1
|
Abstract
Both genetic and environmental factors modulate the risk of Parkinson's disease. In this article, all these pathophysiologic processes that contribute to damages at the tissue, cellular, organelle, and molecular levels, and their effects are talked about.
Collapse
Affiliation(s)
- Bin Xiao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - ZhiDong Zhou
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - YinXia Chao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|
2
|
Maisumu G, Willerth S, Nestor M, Waldau B, Schülke S, Nardi FV, Ahmed O, Zhou Y, Durens M, Liang B, Yakoub AM. Brain organoids: building higher-order complexity and neural circuitry models. Trends Biotechnol 2025:S0167-7799(25)00046-0. [PMID: 40221251 DOI: 10.1016/j.tibtech.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 04/14/2025]
Abstract
Brain organoids are 3D tissue models of the human brain that are derived from pluripotent stem cells (PSCs). They have enabled studies that were previously stymied by the inaccessibility of human brain tissue or the limitations of mouse models of some brain diseases. Despite their enormous potential, brain organoids have had significant limitations that prevented them from recapitulating the full complexity of the human brain and reduced their utility in disease studies. We describe recent progress in addressing these limitations, especially building complex organoids that recapitulate the interactions between multiple brain regions, and reconstructing in vitro the neural circuitry present in in vivo. These major advances in the human brain organoid technology will remarkably facilitate brain disease modeling and neuroscience research.
Collapse
Affiliation(s)
- Gulimiheranmu Maisumu
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Stephanie Willerth
- Department of Biomedical Engineering, University of Victoria, Victoria, BC, Canada
| | - Michael Nestor
- National Academies of Sciences, Engineering, and Medicine, Washington, DC, USA
| | - Ben Waldau
- Department of Neurological Surgery, University of California Davis, Sacramento, CA, USA
| | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany; Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Francesco V Nardi
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Osama Ahmed
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA; Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - You Zhou
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA
| | - Madel Durens
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bo Liang
- Department of Biomedical Engineering, University of North Dakota, Grand Forks, ND, USA
| | - Abraam M Yakoub
- Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Frattini E, Faustini G, Lopez G, Carsana EV, Tosi M, Trezzi I, Magni M, Soldà G, Straniero L, Facchi D, Samarani M, Martá-Ariza M, De Luca CMG, Vezzoli E, Pittaro A, Stepanyan A, Silipigni R, Rosety I, Schwamborn JC, Sardi SP, Moda F, Corti S, Comi GP, Blandini F, Tritsch NX, Bortolozzi M, Ferrero S, Cribiù FM, Wisniewski T, Asselta R, Aureli M, Bellucci A, Di Fonzo A. Lewy pathology formation in patient-derived GBA1 Parkinson's disease midbrain organoids. Brain 2025; 148:1242-1257. [PMID: 39570889 PMCID: PMC11967528 DOI: 10.1093/brain/awae365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 04/05/2025] Open
Abstract
Fibrillary aggregation of α-synuclein in Lewy body inclusions and nigrostriatal dopaminergic neuron degeneration define Parkinson's disease neuropathology. Mutations in GBA1, encoding glucocerebrosidase, are the most frequent genetic risk factor for Parkinson's disease. However, the lack of reliable experimental models able to reproduce key neuropathological signatures has hampered clarification of the link between mutant glucocerebrosidase and Parkinson's disease pathology. Here, we describe an innovative protocol for the generation of human induced pluripotent stem cell-derived midbrain organoids containing dopaminergic neurons with nigral identity that reproduce characteristics of advanced maturation. When applied to patients with GBA1-related Parkinson's disease, this method enabled the differentiation of midbrain organoids recapitulating dopaminergic neuron loss and fundamental features of Lewy pathology observed in human brains, including the generation of α-synuclein fibrillary aggregates with seeding activity that also propagate pathology in healthy control organoids. Concurrently, we found that the retention of mutant glucocerebrosidase in the endoplasmic reticulum and increased levels of its substrate, glucosylceramide, are determinants of α-synuclein aggregation into Lewy body-like inclusions, and the reduction of glucocerebrosidase activity accelerated α-synuclein pathology by promoting fibrillary α-synuclein deposition. Finally, we demonstrated the efficacy of ambroxol and GZ667161 (two modulators of the glucocerebrosidase pathway in clinical development for the treatment of GBA1-related Parkinson's disease) in reducing α-synuclein pathology in this model, supporting the use of midbrain organoids as a relevant preclinical platform for investigational drug screening.
Collapse
Affiliation(s)
- Emanuele Frattini
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Gianluca Lopez
- Division of Pathology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20122, Italy
| | - Emma Veronica Carsana
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan 20054, Italy
| | - Mattia Tosi
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Ilaria Trezzi
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Manuela Magni
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy
- Medical Genetics and RNA Biology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy
- Medical Genetics and RNA Biology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Daniele Facchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy
- Medical Genetics and RNA Biology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Maura Samarani
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et de l’Infection, Institut Pasteur, Paris 75015, France
| | - Mitchell Martá-Ariza
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Chiara Maria Giulia De Luca
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Elena Vezzoli
- Advanced Light and Electron Microscopy BioImaging Centre (ALEMBIC), IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Alessandra Pittaro
- Division of Pathology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20122, Italy
| | - Astghik Stepanyan
- Unità Operativa Complessa, Chirurgia Generale 3, University Hospital of Padua, Padua 35128, Italy
| | - Rosamaria Silipigni
- Laboratory of Medical Genetics, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Isabel Rosety
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux L-4367, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), Developmental and Cellular Biology, University of Luxembourg, Belvaux L-4367, Luxembourg
| | - Sergio Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, Framingham, MA 01701, USA
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Stefania Corti
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Giacomo P Comi
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan 20122, Italy
| | - Fabio Blandini
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Fresco Institute for Parkinson’s and Movement Disorders, New York University Langone Health, New York, NY 10017, USA
| | - Mario Bortolozzi
- Department of Physics and Astronomy ‘G. Galilei’, University of Padua, Padua 35131, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padua 35129, Italy
| | - Stefano Ferrero
- Division of Pathology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20122, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan 20122, Italy
| | - Fulvia Milena Cribiù
- Division of Pathology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan 20122, Italy
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan 20072, Italy
- Medical Genetics and RNA Biology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan 20089, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan 20054, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia 25123, Italy
| | - Alessio Di Fonzo
- Neurology Unit, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| |
Collapse
|
4
|
Barmpa K, Saraiva C, Lopez-Pigozzi D, Gomez-Giro G, Gabassi E, Spitz S, Brandauer K, Rodriguez Gatica JE, Antony P, Robertson G, Sabahi-Kaviani R, Bellapianta A, Papastefanaki F, Luttge R, Kubitscheck U, Salti A, Ertl P, Bortolozzi M, Matsas R, Edenhofer F, Schwamborn JC. Modeling early phenotypes of Parkinson's disease by age-induced midbrain-striatum assembloids. Commun Biol 2024; 7:1561. [PMID: 39580573 PMCID: PMC11585662 DOI: 10.1038/s42003-024-07273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Parkinson's disease, an aging-associated neurodegenerative disorder, is characterised by nigrostriatal pathway dysfunction caused by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain. Human in vitro models are enabling the study of the dopaminergic neurons' loss, but not the dysregulation within the dopaminergic network in the nigrostriatal pathway. Additionally, these models do not incorporate aging characteristics which potentially contribute to the development of Parkinson's disease. Here we present a nigrostriatal pathway model based on midbrain-striatum assembloids with inducible aging. We show that these assembloids can develop characteristics of the nigrostriatal connectivity, with catecholamine release from the midbrain to the striatum and synapse formation between midbrain and striatal neurons. Moreover, Progerin-overexpressing assembloids acquire aging traits that lead to early neurodegenerative phenotypes. This model shall help to reveal the contribution of aging as well as nigrostriatal connectivity to the onset and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Kyriaki Barmpa
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Diego Lopez-Pigozzi
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisa Gabassi
- Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Konstanze Brandauer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | | | - Paul Antony
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Graham Robertson
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Alessandro Bellapianta
- Johannes Kepler University Linz, Kepler University Hospital, University Clinic for Ophthalmology and Optometry, Linz, Austria
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Human Embryonic and Induced Pluripotent Stem Cell Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Regina Luttge
- Eindhoven University of Technology, Microsystems, Eindhoven, Netherlands
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Ahmad Salti
- Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
- Johannes Kepler University Linz, Kepler University Hospital, University Clinic for Ophthalmology and Optometry, Linz, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Mario Bortolozzi
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Human Embryonic and Induced Pluripotent Stem Cell Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Frank Edenhofer
- Genomics, Stem Cell & Regenerative Medicine Group and CMBI, Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
5
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Doll HM, Risgaard RD, Thurston H, Chen RJ, Sousa AM. Evolutionary innovations in the primate dopaminergic system. Curr Opin Genet Dev 2024; 88:102236. [PMID: 39153332 PMCID: PMC11384322 DOI: 10.1016/j.gde.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/12/2024] [Indexed: 08/19/2024]
Abstract
The human brain has evolved unique capabilities compared to other vertebrates. The mechanistic basis of these derived traits remains a fundamental question in biology due to its relevance to the origin of our cognitive abilities and behavioral repertoire, as well as to human-specific aspects of neuropsychiatric and neurodegenerative diseases. Comparisons of the human brain to those of nonhuman primates and other mammals have revealed that differences in the neuromodulatory systems, especially in the dopaminergic system, may govern some of these behavioral and cognitive alterations, including increased vulnerability to certain brain disorders. In this review, we highlight and discuss recent findings of human- and primate-specific alterations of the dopaminergic system, focusing on differences in anatomy, circuitry, and molecular properties.
Collapse
Affiliation(s)
- Hannah M Doll
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan D Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Hailey Thurston
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel J Chen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - André Mm Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Zhang X, Wu H, Tang B, Guo J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson's disease. Transl Neurodegener 2024; 13:48. [PMID: 39267121 PMCID: PMC11391654 DOI: 10.1186/s40035-024-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/17/2024] [Indexed: 09/14/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Heng Wu
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang, 421001, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
9
|
Dos Santos JCC, Mano GBC, da Cunha Barreto-Vianna AR, Garcia TFM, de Vasconcelos AV, Sá CSG, de Souza Santana SL, Farias AGP, Seimaru B, Lima MPP, Goes JVC, Gusmão CTP, Junior HLR. The Molecular Impact of Glucosylceramidase Beta 1 (Gba1) in Parkinson's Disease: a New Genetic State of the Art. Mol Neurobiol 2024; 61:6754-6770. [PMID: 38347286 DOI: 10.1007/s12035-024-04008-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/29/2024] [Indexed: 08/22/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting 2-3% of those aged over 65, characterized by motor symptoms like slow movement, tremors, and muscle rigidity, along with non-motor symptoms such as anxiety and dementia. Lewy bodies, clumps of misfolded proteins, contribute to neuron loss in PD. Mutations in the GBA1 gene are considered the primary genetic risk factor of PD. GBA1 mutations result in decreased activity of the lysosomal enzyme glucocerebrosidase (GCase) resulting in α-synuclein accumulation. We know that α-synuclein aggregation, lysosomal dysfunction, and endoplasmic reticulum disturbance are recognized factors to PD susceptibility; however, the molecular mechanisms connecting GBA1 gene mutations to increased PD risk remain partly unknown. Thus, in this narrative review conducted according to a systematic review method, we aimed to present the main contributions arising from the molecular impact of the GBA1 gene to the pathogenesis of PD providing new insights into potential impacts for advances in the clinical care of people with PD, a neurological disorder that has contributed to the substantial increase in the global burden of disease accentuated by the aging population. In summary, this narrative review highlights the multifaceted impact of GBA1 mutations in PD, exploring their role in clinical manifestations, genetic predispositions, and molecular mechanisms. The review emphasizes the importance of GBA1 mutations in both motor and non-motor symptoms of PD, suggesting broader therapeutic and management strategies. It also discusses the potential of CRISPR/Cas9 technology in advancing PD treatment and the need for future research to integrate these diverse aspects for improved diagnostics and therapies.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Christus University Center, UNICHRISTUS, Fortaleza, Ceara, Brazil.
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil.
- Postgraduate Program in Morphofunctional Sciences, Federal University of Ceará, Fortaleza, Ceara, Brazil.
| | | | | | - Tulia Fernanda Meira Garcia
- Multicampi School of Medical Sciences, Federal University of Rio Grande Do Norte, Caico, Rio Grande Do Norte, Brazil
| | | | | | | | - Ana Gabriela Ponte Farias
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Beatriz Seimaru
- Barão de Mauá University Center, CBM, Ribeirão Preto, São Paulo, Brazil
| | | | - João Vitor Caetano Goes
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
10
|
Hertz E, Chen Y, Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat Rev Neurol 2024; 20:526-540. [PMID: 39107435 DOI: 10.1038/s41582-024-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
An exciting development in the field of neurodegeneration is the association between the rare monogenic disorder Gaucher disease and the common complex disorder Parkinson disease (PD). Gaucher disease is a lysosomal storage disorder resulting from an inherited deficiency of the enzyme glucocerebrosidase, encoded by GBA1, which hydrolyses the glycosphingolipids glucosylceramide and glucosylsphingosine. The observation of parkinsonism in a rare subgroup of individuals with Gaucher disease first directed attention to the role of glucocerebrosidase deficiency in the pathogenesis of PD. PD occurs more frequently in people heterozygous for Gaucher GBA1 mutations, and 3-25% of people with Parkinson disease carry a GBA1 variant. However, only a small percentage of individuals with GBA1 variants develop parkinsonism, suggesting that the penetrance is low. Despite over a decade of intense research in this field, including clinical and radiological evaluations, genetic studies and investigations using model systems, the mechanism underlying GBA1-PD is still being pursued. Insights from this association have emphasized the role of lysosomal pathways in parkinsonism. Furthermore, different therapeutic strategies considered or developed for Gaucher disease can now inform drug development for PD.
Collapse
Affiliation(s)
- Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Nishimura K, Osaki H, Tezuka K, Nakashima D, Numata S, Masamizu Y. Recent advances and applications of human brain models. Front Neural Circuits 2024; 18:1453958. [PMID: 39161368 PMCID: PMC11330844 DOI: 10.3389/fncir.2024.1453958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Recent advances in human pluripotent stem cell (hPSC) technologies have prompted the emergence of new research fields and applications for human neurons and brain organoids. Brain organoids have gained attention as an in vitro model system that recapitulates the higher structure, cellular diversity and function of the brain to explore brain development, disease modeling, drug screening, and regenerative medicine. This progress has been accelerated by abundant interactions of brain organoid technology with various research fields. A cross-disciplinary approach with human brain organoid technology offers a higher-ordered advance for more accurately understanding the human brain. In this review, we summarize the status of neural induction in two- and three-dimensional culture systems from hPSCs and the modeling of neurodegenerative diseases using brain organoids. We also highlight the latest bioengineered technologies for the assembly of spatially higher-ordered neural tissues and prospects of brain organoid technology toward the understanding of the potential and abilities of the human brain.
Collapse
Affiliation(s)
- Kaneyasu Nishimura
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Kim MS, Kim H, Lee G. Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Adv Healthc Mater 2024; 13:e2303041. [PMID: 38269602 DOI: 10.1002/adhm.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Parkinson's disease (PD) is one of the most devastating neurological diseases; however, there is no effective cure yet. The availability of human induced pluripotent stem cells (iPSCs) provides unprecedented opportunities to understand the pathogenic mechanism and identification of new therapy for PD. Here a new model system of PD, including 2D human iPSC-derived midbrain dopaminergic (mDA) neurons, 3D iPSC-derived midbrain organoids (MOs) with cellular complexity, and more advanced microphysiological systems (MPS) with 3D organoids, is introduced. It is believed that successful integrations and applications of iPSC, organoid, and MPS technologies can bring new insight on PD's pathogenesis that will lead to more effective treatments for this debilitating disease.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
13
|
El It F, Faivre L, Thauvin-Robinet C, Vitobello A, Duplomb L. [The contribution of cerebral organoids to the understanding and treatment of rare genetic diseases with neurodevelopmental disorders]. Med Sci (Paris) 2024; 40:643-652. [PMID: 39303116 DOI: 10.1051/medsci/2024100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Rare genetic diseases with neurodevelopmental disorders (NDDs) encompass several heterogeneous conditions (autism spectrum disorder (ASD), intellectual disability (ID), attention deficit hyperactivity disorder (ADHD), specific learning disorder (SLD), among others). Currently, few treatments are available for these patients. The difficulty in accessing human brain samples and the discrepancies between human and animal models highlight the need for new research approaches. One promising approach is the use of the cerebral organoids. These 3D, self-organized structures, generated from induced pluripotent stem cells (iPSCs), enable the reproduction of the stages of human brain development, from the proliferation of neural stem cells to their differentiation into neurons, oligodentrocytes, and astrocytes. Cerebral organoids hold great promise in understanding brain development and in the search for treatments.
Collapse
Affiliation(s)
- Fatima El It
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Laurence Faivre
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France - Centre de référence des anomalies du développement et syndromes malformatifs, CHU Dijon, Dijon, France
| | - Christel Thauvin-Robinet
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France - Centre de référence des anomalies du développement et syndromes malformatifs, CHU Dijon, Dijon, France
| | - Antonio Vitobello
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France - Unité fonctionnelle innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France
| | - Laurence Duplomb
- UMR1231 Inserm, Génétique des anomalies du développement (GAD), université de Bourgogne Franche-Comté, Dijon, France - FHU TRANSLAD, CHU Dijon, Dijon, France
| |
Collapse
|
14
|
Kwak T, Park SH, Lee S, Shin Y, Yoon KJ, Cho SW, Park JC, Yang SH, Cho H, Im HI, Ahn SJ, Sun W, Yang JH. Guidelines for Manufacturing and Application of Organoids: Brain. Int J Stem Cells 2024; 17:158-181. [PMID: 38777830 PMCID: PMC11170118 DOI: 10.15283/ijsc24056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
This study offers a comprehensive overview of brain organoids for researchers. It combines expert opinions with technical summaries on organoid definitions, characteristics, culture methods, and quality control. This approach aims to enhance the utilization of brain organoids in research. Brain organoids, as three-dimensional human cell models mimicking the nervous system, hold immense promise for studying the human brain. They offer advantages over traditional methods, replicating anatomical structures, physiological features, and complex neuronal networks. Additionally, brain organoids can model nervous system development and interactions between cell types and the microenvironment. By providing a foundation for utilizing the most human-relevant tissue models, this work empowers researchers to overcome limitations of two-dimensional cultures and conduct advanced disease modeling research.
Collapse
Affiliation(s)
| | - Si-Hyung Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
| | | | | | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Organoid Standards Initiative
| | - Seung-Woo Cho
- Organoid Standards Initiative
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jong-Chan Park
- Organoid Standards Initiative
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Seung-Ho Yang
- Organoid Standards Initiative
- Department of Neurosurgery, St. Vincent’s Hospital, The Catholic University of Korea, Suwon, Korea
| | - Heeyeong Cho
- Organoid Standards Initiative
- Center for Rare Disease Therapeutic Technology, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Heh-In Im
- Organoid Standards Initiative
- Behavioral and Molecular Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Sun-Ju Ahn
- Organoid Standards Initiative
- Department of Biophysics, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea
- Organoid Standards Initiative
| | - Ji Hun Yang
- Next & Bio Inc., Seoul, Korea
- Organoid Standards Initiative
| |
Collapse
|
15
|
Babu HWS, Kumar SM, Kaur H, Iyer M, Vellingiri B. Midbrain organoids for Parkinson's disease (PD) - A powerful tool to understand the disease pathogenesis. Life Sci 2024; 345:122610. [PMID: 38580194 DOI: 10.1016/j.lfs.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Brain Organiods (BOs) are a promising technique for researching disease progression in the human brain. These organoids, which are produced from human induced pluripotent stem cells (HiPSCs), can construct themselves into structured frameworks. In the context of Parkinson's disease (PD), recent advancements have been made in the development of Midbrain organoids (MBOs) models that consider key pathophysiological mechanisms such as alpha-synuclein (α-Syn), Lewy bodies, dopamine loss, and microglia activation. However, there are limitations to the current use of BOs in disease modelling and drug discovery, such as the lack of vascularization, long-term differentiation, and absence of glial cells. To address these limitations, researchers have proposed the use of spinning bioreactors to improve oxygen and nutrient perfusion. Modelling PD utilising modern experimental in vitro models is a valuable tool for studying disease mechanisms and elucidating previously unknown features of PD. In this paper, we exclusively review the unique methods available for cultivating MBOs using a pumping system that mimics the circulatory system. This mechanism may aid in delivering the required amount of oxygen and nutrients to all areas of the organoids, preventing cell death, and allowing for long-term culture and using co-culturing techniques for developing glial cell in BOs. Furthermore, we emphasise some of the significant discoveries about the BOs and the potential challenges of using BOs will be discussed.
Collapse
Affiliation(s)
- Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sindduja Muthu Kumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Harsimrat Kaur
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore-641021, Tamil Nadu, India; Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
16
|
Chen B, Du C, Wang M, Guo J, Liu X. Organoids as preclinical models of human disease: progress and applications. MEDICAL REVIEW (2021) 2024; 4:129-153. [PMID: 38680680 PMCID: PMC11046574 DOI: 10.1515/mr-2023-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In the field of biomedical research, organoids represent a remarkable advancement that has the potential to revolutionize our approach to studying human diseases even before clinical trials. Organoids are essentially miniature 3D models of specific organs or tissues, enabling scientists to investigate the causes of diseases, test new drugs, and explore personalized medicine within a controlled laboratory setting. Over the past decade, organoid technology has made substantial progress, allowing researchers to create highly detailed environments that closely mimic the human body. These organoids can be generated from various sources, including pluripotent stem cells, specialized tissue cells, and tumor tissue cells. This versatility enables scientists to replicate a wide range of diseases affecting different organ systems, effectively creating disease replicas in a laboratory dish. This exciting capability has provided us with unprecedented insights into the progression of diseases and how we can develop improved treatments. In this paper, we will provide an overview of the progress made in utilizing organoids as preclinical models, aiding our understanding and providing a more effective approach to addressing various human diseases.
Collapse
Affiliation(s)
- Baodan Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cijie Du
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Guo
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
17
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
18
|
Muwanigwa MN, Modamio-Chamarro J, Antony PMA, Gomez-Giro G, Krüger R, Bolognin S, Schwamborn JC. Alpha-synuclein pathology is associated with astrocyte senescence in a midbrain organoid model of familial Parkinson's disease. Mol Cell Neurosci 2024; 128:103919. [PMID: 38307302 DOI: 10.1016/j.mcn.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. Despite extensive research efforts, the molecular and cellular changes that precede neurodegeneration in PD are poorly understood. To address this, here we describe the use of patient specific human midbrain organoids harboring the SNCA triplication to investigate mechanisms underlying dopaminergic degeneration. Our midbrain organoid model recapitulates key pathological hallmarks of PD, including the aggregation of α-synuclein and the progressive loss of dopaminergic neurons. We found that these pathological hallmarks are associated with an increase in senescence associated cellular phenotypes in astrocytes including nuclear lamina defects, the presence of senescence associated heterochromatin foci, and the upregulation of cell cycle arrest genes. These results suggest a role of pathological α-synuclein in inducing astrosenescence which may, in turn, increase the vulnerability of dopaminergic neurons to degeneration.
Collapse
Affiliation(s)
- Mudiwa N Muwanigwa
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jennifer Modamio-Chamarro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Paul M A Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Silvia Bolognin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
19
|
Xiao B, Tan EK. Cell replacement for Parkinson's disease: advances and challenges. Neural Regen Res 2023; 18:2693-2694. [PMID: 37449626 DOI: 10.4103/1673-5374.373710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute; Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
20
|
Chen M, Niclis JC, Denham M. Protocol for generating reproducible miniaturized controlled midbrain organoids. STAR Protoc 2023; 4:102451. [PMID: 37481727 PMCID: PMC10382973 DOI: 10.1016/j.xpro.2023.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/07/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Here, we present a protocol for generating miniaturized controlled midbrain organoids (MiCOs) of reproducible size and cellular composition, without a necrotic center. We describe steps for maintaining and passaging human pluripotent stem cells, generating MiCOs using AggreWell™400, and maintaining them in an EB-Disk360on an orbital shaker, eliminating the need for Matrigel or a spinner flask and preventing organoid fusion. We then detail organoid collection for different endpoint analysis. This protocol is suitable for compound screening and disease modeling studies.
Collapse
Affiliation(s)
- Muwan Chen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000C Aarhus, Denmark.
| | | | - Mark Denham
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000C Aarhus, Denmark; Department of Biomedicine, Aarhus University, 8000C Aarhus, Denmark.
| |
Collapse
|
21
|
Toh HSY, Choo XY, Sun AX. Midbrain organoids-development and applications in Parkinson's disease. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad009. [PMID: 38596240 PMCID: PMC10913847 DOI: 10.1093/oons/kvad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Indexed: 04/11/2024]
Abstract
Human brain development is spatially and temporally complex. Insufficient access to human brain tissue and inadequacy of animal models has limited the study of brain development and neurodegenerative diseases. Recent advancements of brain organoid technology have created novel opportunities to model human-specific neurodevelopment and brain diseases. In this review, we discuss the use of brain organoids to model the midbrain and Parkinson's disease. We critically evaluate the extent of recapitulation of PD pathology by organoids and discuss areas of future development that may lead to the model to become a next-generation, personalized therapeutic strategy for PD and beyond.
Collapse
Affiliation(s)
- Hilary S Y Toh
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Xin Yi Choo
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Alfred Xuyang Sun
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
- National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore
| |
Collapse
|
22
|
Yan YW, Qian ES, Woodard LE, Bejoy J. Neural lineage differentiation of human pluripotent stem cells: Advances in disease modeling. World J Stem Cells 2023; 15:530-547. [PMID: 37424945 PMCID: PMC10324500 DOI: 10.4252/wjsc.v15.i6.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 06/20/2023] Open
Abstract
Brain diseases affect 1 in 6 people worldwide. These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease. Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models, tissue culture models, and epidemiologic patient data that are commonly used to study brain disease. One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells (hPSCs) to neural lineages including neurons, astrocytes, and oligodendrocytes. Three-dimensional models such as brain organoids have also been derived from hPSCs, offering more physiological relevance due to their incorporation of various cell types. As such, brain organoids can better model the pathophysiology of neural diseases observed in patients. In this review, we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models.
Collapse
Affiliation(s)
- Yuan-Wei Yan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Eddie S Qian
- Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Lauren E Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, United States
- Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
23
|
Menozzi E, Toffoli M, Schapira AHV. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol Ther 2023; 246:108419. [PMID: 37080432 DOI: 10.1016/j.pharmthera.2023.108419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.2 to 30 according to variant severity. GBA1 variants which do not cause GD in homozygosis can also increase PD risk. Patients with PD carrying GBA1 variants show a more rapidly progressive phenotype compared to non-carriers, emphasising the need for disease modifying treatments targeting the GBA1 pathway. Several mechanisms secondary to GCase dysfunction are potentially responsible for the pathological changes leading to PD. Misfolded GCase proteins induce endoplasmic reticulum stress and subsequent unfolded protein response and impair the autophagy-lysosomal pathway. This results in α-synuclein accumulation and spread, and promotes neurodegenerative changes. Preclinical evidence also shows that products of GCase activity can promote accumulation of α-synuclein, however there is no convincing evidence of substrate accumulation in GBA1-PD brains. Altered lipid homeostasis secondary to loss of GCase activity could also contribute to PD pathology. Treatments that target the GBA1 pathway could reverse these pathological processes and halt/slow the progression of PD. These range from augmentation of GCase activity via GBA1 gene therapy, restoration of normal intracellular GCase trafficking via molecular chaperones, and substrate reduction therapy. This review discusses the pathways associated with GBA1-PD and related novel GBA1-targeted interventions for PD treatment.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
24
|
Sugeno N, Hasegawa T. Unraveling the Complex Interplay between Alpha-Synuclein and Epigenetic Modification. Int J Mol Sci 2023; 24:ijms24076645. [PMID: 37047616 PMCID: PMC10094812 DOI: 10.3390/ijms24076645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Alpha-synuclein (αS) is a small, presynaptic neuronal protein encoded by the SNCA gene. Point mutations and gene multiplication of SNCA cause rare familial forms of Parkinson’s disease (PD). Misfolded αS is cytotoxic and is a component of Lewy bodies, which are a pathological hallmark of PD. Because SNCA multiplication is sufficient to cause full-blown PD, gene dosage likely has a strong impact on pathogenesis. In sporadic PD, increased SNCA expression resulting from a minor genetic background and various environmental factors may contribute to pathogenesis in a complementary manner. With respect to genetic background, several risk loci neighboring the SNCA gene have been identified, and epigenetic alterations, such as CpG methylation and regulatory histone marks, are considered important factors. These alterations synergistically upregulate αS expression and some post-translational modifications of αS facilitate its translocation to the nucleus. Nuclear αS interacts with DNA, histones, and their modifiers to alter epigenetic status; thereby, influencing the stability of neuronal function. Epigenetic changes do not affect the gene itself but can provide an appropriate transcriptional response for neuronal survival through DNA methylation or histone modifications. As a new approach, publicly available RNA sequencing datasets from human midbrain-like organoids may be used to compare transcriptional responses through epigenetic alterations. This informatic approach combined with the vast amount of transcriptomics data will lead to the discovery of novel pathways for the development of disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
25
|
Zhang Z, Wang X, Park S, Song H, Ming GL. Development and Application of Brain Region-Specific Organoids for Investigating Psychiatric Disorders. Biol Psychiatry 2023; 93:594-605. [PMID: 36759261 PMCID: PMC9998354 DOI: 10.1016/j.biopsych.2022.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Human society has been burdened by psychiatric disorders throughout the course of its history. The emergence and rapid advances of human brain organoid technology provide unprecedented opportunities for investigation of potential disease mechanisms and development of targeted or even personalized treatments for various psychiatric disorders. In this review, we summarize recent advances for generating organoids from human pluripotent stem cells to model distinct brain regions and diverse cell types. We also highlight recent progress, discuss limitations, and propose potential improvements in using patient-derived or genetically engineered brain region-specific organoids for investigating various psychiatric disorders.
Collapse
Affiliation(s)
- Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sean Park
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Zhong Z, Li J, Zhong J, Huang Y, Hu J, Zhang P, Zhang B, Jin Y, Luo W, Liu R, Zhang Y, Ling F. MAPKAPK2, a potential dynamic network biomarker of α-synuclein prior to its aggregation in PD patients. NPJ Parkinsons Dis 2023; 9:41. [PMID: 36927756 PMCID: PMC10020541 DOI: 10.1038/s41531-023-00479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
One of the important pathological features of Parkinson's disease (PD) is the pathological aggregation of α-synuclein (α-Syn) in the substantia nigra. Preventing the aggregation of α-Syn has become a potential strategy for treating PD. However, the molecular mechanism of α-Syn aggregation is unclear. In this study, using the dynamic network biomarker (DNB) method, we first identified the critical time point when α-Syn undergoes pathological aggregation based on a SH-SY5Y cell model and found that DNB genes encode transcription factors that regulated target genes that were differentially expressed. Interestingly, we found that these DNB genes and their neighbouring genes were significantly enriched in the cellular senescence pathway and thus proposed that the DNB genes HSF1 and MAPKAPK2 regulate the expression of the neighbouring gene SERPINE1. Notably, in Gene Expression Omnibus (GEO) data obtained from substantia nigra, prefrontal cortex and peripheral blood samples, the expression level of MAPKAPK2 was significantly higher in PD patients than in healthy people, suggesting that MAPKAPK2 has potential as an early diagnostic biomarker of diseases related to pathological aggregation of α-Syn, such as PD. These findings provide new insights into the mechanisms underlying the pathological aggregation of α-Syn.
Collapse
Affiliation(s)
- Zhenggang Zhong
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiabao Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiayuan Zhong
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China
| | - Yilin Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiaqi Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baowen Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yabin Jin
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, China
| | - Wei Luo
- The First People's Hospital of Foshan, Sun Yat-sen University, Foshan, China.
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Fei Ling
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Xiao B, Tan EK. Immunotherapy trials in Parkinson's disease: challenges. J Transl Med 2023; 21:178. [PMID: 36879300 PMCID: PMC9987107 DOI: 10.1186/s12967-023-04012-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/18/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore. .,Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
28
|
Becerra-Calixto A, Mukherjee A, Ramirez S, Sepulveda S, Sinha T, Al-Lahham R, De Gregorio N, Gherardelli C, Soto C. Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson's Disease Patient. Cells 2023; 12:cells12040625. [PMID: 36831291 PMCID: PMC9954141 DOI: 10.3390/cells12040625] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Progressive accumulation of α-Synuclein (αSyn) in Lewy bodies (LBs) and loss of dopaminergic (DA) neurons are the hallmark pathological features of Parkinson's disease (PD). Although currently available in vitro and in vivo models have provided crucial information about PD pathogenesis, the mechanistic link between the progressive accumulation of αSyn into LBs and the loss of DA neurons is still unclear. To address this, it is critical to model LB formation and DA neuron loss, the two key neuropathological aspects of PD, in a relevant in vitro system. In this study, we developed a human midbrain-like organoid (hMBO) model of PD. We demonstrated that hMBOs generated from induced pluripotent stem cells (hiPSCs), derived from a familial PD (fPD) patient carrying αSyn gene (SNCA) triplication accumulate pathological αSyn over time. These cytoplasmic inclusions spatially and morphologically resembled diverse stages of LB formation and were composed of key markers of LBs. Importantly, the progressive accumulation of pathological αSyn was paralleled by the loss of DA neurons and elevated apoptosis. The model developed in this study will complement the existing in vitro models of PD and will provide a unique platform to study the spatiotemporal events governing LB formation and their relation with neurodegeneration. Furthermore, this model will also be beneficial for in vitro screening and the development of therapeutic compounds.
Collapse
|
29
|
Rouleau N, Murugan NJ, Kaplan DL. Functional bioengineered models of the central nervous system. NATURE REVIEWS BIOENGINEERING 2023; 1:252-270. [PMID: 37064657 PMCID: PMC9903289 DOI: 10.1038/s44222-023-00027-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/10/2023]
Abstract
The functional complexity of the central nervous system (CNS) is unparalleled in living organisms. Its nested cells, circuits and networks encode memories, move bodies and generate experiences. Neural tissues can be engineered to assemble model systems that recapitulate essential features of the CNS and to investigate neurodevelopment, delineate pathophysiology, improve regeneration and accelerate drug discovery. In this Review, we discuss essential structure-function relationships of the CNS and examine materials and design considerations, including composition, scale, complexity and maturation, of cell biology-based and engineering-based CNS models. We highlight region-specific CNS models that can emulate functions of the cerebral cortex, hippocampus, spinal cord, neural-X interfaces and other regions, and investigate a range of applications for CNS models, including fundamental and clinical research. We conclude with an outlook to future possibilities of CNS models, highlighting the engineering challenges that remain to be overcome.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Nirosha J. Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, Ontario Canada
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
30
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
31
|
Spitz S, Ko E, Ertl P, Kamm RD. How Organ-on-a-Chip Technology Can Assist in Studying the Role of the Glymphatic System in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:2171. [PMID: 36768495 PMCID: PMC9916687 DOI: 10.3390/ijms24032171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The lack of a conventional lymphatic system that permeates throughout the entire human brain has encouraged the identification and study of alternative clearance routes within the cerebrum. In 2012, the concept of the glymphatic system, a perivascular network that fluidically connects the cerebrospinal fluid to the lymphatic vessels within the meninges via the interstitium, emerged. Although its exact mode of action has not yet been fully characterized, the key underlying processes that govern solute transport and waste clearance have been identified. This review briefly describes the perivascular glial-dependent clearance system and elucidates its fundamental role in neurodegenerative diseases. The current knowledge of the glymphatic system is based almost exclusively on animal-based measurements, but these face certain limitations inherent to in vivo experiments. Recent advances in organ-on-a-chip technology are discussed to demonstrate the technology's ability to provide alternative human-based in vitro research models. Herein, the specific focus is on how current microfluidic-based in vitro models of the neurovascular system and neurodegenerative diseases might be employed to (i) gain a deeper understanding of the role and function of the glymphatic system and (ii) to identify new opportunities for pharmacological intervention.
Collapse
Affiliation(s)
- Sarah Spitz
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eunkyung Ko
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
32
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
33
|
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM. Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from in vivo PET Imaging Studies. Curr Neuropharmacol 2023; 21:1241-1272. [PMID: 36797611 PMCID: PMC10286593 DOI: 10.2174/1570159x21666230216101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.
Collapse
Affiliation(s)
- Caroline Cristiano Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Henrique Binda
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David James Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle, Upon Tyne, UK
| | - Anne Marlene Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Song J, Bang S, Choi N, Kim HN. Brain organoid-on-a-chip: A next-generation human brain avatar for recapitulating human brain physiology and pathology. BIOMICROFLUIDICS 2022; 16:061301. [PMID: 36438549 PMCID: PMC9691285 DOI: 10.1063/5.0121476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases and neurodevelopmental disorders have become increasingly prevalent; however, the development of new pharmaceuticals to treat these diseases has lagged. Animal models have been extensively utilized to identify underlying mechanisms and to validate drug efficacies, but they possess inherent limitations including genetic heterogeneity with humans. To overcome these limitations, human cell-based in vitro brain models including brain-on-a-chip and brain organoids have been developed. Each technique has distinct advantages and disadvantages in terms of the mimicry of structure and microenvironment, but each technique could not fully mimic the structure and functional aspects of the brain tissue. Recently, a brain organoid-on-a-chip (BOoC) platform has emerged, which merges brain-on-a-chip and brain organoids. BOoC can potentially reflect the detailed structure of the brain tissue, vascular structure, and circulation of fluid. Hence, we summarize recent advances in BOoC as a human brain avatar and discuss future perspectives. BOoC platform can pave the way for mechanistic studies and the development of pharmaceuticals to treat brain diseases in future.
Collapse
Affiliation(s)
- Jiyoung Song
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seokyoung Bang
- Department of Medical Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Nakwon Choi
- Authors to whom correspondence should be addressed:; ; and
| | - Hong Nam Kim
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
35
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
36
|
Xiao B, Kuruvilla J, Tan EK. Mitophagy and reactive oxygen species interplay in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:135. [PMID: 36257956 PMCID: PMC9579202 DOI: 10.1038/s41531-022-00402-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Mitophagy impairment and oxidative stress are cardinal pathological hallmarks in Parkinson's disease (PD), a common age-related neurodegenerative condition. The specific interactions between mitophagy and reactive oxygen species (ROS) have attracted considerable attention even though their exact interplay in PD has not been fully elucidated. We highlight the interactions between ROS and mitophagy, with a focus on the signalling pathways downstream to ROS that triggers mitophagy and draw attention to potential therapeutic compounds that target these pathways in both experimental and clinical models. Identifying a combination of ROS inhibitors and mitophagy activators to provide a physiologic balance in this complex signalling pathways may lead to a more optimal outcome. Deciphering the exact temporal relationship between mitophagy and oxidative stress and their triggers early in the course of neurodegeneration can unravel mechanistic clues that potentially lead to the development of compounds for clinical drug trials focusing on prodromic PD or at-risk individuals.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Joshua Kuruvilla
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
37
|
Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells Int 2022; 2022:2150680. [PMID: 36061149 PMCID: PMC9436613 DOI: 10.1155/2022/2150680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical trials serve as the fundamental prerequisite for clinical therapy of human disease, which is primarily based on biomedical studies in animal models. Undoubtedly, animal models have made a significant contribution to gaining insight into the developmental and pathophysiological understanding of human diseases. However, none of the existing animal models could efficiently simulate the development of human organs and systems due to a lack of spatial information; the discrepancy in genetic, anatomic, and physiological basis between animals and humans limits detailed investigation. Therefore, the translational efficiency of the research outcomes in clinical applications was significantly weakened, especially for some complex, chronic, and intractable diseases. For example, the clinical trials for human fragile X syndrome (FXS) solely based on animal models have failed such as mGluR5 antagonists. To mimic the development of human organs more faithfully and efficiently translate in vitro biomedical studies to clinical trials, extensive attention to organoids derived from stem cells contributes to a deeper understanding of this research. The organoids are a miniaturized version of an organ generated in vitro, partially recapitulating key features of human organ development. As such, the organoids open a novel avenue for in vitro models of human disease, advantageous over the existing animal models. The invention of organoids has brought an innovative breakthrough in regeneration medicine. The organoid-derived human tissues or organs could potentially function as invaluable platforms for biomedical studies, pathological investigation of human diseases, and drug screening. Importantly, the study of regeneration medicine and the development of therapeutic strategies for human diseases could be conducted in a dish, facilitating in vitro analysis and experimentation. Thus far, the pilot breakthrough has been made in the generation of numerous types of organoids representing different human organs. Most of these human organoids have been employed for in vitro biomedical study and drug screening. However, the efficiency and quality of the organoids in recapitulating the development of human organs have been hindered by engineering and conceptual challenges. The efficiency and quality of the organoids are essential for downstream applications. In this article, we highlight the application in the modeling of human neurodegenerative diseases (NDDs) such as FXS, Alzheimer's disease (AD), Parkinson's disease (PD), and autistic spectrum disorders (ASD), and organoid-based drug screening. Additionally, challenges and weaknesses especially for limits of the brain organoid models in modeling late onset NDDs such as AD and PD., and future perspectives regarding human brain organoids are addressed.
Collapse
|
38
|
Bellucci A, Longhena F, Spillantini MG. The Role of Rab Proteins in Parkinson's Disease Synaptopathy. Biomedicines 2022; 10:biomedicines10081941. [PMID: 36009486 PMCID: PMC9406004 DOI: 10.3390/biomedicines10081941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/29/2022] Open
Abstract
In patients affected by Parkinson's disease (PD), the most common neurodegenerative movement disorder, the brain is characterized by the loss of dopaminergic neurons in the nigrostriatal system, leading to dyshomeostasis of the basal ganglia network activity that is linked to motility dysfunction. PD mostly arises as an age-associated sporadic disease, but several genetic forms also exist. Compelling evidence supports that synaptic damage and dysfunction characterize the very early phases of either sporadic or genetic forms of PD and that this early PD synaptopathy drives retrograde terminal-to-cell body degeneration, culminating in neuronal loss. The Ras-associated binding protein (Rab) family of small GTPases, which is involved in the maintenance of neuronal vesicular trafficking, synaptic architecture and function in the central nervous system, has recently emerged among the major players in PD synaptopathy. In this manuscript, we provide an overview of the main findings supporting the involvement of Rabs in either sporadic or genetic PD pathophysiology, and we highlight how Rab alterations participate in the onset of early synaptic damage and dysfunction.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Correspondence: ; Tel.: +39-0303-717-380
| | - Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, University of Cambridge, Clifford Albutt Building, Cambridge CB2 0AH, UK
| |
Collapse
|
39
|
Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell 2022; 185:2756-2769. [PMID: 35868278 DOI: 10.1016/j.cell.2022.06.051] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/06/2023]
Abstract
For decades, insight into fundamental principles of human biology and disease has been obtained primarily by experiments in animal models. While this has allowed researchers to understand many human biological processes in great detail, some developmental and disease mechanisms have proven difficult to study due to inherent species differences. The advent of organoid technology more than 10 years ago has established laboratory-grown organ tissues as an additional model system to recapitulate human-specific aspects of biology. The use of human 3D organoids, as well as other advances in single-cell technologies, has revealed unprecedented insights into human biology and disease mechanisms, especially those that distinguish humans from other species. This review highlights novel advances in organoid biology with a focus on how organoid technology has generated a better understanding of human-specific processes in development and disease.
Collapse
Affiliation(s)
- Nina S Corsini
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Juergen A Knoblich
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria; Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
40
|
Sahoo S, Padhy AA, Kumari V, Mishra P. Role of Ubiquitin-Proteasome and Autophagy-Lysosome Pathways in α-Synuclein Aggregate Clearance. Mol Neurobiol 2022; 59:5379-5407. [PMID: 35699874 DOI: 10.1007/s12035-022-02897-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Synuclein aggregation in neuronal cells is the primary underlying cause of synucleinopathies. Changes in gene expression patterns, structural modifications, and altered interactions with other cellular proteins often trigger aggregation of α-synuclein, which accumulates as oligomers or fibrils in Lewy bodies. Although fibrillar forms of α-synuclein are primarily considered pathological, recent studies have revealed that even the intermediate states of aggregates are neurotoxic, complicating the development of therapeutic interventions. Autophagy and ubiquitin-proteasome pathways play a significant role in maintaining the soluble levels of α-synuclein inside cells; however, the heterogeneous nature of the aggregates presents a significant bottleneck to its degradation by these cellular pathways. With studies focused on identifying the proteins that modulate synuclein aggregation and clearance, detailed mechanistic insights are emerging about the individual and synergistic effects of these degradation pathways in regulating soluble α-synuclein levels. In this article, we discuss the impact of α-synuclein aggregation on autophagy-lysosome and ubiquitin-proteasome pathways and the therapeutic strategies that target various aspects of synuclein aggregation or degradation via these pathways. Additionally, we also highlight the natural and synthetic compounds that have shown promise in alleviating the cellular damage caused due to synuclein aggregation.
Collapse
Affiliation(s)
- Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Varsha Kumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
41
|
Zhu W, Tao M, Hong Y, Wu S, Chu C, Zheng Z, Han X, Zhu Q, Xu M, Ewing AG, Guo X, Liu Y. Dysfunction of vesicular storage in young-onset Parkinson's patient-derived dopaminergic neurons and organoids revealed by single cell electrochemical cytometry. Chem Sci 2022; 13:6217-6223. [PMID: 35733907 PMCID: PMC9159080 DOI: 10.1039/d2sc00809b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Electrochemical cytometry based on nano-tip microelectrodes was used to quantify the vesicular storage at the single-cell level in human neurons and midbrain organoids which acted as disease models of young-onset Parkinson's disease (YOPD). Human dopaminergic (DA) neurons and midbrain organoids were derived from an induced pluripotent stem cell line from one YOPD patient. We show a significant deficiency in vesicular catecholamine storage and a slower pore forming process on the surface of the microelectrode in the DA neurons derived from the YOPD patient. The upregulation of α-synuclein in both neurons and organoids derived from the YOPD patient is associated with vesicular storage dysfunction, revealing a correlation between the pathogenesis of YOPD and vesicular chemical storage deficiency, a novel chemical insight into the potential pathology of YOPD. Notably, efficacy evaluation and drug testing were performed with our platform to demonstrate that both amantadine, a clinical drug for Parkinson's disease (PD), and phorbol 12-myristate 13-acetate, an attractive candidate, ameliorate the dysfunction of vesicular storage in DA neurons derived from the YOPD patient. Our platform offers promising avenues for new drug discovery for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Mengdan Tao
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China .,School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| | - Yuan Hong
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Shanshan Wu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Chu Chu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Zhilong Zheng
- Department of Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Xiao Han
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Qian Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Min Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg Gothenburg 412 96 Sweden
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University Nanjing 211166 China
| |
Collapse
|
42
|
Höglinger G, Schulte C, Jost WH, Storch A, Woitalla D, Krüger R, Falkenburger B, Brockmann K. GBA-associated PD: chances and obstacles for targeted treatment strategies. J Neural Transm (Vienna) 2022; 129:1219-1233. [PMID: 35639160 PMCID: PMC9463270 DOI: 10.1007/s00702-022-02511-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Given the clear role of GBA in the pathogenesis of Parkinson’s disease (PD) and its impact on phenotypical characteristics, this review provides an overview of the current knowledge of GBA-associated PD with a special focus on clinical trajectories and the underlying pathological mechanisms. Importantly, differences and characteristics based on mutation severity are recognized, and current as well as potential future treatment options are discussed. These findings will inform future strategies for patient stratification and cohort enrichment as well as suitable outcome measures when designing clinical trials.
Collapse
Affiliation(s)
- Günter Höglinger
- Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Claudia Schulte
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.,German Center for Neurodegenerative Disease (DZNE), Tuebingen, Germany
| | | | - Alexander Storch
- Department of Neurology, Rostock University, Gehlsheimer Str. 20, 18147, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef-Hospital, Katholische Kliniken Ruhrhalbinsel, Contilia Gruppe, Essen, Germany
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg.,Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Björn Falkenburger
- Department of Neurology, Faculty of Medicine, University Hospital Carl Gustav Carus and Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration and Hertie-Institute for Clinical Brain Research, Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany. .,German Center for Neurodegenerative Disease (DZNE), Tuebingen, Germany.
| |
Collapse
|
43
|
Tang XY, Wu S, Wang D, Chu C, Hong Y, Tao M, Hu H, Xu M, Guo X, Liu Y. Human organoids in basic research and clinical applications. Signal Transduct Target Ther 2022; 7:168. [PMID: 35610212 PMCID: PMC9127490 DOI: 10.1038/s41392-022-01024-9] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Organoids are three-dimensional (3D) miniature structures cultured in vitro produced from either human pluripotent stem cells (hPSCs) or adult stem cells (AdSCs) derived from healthy individuals or patients that recapitulate the cellular heterogeneity, structure, and functions of human organs. The advent of human 3D organoid systems is now possible to allow remarkably detailed observation of stem cell morphogens, maintenance and differentiation resemble primary tissues, enhancing the potential to study both human physiology and developmental stage. As they are similar to their original organs and carry human genetic information, organoids derived from patient hold great promise for biomedical research and preclinical drug testing and is currently used for personalized, regenerative medicine, gene repair and transplantation therapy. In recent decades, researchers have succeeded in generating various types of organoids mimicking in vivo organs. Herein, we provide an update on current in vitro differentiation technologies of brain, retinal, kidney, liver, lung, gastrointestinal, cardiac, vascularized and multi-lineage organoids, discuss the differences between PSC- and AdSC-derived organoids, summarize the potential applications of stem cell-derived organoids systems in the laboratory and clinic, and outline the current challenges for the application of organoids, which would deepen the understanding of mechanisms of human development and enhance further utility of organoids in basic research and clinical studies.
Collapse
Affiliation(s)
- Xiao-Yan Tang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Shanshan Wu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Da Wang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Chu Chu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Mengdan Tao
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China
| | - Xing Guo
- Department of Neurobiology, School of Basic Medical Sciences; Nanjing Medical University, Nanjing, China.
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy; State Key Laboratory of Reproductive Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine; Nanjing Medical University, Nanjing, China.
| |
Collapse
|
44
|
Shin MK, Bang JS, Lee JE, Tran HD, Park G, Lee DR, Jo J. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration. Int J Mol Sci 2022; 23:5108. [PMID: 35563499 PMCID: PMC9103168 DOI: 10.3390/ijms23095108] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
In vitro organoids derived from human pluripotent stem cells (hPSCs) have been developed as essential tools to study the underlying mechanisms of human development and diseases owing to their structural and physiological similarity to corresponding organs. Despite recent advances, there are a few methodologies for three-dimensional (3D) skeletal muscle differentiation, which focus on the terminal differentiation into myofibers and investigate the potential of modeling neuromuscular disorders and muscular dystrophies. However, these methodologies cannot recapitulate the developmental processes and lack regenerative capacity. In this study, we developed a new method to differentiate hPSCs into a 3D human skeletal muscle organoid (hSkMO). This organoid model could recapitulate the myogenesis process and possesses regenerative capacities of sustainable satellite cells (SCs), which are adult muscle stem/progenitor cells capable of self-renewal and myogenic differentiation. Our 3D model demonstrated myogenesis through the sequential occurrence of multiple myogenic cell types from SCs to myocytes. Notably, we detected quiescent, non-dividing SCs throughout the hSkMO differentiation in long-term culture. They were activated and differentiated to reconstitute muscle tissue upon damage. Thus, hSkMOs can recapitulate human skeletal muscle development and regeneration and may provide a new model for studying human skeletal muscles and related diseases.
Collapse
Affiliation(s)
- Min-Kyoung Shin
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Seongnam-si 13488, Korea; (M.-K.S.); (G.P.)
- Stem Cell and Organoid Research Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan; (J.S.B.); (H.-D.T.)
| | - Jin Seok Bang
- Stem Cell and Organoid Research Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan; (J.S.B.); (H.-D.T.)
| | - Jeoung Eun Lee
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, 335 Pankyo-ro, Seongnam-si 13488, Korea;
| | - Hoang-Dai Tran
- Stem Cell and Organoid Research Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan; (J.S.B.); (H.-D.T.)
| | - Genehong Park
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Seongnam-si 13488, Korea; (M.-K.S.); (G.P.)
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pankyo-ro, Seongnam-si 13488, Korea; (M.-K.S.); (G.P.)
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, 335 Pankyo-ro, Seongnam-si 13488, Korea;
| | - Junghyun Jo
- Stem Cell and Organoid Research Group, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan; (J.S.B.); (H.-D.T.)
- Department of Pharmacology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
| |
Collapse
|
45
|
Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiol Dis 2022; 166:105663. [DOI: 10.1016/j.nbd.2022.105663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
|
46
|
GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022; 11:cells11081261. [PMID: 35455941 PMCID: PMC9029385 DOI: 10.3390/cells11081261] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease (PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset (AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dysfunction, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein. This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of glycosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses the pathways associated with GBA-PD and highlights potential treatments which may act to target GCase and prevent neurodegeneration.
Collapse
|
47
|
Abstract
Three-dimensional cultures of human neural tissue/organlike structures in vitro can be achieved by mimicking the developmental processes occurring in vivo. Rapid progress in the field of neural organoids has fueled the hope (and hype) for improved understanding of brain development and functions, modeling of neural diseases, discovery of new drugs, and supply of surrogate sources of transplantation. In this short review, we summarize the state-of-the-art applications of this fascinating tool in various research fields and discuss the reality of the technique hoping that the current limitations will soon be overcome by the efforts of ingenious researchers.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea
| | - Woong Sun
- Department of Anatomy, Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
48
|
Spathopoulou A, Edenhofer F, Fellner L. Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Front Neurol 2022; 12:786835. [PMID: 35145469 PMCID: PMC8821105 DOI: 10.3389/fneur.2021.786835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterized by motor and non-motor symptoms. To date, no specific treatment to halt disease progression is available, only medication to alleviate symptoms can be prescribed. The main pathological hallmark of PD is the development of neuronal inclusions, positive for α-synuclein (α-syn), which are termed Lewy bodies (LBs) or Lewy neurites. However, the cause of the inclusion formation and the loss of neurons remain largely elusive. Various genetic determinants were reported to be involved in PD etiology, including SNCA, DJ-1, PRKN, PINK1, LRRK2, and GBA. Comprehensive insights into pathophysiology of PD critically depend on appropriate models. However, conventional model organisms fall short to faithfully recapitulate some features of this complex disease and as a matter-of-fact access to physiological tissue is limiting. The development of disease models replicating PD that are close to human physiology and dynamic enough to analyze the underlying molecular mechanisms of disease initiation and progression, as well as the generation of new treatment options, is an important and overdue step. Recently, the establishment of induced pluripotent stem cell (iPSC)-derived neural models, particularly from genetic PD-variants, developed into a promising strategy to investigate the molecular mechanisms regarding formation of inclusions and neurodegeneration. As these iPSC-derived neurons can be generated from accessible biopsied samples of PD patients, they carry pathological alterations and enable the possibility to analyze the differences compared to healthy neurons. This review focuses on iPSC models carrying genetic PD-variants of α-syn that will be especially helpful in elucidating the pathophysiological mechanisms of PD. Furthermore, we discuss how iPSC models can be instrumental in identifying cellular targets, potentially leading to the development of new therapeutic treatments. We will outline the enormous potential, but also discuss the limitations of iPSC-based α-syn models.
Collapse
|
49
|
Al-Azzawi ZAM, Arfaie S, Gan-Or Z. GBA1 and The Immune System: A Potential Role in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2022; 12:S53-S64. [PMID: 36057834 PMCID: PMC9535551 DOI: 10.3233/jpd-223423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is clear that the immune system and inflammation have a role in Parkinson's disease (PD), including sporadic PD and some genetic forms such as LRRK2-associated PD. One of the most important genes associated with PD is GBA1, as variants in this gene are found in 5-20% of PD patients in different populations worldwide. Biallelic variants in GBA1 may cause Gaucher disease, a lysosomal storage disorder with involvement of the immune system, and other lines of evidence link GBA1 to the immune system and inflammation. In this review, we discuss these different pieces of evidence and whether the interplay between GBA1 and the immune system may have a role in PD.
Collapse
Affiliation(s)
- Zaid A M Al-Azzawi
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Saman Arfaie
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- The Neuro - Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|