1
|
Andres Garcia-Diosa J, Grundmeier G, Keller A. Highly Efficient Quenching of Singlet Oxygen by DNA Origami Nanostructures. Chemistry 2024; 30:e202402057. [PMID: 38842532 DOI: 10.1002/chem.202402057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
DNA origami nanostructures (DONs) are able to scavenge reactive oxygen species (ROS) and their scavenging efficiency toward ROS radicals was shown to be comparable to that of genomic DNA. Herein, we demonstrate that DONs are highly efficient singlet oxygen quenchers outperforming double-stranded (ds) DNA by several orders of magnitude. To this end, a ROS mixture rich in singlet oxygen is generated by light irradiation of the photosensitizer methylene blue and its cytotoxic effect on Escherichia coli cells is quantified in the presence and absence of DONs. DONs are found to be vastly superior to dsDNA in protecting the bacteria from ROS-induced damage and even surpass established ROS scavengers. At a concentration of 15 nM, DONs are about 50 000 times more efficient ROS scavengers than dsDNA at an equivalent concentration. This is attributed to the dominant role of singlet oxygen, which has a long diffusion length and reacts specifically with guanine. The dense packing of the available guanines into the small volume of the DON increases the overall quenching probability compared to a linear dsDNA with the same number of base pairs. DONs thus have great potential to alleviate oxidative stress caused by singlet oxygen in diverse therapeutic settings.
Collapse
Affiliation(s)
- Jaime Andres Garcia-Diosa
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| |
Collapse
|
2
|
Najer A. Pathogen-binding nanoparticles to inhibit host cell infection by heparan sulfate and sialic acid dependent viruses and protozoan parasites. SMART MEDICINE 2024; 3:e20230046. [PMID: 39188697 PMCID: PMC11235646 DOI: 10.1002/smmd.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 08/28/2024]
Abstract
Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.
Collapse
Affiliation(s)
- Adrian Najer
- Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
3
|
Garcia-Diosa JA, Grundmeier G, Keller A. Effect of DNA Origami Nanostructures on Bacterial Growth. Chembiochem 2024; 25:e202400091. [PMID: 38299762 DOI: 10.1002/cbic.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
DNA origami nanostructures are a powerful tool in biomedicine and can be used to combat drug-resistant bacterial infections. However, the effect of unmodified DNA origami nanostructures on bacteria is yet to be elucidated. With the aim to obtain a better understanding of this phenomenon, the effect of three DNA origami shapes, i.e., DNA origami triangles, six-helix bundles (6HBs), and 24-helix bundles (24HBs), on the growth of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis is investigated. The results reveal that while triangles and 24HBs can be used as a source of nutrients by E. coli and thereby promote population growth, their effect is much smaller than that of genomic single- and double-stranded DNA. However, no effect on E. coli population growth is observed for the 6HBs. On the other hand, B. subtilis does not show any significant changes in population growth when cultured with the different DNA origami shapes or genomic DNA. The detailed effect of DNA origami nanostructures on bacterial growth thus depends on the competence signals and uptake mechanism of each bacterial species, as well as the DNA origami shape. This should be considered in the development of antimicrobial DNA origami nanostructures.
Collapse
Affiliation(s)
- Jaime Andres Garcia-Diosa
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
4
|
Smirnov VV, Drozd VS, Patra CK, Hussein Z, Rybalko DS, Kozlova AV, Nour MAY, Zemerova TP, Kolosova OS, Kalnin AY, El-Deeb AA. Towards the development of a DNA automaton: modular RNA-cleaving deoxyribozyme logic gates regulated by miRNAs. Analyst 2024; 149:1947-1957. [PMID: 38385166 DOI: 10.1039/d3an02178e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advancements in DNA computation have unlocked molecular-scale information processing possibilities, utilizing the intrinsic properties of DNA for complex logical operations with transformative applications in biomedicine. DNA computation shows promise in molecular diagnostics, enabling precise and sensitive detection of genetic mutations and disease biomarkers. Moreover, it holds potential for targeted gene regulation, facilitating personalized therapeutic interventions with enhanced efficacy and reduced side effects. Herein, we have developed six DNAzyme-based logic gates able to process YES, AND, and NOT Boolean logic. The novelty of this work lies in their additional functionalization with a common DNA scaffold for increased cooperativity in input recognition. Moreover, we explored hierarchical input binding to multi-input logic gates, which helped gate optimization. Additionally, we developed a new design of an allosteric hairpin switch used to implement NOT logic. All DNA logic gates achieved the desired true-to-false output signal when detecting a panel of miRNAs, known for their important role in malignancy regulation. This is the first example of DNAzyme-based logic gates having all input-recognizing elements integrated in a single DNA nanostructure, which provides new opportunities for building DNA automatons for diagnosis and therapy of human diseases.
Collapse
Affiliation(s)
- Viktor V Smirnov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Valerya S Drozd
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Christina K Patra
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Zain Hussein
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Daria S Rybalko
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Anastasia V Kozlova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Moustapha A Y Nour
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| | - Tatiana P Zemerova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
| | - Olga S Kolosova
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Faculty of Industrial Drug Technology, Saint Petersburg State Chemical and Pharmaceutical University, 14, lit. A, st. Professor Popov, 197022, St. Petersburg, Russian Federation
| | - Arseniy Y Kalnin
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Institute of Chemistry, Saint Petersburg University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russian Federation
| | - Ahmed A El-Deeb
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.
- Almetyevsk State Oil Institute, 2 Lenina St., Almetyevsk, 423450, Tatarstan, Russian Federation
| |
Collapse
|
5
|
Fokina A, Poletaeva Y, Dukova S, Klabenkova K, Rad’kova Z, Bakulina A, Zatsepin T, Ryabchikova E, Stetsenko D. Template-Assisted Assembly of Hybrid DNA/RNA Nanostructures Using Branched Oligodeoxy- and Oligoribonucleotides. Int J Mol Sci 2023; 24:15978. [PMID: 37958961 PMCID: PMC10650595 DOI: 10.3390/ijms242115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
A template-assisted assembly approach to a C24 fullerene-like double-stranded DNA polyhedral shell is proposed. The assembly employed a supramolecular oligonucleotide dendrimer as a 3D template that was obtained via the hybridization of siRNA strands and a single-stranded DNA oligonucleotide joined to three- or four-way branched junctions. A four-way branched oligonucleotide building block (a starlet) was designed for the assembly of the shell composed of three identical self-complementary DNA single strands and a single RNA strand for hybridization to the DNA oligonucleotides of the template. To prevent premature auto-hybridization of the self-complementary oligonucleotides in the starlet, a photolabile protecting group was introduced via the N3-substituted thymidine phosphoramidite. Cleavable linkers such as a disulfide linkage, RNase A sensitive triribonucleotides, and di- and trideoxynucleotides were incorporated into the starlet and template at specific points to guide the post-assembly disconnection of the shell from the template, and enzymatic disassembly of the template and the shell in biological media. At the same time, siRNA strands were modified with 2'-OMe ribonucleotides and phosphorothioate groups in certain positions to stabilize toward enzymatic digestion. We report herein a solid-phase synthesis of branched oligodeoxy and oligoribonucleotide building blocks for the DNA/RNA dendritic template and the branched DNA starlet for a template-assisted construction of a C24 fullerene-like DNA shell after initial molecular modeling, followed by the assembly of the shell around the DNA-coated RNA dendritic template, and visualization of the resulting nanostructure by transmission electron microscopy.
Collapse
Affiliation(s)
- Alesya Fokina
- Faculty of Physics, Novosibirsk State University, Novosibirsk 630090, Russia; (A.F.); (K.K.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yulia Poletaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (Y.P.); (E.R.)
| | | | - Kristina Klabenkova
- Faculty of Physics, Novosibirsk State University, Novosibirsk 630090, Russia; (A.F.); (K.K.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Zinaida Rad’kova
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia; (Z.R.); (A.B.)
| | - Anastasia Bakulina
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia; (Z.R.); (A.B.)
| | - Timofei Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (Y.P.); (E.R.)
| | - Dmitry Stetsenko
- Faculty of Physics, Novosibirsk State University, Novosibirsk 630090, Russia; (A.F.); (K.K.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Hanke M, Dornbusch D, Tomm E, Grundmeier G, Fahmy K, Keller A. Superstructure-dependent stability of DNA origami nanostructures in the presence of chaotropic denaturants. NANOSCALE 2023; 15:16590-16600. [PMID: 37747200 DOI: 10.1039/d3nr02045b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The structural stability of DNA origami nanostructures in various chemical environments is an important factor in numerous applications, ranging from biomedicine and biophysics to analytical chemistry and materials synthesis. In this work, the stability of six different 2D and 3D DNA origami nanostructures is assessed in the presence of three different chaotropic salts, i.e., guanidinium sulfate (Gdm2SO4), guanidinium chloride (GdmCl), and tetrapropylammonium chloride (TPACl), which are widely employed denaturants. Using atomic force microscopy (AFM) to quantify nanostructural integrity, Gdm2SO4 is found to be the weakest and TPACl the strongest DNA origami denaturant, respectively. Despite different mechanisms of actions of the selected salts, DNA origami stability in each environment is observed to depend on DNA origami superstructure. This is especially pronounced for 3D DNA origami nanostructures, where mechanically more flexible designs show higher stability in both GdmCl and TPACl than more rigid ones. This is particularly remarkable as this general dependence has previously been observed under Mg2+-free conditions and may provide the possibility to optimize DNA origami design toward maximum stability in diverse chemical environments. Finally, it is demonstrated that melting temperature measurements may overestimate the stability of certain DNA origami nanostructures in certain chemical environments, so that such investigations should always be complemented by microscopic assessments of nanostructure integrity.
Collapse
Affiliation(s)
- Marcel Hanke
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Daniel Dornbusch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Emilia Tomm
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, Dresden 01328, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden 01062, Germany
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
7
|
Linko V, Keller A. Stability of DNA Origami Nanostructures in Physiological Media: The Role of Molecular Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301935. [PMID: 37093216 DOI: 10.1002/smll.202301935] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Programmable, custom-shaped, and nanometer-precise DNA origami nanostructures have rapidly emerged as prospective and versatile tools in bionanotechnology and biomedicine. Despite tremendous progress in their utilization in these fields, essential questions related to their structural stability under physiological conditions remain unanswered. Here, DNA origami stability is explored by strictly focusing on distinct molecular-level interactions. In this regard, the fundamental stabilizing and destabilizing ionic interactions as well as interactions involving various enzymes and other proteins are discussed, and their role in maintaining, modulating, or decreasing the structural integrity and colloidal stability of DNA origami nanostructures is summarized. Additionally, specific issues demanding further investigation are identified. This review - through its specific viewpoint - may serve as a primer for designing new, stable DNA objects and for adapting their use in applications dealing with physiological media.
Collapse
Affiliation(s)
- Veikko Linko
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, Aalto, 00076, Finland
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
8
|
Qu Y, Shen F, Zhang Z, Wang Q, Huang H, Xu Y, Li Q, Zhu X, Sun L. Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45079-45095. [PMID: 36171537 DOI: 10.1021/acsami.2c13768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, nanoscale or microscale functional materials derived from DNA have shown great potential for immunotherapy as superior delivery carriers. DNA nanostructures with excellent programmability and addressability enable the precise assembly of molecules or nanoparticles. DNA hydrogels have predictable structures and adjustable mechanical strength, thus being advantageous in controllable release of cargos. In addition, utilizing systematic evolution of ligands by exponential enrichment technology, a variety of DNA aptamers have been screened for specific recognition of ions, molecules, and even cells. Moreover, a wide variety of chemical modifications can further enrich the function of DNA. The unique advantages of functional DNA materials make them extremely attractive in immunomodulation. Recently, functional DNA materials-based immunotherapy has shown great potential in fighting against many diseases like cancer, viral infection, and inflammation. Therefore, in this review, we focus on discussing the progress of the applications of functional DNA materials in immunotherapy; before that, we also summarize the characteristics of the functional DNA materials descried above. Finally, we discuss the challenges and future opportunities of functional DNA materials in immunomodulatory therapy.
Collapse
Affiliation(s)
- Yanfei Qu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengyun Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hao Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yufei Xu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Hanke M, Grundmeier G, Keller A. Direct visualization of the drug loading of single DNA origami nanostructures by AFM-IR nanospectroscopy. NANOSCALE 2022; 14:11552-11560. [PMID: 35861612 DOI: 10.1039/d2nr02701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The efficient loading of DNA nanostructures with intercalating or groove-binding drugs is an important prerequisite for various applications in drug delivery. However, unambiguous verification and quantification of successful drug loading is often rather challenging. In this work, AFM-IR nanospectroscopy is thus employed to directly visualize the loading of DNA origami nanostructures with the photosensitizer methylene blue (MB). Single MB-loaded DNA origami nanostructures can be clearly resolved in high-resolution infrared (IR) maps and the occurrence of MB-specific IR absorption correlates well with the topographic signals of the DNA origami nanostructures. The intensity of the recorded MB absorption bands furthermore scales with the MB concentration used for MB loading. By comparing single- and multilayer DNA origami nanostructures, it is also shown that the IR signal intensity of the loaded MB increases with the thickness of the DNA origami nanostructures. This indicates that also DNA double helices located in the core of bulky 3D DNA origami nanostructures are accessible for MB loading. AFM-IR nanospectroscopy thus has the potential to become an invaluable tool for quantifying drug loading of DNA origami nanostructures and optimizing drug loading protocols.
Collapse
Affiliation(s)
- Marcel Hanke
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany.
| |
Collapse
|
10
|
Hanke M, Dornbusch D, Hadlich C, Rossberg A, Hansen N, Grundmeier G, Tsushima S, Keller A, Fahmy K. Anion-specific structure and stability of guanidinium-bound DNA origami. Comput Struct Biotechnol J 2022; 20:2611-2623. [PMID: 35685373 PMCID: PMC9163702 DOI: 10.1016/j.csbj.2022.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
While the folding of DNA into rationally designed DNA origami nanostructures has been studied extensively with the aim of increasing structural diversity and introducing functionality, the fundamental physical and chemical properties of these nanostructures remain largely elusive. Here, we investigate the correlation between atomistic, molecular, nanoscopic, and thermodynamic properties of DNA origami triangles. Using guanidinium (Gdm) as a DNA-stabilizing but potentially also denaturing cation, we explore the dependence of DNA origami stability on the identity of the accompanying anions. The statistical analyses of atomic force microscopy (AFM) images and circular dichroism (CD) spectra reveals that sulfate and chloride exert stabilizing and destabilizing effects, respectively, already below the global melting temperature of the DNA origami triangles. We identify structural transitions during thermal denaturation and show that heat capacity changes ΔCp determine the temperature sensitivity of structural damage. The different hydration shells of the anions and their potential to form Gdm+ ion pairs in concentrated salt solutions modulate ΔCp by altered wetting properties of hydrophobic DNA surface regions as shown by molecular dynamics simulations. The underlying structural changes on the molecular scale become amplified by the large number of structurally coupled DNA segments and thereby find nanoscopic correlations in AFM images.
Collapse
|
11
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Ren S, Fraser K, Kuo L, Chauhan N, Adrian AT, Zhang F, Linhardt RJ, Kwon PS, Wang X. Designer DNA nanostructures for viral inhibition. Nat Protoc 2022; 17:282-326. [PMID: 35013618 PMCID: PMC8852688 DOI: 10.1038/s41596-021-00641-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Emerging viral diseases can substantially threaten national and global public health. Central to our ability to successfully tackle these diseases is the need to quickly detect the causative virus and neutralize it efficiently. Here we present the rational design of DNA nanostructures to inhibit dengue virus infection. The designer DNA nanostructure (DDN) can bind to complementary epitopes on antigens dispersed across the surface of a viral particle. Since these antigens are arranged in a defined geometric pattern that is unique to each virus, the structure of the DDN is designed to mirror the spatial arrangement of antigens on the viral particle, providing very high viral binding avidity. We describe how available structural data can be used to identify unique spatial patterns of antigens on the surface of a viral particle. We then present a procedure for synthesizing DDNs using a combination of in silico design principles, self-assembly, and characterization using gel electrophoresis, atomic force microscopy and surface plasmon resonance spectroscopy. Finally, we evaluate the efficacy of a DDN in inhibiting dengue virus infection via plaque-forming assays. We expect this protocol to take 2-3 d to complete virus antigen pattern identification from existing cryogenic electron microscopy data, ~2 weeks for DDN design, synthesis, and virus binding characterization, and ~2 weeks for DDN cytotoxicity and antiviral efficacy assays.
Collapse
Affiliation(s)
- Shaokang Ren
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith Fraser
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Neha Chauhan
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA
| | - Addison T Adrian
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Paul S Kwon
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Centre for Pathogen Diagnostics, DREMES at the University of Illinois at Urbana-Champaign and the Zhejiang University-University of Illinois at Urbana-Champaign Institute, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Tseng CY, Wang WX, Douglas TR, Chou LYT. Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates. Adv Healthc Mater 2022; 11:e2101844. [PMID: 34716686 DOI: 10.1002/adhm.202101844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Immune cells sense, communicate, and logically integrate a multitude of environmental signals to make important cell-fate decisions and fulfill their effector functions. These processes are initiated and regulated by a diverse array of immune receptors and via their dynamic spatiotemporal organization upon ligand binding. Given the widespread relevance of the immune system to health and disease, there have been significant efforts toward understanding the biophysical principles governing immune receptor signaling and activation, as well as the development of biomaterials which exploit these principles for therapeutic immune engineering. Here, how advances in the field of DNA nanotechnology constitute a growing toolbox for further pursuit of these endeavors is discussed. Key cellular players involved in the induction of immunity against pathogens or diseased cells are first summarized. How the ability to design DNA nanostructures with custom shapes, dynamics, and with site-specific incorporation of diverse guests can be leveraged to manipulate the signaling pathways that regulate these processes is then presented. It is followed by highlighting emerging applications of DNA nanotechnology at the crossroads of immune engineering, such as in vitro reconstitution platforms, vaccines, and adjuvant delivery systems. Finally, outstanding questions that remain for further advancing immune-modulatory DNA nanodevices are outlined.
Collapse
Affiliation(s)
- Chung Yi Tseng
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Wendy Xueyi Wang
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Travis Robert Douglas
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| | - Leo Y. T. Chou
- Institute of Biomedical Engineering University of Toronto Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
14
|
Pereira D, Carreira TS, Alves N, Sousa Â, Valente JFA. Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. Int J Mol Sci 2022; 23:1165. [PMID: 35163090 PMCID: PMC8835760 DOI: 10.3390/ijms23031165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Tiago Soares Carreira
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Nuno Alves
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Joana F. A. Valente
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| |
Collapse
|
15
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
16
|
Xin Y, Zargariantabrizi AA, Grundmeier G, Keller A. Magnesium-Free Immobilization of DNA Origami Nanostructures at Mica Surfaces for Atomic Force Microscopy. Molecules 2021; 26:4798. [PMID: 34443385 PMCID: PMC8399889 DOI: 10.3390/molecules26164798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA origami nanostructures (DONs) are promising substrates for the single-molecule investigation of biomolecular reactions and dynamics by in situ atomic force microscopy (AFM). For this, they are typically immobilized on mica substrates by adding millimolar concentrations of Mg2+ ions to the sample solution, which enable the adsorption of the negatively charged DONs at the like-charged mica surface. These non-physiological Mg2+ concentrations, however, present a serious limitation in such experiments as they may interfere with the reactions and processes under investigation. Therefore, we here evaluate three approaches to efficiently immobilize DONs at mica surfaces under essentially Mg2+-free conditions. These approaches rely on the pre-adsorption of different multivalent cations, i.e., Ni2+, poly-l-lysine (PLL), and spermidine (Spdn). DON adsorption is studied in phosphate-buffered saline (PBS) and pure water. In general, Ni2+ shows the worst performance with heavily deformed DONs. For 2D DON triangles, adsorption at PLL- and in particular Spdn-modified mica may outperform even Mg2+-mediated adsorption in terms of surface coverage, depending on the employed solution. For 3D six-helix bundles, less pronounced differences between the individual strategies are observed. Our results provide some general guidance for the immobilization of DONs at mica surfaces under Mg2+-free conditions and may aid future in situ AFM studies.
Collapse
Affiliation(s)
| | | | | | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (Y.X.); (A.A.Z.); (G.G.)
| |
Collapse
|
17
|
Glaser M, Deb S, Seier F, Agrawal A, Liedl T, Douglas S, Gupta MK, Smith DM. The Art of Designing DNA Nanostructures with CAD Software. Molecules 2021; 26:molecules26082287. [PMID: 33920889 PMCID: PMC8071251 DOI: 10.3390/molecules26082287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Since the arrival of DNA nanotechnology nearly 40 years ago, the field has progressed from its beginnings of envisioning rather simple DNA structures having a branched, multi-strand architecture into creating beautifully complex structures comprising hundreds or even thousands of unique strands, with the possibility to exactly control the positions down to the molecular level. While the earliest construction methodologies, such as simple Holliday junctions or tiles, could reasonably be designed on pen and paper in a short amount of time, the advent of complex techniques, such as DNA origami or DNA bricks, require software to reduce the time required and propensity for human error within the design process. Where available, readily accessible design software catalyzes our ability to bring techniques to researchers in diverse fields and it has helped to speed the penetration of methods, such as DNA origami, into a wide range of applications from biomedicine to photonics. Here, we review the historical and current state of CAD software to enable a variety of methods that are fundamental to using structural DNA technology. Beginning with the first tools for predicting sequence-based secondary structure of nucleotides, we trace the development and significance of different software packages to the current state-of-the-art, with a particular focus on programs that are open source.
Collapse
Affiliation(s)
- Martin Glaser
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany; (F.S.); (A.A.)
| | - Sourav Deb
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India;
| | - Florian Seier
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany; (F.S.); (A.A.)
| | - Amay Agrawal
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany; (F.S.); (A.A.)
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India;
| | - Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany;
| | - Shawn Douglas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA;
| | - Manish K. Gupta
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India;
- Correspondence: (M.K.G.); (D.M.S.)
| | - David M. Smith
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany; (F.S.); (A.A.)
- Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India;
- Institute of Clinical Immunology, University of Leipzig Medical Faculty, 04103 Leipzig, Germany
- Correspondence: (M.K.G.); (D.M.S.)
| |
Collapse
|
18
|
Dass M, Gür FN, Kołątaj K, Urban MJ, Liedl T. DNA Origami-Enabled Plasmonic Sensing. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:5969-5981. [PMID: 33828635 PMCID: PMC8016175 DOI: 10.1021/acs.jpcc.0c11238] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/31/2021] [Indexed: 05/02/2023]
Abstract
The reliable programmability of DNA origami makes it an extremely attractive tool for bottom-up self-assembly of complex nanostructures. Utilizing this property for the tuned arrangement of plasmonic nanoparticles holds great promise particularly in the field of biosensing. Plasmonic particles are beneficial for sensing in multiple ways, from enhancing fluorescence to enabling a visualization of the nanoscale dynamic actuation via chiral rearrangements. In this Perspective, we discuss the recent developments and possible future directions of DNA origami-enabled plasmonic sensing systems. We start by discussing recent advancements in the area of fluorescence-based plasmonic sensing using DNA origami. We then move on to surface-enhanced Raman spectroscopy sensors followed by chiral sensing, both utilizing DNA origami nanostructures. We conclude by providing our own views on the future prospects for plasmonic biosensors enabled using DNA origami.
Collapse
Affiliation(s)
- Mihir Dass
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Fatih N. Gür
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Karol Kołątaj
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Maximilian J. Urban
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| |
Collapse
|
19
|
Avila YI, Chandler M, Cedrone E, Newton HS, Richardson M, Xu J, Clogston JD, Liptrott NJ, Afonin KA, Dobrovolskaia MA. Induction of Cytokines by Nucleic Acid Nanoparticles (NANPs) Depends on the Type of Delivery Carrier. Molecules 2021; 26:652. [PMID: 33513786 PMCID: PMC7865455 DOI: 10.3390/molecules26030652] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Recent insights into the immunostimulatory properties of nucleic acid nanoparticles (NANPs) have demonstrated that variations in the shape, size, and composition lead to distinct patterns in their immunostimulatory properties. While most of these studies have used a single lipid-based carrier to allow for NANPs' intracellular delivery, it is now apparent that the platform for delivery, which has historically been a hurdle for therapeutic nucleic acids, is an additional means to tailoring NANP immunorecognition. Here, the use of dendrimers for the delivery of NANPs is compared to the lipid-based platform and the differences in resulting cytokine induction are presented.
Collapse
Affiliation(s)
- Yelixza I. Avila
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC 28223-0001, USA; (Y.I.A.); (M.C.); (M.R.)
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC 28223-0001, USA; (Y.I.A.); (M.C.); (M.R.)
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21702, USA; (E.C.); (H.S.N.); (J.X.); (J.D.C.)
| | - Hannah S. Newton
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21702, USA; (E.C.); (H.S.N.); (J.X.); (J.D.C.)
| | - Melina Richardson
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC 28223-0001, USA; (Y.I.A.); (M.C.); (M.R.)
| | - Jie Xu
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21702, USA; (E.C.); (H.S.N.); (J.X.); (J.D.C.)
| | - Jeffrey D. Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21702, USA; (E.C.); (H.S.N.); (J.X.); (J.D.C.)
| | - Neill J. Liptrott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK;
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina Charlotte, Charlotte, NC 28223-0001, USA; (Y.I.A.); (M.C.); (M.R.)
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD 21702, USA; (E.C.); (H.S.N.); (J.X.); (J.D.C.)
| |
Collapse
|