intelligence (AI) and machine learning (ML), and the therapeutic implications in precision medicine. We also discuss the challenges of data sharing and privacy concerns, emphasizing the need for collaborative efforts and secure data practices to advance rare disease research.
Collapse
Affiliation(s)
- Juhyeon Hong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dajun Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ayoung Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Taekeun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Vernì F. Vitamin B6 and diabetes and its role in counteracting advanced glycation end products. VITAMINS AND HORMONES 2024; 125:401-438. [PMID: 38997171 DOI: 10.1016/bs.vh.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
Collapse
Affiliation(s)
- F Vernì
- Department of Biology and Biotechnology "Charles Darwin" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Thöny B, Ng J, Kurian MA, Mills P, Martinez A. Mouse models for inherited monoamine neurotransmitter disorders. J Inherit Metab Dis 2024; 47:533-550. [PMID: 38168036 DOI: 10.1002/jimd.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Several mouse models have been developed to study human defects of primary and secondary inherited monoamine neurotransmitter disorders (iMND). As the field continues to expand, current defects in corresponding mouse models include enzymes and a molecular co-chaperone involved in monoamine synthesis and metabolism (PAH, TH, PITX3, AADC, DBH, MAOA, DNAJC6), tetrahydrobiopterin (BH4) cofactor synthesis and recycling (adGTPCH1/DRD, arGTPCH1, PTPS, SR, DHPR), and vitamin B6 cofactor deficiency (ALDH7A1), as well as defective monoamine neurotransmitter packaging (VMAT1, VMAT2) and reuptake (DAT). No mouse models are available for human DNAJC12 co-chaperone and PNPO-B6 deficiencies, disorders associated with recessive variants that result in decreased stability and function of the aromatic amino acid hydroxylases and decreased neurotransmitter synthesis, respectively. More than one mutant mouse is available for some of these defects, which is invaluable as different variant-specific (knock-in) models may provide more insights into underlying mechanisms of disorders, while complete gene inactivation (knock-out) models often have limitations in terms of recapitulating complex human diseases. While these mouse models have common phenotypic traits also observed in patients, reflecting the defective homeostasis of the monoamine neurotransmitter pathways, they also present with disease-specific manifestations with toxic accumulation or deficiency of specific metabolites related to the specific gene affected. This review provides an overview of the currently available models and may give directions toward selecting existing models or generating new ones to investigate novel pathogenic mechanisms and precision therapies.
Collapse
Affiliation(s)
- Beat Thöny
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Joanne Ng
- Genetic Therapy Accelerator Centre, University College London, Queen Square Institute of Neurology, London, UK
| | - Manju A Kurian
- Zayed Centre for Research into Rare Disease in Children, GOS Institute of Child Health, University College London, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Philippa Mills
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurora Martinez
- Department of Biomedicine and Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Zhu Y, Bao G, Zhu G, Zhang K, Zhu S, Hu J, He J, Jiang W, Fan J, Dang Y. Discovery and characterization of natural product luteolin as an effective inhibitor of human pyridoxal kinase. Bioorg Chem 2024; 143:107057. [PMID: 38150934 DOI: 10.1016/j.bioorg.2023.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Pyridoxal kinase (PDXK) is an essential enzyme in the synthesis of pyridoxal 5-phosphate (PLP), the active form of vitamin B6, which plays a pivotal role in maintaining the enzyme activity necessary for cell metabolism. Thus, PDXK has garnered attention as a potential target for metabolism regulation and tumor therapy. Despite this interest, existing PDXK inhibitors have faced limitations, including weak suppressive activity, unclear mechanisms of action, and associated toxic side effects. In this study, we present the discovery of a novel PDXK inhibitor, luteolin, through a high-throughput screening approach based on enzyme activity. Luteolin, a natural product, exhibits micromolar-level affinity for PDXK and effectively inhibits the enzyme's activity in vitro. Our crystal structures reveal that luteolin occupies the ATP binding pocket through hydrophobic interactions and a weak hydrogen bonding pattern, displaying reversible characteristics as confirmed by biochemical assays. Moreover, luteolin disrupts vitamin B6 metabolism by targeting PDXK, thereby inhibiting the proliferation of leukemia cells. This research introduces a novel screening method for identifying high-affinity and potent PDXK inhibitors and sheds light on clarification of the structural mechanism of PDXK-luteolin for subsequent structure optimization of inhibitors.
Collapse
Affiliation(s)
- Yunmei Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Guangsen Bao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gaolin Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Kai Zhang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Sanyong Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Jia He
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Jianjun Fan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400010, China; College of Pharmacy, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
7
|
Kramarz C, Murphy E, Reilly MM, Rossor AM. Nutritional peripheral neuropathies. J Neurol Neurosurg Psychiatry 2023; 95:61-72. [PMID: 37536924 DOI: 10.1136/jnnp-2022-329849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Nutritional peripheral neuropathies are a global problem, heavily influenced by geopolitical, cultural and socioeconomic factors. Peripheral neuropathy occurs most frequently secondary to B-vitamin deficiencies, which is suspected to increase in years to come due to the popularity of vegan and vegetarian diets and increased use of bariatric surgery.This review will focus on the common B-vitamins for which a causal link to peripheral neuropathy is more established (vitamins B1, B2, B6, B9 and B12). We will review the historical human and animal data on which much of the clinical descriptions of vitamin deficiencies are based and summarise current available tools for accurately diagnosing a nutritional deficiency. We will also review recently described genetic diseases due to pathogenic variants in genes involved in B-vitamin metabolism that have helped to inform the phenotypes and potential causality of certain B-vitamins in peripheral neuropathy (B2 and B9).Endemic outbreaks of peripheral neuropathy over the last two centuries have been linked to food shortages and nutritional deficiency. These include outbreaks in Jamaican sugar plantation workers in the nineteenth century (Strachan's syndrome), World War two prisoners of war, Cuban endemic neuropathy and also Tanzanian endemic optic neuropathy, which remains a significant public health burden today. An improved understanding of lack of which vitamins cause peripheral neuropathy and how to identify specific deficiencies may lead to prevention of significant and irreversible disability in vulnerable populations.
Collapse
Affiliation(s)
- Caroline Kramarz
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
8
|
Wang R, Xiao L, Pan J, Bao G, Zhu Y, Zhu D, Wang J, Pei C, Ma Q, Fu X, Wang Z, Zhu M, Wang G, Gong L, Tong Q, Jiang M, Hu J, He M, Wang Y, Li T, Liang C, Li W, Xia C, Li Z, Ma DK, Tan M, Liu JY, Jiang W, Luo C, Yu B, Dang Y. Natural product P57 induces hypothermia through targeting pyridoxal kinase. Nat Commun 2023; 14:5984. [PMID: 37752106 PMCID: PMC10522591 DOI: 10.1038/s41467-023-41435-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Induction of hypothermia during hibernation/torpor enables certain mammals to survive under extreme environmental conditions. However, pharmacological induction of hypothermia in most mammals remains a huge challenge. Here we show that a natural product P57 promptly induces hypothermia and decreases energy expenditure in mice. Mechanistically, P57 inhibits the kinase activity of pyridoxal kinase (PDXK), a key metabolic enzyme of vitamin B6 catalyzing phosphorylation of pyridoxal (PL), resulting in the accumulation of PL in hypothalamus to cause hypothermia. The hypothermia induced by P57 is significantly blunted in the mice with knockout of PDXK in the preoptic area (POA) of hypothalamus. We further found that P57 and PL have consistent effects on gene expression regulation in hypothalamus, and they may activate medial preoptic area (MPA) neurons in POA to induce hypothermia. Taken together, our findings demonstrate that P57 has a potential application in therapeutic hypothermia through regulation of vitamin B6 metabolism and PDXK serves as a previously unknown target of P57 in thermoregulation. In addition, P57 may serve as a chemical probe for exploring the neuron circuitry related to hypothermia state in mice.
Collapse
Affiliation(s)
- Ruina Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Xiao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Guangsen Bao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunmei Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Di Zhu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengfeng Pei
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Qinfeng Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xian Fu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Ziruoyu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengdi Zhu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guoxiang Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiuping Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiejun Li
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Chunmin Liang
- Lab of Tumor Immunology, Department of Human Anatomy, Histology and Embryology, Basic Medical School of Fudan University, Shanghai, China
| | - Wei Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dengke K Ma
- Department of Physiology, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan Liu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Franco CN, Seabrook LJ, Nguyen ST, Yang Y, Campos M, Fan Q, Cicchetto AC, Kong M, Christofk HR, Albrecht LV. Vitamin B 6 is governed by the local compartmentalization of metabolic enzymes during growth. SCIENCE ADVANCES 2023; 9:eadi2232. [PMID: 37682999 PMCID: PMC10491294 DOI: 10.1126/sciadv.adi2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Vitamin B6 is a vital micronutrient across cell types and tissues, and dysregulated B6 levels contribute to human disease. Despite its importance, how B6 vitamer levels are regulated is not well understood. Here, we provide evidence that B6 dynamics are rapidly tuned by precise compartmentation of pyridoxal kinase (PDXK), the rate-limiting B6 enzyme. We show that canonical Wnt rapidly led to the accumulation of inactive B6 by shunting cytosolic PDXK into lysosomes. PDXK was modified with methyl-arginine Degron (MrDegron), a protein tag for lysosomes, which enabled delivery via microautophagy. Hyperactive lysosomes resulted in the continuous degradation of PDXK and B6 deficiency that promoted proliferation in Wnt-driven colorectal cancer (CRC) cells. Pharmacological or genetic disruption of the coordinated MrDegron proteolytic pathway was sufficient to reduce CRC survival in cells and organoid models. In sum, this work contributes to the repertoire of micronutrient-regulated processes that enable cancer cell growth and provides insight into the functional impact of B6 deficiencies for survival.
Collapse
Affiliation(s)
- Carolina N. Franco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Laurence J. Seabrook
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Steven T. Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Melissa Campos
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Qi Fan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Andrew C. Cicchetto
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lauren V. Albrecht
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
10
|
Cappelletti C, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Pihlstrøm L, Toft M. Transcriptomic profiling of Parkinson's disease brains reveals disease stage specific gene expression changes. Acta Neuropathol 2023; 146:227-244. [PMID: 37347276 PMCID: PMC10329075 DOI: 10.1007/s00401-023-02597-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara Cappelletti
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Hanneke Geut
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
- Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Westphal D, Meinhardt M, Grützmann K, Schöne L, Steininger J, Neuhaus LT, Wiegel M, Schrimpf D, Aust DE, Schröck E, Baretton GB, Beissert S, Juratli TA, Schackert GG, Gravemeyer J, Becker JC, von Deimling A, Koelsche C, Klink B, Meier F, Schulz A, Muders MH, Seifert M. Identification of Epigenetically Regulated Genes Distinguishing Intracranial from Extracranial Melanoma Metastases. J Invest Dermatol 2023; 143:1233-1245.e17. [PMID: 36716920 DOI: 10.1016/j.jid.2023.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023]
Abstract
Despite remarkable advances in treating patients with metastatic melanoma, the management of melanoma brain metastases remains challenging. Recent evidence suggests that epigenetic reprogramming is an important mechanism for the adaptation of melanoma cells to the brain environment. In this study, the methylomes and transcriptomes of a cohort of matched melanoma metastases were evaluated by integrated omics data analysis. The identified 38 candidate genes displayed distinct promoter methylation and corresponding gene expression changes in intracranial compared with extracranial metastases. The 11 most promising genes were validated on protein level in both tumor and surrounding normal tissue using immunohistochemistry. In accordance with the underlying promoter methylation and gene expression changes, a significantly different protein expression was confirmed for STK10, PDXK, WDR24, CSSP1, NMB, RASL11B, phosphorylated PRKCZ, PRKCZ, and phosphorylated GRB10 in the intracranial metastases. The observed changes imply a distinct intracranial phenotype with increased protein kinase B phosphorylation and a higher frequency of proliferating cells. Knockdown of PRKCZ or GRB10 altered the expression of phosphorylated protein kinase B and decreased the viability of a brain-specific melanoma cell line. In summary, epigenetically regulated cancer-relevant alterations were identified that provide insights into the molecular mechanisms that discriminate brain metastases from other organ metastases, which could be exploited by targeting the affected signaling pathways.
Collapse
Affiliation(s)
- Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
| | - Matthias Meinhardt
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Konrad Grützmann
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lisa Schöne
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Julian Steininger
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Lena T Neuhaus
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Miriam Wiegel
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela E Aust
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; BioBank Dresden (BBD), Tumor and Normal Tissue Bank (TNTB), National Center for Tumor Diseases (NCT/UCC), University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Evelin Schröck
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Gustavo B Baretton
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; BioBank Dresden (BBD), Tumor and Normal Tissue Bank (TNTB), National Center for Tumor Diseases (NCT/UCC), University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Gabriele G Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Partner Site Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen C Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Partner Site Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Klink
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases, Dresden, Germany
| | - Alexander Schulz
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Michael Seifert
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
12
|
Zhu S, Zhong S, Cheng K, Zhang LS, Bai JW, Cao Z, Wang S, Chen W, Cheng S, Ma L, Ling Z, Huang Y, Gu W, Sun X, Yi C, Zhao M, Liang S, Xu JF, Sun B, Zhang Y. Vitamin B6 regulates IL-33 homeostasis to alleviate type 2 inflammation. Cell Mol Immunol 2023; 20:794-807. [PMID: 37217797 PMCID: PMC10310729 DOI: 10.1038/s41423-023-01029-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Interleukin-33 (IL-33) is a crucial nuclear cytokine that induces the type 2 immune response and maintains immune homeostasis. The fine-tuned regulation of IL-33 in tissue cells is critical to control of the type 2 immune response in airway inflammation, but the mechanism is still unclear. Here, we found that healthy individuals had higher phosphate-pyridoxal (PLP, an active form of vitamin B6) concentrations in the serum than asthma patients. Lower serum PLP concentrations in asthma patients were strongly associated with worse lung function and inflammation. In a mouse model of lung inflammation, we revealed that PLP alleviated the type 2 immune response and that this inhibitory effect relied on the activity of IL-33. A mechanistic study showed that in vivo, pyridoxal (PL) needed to be converted into PLP, which inhibited the type 2 response by regulating IL-33 stability. In mice heterozygous for pyridoxal kinase (PDXK), the conversion of PL to PLP was limited, and IL-33 levels were increased in the lungs, aggravating type 2 inflammation. Furthermore, we found that the mouse double minute 2 homolog (MDM2) protein, an E3 ubiquitin-protein ligase, could ubiquitinate the N-terminus of IL-33 and sustain IL-33 stability in epithelial cells. PLP reduced MDM2-mediated IL-33 polyubiquitination and decreased the level of IL-33 through the proteasome pathway. In addition, inhalation of PLP alleviated asthma-related effects in mouse models. In summary, our data indicate that vitamin B6 regulates MDM2-mediated IL-33 stability to constrain the type 2 response, which might help develop a potential preventive and therapeutic agent for allergy-related diseases.
Collapse
Affiliation(s)
- Songling Zhu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Shufen Zhong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Kebin Cheng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Li-Sha Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Jiu-Wu Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Zu Cao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Su Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Wen Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yuying Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Wangpeng Gu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China
| | - Xiaoyu Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Meng Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| | - Bing Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230022, China.
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
13
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
14
|
Muhamad R, Akrivaki A, Papagiannopoulou G, Zavridis P, Zis P. The Role of Vitamin B6 in Peripheral Neuropathy: A Systematic Review. Nutrients 2023; 15:2823. [PMID: 37447150 DOI: 10.3390/nu15132823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Vitamin B6 is a water-soluble vitamin that is naturally present in many foods and is accessible in many dietary supplements. The three natural forms are pyridoxine, pyridoxal, and pyridoxamine. Both vitamin B6 deficiency and high B6 intake have been described as risk factors for developing peripheral neuropathy (PN). The aim of this systematic review is to characterize and comprehensively describe B6-related PN. METHOD A systematic, computer-based search was conducted using the PubMed database. Twenty articles were included in this review. RESULTS Higher vitamin B6 levels, which usually occur following the taking of nutritional supplements, may lead to the development of a predominantly, if not exclusively, sensory neuropathy of the axonal type. After pyridoxine discontinuation, such patients subjectively report improved symptoms. However, although low vitamin B6 levels can be seen in patients suffering from peripheral neuropathy of various etiologies, there is no firm evidence that low B6 levels have a direct causal relationship with PN. Many studies suggest subjective improvement of neuropathy symptoms in patients suffering from PN of various etiologies after receiving B6 supplementation; however, no data about B6 administration as a monotherapy exist, only as part of a combination treatment, usually with other vitamins. Therefore, the potential therapeutic role of B6 cannot be confirmed to date. Supplementation with vitamin B6, even as part of a nutritional multivitamin supplement, has not been proven harmful at permitted daily doses in patients who already suffer from PN. CONCLUSION Current scientific evidence supports a neurotoxic role of B6 at high levels. Although some studies suggest that low B6 is also a potential risk factor, further studies in this area are needed.
Collapse
Affiliation(s)
- Raman Muhamad
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Alexandra Akrivaki
- Second Department of Neurology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Georgia Papagiannopoulou
- Second Department of Neurology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Panagiotis Zis
- Second Department of Neurology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
- Medical School, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
15
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
16
|
Manti S, Gitto E, Ceravolo I, Mancuso A, Ceravolo A, Salpietro A, Farello G, Chimenz R, Iapadre G, Battaglia F, Cuppari C. A Brief Focus on Joubert Syndrome and Related Acute Complications. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:003-007. [DOI: 10.1055/s-0042-1760240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) and related disorders are a group of congenital anomalies syndromes in which the obligatory hallmark is the molar tooth sign, a complex midbrain–hindbrain malformation. Moreover, JS may be associated with multiorgan involvement, mainly nephronophthisis, hepatic fibrosis, retinal dystrophy, and other abnormalities with both inter- and intra-familial variability. Therefore, these patients should be followed by both diagnostic protocol and multidisciplinary approach to assess multiorgan involvement. Here, we briefly summarize the possible complications in patients with JS.
Collapse
Affiliation(s)
- Sara Manti
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age Gaetano Barresi, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Francesco Battaglia
- Department of Biomedical Sciences and Advanced Therapies, Orthopaedic Clinic, University of Ferrara, Ferrara, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
17
|
Cuppari C, Ceravolo I, Mancuso A, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo MD. Joubert Syndrome: Diagnostic Evaluation and Follow-up. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:053-057. [DOI: 10.1055/s-0042-1759532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe follow-up of a child with genetic syndrome is necessarily multidisciplinary because of the multiplicity of problems and calls for close collaboration between different specialists. The primary objective is the total care of the child and his family, regardless of the rarity and complexity of the disease, to obtain the highest possible degree of mental and physical health and autonomy.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, Via Vetoio, L'Aquila, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
18
|
Amorini M, Iapadre G, Mancuso A, Ceravolo I, Farello G, Scardamaglia A, Gramaglia S, Ceravolo A, Salpietro A, Cuppari C. An Overview of Genes Involved in the Pure Joubert Syndrome and in Joubert Syndrome-Related Disorders (JSRD). JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:023-032. [DOI: 10.1055/s-0042-1760242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disease characterized by a peculiar brain malformation, hypotonia, ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys and liver, defining a group of conditions termed syndrome and Joubert syndrome-related disorders (JSRD). Currently, more than 30 causative genes have been identified, involved in the development and stability of the primary cilium. Correlations genotype–phenotype are emerging between clinical presentations and mutations in JSRD genes, with implications in terms of molecular diagnosis, prenatal diagnosis, follow-up, and management of mutated patients.
Collapse
Affiliation(s)
- Maria Amorini
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Simone Gramaglia
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
19
|
Mancuso A, Ceravolo I, Cuppari C, Sallemi A, Fusco M, Ceravolo A, Farello G, Iapadre G, Zagaroli L, Nanni G, Conti G. The Function and Role of the Cilium in the Development of Ciliopathies. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:078-084. [DOI: 10.1055/s-0042-1759533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract“Ciliopathies” are a group of genetic disorders described by the malformation or dysfunction of cilia. The disorders of ciliary proteins lead to a range of phenotype from organ-specific (e.g., cystic disease of the kidney, liver, and pancreas, neural tube defects, postaxial polydactyly, situs inversus, and retinal degeneration) to sketchily pleiotropic (e.g., Bardet-Biedl syndrome and Joubert syndrome). The mechanism below the disfunction of cilia to reach new therapeutic strategies.
Collapse
Affiliation(s)
- Alessio Mancuso
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Caterina Cuppari
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Alessia Sallemi
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Monica Fusco
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | | | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, Via Vetoio, 1. Coppito, 67100 L'Aquila, Italy
| | - Giovanni Conti
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Nephrology and Rheumatology, University of Messina, Messina, Italy
| |
Collapse
|
20
|
Scuderi A, Prato A, Dicanio D, Spoto G, Salpietro V, Ceravolo G, Granata F, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo I, Pironti E, Amore G, Rosa GD. Age-Related Neurodevelopmental Features in Children with Joubert Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:008-014. [DOI: 10.1055/s-0042-1759539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare inherited disorder of central nervous system with neonatal/infantile onset, mainly affecting cerebellum and brainstem, and clinically characterized by agenesis or dysgenesis of the cerebellar vermis with accompanying brainstem malformations. More than 20 disease-causing genes have been associated with JS but a clear genotype–phenotype correlation has not been assessed yet. Diagnosis is usually confirmed by detection of the JS neuroradiological hallmark, the molar tooth sign. Patients with JS typically present with neurological manifestations, moreover, a heterogeneous spectrum of multisystemic anomalies may be observed. Signs and symptoms onset varies according to the age range and clinical diagnosis might become complicated. Moreover, specific neurodevelopmental disorders can be associated with JS such as autism spectrum disorders, attention deficit with hyperactivity, and a wide range of behavioral disturbances. Here, we examined the main neurological and neurodevelopmental features of JS according to an age-dependent mode of presentation. Furthermore, differential diagnosis with other neurological syndromes was closely reviewed.
Collapse
Affiliation(s)
- Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Giorgia Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Francesca Granata
- Department of Biomedical Sciences and Morphological and Functional, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
21
|
Cuppari C, Salpietro A, Ceravolo I, Iapadre G, Fusco M, Sallemi A, Mancuso A, Farello G, Ceravolo MD. Ciliopathies: Genetic Counseling. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:041-043. [DOI: 10.1055/s-0042-1759515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractJoubert syndrome (JS) follows autosomal recessive inheritance, with rare X-linked recessive cases. The disease is genetically heterogeneous with neurological features associated with multiorgan involvement (e.g., retinal dystrophy, nephronophthisis, hepatic fibrosis, and polydactyly). The incidence of JS and related disorders is between 1/80,000 and 1/100,000 live births. Many causative genes have been identified, all encoding for proteins of the cilium or the centrosome, making the JS part of a group of diseases called “ciliopathies.” The identification of the molecular defect in couples at risk is allowed by prenatal genetic testing, whereas fetal ultrasound and brain neuroimaging are informative in the first and second trimester of pregnancy.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, Coppito, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito (AQ), Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
22
|
La Macchia T, Mancuso A, Ceravolo MD, Cuppari C, Chimenz R, Farello G, Gitto E, Iapadre G, Ceravolo I. Alström Syndrome: A Systematic Review. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:015-017. [DOI: 10.1055/s-0042-1759535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractAlström syndrome (AS) is a rare multisystem disorder characterized by cone-rod retinal dystrophy leading to vision loss, hearing deficiency, obesity, type 2 diabetes mellitus, and insulin resistance with hyperinsulinemia. The conditions include dilated cardiomyopathy, recurrent fibrotic pulmonary infections, and progressive renal, hepatic, and endocrinological dysfunction. Other clinical findings consist of thyroid problems, short height, and growth hormone insufficiency. In addition, patients present with normal IQ, but in some cases delay in psychomotor and cognitive development is described. There is no treatment for AS, and life expectancy is around 40 years. However, an early identification of the disease can help in reducing the progression to severe conditions and in ameliorating the patient's quality of life. Our intent was to analyze the clinical data in literature on AS and provide an up-to-date review.
Collapse
Affiliation(s)
- Tommaso La Macchia
- Unit of Cardiology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessio Mancuso
- Department of Human Pathology and Evolutive Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Department of Human Pathology and Evolutive Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Caterina Cuppari
- Department of Human Pathology and Evolutive Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore Tommasi 1, Coppito (AQ), Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Amore G, Spoto G, Scuderi A, Prato A, Dicanio D, Nicotera A, Farello G, Chimenz R, Ceravolo I, Salpietro V, Gitto E, Ceravolo G, Iapadre G, Rosa GD, Pironti E. Bardet–Biedl Syndrome: A Brief Overview on Clinics and Genetics. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:033-040. [DOI: 10.1055/s-0042-1759534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractBardet–Biedl syndrome is a genetically pleiotropic disorder characterized by high clinical heterogeneity with severe multiorgan impairment. Clinically, it encompasses primary and secondary manifestations, mainly including retinal dystrophy, mental retardation, obesity, polydactyly, hypogonadism in male, and renal abnormalities. At least 21 different genes have been identified, all involved into primary cilium structure or function. To date, genotype–phenotype correlation is still poor.
Collapse
Affiliation(s)
- Greta Amore
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giulia Spoto
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Anna Scuderi
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Adriana Prato
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Daniela Dicanio
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Antonio Nicotera
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore Tommasi 1, Coppito (AQ), Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giorgia Ceravolo
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Pediatric Emergency, University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Di Rosa
- Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| |
Collapse
|
24
|
Ceravolo I, Granata F, Gitto E, Iapadre G, Chimenz R, Giannitto N, Mancuso A, Ceravolo MD, Macchia TL, Rissotto F, Farello G, Cuppari C. Ophthalmological Findings in Joubert Syndrome and Related Disorders. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:068-072. [DOI: 10.1055/s-0042-1759536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare genetic condition characterized by congenital malformation of the mid-hindbrain, cerebellar ataxia, hypotonia, oculomotor apraxia, hypoplasia of the cerebellar vermis resulting in breathing defects, ataxia, and delayed development. Ophthalmological examination reveals eye involvement with nystagmus and retinal defects. Genetic counseling is important for the prevention of new cases. Great advances have been made in recent years. Management is symptomatic and multidisciplinary. In the present review, we discussed the most frequent ophthalmological anomalies associated with JS and speculated on the role of ciliary physiology in eye development.
Collapse
Affiliation(s)
- Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Nino Giannitto
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Tommaso La Macchia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federico Rissotto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
25
|
Conti G, Farello G, Ceravolo MD, Fusco M, Cuppari C, Mancuso A, Ceravolo I, David E, Iapadre G, Scorrano G, Fiorile MF, Chimenz R. Joubert Syndrome and Renal Implication. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:049-052. [DOI: 10.1055/s-0042-1759541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractTwenty-five to 30% of patients with Joubert syndrome (JS) have renal involvement. Two forms of renal disease (RD) have traditionally been described. The less common form is the Dekaban–Arima syndrome, a JS RD that includes congenital blindness and occasional encephalocele. The other, more common RD is juvenile nephronophthisis (NPHP), that presents a progressive interstitial fibrosis, associated with small cysts at the corticomedullary junction. NPHP is the most frequent genetic cause for end-stage RD in the first three decades of life. Symptoms start at approximately 6 years of age with urine concentrating defects, polydipsia, polyuria, and secondary enuresis.
Collapse
Affiliation(s)
- Giovanni Conti
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | | | | | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
26
|
Indika NLR, Frye RE, Rossignol DA, Owens SC, Senarathne UD, Grabrucker AM, Perera R, Engelen MPKJ, Deutz NEP. The Rationale for Vitamin, Mineral, and Cofactor Treatment in the Precision Medical Care of Autism Spectrum Disorder. J Pers Med 2023; 13:252. [PMID: 36836486 PMCID: PMC9964499 DOI: 10.3390/jpm13020252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Children with autism spectrum disorder may exhibit nutritional deficiencies due to reduced intake, genetic variants, autoantibodies interfering with vitamin transport, and the accumulation of toxic compounds that consume vitamins. Importantly, vitamins and metal ions are essential for several metabolic pathways and for neurotransmitter functioning. The therapeutic benefits of supplementing vitamins, minerals (Zinc, Magnesium, Molybdenum, and Selenium), and other cofactors (coenzyme Q10, alpha-lipoic acid, and tetrahydrobiopterin) are mediated through their cofactor as well as non-cofactor functions. Interestingly, some vitamins can be safely administered at levels far above the dose typically used to correct the deficiency and exert effects beyond their functional role as enzyme cofactors. Moreover, the interrelationships between these nutrients can be leveraged to obtain synergistic effects using combinations. The present review discusses the current evidence for using vitamins, minerals, and cofactors in autism spectrum disorder, the rationale behind their use, and the prospects for future use.
Collapse
Affiliation(s)
- Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Richard E. Frye
- Autism Discovery and Research Foundation, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
| | - Daniel A. Rossignol
- Rossignol Medical Center, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Aliso Viejo, CA 92656, USA
| | - Susan C. Owens
- Autism Oxalate Project at the Autism Research Institute, San Diego, CA 92116, USA
| | - Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Rasika Perera
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Marielle P. K. J. Engelen
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| | - Nicolaas E. P. Deutz
- Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
27
|
Prato A, Scuderi A, Amore G, Spoto G, Salpietro V, Ceravolo A, Farello G, Iapadre G, Pironti E, Dicanio D, Rosa GD. Epilepsy in Joubert Syndrome: A Still Few Explored Matter. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1759540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractEpilepsy is rarely associated with Joubert's syndrome and related disorders (JSRD), being reported only in 3% of cases. Few patients have been described, moreover, with poor evidences of specific seizures' semiology or standard of practice for pharmacological treatment. Epilepsy is likely to be related to brain malformations in ciliopathies. Beyond the typical hindbrain malformation, the molar tooth sign, other cerebral anomalies variably reported in JSRD, such as generalized polymicrogyria, hamartomas, periventricular nodular heterotopia, and hippocampal defects, have been described. Herein, we aimed to revise the main clinical and etiopathogenetic characteristics of epilepsy associated with JSRD.
Collapse
Affiliation(s)
- Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito, L'Aquila, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
28
|
Stroscio G, Cuppari C, Ceravolo MD, Salpietro A, Battaglia F, Sallemi A, Fusco M, Ceravolo A, Iapadre G, Calì E, Impollonia D, Granata F. Radiological Features of Joubert's Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1760241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disorder. All patients affected by this syndrome presented a characteristic picture of cranial fossa malformations, called “molar tooth sign.” This sign is defined by the presence in axial section at the level of a deck/midbrain, of hypo/dysplasia of the cerebellar vermis, abnormally deep interpeduncular fossa and horizontalized thickened and elongated superior cerebellar peduncles. Although “molar tooth sign” is peculiar of JS, other radiological findings have been also reported in these patients. Here, the authors briefly assumed the principal magnetic resonance imaging findings of JS.
Collapse
Affiliation(s)
- Giovanni Stroscio
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Francesco Battaglia
- Orthopaedic and Traumatology Department, “S. Anna” Hospital, University of Ferrara, Ferrara, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Elisa Calì
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Daniela Impollonia
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Francesca Granata
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| |
Collapse
|
29
|
Araya P, Kinning KT, Coughlan C, Smith KP, Granrath RE, Enriquez-Estrada BA, Worek K, Sullivan KD, Rachubinski AL, Wolter-Warmerdam K, Hickey F, Galbraith MD, Potter H, Espinosa JM. IGF1 deficiency integrates stunted growth and neurodegeneration in Down syndrome. Cell Rep 2022; 41:111883. [PMID: 36577365 PMCID: PMC9876612 DOI: 10.1016/j.celrep.2022.111883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by stunted growth, cognitive impairment, and increased risk of diverse neurological conditions. Although signs of lifelong neurodegeneration are well documented in DS, the mechanisms underlying this phenotype await elucidation. Here we report a multi-omics analysis of neurodegeneration and neuroinflammation biomarkers, plasma proteomics, and immune profiling in a diverse cohort of more than 400 research participants. We identified depletion of insulin growth factor 1 (IGF1), a master regulator of growth and brain development, as the top biosignature associated with neurodegeneration in DS. Individuals with T21 display chronic IGF1 deficiency downstream of growth hormone production, associated with a specific inflammatory profile involving elevated tumor necrosis factor alpha (TNF-α). Shorter children with DS show stronger IGF1 deficiency, elevated biomarkers of neurodegeneration, and increased prevalence of autism and other conditions. These results point to disruption of IGF1 signaling as a potential contributor to stunted growth and neurodegeneration in DS.
Collapse
Affiliation(s)
- Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christina Coughlan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Belinda A Enriquez-Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kayleigh Worek
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristine Wolter-Warmerdam
- Sie Center for Down Syndrome, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Francis Hickey
- Sie Center for Down Syndrome, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huntington Potter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
30
|
Cuppari C, Salpietro A, Chimenz R, Colavita L, Ceravolo MD, Gitto E, Sallemi A, Fusco M, Ceravolo I, Farello G, Iapadre G, Rocca C, Salazar A, Mancuso A. Joubert Syndrome with Oral-Facial-Digital Defect (JS-OFD): A Brief Overview on Clinics and Genetics. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert's syndrome with digital facial oral defects represents a rare subgroup of Joubert's syndrome with related disorders. There are 11 forms of oral-facial-digital syndromes and are characterized by having neurological signs of JS associated with orofacial anomalies and often polydactyly. The most severe variant is the OFD type VI (Varadi-Papp syndrome) in which there are tongue hamartomas, multiple frenula, midline notch of the upper lip, mesoaxial polydactyly, and hypothalamic hamartomas. Treatments are symptomatic and supportive with reconstructive surgery for correctable malformation and physical therapy, occupational therapy, speech therapy, and infant stimulation for mental delay.
Collapse
Affiliation(s)
- Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Laura Colavita
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age Gaetano Barresi, University of Messina, Messina, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Pediatric Clinic, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Ainara Salazar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
31
|
Boycott KM, Hartley T, Kernohan KD, Dyment DA, Howley H, Innes AM, Bernier FP, Brudno M, Care4Rare Canada Consortium. Care4Rare Canada: Outcomes from a decade of network science for rare disease gene discovery. Am J Hum Genet 2022; 109:1947-1959. [PMID: 36332610 PMCID: PMC9674964 DOI: 10.1016/j.ajhg.2022.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
The past decade has witnessed a rapid evolution in rare disease (RD) research, fueled by the availability of genome-wide (exome and genome) sequencing. In 2011, as this transformative technology was introduced to the research community, the Care4Rare Canada Consortium was launched: initially as FORGE, followed by Care4Rare, and Care4Rare SOLVE. Over what amounted to three eras of diagnosis and discovery, the Care4Rare Consortium used exome sequencing and, more recently, genome and other 'omic technologies to identify the molecular cause of unsolved RDs. We achieved a diagnostic yield of 34% (623/1,806 of participating families), including the discovery of deleterious variants in 121 genes not previously associated with disease, and we continue to study candidate variants in novel genes for 145 families. The Consortium has made significant contributions to RD research, including development of platforms for data collection and sharing and instigating a Canadian network to catalyze functional characterization research of novel genes. The Consortium was instrumental to implementing genome-wide sequencing as a publicly funded test for RD diagnosis in Canada. Despite the successes of the past decade, the challenge of solving all RDs remains enormous, and the work is far from over. We must leverage clinical and 'omic data for secondary use, develop tools and policies to support safe data sharing, continue to explore the utility of new and emerging technologies, and optimize research protocols to delineate complex disease mechanisms. Successful approaches in each of these realms is required to offer diagnostic clarity to all families with RDs.
Collapse
Affiliation(s)
- Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada,Corresponding author
| | - Taila Hartley
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kristin D. Kernohan
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - David A. Dyment
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Heather Howley
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - A. Micheil Innes
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Francois P. Bernier
- Department of Medical Genetics and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael Brudno
- Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada
| | | |
Collapse
|
32
|
Liu Z, Farkas P, Wang K, Kohli M, Fitzpatrick TB. B vitamin supply in plants and humans: the importance of vitamer homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:662-682. [PMID: 35673947 PMCID: PMC9544542 DOI: 10.1111/tpj.15859] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
B vitamins are a group of water-soluble micronutrients that are required in all life forms. With the lack of biosynthetic pathways, humans depend on dietary uptake of these compounds, either directly or indirectly, from plant sources. B vitamins are frequently given little consideration beyond their role as enzyme accessory factors and are assumed not to limit metabolism. However, it should be recognized that each individual B vitamin is a family of compounds (vitamers), the regulation of which has dedicated pathways. Moreover, it is becoming increasingly evident that individual family members have physiological relevance and should not be sidelined. Here, we elaborate on the known forms of vitamins B1 , B6 and B9 , their distinct functions and importance to metabolism, in both human and plant health, and highlight the relevance of vitamer homeostasis. Research on B vitamin metabolism over the past several years indicates that not only the total level of vitamins but also the oft-neglected homeostasis of the various vitamers of each B vitamin is essential to human and plant health. We briefly discuss the potential of plant biology studies in supporting human health regarding these B vitamins as essential micronutrients. Based on the findings of the past few years we conclude that research should focus on the significance of vitamer homeostasis - at the organ, tissue and subcellular levels - which could improve the health of not only humans but also plants, benefiting from cross-disciplinary approaches and novel technologies.
Collapse
Affiliation(s)
- Zeguang Liu
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Peter Farkas
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Morgan‐Océane Kohli
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| |
Collapse
|
33
|
Stolwijk NN, Brands MM, Smit LS, van der Wel V, Hollak CEM, van Karnebeek CD. A vitamin a day keeps the doctor away: The need for high quality pyridoxal-5'-phosphate. Eur J Paediatr Neurol 2022; 39:25-29. [PMID: 35636100 DOI: 10.1016/j.ejpn.2022.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND A rare subset of vitamin B6 responsive seizure disorders does not respond to pyridoxine, and requires the active form of vitamin B6, pyridoxal-5'-phosphate (PLP), to maintain seizure control. Patients with PLP-responsive seizures are dependent on chronic PLP treatment, yet no licensed PLP product is available. PLP food supplements, a product category regulated less stringently than medication, may prove of insufficient effectiveness and safety. Here we describe and discuss three patient scenarios which illustrate this conundrum. METHODS Medical and laboratory records were reviewed with retrospective extraction for three unrelated patients who suffered complications during treatment with PLP food supplements. RESULTS - Two cases of PNPO deficiency and one case of PLP-dependent epileptic encephalopathy without a (genetic) diagnosis are reported. These patients are critically dependent on PLP for seizure control and have suffered complications due to insufficient quality of these food supplements during the course of treatment. Complications include the occurrence of seizures following the administration of suspected low quality PLP, inactive PLP due to light exposure, a PLP intoxication, resisting administration and post-administration vomiting as a result of the ingestion of large amounts of capsules per day. CONCLUSION - This case series illustrates that the reliance on food supplements as anti-seizure therapy is not without risk. The treatment of PLP-dependent seizures exemplifies that PLP is administered as medication, thus there is a clear need for licensed vitamin products of pharmaceutical quality.
Collapse
Affiliation(s)
- N N Stolwijk
- Medicine for Society, Platform at Amsterdam University Medical Center - University of Amsterdam, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam University Medical Center - University of Amsterdam, the Netherlands
| | - M M Brands
- Department of Pediatrics & Human Genetics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - L S Smit
- Department of Neurology, Division of Pediatric Neurology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, the Netherlands
| | - V van der Wel
- Medicine for Society, Platform at Amsterdam University Medical Center - University of Amsterdam, the Netherlands
| | - C E M Hollak
- Medicine for Society, Platform at Amsterdam University Medical Center - University of Amsterdam, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam University Medical Center - University of Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - C D van Karnebeek
- Department of Pediatrics & Human Genetics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands; Emma Center for Personalized Medicine, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Yasuda H, Furukawa Y, Nishioka K, Sasaki M, Tsukune Y, Shirane S, Hattori N, Ando M, Komatsu N. Vitamin B6 deficiency as a cause of polyneuropathy in POEMS syndrome: rapid recovery with supplementation in two cases. Hematology 2022; 27:463-468. [PMID: 35413228 DOI: 10.1080/16078454.2022.2060456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The etiology of POEMS syndrome and its associated polyneuropathy have not been fully elucidated. The clinical picture of POEMS-associated polyneuropathy and nutritional polyneuropathy due to vitamin B6 (VB6) deficiency are strikingly similar, both being typically sensorimotor, symmetrical, stocking and glove distribution, and more severe in the lower extremities. CASE PRESENTATION We report two consecutive POEMS patients with VB6 deficiency who showed unusual rapid and drastic recovery of polyneuropathies within 6-8 weeks after oral VB6 supplementation. Case 1 was supplemented with VB6 from time of autologous stem cell transplantation. Polyneuropathy began to improve within one week, and he became walker-free and could walk unaided with a cane within 6 weeks. Case 2 was supplemented with VB6 from time of stem cell harvest, and he became cane-free and his gait almost normalized within two months. Nerve conduction studies were also confirmatory of neurologic recovery in both cases. CONCLUSIONS Objective physical improvement of POEMS-associated polyneuropathy has been reported to typically require approximately a year after autologous stem cell transplantation, and together with our observations of VB6 deficiency and supplementations leading to accelerated recoveries of polyneuropathy, VB6 deficiency most probably contributes to POEMS-associated polyneuropathy. VB6 acts as a coenzyme in approximately 150 biochemical reactions. VB6 has been reported to inhibit the hypoxia-inducible factor/vascular endothelial growth factor (VEGF) pathway, and VEGF levels are known to corollate with disease activity of POEMS syndrome. Therefore, VB6 deficiency may contribute not only to POEMS-associated polyneuropathy, but also to the etiology of POEMS syndrome itself.
Collapse
Affiliation(s)
- Hajime Yasuda
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiki Furukawa
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Makoto Sasaki
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yutaka Tsukune
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shuichi Shirane
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan.,Laboratory for the Development of Therapies Against MPN, Juntendo University School of Medicine, Tokyo, Japan.,Department of Advanced Hematology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Osmond M, Hartley T, Johnstone B, Andjic S, Girdea M, Gillespie M, Buske O, Dumitriu S, Koltunova V, Ramani A, Boycott KM, Brudno M. PhenomeCentral: 7 years of rare disease matchmaking. Hum Mutat 2022; 43:674-681. [PMID: 35165961 DOI: 10.1002/humu.24348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
A major challenge in validating genetic causes for patients with rare diseases (RDs) is the difficulty in identifying other RD patients with overlapping phenotypes and variants in the same candidate gene. This process, known as matchmaking, requires robust data sharing solutions in order to be effective. In 2014 we launched PhenomeCentral, a RD data repository capable of collecting computer-readable genotypic and phenotypic data for the purposes of RD matchmaking. Over the past 7 years PhenomeCentral's features have been expanded and its dataset has consistently grown. There are currently 1,615 users registered on PhenomeCentral, which have contributed over 12,000 patient cases. Most of these cases contain detailed phenotypic terms, with a significant portion also providing genomic sequence data or other forms of clinical information. Matchmaking within PhenomeCentral, and with connections to other data repositories in the Matchmaker Exchange, have collectively resulted in over 60,000 matches, which have facilitated multiple gene discoveries. The collection of deep phenotypic and genotypic data has also positioned PhenomeCentral well to support next generation of matchmaking initiatives that utilize genome sequencing data, ensuring that PhenomeCentral will remain a useful tool in solving undiagnosed RD cases in the years to come. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, ON, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, ON, Canada
| | - Brittney Johnstone
- Cancer Genetics and High Risk Program, Sunnybrook Health Sciences Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sasha Andjic
- DATA Team and Techna Institute, University Health Network, Toronto, ON, Canada
| | - Marta Girdea
- DATA Team and Techna Institute, University Health Network, Toronto, ON, Canada
| | - Meredith Gillespie
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, ON, Canada
| | | | - Sergiu Dumitriu
- DATA Team and Techna Institute, University Health Network, Toronto, ON, Canada
| | - Veronika Koltunova
- DATA Team and Techna Institute, University Health Network, Toronto, ON, Canada
| | - Arun Ramani
- Hospital for Sick Children, Toronto, ON, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, ON, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, ON, Canada
| | - Michael Brudno
- DATA Team and Techna Institute, University Health Network, Toronto, ON, Canada.,Department of Computer Science, University of Toronto, ON, Canada.,Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
36
|
Bunik V, Aleshin V, Nogues I, Kähne T, Parroni A, Contestabile R, Salvo ML, Graf A, Tramonti A. Thiamine‐dependent regulation of mammalian brain pyridoxal kinase
in vitro
and
in vivo. J Neurochem 2022; 161:20-39. [DOI: 10.1111/jnc.15576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Faculty of Bioengineering and Bioinformatics Lomonosov Moscow State University Moscow 119991 Russia
- Sechenov University 119048 Moscow Russia
| | - Vasily Aleshin
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University 19991 Moscow Russia
- Sechenov University 119048 Moscow Russia
| | - Isabel Nogues
- Research Institute of Terrestrial Ecosystems Italian National Research Council Via Salaria Km. 29 300–00015 Monterotondo Scalo
| | - Thilo Kähne
- Institute of Exptl. Internal Medicine Otto‐von‐Guericke‐Universität Magdeburg 39120 Magdeburg Germany
| | - Alessia Parroni
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Martino Luigi Salvo
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
| | - Anastasia Graf
- Moscow Institute of Physics and Technology 123098 Moscow Russia
- Faculty of Biology Lomonosov Moscow State University 19991 Moscow Russia
| | - Angela Tramonti
- Istituto Pasteur Italia‐ Fondazione Cenci Bolognetti Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University of Rome P.le A. Moro 5 ‐ 00185 Rome Italy
- Istitute of Molecular Biology and Pathology Italian National Research Council P.le A. Moro 5 ‐ 00185 Rome Italy
| |
Collapse
|
37
|
Outcome of over 1500 matches through the Matchmaker Exchange for rare disease gene discovery: The 2-year experience of Care4Rare Canada. Genet Med 2021; 24:100-108. [PMID: 34906465 DOI: 10.1016/j.gim.2021.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/15/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Matchmaking has emerged as a useful strategy for building evidence toward causality of novel disease genes in patients with undiagnosed rare diseases. The Matchmaker Exchange (MME) is a collaborative initiative that facilitates international data sharing for matchmaking purposes; however, data on user experience is limited. METHODS Patients enrolled as part of the Finding of Rare Disease Genes in Canada (FORGE) and Care4Rare Canada research programs had their exome sequencing data reanalyzed by a multidisciplinary research team over a 2-year period. Compelling variants in genes not previously associated with a human phenotype were submitted through the MME node PhenomeCentral, and outcomes were collected. RESULTS In this study, 194 novel candidate genes were submitted to the MME, resulting in 1514 matches, and 15% of the genes submitted resulted in collaborations. Most submissions resulted in at least 1 match, and most matches were with GeneMatcher (82%), where additional email exchange was required to evaluate the match because of the lack of phenotypic or inheritance information. CONCLUSION Matchmaking through the MME is an effective way to investigate novel candidate genes; however, it is a labor-intensive process. Engagement from the community to contribute phenotypic, genotypic, and inheritance data will ensure that matchmaking continues to be a useful approach in the future.
Collapse
|
38
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
39
|
Piccolo G, d'Annunzio G, Amadori E, Riva A, Borgia P, Tortora D, Maghnie M, Minetti C, Gitto E, Iacomino M, Baldassari S, Fiorillo C, Zara F, Striano P, Salpietro V. Neuromuscular and Neuroendocrinological Features Associated With ZC4H2-Related Arthrogryposis Multiplex Congenita in a Sicilian Family: A Case Report. Front Neurol 2021; 12:704747. [PMID: 34322088 PMCID: PMC8313121 DOI: 10.3389/fneur.2021.704747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Wieacker-Wolff syndrome (WWS) is an X-linked Arthrogryposis Multiplex Congenita (AMC) disorder associated with broad neurodevelopmental impairment. The genetic basis of WWS lies in hemizygous pathogenic variants in ZC4H2, encoding a C4H2 type zinc-finger nuclear factor abundantly expressed in the developing human brain. The main clinical features described in WWS families carrying ZC4H2 pathogenic variants encompass having a short stature, microcephaly, birth respiratory distress, arthrogryposis, hypotonia, distal muscle weakness, and broad neurodevelopmental delay. We hereby report a Sicilian family with a boy clinically diagnosed with WWS and genetically investigated with exome sequencing (ES), leading to the identification of a c.593G>A (p. R198Q) hemizygous pathogenic variant in the ZC4H2 gene. During the first year of life, the onset of central hypoadrenalism led to recurrent hypoglycemic events, which likely contributed to seizure susceptibility. Also, muscle biopsy studies confirmed a pathology of the muscle tissue and revealed peculiar abnormalities of the neuromuscular junction. In conclusion, we expand the phenotypic spectrum of the WWS-related neurodevelopmental disorders and discuss the role of ZC4H2 in the context of the potential neuroendocrinological and neuromuscular features associated with this condition.
Collapse
Affiliation(s)
- Gianluca Piccolo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Giuseppe d'Annunzio
- Pediatric Clinic and Endocrinology, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Borgia
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Eloisa Gitto
- Department of Human Pathology of the Adult and Developmental Age, “Gaetano Barresi” University of Messina, Messina, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Fiorillo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
40
|
Ceravolo G, Macchia TL, Cuppari C, Dipasquale V, Gambadauro A, Casto C, Ceravolo MD, Cutrupi M, Calabrò MP, Borgia P, Piccolo G, Mancuso A, Albiero R, Chimenz R. Update on the Classification and Pathophysiological Mechanisms of Pediatric Cardiorenal Syndromes. CHILDREN (BASEL, SWITZERLAND) 2021; 8:528. [PMID: 34206173 PMCID: PMC8305733 DOI: 10.3390/children8070528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Cardiorenal syndrome (CRS) is defined as a disorder resulting from the abnormal interaction between the heart and kidney, in which acute or chronic dysfunction of one organ may lead to acute and/or chronic dysfunction of the other. The functional interplay between the heart and kidney is characterized by a complex bidirectional symbiotic interaction, regulated by a wide array of both genetic and environmental mechanisms. There are at least five known subtypes of CRS, based on the severity of clinical features and the degree of heart/renal failure. The fourth subtype (cardiorenal syndrome type 4 (CRS4)) is characterized by a primary chronic kidney disease (CKD), which in turn leads to a decreased cardiac function. Impairment of renal function is among the most important pathophysiological factors contributing to heart failure (HF) in the pediatric age group, and cardiovascular complications could be one of the most important causes of mortality in pediatric patients with advanced CKD. In this context, a loss of glomerular filtration rate directly correlates with both the progression of cardiovascular complications in CRS and the risk of HF. This review describes the interaction pathways between the heart and kidney and the recently identified pathophysiological mechanisms underlying pediatric CRS, with a special focus on CRS4, which encompasses both primary CKD and cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Giorgia Ceravolo
- Unit of Emergency Pediatric, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy; (G.C.); (C.C.); (V.D.); (A.G.); (C.C.); (M.D.C.); (M.C.); (A.M.)
| | - Tommaso La Macchia
- Unit of Cardiology, Department of Clinical and Experimental Medicine, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy;
| | - Caterina Cuppari
- Unit of Emergency Pediatric, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy; (G.C.); (C.C.); (V.D.); (A.G.); (C.C.); (M.D.C.); (M.C.); (A.M.)
| | - Valeria Dipasquale
- Unit of Emergency Pediatric, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy; (G.C.); (C.C.); (V.D.); (A.G.); (C.C.); (M.D.C.); (M.C.); (A.M.)
| | - Antonella Gambadauro
- Unit of Emergency Pediatric, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy; (G.C.); (C.C.); (V.D.); (A.G.); (C.C.); (M.D.C.); (M.C.); (A.M.)
| | - Celeste Casto
- Unit of Emergency Pediatric, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy; (G.C.); (C.C.); (V.D.); (A.G.); (C.C.); (M.D.C.); (M.C.); (A.M.)
| | - Maria Domenica Ceravolo
- Unit of Emergency Pediatric, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy; (G.C.); (C.C.); (V.D.); (A.G.); (C.C.); (M.D.C.); (M.C.); (A.M.)
| | - Maricia Cutrupi
- Unit of Emergency Pediatric, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy; (G.C.); (C.C.); (V.D.); (A.G.); (C.C.); (M.D.C.); (M.C.); (A.M.)
| | - Maria Pia Calabrò
- Unit of Pediatric Cardiology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy;
| | - Paola Borgia
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (P.B.); (G.P.)
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (P.B.); (G.P.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alessio Mancuso
- Unit of Emergency Pediatric, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy; (G.C.); (C.C.); (V.D.); (A.G.); (C.C.); (M.D.C.); (M.C.); (A.M.)
| | - Remo Albiero
- Department of Cardiology, Sondrio General Hospital, 23100 Sondrio, Italy;
| | - Roberto Chimenz
- Unit of Pediatric Nephrology, and Rheumatology with Dialysis, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, “G. Martino” Policlinic, 98124 Messina, Italy
| |
Collapse
|
41
|
Hadtstein F, Vrolijk M. Vitamin B-6-Induced Neuropathy: Exploring the Mechanisms of Pyridoxine Toxicity. Adv Nutr 2021; 12:1911-1929. [PMID: 33912895 PMCID: PMC8483950 DOI: 10.1093/advances/nmab033] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Vitamin B-6 in the form of pyridoxine (PN) is commonly used by the general population. The use of PN-containing supplements has gained lots of attention over the past years as they have been related to the development of peripheral neuropathy. In light of this, the number of reported cases of adverse health effects due to the use of vitamin B-6 have increased. Despite a long history of study, the pathogenic mechanisms associated with PN toxicity remain elusive. Therefore, the present review is focused on investigating the mechanistic link between PN supplementation and sensory peripheral neuropathy. Excessive PN intake induces neuropathy through the preferential injury of sensory neurons. Recent reports on hereditary neuropathy due to pyridoxal kinase (PDXK) mutations may provide some insight into the mechanism, as genetic deficiencies in PDXK lead to the development of axonal sensory neuropathy. High circulating concentrations of PN may lead to a similar condition via the inhibition of PDXK. The mechanism behind PDXK-induced neuropathy is unknown; however, there is reason to believe that it may be related to γ-aminobutyric acid (GABA) neurotransmission. Compounds that inhibit PDXK lead to convulsions and reductions in GABA biosynthesis. The absence of central nervous system-related symptoms in PDXK deficiency could be due to differences in the regulation of PDXK, where PDXK activity is preserved in the brain but not in peripheral tissues. As PN is relatively impermeable to the blood-brain barrier, PDXK inhibition would similarly be confined to the peripheries and, as a result, GABA signaling may be perturbed within peripheral tissues, such as sensory neurons. Perturbed GABA signaling within sensory neurons may lead to excitotoxicity, neurodegeneration, and ultimately, the development of peripheral neuropathy. For several reasons, we conclude that PDXK inhibition and consequently disrupted GABA neurotransmission is the most plausible mechanism of toxicity.
Collapse
Affiliation(s)
- Felix Hadtstein
- University College Venlo, Campus Venlo, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
42
|
Frithiof R, Rostami E, Kumlien E, Virhammar J, Fällmar D, Hultström M, Lipcsey M, Ashton N, Blennow K, Zetterberg H, Punga AR. Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study. Clin Neurophysiol 2021; 132:1733-1740. [PMID: 33875374 PMCID: PMC8012169 DOI: 10.1016/j.clinph.2021.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Objective The aim was to characterize the electrophysiological features and plasma biomarkers of critical illness polyneuropathy (CIN) and myopathy (CIM) in coronavirus disease 2019 (COVID-19) patients with intensive care unit acquired weakness (ICUAW). Methods An observational ICU cohort study including adult patients admitted to the ICU at Uppsala University Hospital, Uppsala, Sweden, from March 13th to June 8th 2020. We compared the clinical, electrophysiological and plasma biomarker data between COVID-19 patients who developed CIN/CIM and those who did not. Electrophysiological characteristics were also compared between COVID-19 and non-COVID-19 ICU patients. Results 111 COVID-19 patients were included, 11 of whom developed CIN/CIM. Patients with CIN/CIM had more severe illness; longer ICU stay, more thromboembolic events and were more frequently treated with invasive ventilation for longer than 2 weeks. In particular CIN was more frequent among COVID-19 patients with ICUAW (50%) compared with a non-COVID-19 cohort (0%, p = 0.008). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp) levels were higher in the CIN/CIM group compared with those that did not develop CIN/CIM (both p = 0.001) and correlated with nerve amplitudes. Conclusions CIN/CIM was more prevalent among COVID-19 ICU patients with severe illness. Significance COVID-19 patients who later developed CIN/CIM had significantly higher NfL and GFAp in the early phase of ICU care, suggesting their potential as predictive biomarkers for CIN/CIM.
Collapse
Affiliation(s)
- Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eva Kumlien
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Johan Virhammar
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - David Fällmar
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden; Department of Medical Cell Biology, Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, Uppsala, Sweden
| | - Nicholas Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie 2021; 183:18-29. [PMID: 33421502 PMCID: PMC11273822 DOI: 10.1016/j.biochi.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells. The resulting PLP deficiency is known to cause or implicated in several pathologies, most notably seizures. One such disorder, PNPO-dependent neonatal epileptic encephalopathy (NEE) results from natural mutations in PNPO and leads to null or reduced enzymatic activity. NEE does not respond to conventional antiepileptic drugs but may respond to treatment with the B6 vitamers PLP and/or pyridoxine (PN). In born errors that lead to PLP deficiency in cells have also been reported in PL kinase, however, to date none has been associated with epilepsy or seizure. One such pathology is polyneuropathy that responds to PLP therapy. Phosphatase deficiency or hypophosphatasia disorder due to pathogenic mutations in alkaline phosphatase is known to cause seizures that respond to PN therapy. In this article, we review the biochemical features of in born errors pertaining to the salvage enzyme's deficiency that leads to NEE and other pathologies. We also present perspective on vitamin B6 treatment for these disorders, along with attempts to develop zebrafish model to study the NEE syndrome in vivo.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammed Al Mughram
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
44
|
Keller N, Paketci C, Altmueller J, Fuhrmann N, Wunderlich G, Schrank B, Unver O, Yilmaz S, Boostani R, Karimiani EG, Motameny S, Thiele H, Nürnberg P, Maroofian R, Yis U, Wirth B, Karakaya M. Genomic variants causing mitochondrial dysfunction are common in hereditary lower motor neuron disease. Hum Mutat 2021; 42:460-472. [PMID: 33600046 DOI: 10.1002/humu.24181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 11/08/2022]
Abstract
Hereditary lower motor neuron diseases (LMND) other than 5q-spinal muscular atrophy (5q-SMA) can be classified according to affected muscle groups. Proximal and distal forms of non-5q-SMA represent a clinically and genetically heterogeneous spectrum characterized by significant overlaps with axonal forms of Charcot-Marie-Tooth (CMT) disease. A consensus for the best approach to molecular diagnosis needs to be reached, especially in light of continuous novel gene discovery and falling costs of next-generation sequencing (NGS). We performed exome sequencing (ES) in 41 families presenting with non-5q-SMA or axonal CMT, 25 of which had undergone a previous negative neuromuscular disease (NMD) gene panel analysis. The total diagnostic yield of ES was 41%. Diagnostic success in the cohort with a previous NMD-panel analysis was significantly extended by ES, primarily due to novel gene associated-phenotypes and uncharacteristic phenotypic presentations. We recommend early ES for individuals with hereditary LMND presenting uncharacteristic or significantly overlapping features. As mitochondrial dysfunction was the underlying pathomechanism in 47% of the solved individuals, we highlight the sensitivity of the anterior horn cell and peripheral nerve to mitochondrial imbalance as well as the necessity to screen for mitochondrial disorders in individuals presenting predominant lower motor neuron symptoms.
Collapse
Affiliation(s)
- Natalie Keller
- Institute of Human Genetics and Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| | - Cem Paketci
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Janine Altmueller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Nico Fuhrmann
- Institute of Human Genetics and Institute of Genetics, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
- Department of Neurology, University Hospital Cologne, Cologne, Germany
| | - Bertold Schrank
- Department of Neurology, DKD HELIOS Kliniken, Wiesbaden, Germany
| | - Olcay Unver
- Department of Pediatric Neurology, Marmara University, Istanbul, Turkey
| | - Sanem Yilmaz
- Department of Pediatric Neurology, Ege University, Izmir, Turkey
| | - Reza Boostani
- Department of Neurology, Ghaem Hospital, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, UK
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, UK
| | - Uluc Yis
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Brunhilde Wirth
- Institute of Human Genetics and Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| | - Mert Karakaya
- Institute of Human Genetics and Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
45
|
García-Ruiz S, Gil-Martínez AL, Cisterna A, Jurado-Ruiz F, Reynolds RH, Cookson MR, Hardy J, Ryten M, Botía JA. CoExp: A Web Tool for the Exploitation of Co-expression Networks. Front Genet 2021; 12:630187. [PMID: 33719340 PMCID: PMC7943635 DOI: 10.3389/fgene.2021.630187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Gene co-expression networks are a powerful type of analysis to construct gene groupings based on transcriptomic profiling. Co-expression networks make it possible to discover modules of genes whose mRNA levels are highly correlated across samples. Subsequent annotation of modules often reveals biological functions and/or evidence of cellular specificity for cell types implicated in the tissue being studied. There are multiple ways to perform such analyses with weighted gene co-expression network analysis (WGCNA) amongst one of the most widely used R packages. While managing a few network models can be done manually, it is often more advantageous to study a wider set of models derived from multiple independently generated transcriptomic data sets (e.g., multiple networks built from many transcriptomic sources). However, there is no software tool available that allows this to be easily achieved. Furthermore, the visual nature of co-expression networks in combination with the coding skills required to explore networks, makes the construction of a web-based platform for their management highly desirable. Here, we present the CoExp Web application, a user-friendly online tool that allows the exploitation of the full collection of 109 co-expression networks provided by the CoExpNets suite of R packages. We describe the usage of CoExp, including its contents and the functionality available through the family of CoExpNets packages. All the tools presented, including the web front- and back-ends are available for the research community so any research group can build its own suite of networks and make them accessible through their own CoExp Web application. Therefore, this paper is of interest to both researchers wishing to annotate their genes of interest across different brain network models and specialists interested in the creation of GCNs looking for a tool to appropriately manage, use, publish, and share their networks in a consistent and productive manner.
Collapse
Affiliation(s)
- Sonia García-Ruiz
- Institute of Neurology, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.,Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ana L Gil-Martínez
- Institute of Neurology, University College London, London, United Kingdom
| | - Alejandro Cisterna
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Federico Jurado-Ruiz
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Regina H Reynolds
- Institute of Neurology, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.,Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | | | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - John Hardy
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurodegenerative Disease, United Kingdom Dementia Research Institute at UCL, UCL Institute of Neurology, University College London, London, United Kingdom.,Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, United Kingdom.,UCL Movement Disorders Centre, University College London, London, United Kingdom.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Mina Ryten
- Institute of Neurology, University College London, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.,Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Juan A Botía
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
46
|
Warman-Chardon J, Jasmin BJ, Kothary R, Parks RJ. Report on the 5th Ottawa International Conference on Neuromuscular Disease & Biology -October 17-19, 2019, Ottawa, Canada. J Neuromuscul Dis 2021; 8:323-334. [PMID: 33492242 DOI: 10.3233/jnd-219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| |
Collapse
|
47
|
Abstract
Objectives: Generally, neuropathies of peripheral nerves are a frequent condition (prevalence 2–3%) and most frequently due to alcoholism, diabetes, renal insufficiency, malignancy, toxins, or drugs. However, the vast majority of neuropathies has orphan status. This review focuses on the etiology, frequency, diagnosis, and treatment of orphan neuropathies. Methods: Literature review Results: Rareness of diseases is not uniformly defined but in the US an orphan disease is diagnosed if the prevalence is <1:200000, in Europe if <5:10000. Most acquired and hereditary neuropathies are orphan diseases. Often the causative variant has been reported only in a single patient or family, particularly the ones that are newly detected (e.g. SEPT9, SORD). Among the complex neuropathies (hereditary multisystem disorders with concomitant neuropathies) orphan forms have been reported among mitochondrial disorders (e.g. NARP, MNGIE, SANDO), spinocerebellar ataxias (e.g. TMEM240), hereditary spastic paraplegias (e.g UBAP1), lysosomal storage disease (e.g. Schindler disease), peroxisomal disorders, porphyrias, and other types (e.g. giant axonal neuropathy, Tangier disease). Orphan acquired neuropathies include the metabolic neuropathies (e.g. vitamin-B1, folic acid), toxic neuropathies (e.g. copper, lithium, lead, arsenic, thallium, mercury), infectious neuropathies, immune-mediated (e.g. Bruns-Garland syndrome), and neoplastic/paraneoplastic neuropathies. Conclusions: Though orphan neuropathies are rare per definition they constitute the majority of neuropathies and should be considered as some of them are easy to identify and potentially treatable, as clarification of the underlying cause may contribute to the knowledge about etiology and pathophysiology of these conditions, and as the true prevalence may become obvious only if all ever diagnosed cases are reported.
Collapse
Affiliation(s)
| | | | - Julia Wanschitz
- Department of Neurology, Medical University, Innsbruck, Austria
| | | |
Collapse
|
48
|
Keller N, Mendoza-Ferreira N, Maroofian R, Chelban V, Khalil Y, Mills PB, Boostani R, Torbati PN, Karimiani EG, Thiele H, Houlden H, Wirth B, Karakaya M. Hereditary polyneuropathy with optic atrophy due to PDXK variant leading to impaired Vitamin B6 metabolism. Neuromuscul Disord 2020; 30:583-589. [DOI: 10.1016/j.nmd.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 01/13/2023]
|
49
|
Jeanclos E, Knobloch G, Hoffmann A, Fedorchenko O, Odersky A, Lamprecht AK, Schindelin H, Gohla A. Ca 2+ functions as a molecular switch that controls the mutually exclusive complex formation of pyridoxal phosphatase with CIB1 or calmodulin. FEBS Lett 2020; 594:2099-2115. [PMID: 32324254 DOI: 10.1002/1873-3468.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/09/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for neurotransmitter metabolism. Pyridoxal phosphatase (PDXP) deficiency in mice increases PLP and γ-aminobutyric acid levels in the brain, yet how PDXP is regulated is unclear. Here, we identify the Ca2+ - and integrin-binding protein 1 (CIB1) as a PDXP interactor by yeast two-hybrid screening and find a calmodulin (CaM)-binding motif that overlaps with the PDXP-CIB1 interaction site. Pulldown and crosslinking assays with purified proteins demonstrate that PDXP directly binds to CIB1 or CaM. CIB1 or CaM does not alter PDXP phosphatase activity. However, elevated Ca2+ concentrations promote CaM binding and, thereby, diminish CIB1 binding to PDXP, as both interactors bind in a mutually exclusive way. Hence, the PDXP-CIB1 complex may functionally differ from the PDXP-Ca2+ -CaM complex.
Collapse
Affiliation(s)
- Elisabeth Jeanclos
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| | - Gunnar Knobloch
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Axel Hoffmann
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University Düsseldorf, Germany
| | - Oleg Fedorchenko
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University Düsseldorf, Germany
| | - Andrea Odersky
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University Düsseldorf, Germany
| | - Anna-Karina Lamprecht
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Antje Gohla
- Institute of Pharmacology and Toxicology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Institute of Biochemistry and Molecular Biology II, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
50
|
Contestabile R, di Salvo ML, Bunik V, Tramonti A, Vernì F. The multifaceted role of vitamin B 6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol 2020; 10:200034. [PMID: 32208818 PMCID: PMC7125957 DOI: 10.1098/rsob.200034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity.
Collapse
Affiliation(s)
- Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.,Sechenov Medical University, Sechenov University, 119048 Moscow, Russia
| | - Angela Tramonti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pl.e A. Moro, 5, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Pl.e A. Moro, 5, 00185 Roma, Italy
| |
Collapse
|