1
|
Dong L, Zhou R, Zhou J, Liu K, Jin C, Wang J, Xue C, Tian M, Zhang H, Zhong Y. Positron emission tomography molecular imaging for pathological visualization in multiple system atrophy. Neurobiol Dis 2025; 206:106828. [PMID: 39900304 DOI: 10.1016/j.nbd.2025.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Multiple system atrophy (MSA) is a complex, heterogeneous neurodegenerative disorder characterized by a multifaceted pathogenesis. Its key pathological hallmark is the abnormal aggregation of α-synuclein, which triggers neuroinflammation, disrupts both dopaminergic and non-dopaminergic systems, and results in metabolic abnormalities in the brain. Positron emission tomography (PET) is a non-invasive technique that enables the visualization, characterization, and quantification of these pathological processes from diverse perspectives using radiolabeled agents. PET imaging of molecular events provides valuable insights into the underlying pathomechanisms of MSA and holds significant promise for the development of imaging biomarkers, which could greatly improve disease assessment and management. In this review, we focused on the pathological mechanisms of MSA, summarized relevant targets and radiopharmaceuticals, and discussed the clinical applications and future perspectives of PET molecular imaging in MSA.
Collapse
Affiliation(s)
- La Dong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Ke Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chenxi Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Chen J, Volkmann J, Ip CW. A framework for translational therapy development in deep brain stimulation. NPJ Parkinsons Dis 2024; 10:216. [PMID: 39516465 PMCID: PMC11549317 DOI: 10.1038/s41531-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for motor disorders like Parkinson's disease, but its mechanisms and effects on neurons and networks are not fully understood, limiting research-driven progress. This review presents a framework that combines neurophysiological insights and translational research to enhance DBS therapy, emphasizing biomarkers, device technology, and symptom-specific neuromodulation. It also examines the role of animal research in improving DBS, while acknowledging challenges in clinical translation.
Collapse
Affiliation(s)
- Jiazhi Chen
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| |
Collapse
|
3
|
Endepols H, Apetz N, Vieth L, Lesser C, Schulte-Holtey L, Neumaier B, Drzezga A. Cerebellar Metabolic Connectivity during Treadmill Walking before and after Unilateral Dopamine Depletion in Rats. Int J Mol Sci 2024; 25:8617. [PMID: 39201305 PMCID: PMC11354914 DOI: 10.3390/ijms25168617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Compensatory changes in brain connectivity keep motor symptoms mild in prodromal Parkinson's disease. Studying compensation in patients is hampered by the steady progression of the disease and a lack of individual baseline controls. Furthermore, combining fMRI with walking is intricate. We therefore used a seed-based metabolic connectivity analysis based on 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake in a unilateral 6-OHDA rat model. At baseline and in the chronic phase 6-7 months after lesion, rats received an intraperitoneal injection of [18F]FDG and spent 50 min walking on a horizontal treadmill, followed by a brain PET-scan under anesthesia. High activity was found in the cerebellar anterior vermis in both conditions. At baseline, the anterior vermis showed hardly any stable connections to the rest of the brain. The (future) ipsilesional cerebellar hemisphere was not particularly active during walking but was extensively connected to many brain areas. After unilateral dopamine depletion, rats still walked normally without obvious impairments. The ipsilesional cerebellar hemisphere increased its activity, but narrowed its connections down to the vestibulocerebellum, probably aiding lateral stability. The anterior vermis established a network involving the motor cortex, hippocampus and thalamus. Adding those regions to the vermis network of (previously) automatic control of locomotion suggests that after unilateral dopamine depletion considerable conscious and cognitive effort has to be provided to achieve stable walking.
Collapse
Affiliation(s)
- Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Nadine Apetz
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Lukas Vieth
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Christoph Lesser
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Léon Schulte-Holtey
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany (L.V.)
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Molecular Organization of the Brain (INM-2), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
4
|
Uenishi E, Seino Y, Nakashima A, Kato K, Kato M, Nagasaki H, Ishikawa K, Izumoto T, Yamamoto M, Takahashi Y, Sugimura Y, Oiso Y, Tsunekawa S. A novel mechanism of idiopathic orthostatic hypotension and hypocatecholaminemia due to autoimmunity against aromatic l-Amino acid decarboxylase. Biochem Biophys Res Commun 2024; 714:149940. [PMID: 38677008 DOI: 10.1016/j.bbrc.2024.149940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Orthostatic hypotension (OH) is a common condition. Many potential etiologies of OH have been identified, but in clinical practice the underlying cause of OH is often unknown. In the present study, we identified a novel and extraordinary etiology of OH. We describe a first case of acquired severe OH with syncope, and the female patient had extremely low levels of catecholamines and serotonin in plasma, urine and cerebrospinal fluid (CSF). Her clinical and biochemical evidence showed a deficiency of the enzyme aromatic l-amino acid decarboxylase (AADC), which converts l-DOPA to dopamine, and 5-hydroxytryptophan to serotonin, respectively. The consequence of pharmacologic stimulation of catecholaminergic nerves and radionuclide examination revealed her catecholaminergic nerves denervation. Moreover, we found that the patient's serum showed presence of autoantibodies against AADC, and that isolated peripheral blood mononuclear cells (PBMCs) from the patient showed cytokine-induced toxicity against AADC. These observations suggest that her autoimmunity against AADC is highly likely to cause toxicity to adrenal medulla and catecholaminergic nerves which contain AADC, resulting in hypocatecholaminemia and severe OH. Administration of vitamin B6, an essential cofactor of AADC, enhanced her residual AADC activity and drastically improved her symptoms. Our data thus provide a new insight into pathogenesis and pathophysiology of OH.
Collapse
Affiliation(s)
- Eita Uenishi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Uenishi Diabetes and Thyroid Clinic, Komaki, 485-0044, Japan
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Akira Nakashima
- Department of Physiology I, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Katsuhiko Kato
- Functional Medical Imaging, Biomedical Imaging Sciences, Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hiroshi Nagasaki
- Department of Physiology I, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Kota Ishikawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takako Izumoto
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Oral and Maxillofacial Surgery/ Protective Care for Masticatory Disorders, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan; Department of Diabetes and Endocrinology, Nara Medical University, Nara, 634-8522, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Endocrinology, Diabetes and Metabolism, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shin Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, 480-1195, Japan.
| |
Collapse
|
5
|
Shan Q, Tian Y, Chen H, Lin X, Tian Y. Reduction in the activity of VTA/SNc dopaminergic neurons underlies aging-related decline in novelty seeking. Commun Biol 2023; 6:1224. [PMID: 38042964 PMCID: PMC10693597 DOI: 10.1038/s42003-023-05571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/10/2023] [Indexed: 12/04/2023] Open
Abstract
Curiosity, or novelty seeking, is a fundamental mechanism motivating animals to explore and exploit environments to improve survival, and is also positively associated with cognitive, intrapersonal and interpersonal well-being in humans. However, curiosity declines as humans age, and the decline even positively predicts the extent of cognitive decline in Alzheimer's disease patients. Therefore, determining the underlying mechanism, which is currently unknown, is an urgent task for the present aging society that is growing at an unprecedented rate. This study finds that seeking behaviors for both social and inanimate novelties are compromised in aged mice, suggesting that the aging-related decline in curiosity and novelty-seeking is a biological process. This study further identifies an aging-related reduction in the activity (manifesting as a reduction in spontaneous firing) of dopaminergic neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Finally, this study establishes that this reduction in activity causally underlies the aging-related decline in novelty-seeking behaviors. This study potentially provides an interventional strategy for maintaining high curiosity in the aged population, i.e., compensating for the reduced activity of VTA/SNc dopaminergic neurons, enabling the aged population to cope more smoothly with the present growing aging society, physically, cognitively and socioeconomically.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Ye Tian
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Hang Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Xiaoli Lin
- Laboratory for Synaptic Plasticity, Shantou University Medical College, 515041, Shantou, Guangdong, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, 300071, Tianjin, China
| |
Collapse
|
6
|
Cogswell PM, Fan AP. Multimodal comparisons of QSM and PET in neurodegeneration and aging. Neuroimage 2023; 273:120068. [PMID: 37003447 PMCID: PMC10947478 DOI: 10.1016/j.neuroimage.2023.120068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Audrey P Fan
- Department of Biomedical Engineering and Department of Neurology, University of California, Davis, 1590 Drew Avenue, Davis, CA 95618, USA
| |
Collapse
|
7
|
Morley V, Dolt KS, Alcaide-Corral CJ, Walton T, Lucatelli C, Mashimo T, Tavares AAS, Kunath T. In vivo18F-DOPA PET imaging identifies a dopaminergic deficit in a rat model with a G51D α-synuclein mutation. Front Neurosci 2023; 17:1095761. [PMID: 37292159 PMCID: PMC10244711 DOI: 10.3389/fnins.2023.1095761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition with several major hallmarks, including loss of substantia nigra neurons, reduction in striatal dopaminergic function, and formation of α-synuclein-rich Lewy bodies. Mutations in SNCA, encoding for α-synuclein, are a known cause of familial PD, and the G51D mutation causes a particularly aggressive form of the condition. CRISPR/Cas9 technology was used to introduce the G51D mutation into the endogenous rat SNCA gene. SNCAG51D/+ and SNCAG51D/G51D rats were born in Mendelian ratios and did not exhibit any severe behavourial defects. L-3,4-dihydroxy-6-18F-fluorophenylalanine (18F-DOPA) positron emission tomography (PET) imaging was used to investigate this novel rat model. Wild-type (WT), SNCAG51D/+ and SNCAG51D/G51D rats were characterized over the course of ageing (5, 11, and 16 months old) using 18F-DOPA PET imaging and kinetic modelling. We measured the influx rate constant (Ki) and effective distribution volume ratio (EDVR) of 18F-DOPA in the striatum relative to the cerebellum in WT, SNCAG51D/+ and SNCAG51D/G51D rats. A significant reduction in EDVR was observed in SNCAG51D/G51D rats at 16 months of age indicative of increased dopamine turnover. Furthermore, we observed a significant asymmetry in EDVR between the left and right striatum in aged SNCAG51D/G51D rats. The increased and asymmetric dopamine turnover observed in the striatum of aged SNCAG51D/G51D rats reflects one aspect of prodromal PD, and suggests the presence of compensatory mechanisms. SNCAG51D rats represent a novel genetic model of PD, and kinetic modelling of 18F-DOPA PET data has identified a highly relevant early disease phenotype.
Collapse
Affiliation(s)
- Victoria Morley
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Karamjit Singh Dolt
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos J. Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tashfeen Walton
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christophe Lucatelli
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Adriana A. S. Tavares
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Correlations between cerebrospinal fluid homovanillic acid and dopamine transporter SPECT in degenerative parkinsonian syndromes. J Neural Transm (Vienna) 2023; 130:513-520. [PMID: 36871130 PMCID: PMC10050014 DOI: 10.1007/s00702-023-02611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Both cerebrospinal fluid (CSF) homovanillic acid (HVA) and striatal dopamine transporter (DAT) binding on single-photon emission computed tomography (SPECT) reflect nigrostriatal dopaminergic function, but studies on the relationship between the two have been limited. It is also unknown whether the reported variance in striatal DAT binding among diseases reflects the pathophysiology or characteristics of the subjects. We included 70 patients with Parkinson's disease (PD), 12 with progressive supranuclear palsy (PSP), 12 with multiple system atrophy, six with corticobasal syndrome, and nine with Alzheimer's disease as disease control, who underwent both CSF analysis and 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-ioflupane) SPECT. We evaluated the correlation between CSF HVA concentration and the specific binding ratio (SBR) of striatal DAT binding. We also compared the SBR for each diagnosis, controlling for CSF HVA concentration. The correlations between the two were significant in patients with PD (r = 0.34, p = 0.004) and PSP (r = 0.77, p = 0.004). The mean SBR value was the lowest in patients with PSP and was significantly lower in patients with PSP than in those with PD (p = 0.037) after adjusting for CSF HVA concentration. Our study demonstrates that striatal DAT binding correlates with CSF HVA concentration in both PD and PSP, and striatal DAT reduction would be more advanced in PSP than in PD at an equivalent dopamine level. Striatal DAT binding may correlate with dopamine levels in the brain. The pathophysiology of each diagnosis may explain this difference.
Collapse
|
9
|
Gonzalez-Robles C, Weil RS, van Wamelen D, Bartlett M, Burnell M, Clarke CS, Hu MT, Huxford B, Jha A, Lambert C, Lawton M, Mills G, Noyce A, Piccini P, Pushparatnam K, Rochester L, Siu C, Williams-Gray CH, Zeissler ML, Zetterberg H, Carroll CB, Foltynie T, Schrag A. Outcome Measures for Disease-Modifying Trials in Parkinson's Disease: Consensus Paper by the EJS ACT-PD Multi-Arm Multi-Stage Trial Initiative. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1011-1033. [PMID: 37545260 PMCID: PMC10578294 DOI: 10.3233/jpd-230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Multi-arm, multi-stage (MAMS) platform trials can accelerate the identification of disease-modifying treatments for Parkinson's disease (PD) but there is no current consensus on the optimal outcome measures (OM) for this approach. OBJECTIVE To provide an up-to-date inventory of OM for disease-modifying PD trials, and a framework for future selection of OM for such trials. METHODS As part of the Edmond J Safra Accelerating Clinical Trials in Parkinson Disease (EJS ACT-PD) initiative, an expert group with Patient and Public Involvement and Engagement (PPIE) representatives' input reviewed and evaluated available evidence on OM for potential use in trials to delay progression of PD. Each OM was ranked based on aspects such as validity, sensitivity to change, participant burden and practicality for a multi-site trial. Review of evidence and expert opinion led to the present inventory. RESULTS An extensive inventory of OM was created, divided into: general, motor and non-motor scales, diaries and fluctuation questionnaires, cognitive, disability and health-related quality of life, capability, quantitative motor, wearable and digital, combined, resource use, imaging and wet biomarkers, and milestone-based. A framework for evaluation of OM is presented to update the inventory in the future. PPIE input highlighted the need for OM which reflect their experience of disease progression and are applicable to diverse populations and disease stages. CONCLUSION We present a range of OM, classified according to a transparent framework, to aid selection of OM for disease-modifying PD trials, whilst allowing for inclusion or re-classification of relevant OM as new evidence emerges.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Burnell
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jagtap S, Potdar C, Yadav R, Pal PK, Datta I. Dopaminergic Neurons Differentiated from LRRK2 I1371V-Induced Pluripotent Stem Cells Display a Lower Yield, α-Synuclein Pathology, and Functional Impairment. ACS Chem Neurosci 2022; 13:2632-2645. [PMID: 36006382 DOI: 10.1021/acschemneuro.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Being a large multidomain protein, LRRK2 has several confirmed pathological mutant variants for PD, and the incidence of these variants shows ethnicity biases. I1371V, a mutation in the GTPase domain, has been reported in East-Asian populations, but there are no studies reported on dopaminergic (DA) neurons differentiated from this variant. The aim here was to assess the yield, function, and α-synuclein pathology of DA neurons differentiated from LRRK2 I1371V iPSCs. FACS analysis of neural progenitors (NPs) showed a comparable immunopositive population of cells for neural and glial progenitor markers nestin and S100β; however, NPs from I1371V iPSCs showed lower clonogenic and proliferative capacities than healthy control NPs as determined by the neurosphere assay and Ki67 expression. Floor plate cells obtained from I1371V NPs primed with FGF8 showed distinctly lower immunopositivity for FOXA2 and CLIC5 than healthy control FPCs and similar DOC2B expression. On SHH addition, a similar mature neuronal population was obtained from both groups; however, the yield of TH-immunopositive cells was significantly lower in I1371V, with lower expression of mature DA neuronal markers En1, Nurr1, and DAT. Vesicular dopamine release and intracellular Ca2+ response with KCl stimulation were lower in I1371V DA neurons, along with a significantly reduced expression of resting vesicle marker VMAT2. A concurrently lower expression of PSD95/Syn-I immunopositive puncta was observed in I1371V differentiated cells. Further, higher phosphorylation of α-synuclein and aggregation of oligomeric α-synuclein in I1371V DA neurons were observed. Our data demonstrated conclusively for the first time that mutations in the I1371V allele of LRRK2 showed developmental deficit from the FPC stage and generated a lower yield/number of TH-immunopositive neurons with impairment in their function and synapse density along with increased α-synuclein pathology.
Collapse
Affiliation(s)
- Soham Jagtap
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Chandrakanta Potdar
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| |
Collapse
|
11
|
Comte V, Schmutz H, Chardin D, Orlhac F, Darcourt J, Humbert O. Development and validation of a radiomic model for the diagnosis of dopaminergic denervation on [18F]FDOPA PET/CT. Eur J Nucl Med Mol Imaging 2022; 49:3787-3796. [PMID: 35567626 PMCID: PMC9399031 DOI: 10.1007/s00259-022-05816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022]
Abstract
Purpose FDOPA PET shows good performance for the diagnosis of striatal dopaminergic denervation, making it a valuable tool for the differential diagnosis of Parkinsonism. Textural features are image biomarkers that could potentially improve the early diagnosis and monitoring of neurodegenerative parkinsonian syndromes. We explored the performances of textural features for binary classification of FDOPA scans. Methods We used two FDOPA PET datasets: 443 scans for feature selection, and 100 scans from a different PET/CT system for model testing. Scans were labelled according to expert interpretation (dopaminergic denervation versus no dopaminergic denervation). We built LASSO logistic regression models using 43 biomarkers including 32 textural features. Clinical data were also collected using a shortened UPDRS scale. Results The model built from the clinical data alone had a mean area under the receiver operating characteristics (AUROC) of 63.91. Conventional imaging features reached a maximum score of 93.47 but the addition of textural features significantly improved the AUROC to 95.73 (p < 0.001), and 96.10 (p < 0.001) when limiting the model to the top three features: GLCM_Correlation, Skewness and Compacity. Testing the model on the external dataset yielded an AUROC of 96.00, with 95% sensitivity and 97% specificity. GLCM_Correlation was one of the most independent features on correlation analysis, and systematically had the heaviest weight in the classification model. Conclusion A simple model with three radiomic features can identify pathologic FDOPA PET scans with excellent sensitivity and specificity. Textural features show promise for the diagnosis of parkinsonian syndromes. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05816-7.
Collapse
Affiliation(s)
- Victor Comte
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.
| | - Hugo Schmutz
- Laboratoire TIRO UMR E4320, Université Côte d'Azur, Nice, France
| | - David Chardin
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.,Laboratoire TIRO UMR E4320, Université Côte d'Azur, Nice, France
| | - Fanny Orlhac
- Laboratoire d'Imagerie Translationnelle en Oncologie (LITO) U1288, Institut Curie, Inserm, Université Paris-Saclay, Orsay, France
| | - Jacques Darcourt
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.,Laboratoire TIRO UMR E4320, Université Côte d'Azur, Nice, France
| | - Olivier Humbert
- Department of Nuclear Medicine, Centre Antoine Lacassagne, Université Côte d'Azur, Nice, France.,Laboratoire TIRO UMR E4320, Université Côte d'Azur, Nice, France
| |
Collapse
|
12
|
Dhawan V, Niethammer MH, Lesser ML, Pappas KN, Hellman M, Fitzpatrick TM, Bjelke D, Singh J, Quatarolo LM, Choi YY, Oh A, Eidelberg D, Chaly T. Prospective F-18 FDOPA PET Imaging Study in Human PD. Nucl Med Mol Imaging 2022; 56:147-157. [DOI: 10.1007/s13139-022-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
|
13
|
Oldehinkel M, Llera A, Faber M, Huertas I, Buitelaar JK, Bloem BR, Marquand AF, Helmich R, Haak KV, Beckmann CF. Mapping dopaminergic projections in the human brain with resting-state fMRI. eLife 2022; 11:71846. [PMID: 35113016 PMCID: PMC8843090 DOI: 10.7554/elife.71846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The striatum receives dense dopaminergic projections, making it a key region of the dopaminergic system. Its dysfunction has been implicated in various conditions including Parkinson’s disease (PD) and substance use disorder. However, the investigation of dopamine-specific functioning in humans is problematic as current MRI approaches are unable to differentiate between dopaminergic and other projections. Here, we demonstrate that ‘connectopic mapping’ – a novel approach for characterizing fine-grained, overlapping modes of functional connectivity – can be used to map dopaminergic projections in striatum. We applied connectopic mapping to resting-state functional MRI data of the Human Connectome Project (population cohort; N = 839) and selected the second-order striatal connectivity mode for further analyses. We first validated its specificity to dopaminergic projections by demonstrating a high spatial correlation (r = 0.884) with dopamine transporter availability – a marker of dopaminergic projections – derived from DaT SPECT scans of 209 healthy controls. Next, we obtained the subject-specific second-order modes from 20 controls and 39 PD patients scanned under placebo and under dopamine replacement therapy (L-DOPA), and show that our proposed dopaminergic marker tracks PD diagnosis, symptom severity, and sensitivity to L-DOPA. Finally, across 30 daily alcohol users and 38 daily smokers, we establish strong associations with self-reported alcohol and nicotine use. Our findings provide evidence that the second-order mode of functional connectivity in striatum maps onto dopaminergic projections, tracks inter-individual differences in PD symptom severity and L-DOPA sensitivity, and exhibits strong associations with levels of nicotine and alcohol use, thereby offering a new biomarker for dopamine-related (dys)function in the human brain.
Collapse
Affiliation(s)
- Marianne Oldehinkel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Myrthe Faber
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ismael Huertas
- Institute of Biomedicine of Seville (IBiS), Seville, Spain
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rick Helmich
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
14
|
Brücke T, Brücke C. Dopamine transporter (DAT) imaging in Parkinson's disease and related disorders. J Neural Transm (Vienna) 2021; 129:581-594. [PMID: 34910248 DOI: 10.1007/s00702-021-02452-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
This review gives an insight into the beginnings of dopamine transporter (DAT) imaging in the early 1990s, focussing on single photon emission tomography (SPECT). The development of the method and its consolidation as a now widely used clinical tool is described. The role of DAT-SPECT in the diagnosis and differential diagnosis of PD, atypical parkinsonian syndromes and several other different neurological disorders is reviewed. Finally the clinical research using DAT-SPECT as a biomarker for the progression of PD, for the detection of a preclinical dopaminergic lesion and its correlation with neuropathological findings is outlined.
Collapse
Affiliation(s)
- Thomas Brücke
- Ottakring Clinic, Neurological Department, Verein zur Förderung der Wissenschaftlichen Forschung am Wilhelminenspital (FWFW), Montleartstrasse 37, 1160, Vienna, Austria.
- , Linke Wienzeile 12, 1060, Vienna, Austria.
| | - Christof Brücke
- Department for Neurology, Medical University Vienna, Währingergürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
15
|
The effect and safety of levodopa alone versus levodopa sparing therapy for early Parkinson's disease: a systematic review and meta-analysis. J Neurol 2021; 269:1834-1850. [PMID: 34652505 DOI: 10.1007/s00415-021-10830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The best choice between levodopa alone and levodopa sparing medications for early Parkinson's disease (PD) remains controversial. We aimed to evaluate the effect and safety of levodopa alone and levodopa sparing therapy in symptom relief, neuroimage results and complications. METHODS A systematic search was performed in PubMed, The Cochrane Library, EMBASE, and Web of Science for randomized controlled trials of early PD patients comparing levodopa-alone with levodopa-sparing therapy. The mean difference (MD) and the risk ratio (RR) were meta-analyzed. RESULTS Twenty-three articles with 4913 patients were included. Significantly greater benefit was detected for the levodopa group in the changes of Unified Parkinson's Disease Rating Scale part II (p < 0.00001), III (p < 0.00001), and total (p < 0.00001) scores, and the between-group MD in part III score increased over time. The loss of the radioligands uptake in levodopa-alone group was also increasingly greater over time. Patients treated with levodopa alone were at higher risk for wearing-off (p < 0.001) and dyskinesia (p < 0.001), but the RR for dyskinesia between the two groups decreased after 2 years of follow-up. CONCLUSION Levodopa-alone therapy might be superior in motor symptom relief than levodopa-sparing therapy for early PD patients, and the motor advantage of levodopa-alone might grow over time. Sparing therapy might be associated with less risk of wearing-off and dyskinesia, but the events between the two groups might not be different in the long run. Overall, levodopa alone therapy might bring more net benefit to early PD patients compared with levodopa sparing strategies. The clinical and imaging findings are conflicting, which requires further investigation.
Collapse
|
16
|
Parkinson's disease multimodal imaging: F-DOPA PET, neuromelanin-sensitive and quantitative iron-sensitive MRI. NPJ Parkinsons Dis 2021; 7:57. [PMID: 34238927 PMCID: PMC8266835 DOI: 10.1038/s41531-021-00199-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative synucleinopathy characterized by the degeneration of neuromelanin (NM)-containing dopaminergic neurons and deposition of iron in the substantia nigra (SN). How regional NM loss and iron accumulation within specific areas of SN relate to nigro-striatal dysfunction needs to be clarified. We measured dopaminergic function in pre- and postcommissural putamen by [18F]DOPA PET in 23 Parkinson's disease patients and 23 healthy control (HC) participants in whom NM content and iron load were assessed in medial and lateral SN, respectively, by NM-sensitive and quantitative R2* MRI. Data analysis consisted of voxelwise regressions testing the group effect and its interaction with NM or iron signals. In PD patients, R2* was selectively increased in left lateral SN as compared to healthy participants, suggesting a local accumulation of iron in Parkinson's disease. By contrast, NM signal differed between PD and HC, without specific regional specificity within SN. Dopaminergic function in posterior putamen decreased as R2* increased in lateral SN, indicating that dopaminergic function impairment progresses with iron accumulation in the SN. Dopaminergic function was also positively correlated with NM signal in lateral SN, indicating that dopaminergic function impairment progresses with depigmentation in the SN. A complex relationship was detected between R2* in the lateral SN and NM signal in the medial SN. In conclusion, multimodal imaging reveals regionally specific relationships between iron accumulation and depigmentation within the SN of Parkinson's disease and provides in vivo insights in its neuropathology.
Collapse
|
17
|
Todisco M, Zangaglia R, Minafra B, Pisano P, Trifirò G, Bossert I, Pozzi NG, Brumberg J, Ceravolo R, Isaias IU, Fasano A, Pacchetti C. Clinical Outcome and Striatal Dopaminergic Function After Shunt Surgery in Patients With Idiopathic Normal Pressure Hydrocephalus. Neurology 2021; 96:e2861-e2873. [PMID: 33893195 DOI: 10.1212/wnl.0000000000012064] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/10/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine changes in clinical features and striatal dopamine reuptake transporter (DAT) density after shunt surgery in patients with idiopathic normal pressure hydrocephalus (iNPH). METHODS Participants with probable iNPH were assessed at baseline by means of clinical rating scales, brain MRI, and SPECT with [123I]-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT). Levodopa responsiveness was also evaluated. Patients who did or did not undergo lumboperitoneal shunt were clinically followed up and repeated SPECT after 2 years. RESULTS We enrolled 115 patients with iNPH. Of 102 patients without significant levodopa response and no signs of atypical parkinsonism, 92 underwent FP-CIT SPECT (58 also at follow-up) and 59 underwent surgery. We identified a disequilibrium subtype (phenotype 1) and a locomotor subtype (phenotype 2) of higher-level gait disorder. Gait impairment correlated with caudate DAT density in both phenotypes, whereas parkinsonian signs correlated with putamen and caudate DAT binding in patients with phenotype 2, who showed more severe symptoms and lower striatal DAT density. Gait and caudate DAT binding improved in both phenotypes after surgery (p < 0.01). Parkinsonism and putamen DAT density improved in shunted patients with phenotype 2 (p < 0.001). Conversely, gait, parkinsonian signs, and striatal DAT binding worsened in patients who declined surgery (p < 0.01). CONCLUSIONS This prospective interventional study highlights the pathophysiologic relevance of striatal dopaminergic dysfunction in the motor phenotypic expression of iNPH. Absence of levodopa responsiveness, shunt-responsive parkinsonism, and postsurgery improvement of striatal DAT density are findings that corroborate the notion of a reversible striatal dysfunction in a subset of patients with iNPH.
Collapse
Affiliation(s)
- Massimiliano Todisco
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Roberta Zangaglia
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Brigida Minafra
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Patrizia Pisano
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Giuseppe Trifirò
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Irene Bossert
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Nicoló Gabriele Pozzi
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Joachim Brumberg
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Roberto Ceravolo
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Ioannis Ugo Isaias
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Alfonso Fasano
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada
| | - Claudio Pacchetti
- From the Parkinson's Disease and Movement Disorders Unit (M.T., R.Z., B.M., N.G.P., C.P.), IRCCS Mondino Foundation; Department of Brain and Behavioral Sciences (M.T.), University of Pavia; Neurosurgery Unit (P.P.), IRCCS San Matteo Foundation; Nuclear Medicine Unit (G.T., I.B.), Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy; Neurology Department (N.G.P., I.U.I.), University Hospital and Julius Maximilian University of Würzburg; Nuclear Medicine Department (J.B.), University Hospital Würzburg, Germany; Unit of Neurology, Department of Clinical and Experimental Medicine (R.C.), University of Pisa, Italy; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic (A.F.), Toronto Western Hospital, University Health Network; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); and Center for Advancing Neurotechnological Innovation to Application (CRANIA) (A.F.), Toronto, Canada.
| |
Collapse
|
18
|
Merchant KM, Cedarbaum JM, Brundin P, Dave KD, Eberling J, Espay AJ, Hutten SJ, Javidnia M, Luthman J, Maetzler W, Menalled L, Reimer AN, Stoessl AJ, Weiner DM. A Proposed Roadmap for Parkinson's Disease Proof of Concept Clinical Trials Investigating Compounds Targeting Alpha-Synuclein. JOURNAL OF PARKINSONS DISEASE 2020; 9:31-61. [PMID: 30400107 PMCID: PMC6398545 DOI: 10.3233/jpd-181471] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The convergence of human molecular genetics and Lewy pathology of Parkinson's disease (PD) have led to a robust, clinical-stage pipeline of alpha-synuclein (α-syn)-targeted therapies that have the potential to slow or stop the progression of PD and other synucleinopathies. To facilitate the development of these and earlier stage investigational molecules, the Michael J. Fox Foundation for Parkinson's Research convened a group of leaders in the field of PD research from academia and industry, the Alpha-Synuclein Clinical Path Working Group. This group set out to develop recommendations on preclinical and clinical research that can de-risk the development of α-syn targeting therapies. This consensus white paper provides a translational framework, from the selection of animal models and associated end-points to decision-driving biomarkers as well as considerations for the design of clinical proof-of-concept studies. It also identifies current gaps in our biomarker toolkit and the status of the discovery and validation of α-syn-associated biomarkers that could help fill these gaps. Further, it highlights the importance of the emerging digital technology to supplement the capture and monitoring of clinical outcomes. Although the development of disease-modifying therapies targeting α-syn face profound challenges, we remain optimistic that meaningful strides will be made soon toward the identification and approval of disease-modifying therapeutics targeting α-syn.
Collapse
Affiliation(s)
- Kalpana M Merchant
- Vincere Biosciences, Inc., and Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Patrik Brundin
- Van Andel Research Institute, Center for Neurodegenerative Science, Grand Rapids, MI, USA
| | - Kuldip D Dave
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Jamie Eberling
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alberto J Espay
- UC Gardner Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Monica Javidnia
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Liliana Menalled
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Alyssa N Reimer
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | - A Jon Stoessl
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
19
|
Miyamoto M, Miyamoto T, Saitou J, Sato T. Longitudinal study of striatal aromatic l-amino acid decarboxylase activity in patients with idiopathic rapid eye movement sleep behavior disorder. Sleep Med 2020; 68:50-56. [PMID: 32028226 DOI: 10.1016/j.sleep.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
STUDY OBJECTIVES To determine if nigrostriatal dopaminergic system function, evaluated by aromatic l-amino acid decarboxylase (AADC) activity using 6-[18F]fluoro-meta-tyrosine brain positron emission tomography (FMT-PET) can accurately and efficiently identify idiopathic rapid-eye-movement behavior disorder (IRBD) individuals at risk for conversion to a clinical diagnosis of Parkinson's disease (PD) or dementia with Lewy bodies (DLB). METHODS We assessed prospectively striatal aromatic l-amino acid decarboxylase activity using FMT brain PET imaging in IRBD patients who were followed systematically every 1-3 months for 1-10 years. IRBD patients (n = 27) were enrolled in this prospective cohort study starting in 2009. Those who underwent follow-up scans between January 2011 and September 2014 (n = 24) were analyzed in the present study. RESULTS Of the 24 IRBD patients with baseline and follow-up FMT-PET scans, 11 (45.8%) developed PD (n = 6) or DLB (n = 5). Compared to IRBD patients who were still disease-free, those who developed PD (n = 5) or DLB with parkinsonism (n = 1) had significantly reduced bilateral putaminal FMT uptake during the follow-up. Furthermore, the rate of FMT decline between baseline and follow-up scans was higher in all converted patients, even for those with DLB without parkinsonism, than in IRBD patients who remained disease-free. CONCLUSIONS FMT-PET, which represents a dynamic change in AADC activity over time, may also be a useful predictor for the risk of conversion to PD or DLB over short-term clinical follow-up periods, or when testing neuroprotective and restorative strategies in the prodromal phases of PD or DLB.
Collapse
Affiliation(s)
- Masayuki Miyamoto
- Department of Neurology, Center of Sleep Medicine, Dokkyo Medical University, Japan
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Saitama Medical Center, Japan.
| | | | | |
Collapse
|
20
|
Zhao XM, Zhuang P, Li YJ, Zhang YQ, Li JY, Wang YP, Li JP. Asymmetry of Subthalamic Neuronal Firing Rate and Oscillatory Characteristics in Parkinson's Disease. Neuropsychiatr Dis Treat 2020; 16:313-323. [PMID: 32095073 PMCID: PMC6995290 DOI: 10.2147/ndt.s229513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/11/2020] [Indexed: 01/28/2023] Open
Abstract
PURPOSE The aim of this study was to compare the neuronal firing rate and oscillatory activity of the subthalamic nucleus (STN) between the more affected (MA) and the less affected (LA) hemispheres in Parkinson's disease (PD). PATIENTS AND METHODS We recorded and analyzed the intra-operative microelectrode recordings (MER) from the STN of 24 PD subjects. Lateralized Unified Parkinson's Disease Rating Scale (UPDRS) III sub-scores (item 20-26) were calculated. The STN corresponding to the MA side was designated as the MA STN while the other side as the LA STN. Single unit characteristics including interspike intervals were identified and spectral analyses were assessed. Further, the mean spontaneous firing rate (MSFR) of neurons was calculated. The correlations between clinical symptoms and neuronal activity were analyzed. RESULTS The firing rate in the MA and LA sides were 43.18 ± 0.74 Hz and 36.94 ± 1.32 Hz, respectively, with an increase of 16.9% in the MA group. The number of neurons that oscillated in the Tremor-Frequency Band (TFB), β-Frequency Band (βFB), and the non-oscillatory cells in the MA group were 43, 115, and 62 versus 78, 68, and 54 in the LA group, respectively. The proportions of the three types of neurons were different between both groups. The firing rate of the STN neurons and the UPDRS III sub-scores were positively correlated. Additionally, we observed a positive correlation between the percentage of βFB oscillatory neurons and bradykinesia score. CONCLUSION The firing rate of the STN in the MA hemisphere is higher than in the LA side, following disease progression and there seems to be an increase in firing rate. The βFB oscillatory neurons are at a larger proportion in the MA group while there were larger percentage of TFB oscillatory cells in the LA group. The proportion of βFB oscillatory neurons is selectively correlated with the severity of bradykinesia.
Collapse
Affiliation(s)
- Xue-Min Zhao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ping Zhuang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China.,Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, People's Republic of China.,Key Laboratory of Neurodegenerative Diseases (Capital Medical University), Ministry of Education, Beijing, People's Republic of China
| | - Yong-Jie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yu-Qing Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian-Yu Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yun-Peng Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ji-Ping Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
21
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|
22
|
Payne K, Walls B, Wojcieszek J. Approach to Assessment of Parkinson Disease with Emphasis on Genetic Testing. Med Clin North Am 2019; 103:1055-1075. [PMID: 31582004 DOI: 10.1016/j.mcna.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article presents a nongeneticist's guide to understanding the genetics of Parkinson disease (PD), including clinical diagnostic criteria, differential diagnoses, symptom management, when to suspect a hereditary factor, a summary of autosomal dominant and recessive PD genes, and proposed algorithm for genetic testing. There is increasing availability of genetic testing for PD but there are few recommendations on how these tests should be used in clinical practice. This article guides clinicians on the overall management of patients with PD, with emphasis on determining which patients should have genetic testing and how to interpret the results.
Collapse
Affiliation(s)
- Katelyn Payne
- Department of Neurology, Indiana University School of Medicine, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA.
| | - Brooke Walls
- Department of Neurology, Indiana University School of Medicine, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA
| | - Joanne Wojcieszek
- Indiana University School of Medicine, 355 West 16th Street, Suite 4700, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
The application of positron emission tomography (PET) imaging in CNS drug development. Brain Imaging Behav 2019; 13:354-365. [PMID: 30259405 DOI: 10.1007/s11682-018-9967-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As drug discovery and development in Neuroscience push beyond symptom management to disease modification, neuroimaging becomes a key area of translational research that enables measurements of the presence of drugs and downstream physiological consequences of drug action within the living brain. As such, neuroimaging can be used to help optimize decision-making processes throughout the various phases of drug development. Positron Emission Tomography (PET) is a functional imaging technique that allows the quantification and visualization of biochemical processes, by monitoring the time dependent distribution of molecules labelled with short-lived positron-emitting isotopes. This review focuses on the application of PET to support CNS drug development, particularly in the early clinical phases, by allowing us to measure tissue exposure, target engagement, and pharmacological activity. We will also discuss the application of PET imaging as tools to image the pathological hallmarks of disease and evaluate the potential disease-modifying effect of candidate drugs in slowing disease progression.
Collapse
|
24
|
Madrazo I, Kopyov O, Ávila-Rodríguez MA, Ostrosky F, Carrasco H, Kopyov A, Avendaño-Estrada A, Jiménez F, Magallón E, Zamorano C, González G, Valenzuela T, Carrillo R, Palma F, Rivera R, Franco-Bourland RE, Guízar-Sahagún G. Transplantation of Human Neural Progenitor Cells (NPC) into Putamina of Parkinsonian Patients: A Case Series Study, Safety and Efficacy Four Years after Surgery. Cell Transplant 2018; 28:269-285. [PMID: 30574805 PMCID: PMC6425108 DOI: 10.1177/0963689718820271] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with Parkinson’s disease (PD) suffer from motor and mental disturbances due to degeneration of dopaminergic and non-dopaminergic neuronal systems. Although they provide temporary symptom relief, current treatments fail to control motor and non-motor alterations or to arrest disease progression. Aiming to explore safety and possible motor and neuropsychological benefits of a novel strategy to improve the PD condition, a case series study was designed for brain grafting of human neural progenitor cells (NPCs) to a group of eight patients with moderate PD. A NPC line, expressing Oct-4 and Sox-2, was manufactured and characterized. Using stereotactic surgery, NPC suspensions were bilaterally injected into patients’ dorsal putamina. Cyclosporine A was given for 10 days prior to surgery and continued for 1 month thereafter. Neurological, neuropsychological, and brain imaging evaluations were performed pre-operatively, 1, 2, and 4 years post-surgery. Seven of eight patients have completed 4-year follow-up. The procedure proved to be safe, with no immune responses against the transplant, and no adverse effects. One year after cell grafting, all but one of the seven patients completing the study showed various degrees of motor improvement, and five of them showed better response to medication. PET imaging showed a trend toward enhanced midbrain dopaminergic activity. By their 4-year evaluation, improvements somewhat decreased but remained better than at baseline. Neuropsychological changes were minor, if at all. The intervention appears to be safe. At 4 years post-transplantation we report that undifferentiated NPCs can be delivered safely by stereotaxis to both putamina of patients with PD without causing adverse effects. In 6/7 patients in OFF condition improvement in UPDRS III was observed. PET functional scans suggest enhanced putaminal dopaminergic neurotransmission that could correlate with improved motor function, and better response to L-DOPA. Patients’ neuropsychological scores were unaffected by grafting. Trial Registration: Fetal derived stem cells for Parkinson’s disease https://doi.org/10.1186/ISRCTN39104513Reg#ISRCTN39104513
Collapse
Affiliation(s)
- I Madrazo
- 1 Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - O Kopyov
- 2 Celavie Biosciences LLC, Oxnard, CA, USA
| | - M A Ávila-Rodríguez
- 3 Unidad Radiofarmacia-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - F Ostrosky
- 4 Facultad de Psicología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - H Carrasco
- 5 Hospital Central Militar, Mexico City, Mexico
| | - A Kopyov
- 2 Celavie Biosciences LLC, Oxnard, CA, USA
| | - A Avendaño-Estrada
- 3 Unidad Radiofarmacia-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - F Jiménez
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - E Magallón
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - C Zamorano
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - G González
- 4 Facultad de Psicología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - T Valenzuela
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - R Carrillo
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - F Palma
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - R Rivera
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - R E Franco-Bourland
- 8 Department of Biochemistry, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - G Guízar-Sahagún
- 9 Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
25
|
de Natale ER, Wilson H, Pagano G, Politis M. Imaging Transplantation in Movement Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:213-263. [PMID: 30473196 DOI: 10.1016/bs.irn.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell replacement therapy with graft transplantation has been tested as a disease-modifying treatment in neurodegenerative diseases characterized by the damage of a predominant cell type, such as substantia nigra dopaminergic neurons in Parkinson's disease (PD) or striatal medium spiny projection neurons in Huntington's disease (HD). The results of these trials are mixed with success in preclinical and pilot open-label trials, which were not consistently reproduced in randomized controlled trials. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) molecular imaging and functional magnetic resonance imaging allow the graft survival, and its relationship with the host tissues to be studied in vivo. In PD, PET with [18F]DOPA showed that graft survival does not necessarily correlate with the clinical improvement and PD patients with worse outcome had lower binding in the ventral striatum and a high serotonin ([11C]DASB PET) to dopamine ([18F]DOPA PET) ratio in the grafted neurons. In HD, PET with [11C]PK11195 showed the graft survival and the clinical responses may be related to the reactive activation of the host inflammatory/immune system. Findings from these studies have been used to refine study protocols and patient selection in current clinical trials, which includes identifying suitable candidates for transplantation using imaging markers and employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
Affiliation(s)
- Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
26
|
Abstract
Positron emission tomography (PET) has revealed key insights into the pathophysiology of movement disorders. This paper will focus on how PET investigations of pathophysiology are particularly relevant to Parkinson disease, a neurodegenerative condition usually starting later in life marked by a varying combination of motor and nonmotor deficits. Various molecular imaging modalities help to determine what changes in brain herald the onset of pathology; can these changes be used to identify presymptomatic individuals who may be appropriate for to-be-developed treatments that may forestall onset of symptoms or slow disease progression; can PET act as a biomarker of disease progression; can molecular imaging help enrich homogenous cohorts for clinical studies; and what other pathophysiologic mechanisms relate to nonmotor manifestations. PET methods include measurements of regional cerebral glucose metabolism and blood flow, selected receptors, specific neurotransmitter systems, postsynaptic signal transducers, and abnormal protein deposition. We will review each of these methodologies and how they are relevant to important clinical issues pertaining to Parkinson disease.
Collapse
Affiliation(s)
- Baijayanta Maiti
- Department of Neurology, Washington University in St. Louis, St Louis, MO.
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St Louis, MO; Department of Radiology, Washington University in St. Louis, St Louis, MO; Department of Neuroscience, Washington University in St. Louis, St Louis, MO; Department of Physical Therapy, Washington University in St. Louis, St Louis, MO; Department of Occupational Therapy, Washington University in St. Louis, St Louis, MO
| |
Collapse
|
27
|
Prasad S, Saini J, Yadav R, Pal PK. Motor asymmetry and neuromelanin imaging: Concordance in Parkinson's disease. Parkinsonism Relat Disord 2018; 53:28-32. [DOI: 10.1016/j.parkreldis.2018.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 11/29/2022]
|
28
|
Lee Y, Kroemer NB, Oehme L, Beuthien-Baumann B, Goschke T, Smolka MN. Lower dopamine tone in the striatum is associated with higher body mass index. Eur Neuropsychopharmacol 2018; 28:719-731. [PMID: 29705023 DOI: 10.1016/j.euroneuro.2018.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 02/01/2023]
Abstract
Existing literature suggests that striatal dopamine (DA) tone may be altered in individuals with higher body mass index (BMI), but evidence accrued so far only offers an incomplete view of their relationship. Here, we characterized striatal DA tone using more comprehensive measures within a larger sample than previously reported. In addition, we explored if there was a relationship between striatal DA tone and disinhibited eating. 60 healthy participants underwent a 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine (18F-DOPA) positron emission tomography (PET) scan. Disinhibited eating was measured with the Three-Factor Eating Questionnaire on a baseline visit. Individual whole-brain PET parameter estimates, namely 18F-DOPA influx rate constant (kocc i.e. DA synthesis capacity), 18F-DA washout rate (kloss) and effective distribution volume ratio (EDVR= kocc/ kloss), were derived with a reversible-tracer graphical analysis approach. We then computed parameter estimates for three regions-of-interests (ROIs), namely the ventral striatum, putamen and caudate. Overweight/mildly obese individuals had lowered EDVR than normal weight individuals in all three ROIs. The most prominent of these associations, driven by lowered kocc (r = -.28, p = .035) and heightened kloss (r = .48, p < .001), was found in the ventral striatum (r = -.46, p < .001). Disinhibition was greater in higher-BMI individuals (r = .31, p = .015), but was unrelated to PET measures and did not explain the relationship between PET measures and BMI. In sum, our findings resonate with the notion that overweight/mildly obese individuals have lower striatal DA tone and suggest new avenues for investigating their underlying mechanisms.
Collapse
Affiliation(s)
- Ying Lee
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nils B Kroemer
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany; Department of General Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Liane Oehme
- Department of Nuclear Medicine, Technische Universität Dresden, Dresden, Germany
| | | | - Thomas Goschke
- Department of Psychology and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Riederer P, Jellinger KA, Kolber P, Hipp G, Sian-Hülsmann J, Krüger R. Lateralisation in Parkinson disease. Cell Tissue Res 2018; 373:297-312. [PMID: 29656343 DOI: 10.1007/s00441-018-2832-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/21/2018] [Indexed: 01/11/2023]
Abstract
Asymmetry of dopaminergic neurodegeneration and subsequent lateralisation of motor symptoms are distinctive features of Parkinson's disease compared to other forms of neurodegenerative or symptomatic parkinsonism. Even 200 years after the first description of the disease, the underlying causes for this striking clinicopathological feature are not yet fully understood. There is increasing evidence that lateralisation of disease is due to a complex interplay of hereditary and environmental factors that are reflected not only in the concept of dominant hemispheres and handedness but also in specific susceptibilities of neuronal subpopulations within the substantia nigra. As a consequence, not only the obvious lateralisation of motor symptoms occurs but also patterns of associated non-motor signs are defined, which include cognitive functions, sleep behaviour or olfaction. Better understanding of the mechanisms contributing to lateralisation of neurodegeneration and the resulting patterns of clinical phenotypes based on bilateral post-mortem brain analyses and clinical studies focusing on right/left hemispheric symptom origin will help to develop more targeted therapeutic approaches, taking into account subtypes of PD as a heterogeneous disorder.
Collapse
Affiliation(s)
- P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Psychiatry Department of Clinical Research, University of Southern Denmark, Odense University Hospital, J.B. Winsløws Vej 18, Indgang 220 A, DK-5000, Odense C, Denmark.
| | - K A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria
| | - P Kolber
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - G Hipp
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, PO Box 30197, Nairobi, 00100, Kenya
| | - R Krüger
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
30
|
Sescousse G, Ligneul R, van Holst RJ, Janssen LK, de Boer F, Janssen M, Berry AS, Jagust WJ, Cools R. Spontaneous eye blink rate and dopamine synthesis capacity: preliminary evidence for an absence of positive correlation. Eur J Neurosci 2018. [PMID: 29514419 PMCID: PMC5969266 DOI: 10.1111/ejn.13895] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dopamine is central to a number of cognitive functions and brain disorders. Given the cost of neurochemical imaging in humans, behavioural proxy measures of dopamine have gained in popularity in the past decade, such as spontaneous eye blink rate (sEBR). Increased sEBR is commonly associated with increased dopamine function based on pharmacological evidence and patient studies. Yet, this hypothesis has not been validated using in vivo measures of dopamine function in humans. To fill this gap, we measured sEBR and striatal dopamine synthesis capacity using [18F]DOPA PET in 20 participants (nine healthy individuals and 11 pathological gamblers). Our results, based on frequentist and Bayesian statistics, as well as region‐of‐interest and voxel‐wise analyses, argue against a positive relationship between sEBR and striatal dopamine synthesis capacity. They show that, if anything, the evidence is in favour of a negative relationship. These results, which complement findings from a recent study that failed to observe a relationship between sEBR and dopamine D2 receptor availability, suggest that caution and nuance are warranted when interpreting sEBR in terms of a proxy measure of striatal dopamine.
Collapse
Affiliation(s)
- Guillaume Sescousse
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Romain Ligneul
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Ruth J van Holst
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.,Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieneke K Janssen
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Femke de Boer
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.,Social, Health, and Organizational Psychology, Utrecht University, Utrecht, The Netherlands
| | - Marcel Janssen
- Department of Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Anne S Berry
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.,Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
31
|
de Natale ER, Niccolini F, Wilson H, Politis M. Molecular Imaging of the Dopaminergic System in Idiopathic Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:131-172. [DOI: 10.1016/bs.irn.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Brumberg J, Isaias IU. SPECT Molecular Imaging in Atypical Parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:37-65. [DOI: 10.1016/bs.irn.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Liu ZY, Liu FT, Zuo CT, Koprich JB, Wang J. Update on Molecular Imaging in Parkinson's Disease. Neurosci Bull 2017; 34:330-340. [PMID: 29282614 DOI: 10.1007/s12264-017-0202-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022] Open
Abstract
Advances in radionuclide tracers have allowed for more accurate imaging that reflects the actions of numerous neurotransmitters, energy metabolism utilization, inflammation, and pathological protein accumulation. All of these achievements in molecular brain imaging have broadened our understanding of brain function in Parkinson's disease (PD). The implementation of molecular imaging has supported more accurate PD diagnosis as well as assessment of therapeutic outcome and disease progression. Moreover, molecular imaging is well suited for the detection of preclinical or prodromal PD cases. Despite these advances, future frontiers of research in this area will focus on using multi-modalities combining positron emission tomography and magnetic resonance imaging along with causal modeling with complex algorithms.
Collapse
Affiliation(s)
- Zhen-Yang Liu
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng-Tao Liu
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, 200235, China
| | - James B Koprich
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Krembil Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - Jian Wang
- Department of Neurology and National Clinical Research Center for Ageing and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
34
|
Li W, Lao-Kaim NP, Roussakis AA, Martín-Bastida A, Valle-Guzman N, Paul G, Loane C, Widner H, Politis M, Foltynie T, Barker RA, Piccini P. 11 C-PE2I and 18 F-Dopa PET for assessing progression rate in Parkinson's: A longitudinal study. Mov Disord 2017; 33:117-127. [PMID: 29082547 DOI: 10.1002/mds.27183] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND 18 F-dopa PET measuring aromatic l-amino acid decarboxylase activity is regarded as the gold standard for evaluating dopaminergic function in Parkinson's disease. Radioligands for dopamine transporters are also used in clinical trials and for confirming PD diagnosis. Currently, it is not clear which imaging marker is more reliable for assessing clinical severity and rate of progression. The objective of this study was to directly compare 18 F-dopa with the highly selective dopamine transporter radioligand 11 C-PE2I for the assessment of motor severity and rate of progression in PD. METHODS Thirty-three mild-moderate PD patients underwent 18 F-dopa and 11 C-PE2I PET at baseline. Twenty-three were followed up for 18.8 ± 3.4 months. RESULTS Standard multiple regression at baseline indicated that 11 C-PE2I BPND predicted UPDRS-III and bradykinesia-rigidity scores (P < 0.05), whereas 18 F-dopa Ki did not make significant unique explanatory contributions. Voxel-wise analysis showed negative correlations between 11 C-PE2I BPND and motor severity across the whole striatum bilaterally. 18 F-Dopa Ki clusters were restricted to the most affected putamen and caudate. Longitudinally, negative correlations were found between striatal Δ11 C-PE2I BPND , ΔUPDRS-III, and Δbradykinesia-rigidity, whereas no significant associations were found for Δ18 F-dopa Ki . One cluster in the most affected putamen was identified in the longitudinal voxel-wise analysis showing a negative relationship between Δ11 C-PE2I BPND and Δbradykinesia-rigidity. CONCLUSIONS Striatal 11 C-PE2I appears to show greater sensitivity for detecting differences in motor severity than 18 F-dopa. Furthermore, dopamine transporter decline is closely associated with motor progression over time, whereas no such relationship was found with aromatic l-amino acid decarboxylase. 11 C-PE2I may be more effective for evaluating the efficacy of neuroprotective treatments in PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Weihua Li
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Nick P Lao-Kaim
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Andreas A Roussakis
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Antonio Martín-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | | | - Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Clare Loane
- Memory Research Group, Nuffield Department of Clinical Neurosciences, Medical Science Division. University of Oxford, Oxford, UK
| | - Håkan Widner
- Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Paola Piccini
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
35
|
Obeso J, Stamelou M, Goetz C, Poewe W, Lang A, Weintraub D, Burn D, Halliday G, Bezard E, Przedborski S, Lehericy S, Brooks D, Rothwell J, Hallett M, DeLong M, Marras C, Tanner C, Ross G, Langston J, Klein C, Bonifati V, Jankovic J, Lozano A, Deuschl G, Bergman H, Tolosa E, Rodriguez-Violante M, Fahn S, Postuma R, Berg D, Marek K, Standaert D, Surmeier D, Olanow C, Kordower J, Calabresi P, Schapira A, Stoessl A. Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 2017; 32:1264-1310. [PMID: 28887905 PMCID: PMC5685546 DOI: 10.1002/mds.27115] [Citation(s) in RCA: 534] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
This article reviews and summarizes 200 years of Parkinson's disease. It comprises a relevant history of Dr. James Parkinson's himself and what he described accurately and what he missed from today's perspective. Parkinson's disease today is understood as a multietiological condition with uncertain etiopathogenesis. Many advances have occurred regarding pathophysiology and symptomatic treatments, but critically important issues are still pending resolution. Among the latter, the need to modify disease progression is undoubtedly a priority. In sum, this multiple-author article, prepared to commemorate the bicentenary of the shaking palsy, provides a historical state-of-the-art account of what has been achieved, the current situation, and how to progress toward resolving Parkinson's disease. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- J.A. Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, Madrid, Spain
- Universidad CEU San Pablo, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - M. Stamelou
- Department of Neurology, Philipps University, Marburg, Germany
- Parkinson’s Disease and Movement Disorders Department, HYGEIA Hospital and Attikon Hospital, University of Athens, Athens, Greece
| | - C.G. Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - W. Poewe
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - A.E. Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J Safra Program in Parkinson’s Disease, Toronto Western Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
| | - D. Weintraub
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parkinson’s Disease and Mental Illness Research, Education and Clinical Centers (PADRECC and MIRECC), Corporal Michael J. Crescenz Veteran’s Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - D. Burn
- Medical Sciences, Newcastle University, Newcastle, UK
| | - G.M. Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
- School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Sydney, Australia
| | - E. Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
- China Academy of Medical Sciences, Institute of Lab Animal Sciences, Beijing, China
| | - S. Przedborski
- Departments of Neurology, Pathology, and Cell Biology, the Center for Motor Neuron Biology and Disease, Columbia University, New York, New York, USA
- Columbia Translational Neuroscience Initiative, Columbia University, New York, New York, USA
| | - S. Lehericy
- Institut du Cerveau et de la Moelle épinière – ICM, Centre de NeuroImagerie de Recherche – CENIR, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Paris, France
- Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - D.J. Brooks
- Clinical Sciences Department, Newcastle University, Newcastle, UK
- Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark
| | - J.C. Rothwell
- Human Neurophysiology, Sobell Department, UCL Institute of Neurology, London, UK
| | - M. Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - M.R. DeLong
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C. Marras
- Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson’s disease, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - C.M. Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, University of California–San Francisco, San Francisco, California, USA
- Parkinson’s Disease Research, Education and Clinical Center, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - G.W. Ross
- Veterans Affairs Pacific Islands Health Care System, Honolulu, Hawaii, USA
| | | | - C. Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - V. Bonifati
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J. Jankovic
- Parkinson’s Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - A.M. Lozano
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - G. Deuschl
- Department of Neurology, Universitätsklinikum Schleswig-Holstein, Christian Albrechts University Kiel, Kiel, Germany
| | - H. Bergman
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - E. Tolosa
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Spain
- Department of Medicine, Universitat de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - M. Rodriguez-Violante
- Movement Disorders Clinic, Clinical Neurodegenerative Research Unit, Mexico City, Mexico
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - S. Fahn
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - R.B. Postuma
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - D. Berg
- Klinikfür Neurologie, UKSH, Campus Kiel, Christian-Albrechts-Universität, Kiel, Germany
| | - K. Marek
- Institute for Neurodegenerative Disorders, New Haven, Connecticut, USA
| | - D.G. Standaert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - D.J. Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C.W. Olanow
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, New York, USA
| | - J.H. Kordower
- Research Center for Brain Repair, Rush University Medical Center, Chicago, Illinois, USA
- Neuroscience Graduate Program, Rush University Medical Center, Chicago, Illinois, USA
| | - P. Calabresi
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
- Laboratory of Neurophysiology, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - A.H.V. Schapira
- University Department of Clinical Neurosciences, UCL Institute of Neurology, University College London, London, UK
| | - A.J. Stoessl
- Pacific Parkinson’s Research Centre, Division of Neurology & Djavadf Mowafaghian Centre for Brain Health, University of British Columbia, British Columbia, Canada
- Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Becker G, Bahri MA, Michel A, Hustadt F, Garraux G, Luxen A, Lemaire C, Plenevaux A. Comparative assessment of 6-[ 18 F]fluoro-L-m-tyrosine and 6-[ 18 F]fluoro-L-dopa to evaluate dopaminergic presynaptic integrity in a Parkinson's disease rat model. J Neurochem 2017; 141:626-635. [PMID: 28294334 DOI: 10.1111/jnc.14016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/21/2017] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
Abstract
Because of the progressive loss of nigro-striatal dopaminergic terminals in Parkinson's disease (PD), in vivo quantitative imaging of dopamine (DA) containing neurons in animal models of PD is of critical importance in the preclinical evaluation of highly awaited disease-modifying therapies. Among existing methods, the high sensitivity of positron emission tomography (PET) is attractive to achieve that goal. The aim of this study was to perform a quantitative comparison of brain images obtained in 6-hydroxydopamine (6-OHDA) lesioned rats using two dopaminergic PET radiotracers, namely [18 F]fluoro-3,4-dihydroxyphenyl-L-alanine ([18 F]FDOPA) and 6-[18 F]fluoro-L-m-tyrosine ([18 F]FMT). Because the imaging signal is theoretically less contaminated by metabolites, we hypothesized that the latter would show stronger relationship with behavioural and post-mortem measures of striatal dopaminergic deficiency. We used a within-subject design to measure striatal [18 F]FMT and [18 F]FDOPA uptake in eight partially lesioned, eight fully lesioned and ten sham-treated rats. Animals were pretreated with an L-aromatic amino acid decarboxylase inhibitor. A catechol-O-methyl transferase inhibitor was also given before [18 F]FDOPA PET. Quantitative estimates of striatal uptake were computed using conventional graphical Patlak method. Striatal dopaminergic deficiencies were measured with apomorphine-induced rotations and post-mortem striatal DA content. We observed a strong relationship between [18 F]FMT and [18 F]FDOPA estimates of decreased uptake in the denervated striatum using the tissue-derived uptake rate constant Kc . However, only [18 F]FMT Kc succeeded to discriminate between the partial and the full 6-OHDA lesion and correlated well with the post-mortem striatal DA content. This study indicates that the [18 F]FMT could be more sensitive, with respect of [18 F]FDOPA, to investigate DA terminals loss in 6-OHDA rats, and open the way to in vivo L-aromatic amino acid decarboxylase activity targeting in future investigations on progressive PD models.
Collapse
Affiliation(s)
| | | | - Anne Michel
- Neurosciences TA Biology, UCB Pharma, Braine L'Alleud, Belgium
| | - Fabian Hustadt
- Neurosciences TA Biology, UCB Pharma, Braine L'Alleud, Belgium
| | - Gaëtan Garraux
- GIGA - CRC In vivo Imaging, University of Liège, Liège, Belgium
| | - André Luxen
- GIGA - CRC In vivo Imaging, University of Liège, Liège, Belgium
| | | | - Alain Plenevaux
- GIGA - CRC In vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
37
|
Saari L, Kivinen K, Gardberg M, Joutsa J, Noponen T, Kaasinen V. Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease. Neurology 2017; 88:1461-1467. [DOI: 10.1212/wnl.0000000000003810] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/23/2016] [Indexed: 11/15/2022] Open
Abstract
Objective:To examine possible associations between in vivo brain dopamine transporter SPECT imaging and substantia nigra pars compacta (SNc) neuronal survival in Parkinson disease (PD).Methods:Nigral neuron numbers were calculated for 18 patients (11 patients with neuropathologically confirmed PD) who had been examined with dopamine transporter (DAT) SPECT before death. Correlation analyses between SNc tyrosine hydroxylase (TH)–positive and neuromelanin-containing neuron counts and DAT striatal specific binding ratios (SBRs) were performed with semiquantitative region of interest–based and voxel-based analyses.Results:Mean putamen SBR did not correlate with the number of substantia nigra TH-positive (r = −0.11, p = 0.66) or neuromelanin-containing (r = −0.07, p = 0.78) neurons. Correlations remained clearly nonsignificant when the time interval between SPECT and death was used as a covariate, when the voxel-based analysis was used, and when only patients with PD were included.Conclusions:This cohort study demonstrates that postmortem SNc neuron counts are not associated with striatal DAT binding in PD. These results fit with the theory that there is no correlation between the number of substantia nigra neurons and striatal dopamine after a certain level of damage has occurred. Striatal DAT binding in PD may reflect axonal dysfunction or DAT expression rather than the number of viable neurons.
Collapse
|
38
|
Abstract
In recent decades, identification of the dopaminergic deficit in Parkinson's disease has spawned an explo sion of research in the molecular neurobiology of the basal ganglia. In vivo imaging has provided a tool to bridge developments in basic neuroscience and clinicial neurology. Imaging studies have opened a unique window on the neurochemical pathophysiology of Parkinson's disease and more specifically on the onset, progression and physiology of the degenerative process. As we are poised on the brink of new protective and restorative therapies for Parkinson's disease, the potential of imaging to teach us about in vivo brain neurochemistry offers both promise and challenge. NEUROSCIENTIST 5:333-340, 1999
Collapse
Affiliation(s)
- Kenneth Marek
- Department of Neurology Yale University School of Medicine
New Haven, Connecticut
| |
Collapse
|
39
|
NEUROIMÁGENES EN ENFERMEDAD DE PARKINSON: ROL DE LA RESONANCIA MAGNÉTICA, EL SPECT Y EL PET. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
Algarni MA, Stoessl AJ. The role of biomarkers and imaging in Parkinson’s disease. Expert Rev Neurother 2016; 16:187-203. [DOI: 10.1586/14737175.2016.1135056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Goldstein DS, Holmes C, Sullivan P, Mash DC, Sidransky E, Stefani A, Kopin IJ, Sharabi Y. Deficient vesicular storage: A common theme in catecholaminergic neurodegeneration. Parkinsonism Relat Disord 2015; 21:1013-22. [PMID: 26255205 DOI: 10.1016/j.parkreldis.2015.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/06/2015] [Accepted: 07/14/2015] [Indexed: 01/13/2023]
Abstract
Several neurodegenerative diseases involve loss of catecholamine neurons--Parkinson's disease (PD) is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are lost has been mysterious. Accumulating evidence supports the concept of "autotoxicity"--inherent cytotoxicity caused by catecholamine metabolites. Since vesicular sequestration limits the buildup of toxic products of enzymatic and spontaneous oxidation of catecholamines, a vesicular storage defect could play a pathogenic role in the death of catecholaminergic neurons in a variety of neurodegenerative diseases. In putamen, deficient vesicular storage is revealed in vivo by accelerated loss of (18)F-DOPA-derived radioactivity and post-mortem by decreased tissue dopamine (DA):DOPA ratios; in myocardium in vivo by accelerated loss of (18)F-dopamine-derived radioactivity and post-mortem by increased 3,4-dihydroxyphenylglycol:norepinephrine (DHPG:NE) ratios; and in sympathetic noradrenergic nerves overall in vivo by increased plasma F-dihydroxyphenylacetic acid (F-DOPAC):DHPG ratios. We retrospectively analyzed data from 20 conditions with decreased or intact catecholaminergic innervation, involving different etiologies, pathogenetic mechanisms, and lesion locations. All conditions involving parkinsonism had accelerated loss of putamen (18)F-DOPA-derived radioactivity; in those with post-mortem data there were also decreased putamen DA:DOPA ratios. All conditions involving cardiac sympathetic denervation had accelerated loss of myocardial (18)F-dopamine-derived radioactivity; in those with post-mortem data there were increased myocardial DHPG:NE ratios. All conditions involving localized loss of catecholaminergic innervation had evidence of decreased vesicular storage specifically in the denervated regions. Thus, across neurodegenerative diseases, loss of catecholaminergic neurons seems to be associated with decreased vesicular storage in the residual neurons.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Courtney Holmes
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patti Sullivan
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yehonatan Sharabi
- Department of Internal Medicine, Chaim Sheba Medical Center, Tel-HaShomer, and Sackler Faculty of Medicine, Tel-Aviv University School of Medicine, Tel-Avid, Israel
| |
Collapse
|
42
|
Bannon D, Landau AM, Doudet DJ. How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease? Curr Neurol Neurosci Rep 2015; 15:53. [DOI: 10.1007/s11910-015-0571-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Ba F, Martin WW. Dopamine transporter imaging as a diagnostic tool for parkinsonism and related disorders in clinical practice. Parkinsonism Relat Disord 2015; 21:87-94. [PMID: 25487733 DOI: 10.1016/j.parkreldis.2014.11.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 01/22/2023]
|
44
|
Sako W, Uluğ AM, Eidelberg D. Functional Imaging to Study Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Lang AE, Miyasaki J, Olanow CW, Stoessl AJ, Suchowersky O. Progress in Clinical Neurosciences: A Forum on the Early Management of Parkinson's Disease. Can J Neurol Sci 2014; 32:277-86. [PMID: 16225167 DOI: 10.1017/s0317167100004145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT:There are numerous concerns related to treatment choices involving early dopaminergic therapy in Parkinson's disease. These include the effect on the underlying progression of the neurodegenerative process as well as the development of motor complications such as fluctuations and dyskinesias. A number of recent basic and clinical studies have provided new insights but have also added confusion and controversy. This report summarizes presentations and discussion dealing with these issues from a one-day symposium involving Canadian Movement Disorders neurologists.
Collapse
Affiliation(s)
- Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto Western Hospital, Canada
| | | | | | | | | |
Collapse
|
46
|
Perlmutter JS, Norris SA. Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol 2014; 76:769-83. [PMID: 25363872 PMCID: PMC4245400 DOI: 10.1002/ana.24291] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/30/2014] [Accepted: 10/05/2014] [Indexed: 11/12/2022]
Abstract
In this grand rounds, we focus on development, validation, and application of neuroimaging biomarkers for Parkinson disease (PD). We cover whether such biomarkers can be used to identify presymptomatic individuals (probably yes), provide a measure of PD severity (in a limited fashion, but frequently done poorly), investigate pathophysiology of parkinsonian disorders (yes, if done carefully), play a role in differential diagnosis of parkinsonism (not well), and investigate pathology underlying cognitive impairment (yes, in conjunction with postmortem data). Along the way, we clarify several issues about definitions of biomarkers and surrogate endpoints. The goal of this lecture is to provide a basis for interpreting current literature and newly proposed clinical tools in PD. In the end, one should be able to critically distinguish fact from fantasy.
Collapse
Affiliation(s)
- Joel S. Perlmutter
- Neurology, Washington University, St. Louis, MO, USA
- Radiology, Washington University, St. Louis, MO, USA
- Anatomy & Neurobiology, Washington University, St. Louis, MO, USA
- Occupational Therapy, Washington University, St. Louis, MO, USA
- Physical Therapy, Washington University, St. Louis, MO, USA
| | | |
Collapse
|
47
|
Femminella GD, Edison P. Evaluation of neuroprotective effect of glucagon-like peptide 1 analogs using neuroimaging. Alzheimers Dement 2014; 10:S55-61. [PMID: 24529526 DOI: 10.1016/j.jalz.2013.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 11/16/2022]
Abstract
There is increasing evidence to suggest that glucagon-like peptide 1 (GLP1) analogs are neuroprotective in animal models. In transgenic mice, both insulin and GLP1 analogs reduced inflammation, increased stem cell proliferation, reduced apoptosis, and increased dendritic growth. Furthermore, insulin desensitization was also observed in these animals, and reduced glucose uptake in the brain, as shown on FDG-PET imaging. In this review we discussed the role of PET and MRI in evaluating the effect of GLP1 analogs in disease progression in both Alzheimer's and Parkinson's disease. We have also discussed the potential novel PET markers that will allow us to understand the mechanism by which GLP1 exerts its effects.
Collapse
Affiliation(s)
- Grazia D Femminella
- Neurology Imaging Unit, Imperial College London, Hammersmith Campus, London, UK
| | - Paul Edison
- Neurology Imaging Unit, Imperial College London, Hammersmith Campus, London, UK.
| |
Collapse
|
48
|
Stoessl AJ. Central pharmacokinetics of levodopa: Lessons from imaging studies. Mov Disord 2014; 30:73-9. [DOI: 10.1002/mds.26046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/01/2014] [Indexed: 02/02/2023] Open
Affiliation(s)
- A. Jon Stoessl
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health; University of British Columbia & Vancouver Coastal Health; 2221 Wesbrook Mall Vancouver BC CANADA V6T 2B5
| |
Collapse
|
49
|
Stoessl AJ, Halliday GM. DAT-SPECT diagnoses dopamine depletion, but not PD. Mov Disord 2014; 29:1705-6. [PMID: 25154601 DOI: 10.1002/mds.26000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre & National Parkinson Foundation Centre of Excellence, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | | |
Collapse
|
50
|
Kraemmer J, Kovacs GG, Perju-Dumbrava L, Pirker S, Traub-Weidinger T, Pirker W. Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts. Mov Disord 2014; 29:1767-73. [PMID: 25048738 DOI: 10.1002/mds.25975] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/05/2014] [Accepted: 06/24/2014] [Indexed: 11/10/2022] Open
Abstract
Dopamine transporter imaging is widely used for the differential diagnosis of parkinsonism. Only limited data are available on the relationship between striatal dopamine transporter binding and dopaminergic cell loss in the substantia nigra (SN). We analyzed postmortem SN cell counts in patients who had previously undergone dopamine transporter single-photon emission computed tomography (SPECT). Pathological diagnoses included Parkinson's disease (n = 1), dementia with Lewy bodies (n = 2), multiple system atrophy (n = 1), corticobasal degeneration (n = 2), atypical parkinsonism with multiple pathological conditions (n = 1), Alzheimer's disease (n = 1), and Creutzfeldt-Jakob disease (n = 1). [(12) (3) I]β-CIT SPECT had been performed in all subjects using a standardized protocol on the same triple-head gamma camera. The density of neuromelanin-containing and tyrosine hydroxylase-positive substantia nigra neurons/mm(2) was evaluated in paraffin-embedded tissue sections by morphometric methods. Mean disease duration at the time of dopamine transporter imaging was 2.3 years, and the mean interval from imaging to death was 29.3 months (range, 4-68 months). Visual analysis of dopamine transporter images showed reduced striatal uptake in all seven patients with neurodegenerative parkinsonism, but not in Alzheimer's and Creutzfeldt-Jakob disease cases. Averaged [(right+left)/2] striatal uptake was highly correlated with averaged SN cell counts (rs = 0.98, P < 0.0005 for neuromelanin- and rs = 0.96, P < 0.0005 for tyrosine hydroxylase-positive cells). Similar strong correlations were found in separate analyses for the right and left sides. Striatal dopamine transporter binding highly correlated with postmortem SN cell counts, confirming the validity of dopamine transporter imaging as an excellent in vivo marker of nigrostriatal dopaminergic degeneration.
Collapse
Affiliation(s)
- Julia Kraemmer
- Department of Neurology, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|