1
|
Sztandera K, Rodríguez-García JL, Ceña V. In Vivo Applications of Dendrimers: A Step toward the Future of Nanoparticle-Mediated Therapeutics. Pharmaceutics 2024; 16:439. [PMID: 38675101 PMCID: PMC11053723 DOI: 10.3390/pharmaceutics16040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Over the last few years, the development of nanotechnology has allowed for the synthesis of many different nanostructures with controlled sizes, shapes, and chemical properties, with dendrimers being the best-characterized of them. In this review, we present a succinct view of the structure and the synthetic procedures used for dendrimer synthesis, as well as the cellular uptake mechanisms used by these nanoparticles to gain access to the cell. In addition, the manuscript reviews the reported in vivo applications of dendrimers as drug carriers for drugs used in the treatment of cancer, neurodegenerative diseases, infections, and ocular diseases. The dendrimer-based formulations that have reached different phases of clinical trials, including safety and pharmacokinetic studies, or as delivery agents for therapeutic compounds are also presented. The continuous development of nanotechnology which makes it possible to produce increasingly sophisticated and complex dendrimers indicates that this fascinating family of nanoparticles has a wide potential in the pharmaceutical industry, especially for applications in drug delivery systems, and that the number of dendrimer-based compounds entering clinical trials will markedly increase during the coming years.
Collapse
Affiliation(s)
- Krzysztof Sztandera
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Valentín Ceña
- Unidad Asociada Neurodeath, Instituto de Nanociencia Molecular, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Popova TO, Zhulina EB, Borisov OV. Interaction of Polyanionic and Polycationic Brushes with Globular Proteins and Protein-like Nanocolloids. Biomimetics (Basel) 2023; 8:597. [PMID: 38132536 PMCID: PMC10741738 DOI: 10.3390/biomimetics8080597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
A large number of experimental studies have demonstrated that globular proteins can be absorbed from the solution by both polycationic and polyanionic brushes when the net charge of protein globules is of the same or of the opposite sign with respect to that of brush-forming polyelectrolyte chains. Here, we overview the results of experimental studies on interactions between globular proteins and polycationic or polyanionic brushes, and present a self-consistent field theoretical model that allows us to account for the asymmetry of interactions of protein-like nanocolloid particles comprising weak (pH-sensitive) cationic and anionic groups with a positively or negatively charged polyelectrolyte brush. The position-dependent insertion free energy and the net charge of the particle are calculated. The theoretical model predicts that if the numbers of cationic and anionic ionizable groups of the protein are approximately equal, then the interaction patterns for both cationic and anionic brushes at equal offset on the "wrong side" from the isoelectric point (IEP), i.e., when the particle and the brush charge are of the same sign, are similar. An essential asymmetry in interactions of particles with polycationic and polyanionic brushes is predicted when fractions of cationic and anionic groups differ significantly. That is, at a pH above IEP, the anionic brush better absorbs negatively charged particles with a larger fraction of ionizable cationic groups and vice versa.
Collapse
Affiliation(s)
- Tatiana O. Popova
- Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia;
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Oleg V. Borisov
- Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia;
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
- CNRS, Université de Pau et des Pays de l’Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, 64053 Pau, France
| |
Collapse
|
3
|
Lebedeva IO, Zhulina EB, Borisov OV. Polymorphism of self-assembled colloidal nanostructures of comblike and bottlebrush block copolymers. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Salamatova TO, Zhulina EB, Borisov OV. Bovine Serum Albumin Interaction with Polyanionic and Polycationic Brushes: The Case Theoretical Study. Int J Mol Sci 2023; 24:ijms24043395. [PMID: 36834807 PMCID: PMC9961975 DOI: 10.3390/ijms24043395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
We apply a coarse-grained self-consistent field Poisson-Boltzmann framework to study interaction between Bovine Serum Albumin (BSA) and a planar polyelectropyte brush. Both cases of negatively (polyanionic) and positively (polycationic) charged brushes are considered. Our theoretical model accounts for (1) re-ionization free energy of the amino acid residues upon protein insertion into the brush; (2) osmotic force repelling the protein globule from the brush; (3) hydrophobic interactions between non-polar areas on the globule surface and the brush-forming chains. We demonstrate that calculated position-dependent insertion free energy exhibits different patterns, corresponding to either thermodynamically favourable BSA absorption in the brush or thermodynamically or kinetically hindered absorption (expulsion) depending on the pH and ionic strength of the solution. The theory predicts that due to the re-ionization of BSA within the brush, a polyanionic brush can efficiently absorb BSA over a wider pH range on the "wrong side" of the isoelectric point (IEP) compared to a polycationic brush. The results of our theoretical analysis correlate with available experimental data and thus validate the developed model for prediction of the interaction patterns for various globular proteins with polyelectrolyte brushes.
Collapse
Affiliation(s)
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Chemical Engineering Center, ITMO University, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- CNRS, Université de Pau et des Pays de l’Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, 64053 Pau, France
- Correspondence:
| |
Collapse
|
5
|
Jana P, Samanta K, Ehlers M, Zellermann E, Bäcker S, Stauber RH, Schmuck C, Knauer SK. Impact of Peptide Sequences on Their Structure and Function: Mimicking of Virus-Like Nanoparticles for Nucleic Acid Delivery. Chembiochem 2023; 24:e202200519. [PMID: 36314419 PMCID: PMC10099937 DOI: 10.1002/cbic.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/30/2022] [Indexed: 01/05/2023]
Abstract
We rationally designed a series of amphiphilic hepta-peptides enriched with a chemically conjugated guanidiniocarbonylpyrrole (GCP) unit at the lysine side chain. All peptides are composed of polar (GCP) and non-polar (cyclohexyl alanine) residues but differ in their sequence periodicity, resulting in different secondary as well as supramolecular structures. CD spectra revealed the assembly of β-sheet-, α-helical and random structures for peptides 1, 2 and 3, respectively. Consequently, this enabled the formation of distinct supramolecular assemblies such as fibres, nanorod-like or spherical aggregates. Notably, all three cationic peptides are equipped with the anion-binding GCP unit and thus possess a nucleic acid-binding centre. However, only the helical (2) and the unstructured (3) peptide were able to assemble into small virus-like DNA-polyplexes and effectively deliver DNA into cells. Notably, as both peptides (2 and 3) were also capable of siRNA-delivery, they could be utilized to downregulate expression of the caner-relevant protein Survivin.
Collapse
Affiliation(s)
- Poulami Jana
- Department of Chemistry, Kaliachak College Sultanganj, Malda, 732201-, West Bengal, India
| | - Krishnananda Samanta
- Department of Chemistry, Balurghat College Dakshin Dinajpur, 733101-, West Bengal, India
| | - Martin Ehlers
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Elio Zellermann
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Sandra Bäcker
- Molecular Biology, University of Duisburg-Essen, 45117, Essen, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology, ENT Department, University Mainz Medical Center, 55131, Mainz, Germany
| | - Carsten Schmuck
- Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology, University of Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
6
|
Zhang W, Dhumal D, Zhu X, Ralahy B, Ellert-Miklaszewska A, Wu J, Laurini E, Yao YW, Kao CL, Iovanna JL, Pricl S, Kaminska B, Xia Y, Peng L. Bola-Amphiphilic Glycodendrimers: New Carbohydrate-Mimicking Scaffolds to Target Carbohydrate-Binding Proteins. Chemistry 2022; 28:e202201400. [PMID: 35820051 DOI: 10.1002/chem.202201400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 01/07/2023]
Abstract
Dendrimers are appealing scaffolds for creating carbohydrate mimics with unique multivalent cooperativity. We report here novel bola-amphiphilic glycodendrimers bearing mannose and glucose terminals, and a hydrophobic thioacetal core responsive to reactive oxygen species. The peculiar bola-amphiphilic feature enabled stronger binding to lectin compared to conventional amphiphiles. In addition, these dendrimers are able to target mannose receptors and glucose transporters expressed at the surface of cells, thus allowing effective and specific cellular uptake. This highlights their great promise for targeted delivery.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Dinesh Dhumal
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Xiaolei Zhu
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Brigino Ralahy
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Aleksandra Ellert-Miklaszewska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, 02-093, Poland
| | - Jing Wu
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology (MolBNL@UniTS) Laboratory DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Yi-Wen Yao
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM) INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, 13288, France
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology (MolBNL@UniTS) Laboratory DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
- Department of General Biophysics Faculty of Biology and Environmental Protection, University of Lodz, Łódź, 90-236, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, 02-093, Poland
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Innovative Drug Research Center School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Ling Peng
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UMR 7325, Equipe Labellisé par La Ligue, Aix-Marseille Université, CNRS, Marseille, 13288, France
| |
Collapse
|
7
|
Apartsin E, Caminade A. Supramolecular Self-Associations of Amphiphilic Dendrons and Their Properties. Chemistry 2021; 27:17976-17998. [PMID: 34713506 PMCID: PMC9298340 DOI: 10.1002/chem.202102589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/15/2022]
Abstract
This review presents precisely defined amphiphilic dendrons, their self-association properties, and their different uses. Dendrons, also named dendritic wedges, are composed of a core having two different types of functions, of which one type is used for growing or grafting branched arms, generally multiplied by 2 at each layer by using 1→2 branching motifs. A large diversity of structures has been already synthesized. In practically all cases, their synthesis is based on the synthesis of known dendrimers, such as poly(aryl ether), poly(amidoamine) (in particular PAMAM), poly(amide) (in particular poly(L-lysine)), 1→3 branching motifs (instead of 1→2), poly(alkyl ether) (poly(glycerol) and poly(ethylene glycol)), poly(ester), and those containing main group elements (poly(carbosilane) and poly(phosphorhydrazone)). In most cases, the hydrophilic functions are on the surface of the dendrons, whereas one or two hydrophobic tails are linked to the core. Depending on the structure of the dendrons, and on the experimental conditions used, the amphiphilic dendrons can self-associate at the air-water interface, or form micelles (eventually tubular, but most generally spherical), or form vesicles. These associated dendrons are suitable for the encapsulation of low-molecular or macromolecular bioactive entities to be delivered in cells. This review is organized depending on the nature of the internal structure of the amphiphilic dendrons (aryl ether, amidoamine, amide, quaternary carbon atom, alkyl ether, ester, main group element). The properties issued from their self-associations are described all along the review.
Collapse
Affiliation(s)
- Evgeny Apartsin
- Laboratoire de Chimie de Coordination (LCC) CNRS205 route de Narbonne31077Toulouse cedex 4France
- LCC-CNRSUniversité de Toulouse, CNRS31077Toulouse cedex 4France
- Institute of Chemical Biology and Fundamental Medicine630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Anne‐Marie Caminade
- Laboratoire de Chimie de Coordination (LCC) CNRS205 route de Narbonne31077Toulouse cedex 4France
- LCC-CNRSUniversité de Toulouse, CNRS31077Toulouse cedex 4France
| |
Collapse
|
8
|
Wang Z, Song L, Liu Q, Tian R, Shang Y, Liu F, Liu S, Zhao S, Han Z, Sun J, Jiang Q, Ding B. A Tubular DNA Nanodevice as a siRNA/Chemo‐Drug Co‐delivery Vehicle for Combined Cancer Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhaoran Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Linlin Song
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
| | - Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
| | - Shuai Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zihong Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiashu Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 11 BeiYiTiao ZhongGuanCun Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
9
|
Wang Z, Song L, Liu Q, Tian R, Shang Y, Liu F, Liu S, Zhao S, Han Z, Sun J, Jiang Q, Ding B. A Tubular DNA Nanodevice as a siRNA/Chemo-Drug Co-delivery Vehicle for Combined Cancer Therapy. Angew Chem Int Ed Engl 2020; 60:2594-2598. [PMID: 33089613 DOI: 10.1002/anie.202009842] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Indexed: 01/03/2023]
Abstract
Using the DNA origami technique, we constructed a DNA nanodevice functionalized with small interfering RNA (siRNA) within its inner cavity and the chemotherapeutic drug doxorubicin (DOX), intercalated in the DNA duplexes. The incorporation of disulfide bonds allows the triggered mechanical opening and release of siRNA in response to intracellular glutathione (GSH) in tumors to knockdown genes key to cancer progression. Combining RNA interference and chemotherapy, the nanodevice induced potent cytotoxicity and tumor growth inhibition, without observable systematic toxicity. Given its autonomous behavior, exceptional designability, potent antitumor activity and marked biocompatibility, this DNA nanodevice represents a promising strategy for precise drug design for cancer therapy.
Collapse
Affiliation(s)
- Zhaoran Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Song
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
| | - Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
| | - Fengsong Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoli Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China
| | - Shuai Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihong Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiashu Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Yan XY, Lin Z, Zhang W, Xu H, Guo QY, Liu Y, Luo J, Liu XY, Zhang R, Huang J, Liu T, Su Z, Zhang R, Zhang S, Liu T, Cheng SZD. Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Self-Assembly of Giant Lipids. Angew Chem Int Ed Engl 2020; 59:5226-5234. [PMID: 31957938 DOI: 10.1002/anie.201916149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 12/24/2022]
Abstract
How biomembranes are self-organized to perform their functions remains a pivotal issue in biological and chemical science. Understanding the self-assembly principles of lipid-like molecules hence becomes crucial. Herein, we report the mesostructural evolution of amphiphilic sphere-rod conjugates (giant lipids), and study the roles of geometric parameters (head-tail ratio and cross-sectional area) during this course. As a prototype system, giant lipids resemble natural lipidic molecules by capturing their essential features. The self-assembly behavior of two categories of giant lipids (I-shape and T-shape, a total of 8 molecules) is demonstrated. A rich variety of mesostructures is constructed in solution state and their molecular packing models are rationally understood. Giant lipids recast the phase behavior of natural lipids to a certain degree and the abundant self-assembled morphologies reveal distinct physiochemical behaviors when geometric parameters deviate from natural analogues.
Collapse
Affiliation(s)
- Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Zhiwei Lin
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Xu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Qing-Yun Guo
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Yuchu Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Jiancheng Luo
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Xian-You Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiahao Huang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Tong Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Zebin Su
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Ruimeng Zhang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Shuailin Zhang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Tianbo Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| |
Collapse
|
11
|
Yan X, Lin Z, Zhang W, Xu H, Guo Q, Liu Y, Luo J, Liu X, Zhang R, Huang J, Liu T, Su Z, Zhang R, Zhang S, Liu T, Cheng SZD. Magnifying the Structural Components of Biomembranes: A Prototype for the Study of the Self‐Assembly of Giant Lipids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Yun Yan
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Zhiwei Lin
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Hui Xu
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Qing‐Yun Guo
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Yuchu Liu
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Jiancheng Luo
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Xian‐You Liu
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Jiahao Huang
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Zebin Su
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Ruimeng Zhang
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Shuailin Zhang
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Tianbo Liu
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and TechnologySchool of Molecular Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- Department of Polymer ScienceCollege of Polymer Science and Polymer EngineeringThe University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
12
|
Gao YG, Lin X, Dang K, Jiang SF, Tian Y, Liu FL, Li DJ, Li Y, Miao ZP, Qian AR. Structure-activity relationship of novel low-generation dendrimers for gene delivery. Org Biomol Chem 2019; 16:7833-7842. [PMID: 30084471 DOI: 10.1039/c8ob01767k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Structure-activity relationship (SAR) studies are very critical to design ideal gene vectors for gene delivery. However, It is difficult to obtain SAR information of low-generation dendrimers due to the lack of easy structural modification ways. Here, we synthesized a novel family of rigid aromatic backbone-based low-generation polyamidoamine (PAMAM) dendrimers. According to the number of primary amines, they were divided into two types: four-amine-containing PAMAM (DL1-DL5) and eight-amine-containing PAMAM (DL6-DL10). Due to the introduction of a rigid aromatic backbone, the low-generation PAMAM could be modified easier by different hydrophobic aliphatic chains. Several assays were used to study the interactions of the PAMAM dendrimers with plasmid DNA, and the results revealed that they not only had good DNA binding ability but also could efficiently condense DNA into spherical-shaped nanoparticles with suitable sizes and zeta potentials. The SAR studies indicated that the gene-transfection efficiency of the synthesized materials depended on not only the structure of their hydrophobic chains but also the number of primary amines. It was found that four-amine-containing PAMAM prepared from oleylamine (DL5) gave the best transfection efficiency, which was 3 times higher than that of lipofectamine 2000 in HEK293 cells. The cellular uptake mechanism mediated by DL5 was further investigated, and the results indicated that DL5/DNA complexes entered the cells mainly via caveolae and clathrin-mediated endocytosis. In addition, these low-generation PAMAMs modified with a single hydrophobic tail showed lower toxicity than lipofectamine 2000 in MC3T3-E1, MG63, HeLa, and HEK293 cells. These results reveal that such a type of low-generation polyamidoamines might be promising non-viral gene vectors, and also give us clues for the design of safe and high-efficiency gene vectors.
Collapse
Affiliation(s)
- Yong-Guang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zheng M, Jiang T, Yang W, Zou Y, Wu H, Liu X, Zhu F, Qian R, Ling D, McDonald K, Shi J, Shi B. The siRNAsome: A Cation-Free and Versatile Nanostructure for siRNA and Drug Co-delivery. Angew Chem Int Ed Engl 2019; 58:4938-4942. [PMID: 30737876 PMCID: PMC6593984 DOI: 10.1002/anie.201814289] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Nanoparticles show great potential for drug delivery. However, suitable nanostructures capable of loading a range of drugs together with the co-delivery of siRNAs, which avoid the problem of cation-associated cytotoxicity, are lacking. Herein, we report an small interfering RNA (siRNA)-based vesicle (siRNAsome), which consists of a hydrophilic siRNA shell, a thermal- and intracellular-reduction-sensitive hydrophobic median layer, and an empty aqueous interior that meets this need. The siRNAsome can serve as a versatile nanostructure to load drug agents with divergent chemical properties, therapeutic proteins as well as co-delivering immobilized siRNAs without transfection agents. Importantly, the inherent thermal/reduction-responsiveness enables controlled drug loading and release. When siRNAsomes are loaded with the hydrophilic drug doxorubicin hydrochloride and anti-P-glycoprotein siRNA, synergistic therapeutic activity is achieved in multidrug resistant cancer cells and a tumor model.
Collapse
Affiliation(s)
- Meng Zheng
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Tong Jiang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Wen Yang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Yan Zou
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNSWAustralia
| | - Haigang Wu
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
| | - Xiuhua Liu
- College of Chemistry and Chemical EngineeringHenan UniversityKaifeng475004China
| | - Fengping Zhu
- Department of NeurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Rongjun Qian
- Department of NeurosurgeryThe Henan Provincial People's HospitalZhengzhou450003China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Kerrie McDonald
- Cure Brain Cancer Foundation Biomarkers and Translational Research GroupPrince of Wales Clinical SchoolLowy Cancer Research CentreUniversity of New South WalesSydneyNSWAustralia
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Bingyang Shi
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifengHenan475004China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNSWAustralia
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
14
|
Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Peng R, Cheng Y, Liu Z. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials 2019; 207:1-9. [PMID: 30947117 DOI: 10.1016/j.biomaterials.2019.03.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/06/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
Abstract
Cancer vaccines for prevention and treatment of tumors have attracted tremendous interests as a type of cancer immunotherapy strategy. A major challenge in achieving robust T-cell responses to destruct tumor cells after vaccination is the abilities of antigen cross-presentation for antigen-presenting cells (APCs) such as dendritic cells (DCs). Herein, we demonstrate that a polyamidoamine dendrimer modified with guanidinobenzoic acid (DGBA) could serve as an effective protein carrier to enable delivery of protein antigen, thereby leading to effective antigen cross-presentation by DCs. With ovalbumin (OVA) as the model antigen and unmethylated cytosine-guanine dinucleotides (CpG) as the adjuvant, a unique type of tumor vaccine is formulated. Importantly, such DGBA-OVA-CpG nanovaccine can induce robust antigen-specific cellular immunities and further demonstrates outstanding prophylactic efficacy against B16-OVA melanoma. More significantly, the nanovaccine shows excellent therapeutic effect to treat established B16-OVA melanoma when used in combination with the programmed cell death protein 1 (PD-1) checkpoint-blockade immunotherapy. This study presents the great promises of employing rationally engineered cytosolic protein carriers for the development of tumor vaccines to achieve effective cancer immunotherapy.
Collapse
Affiliation(s)
- Jun Xu
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, PR China
| | - Ligeng Xu
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Yu Chao
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Chenya Wang
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiao Han
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Ziliang Dong
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Rui Peng
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, PR China.
| | - Zhuang Liu
- Institute of Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
15
|
Zheng M, Jiang T, Yang W, Zou Y, Wu H, Liu X, Zhu F, Qian R, Ling D, McDonald K, Shi J, Shi B. The siRNAsome: A Cation‐Free and Versatile Nanostructure for siRNA and Drug Co‐delivery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Meng Zheng
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
| | - Tong Jiang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
| | - Wen Yang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
| | - Yan Zou
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie University Sydney NSW Australia
| | - Haigang Wu
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
| | - Xiuhua Liu
- College of Chemistry and Chemical EngineeringHenan University Kaifeng 475004 China
| | - Fengping Zhu
- Department of NeurosurgeryHuashan HospitalFudan University Shanghai 200040 China
| | - Rongjun Qian
- Department of NeurosurgeryThe Henan Provincial People's Hospital Zhengzhou 450003 China
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang University Hangzhou 310058 China
| | - Kerrie McDonald
- Cure Brain Cancer Foundation Biomarkers and Translational Research GroupPrince of Wales Clinical SchoolLowy Cancer Research CentreUniversity of New South Wales Sydney NSW Australia
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical School Boston MA USA
| | - Bingyang Shi
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan University Kaifeng Henan 475004 China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie University Sydney NSW Australia
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical School Boston MA USA
| |
Collapse
|
16
|
Zhang T, Huang Y, Ma X, Gong N, Liu X, Liu L, Ye X, Hu B, Li C, Tian JH, Magrini A, Zhang J, Guo W, Xing JF, Bottini M, Liang XJ. Fluorinated Oligoethylenimine Nanoassemblies for Efficient siRNA-Mediated Gene Silencing in Serum-Containing Media by Effective Endosomal Escape. NANO LETTERS 2018; 18:6301-6311. [PMID: 30240228 DOI: 10.1021/acs.nanolett.8b02553] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Efficient small interfering RNA (siRNA) delivery in the presence of serum is of crucial importance for effective gene therapy. Fluorinated vectors are considered to be attractive candidates for siRNA-mediated gene therapy because of their delivery efficacy in serum-containing media. However, the mechanisms driving the superior gene transfection behavior of fluorinated vectors are still not well-understood, and comprehensive investigations are warranted. Herein, we fabricated a library of perfluorooctanoyl fluoride-fluorinated (PFF-fluorinated) oligoethylenimines (f xOEIs, x is the PFF:OEI feeding ratio), which can readily form nanoassemblies (f xOEI NAs) capable of efficient siRNA delivery in cells cultured in medium both devoid of and supplemented with fetal bovine serum (FBS). The gene silencing test in serum-containing medium revealed that the f0.7OEI/siRNA NAs achieved a luciferase silencing of ∼88.4% in Luc-HeLa cells cultured in FBS-containing medium, which was almost 2-fold greater than the silencing efficacy of siRNA delivered by the commercially available vector Lipo 2000 (∼48.8%). High levels of apolipoprotein B silencing were also achieved by f0.7OEI/siRNA NAs in vivo. For an assessment of the underlying mechanisms of the efficacy of gene silencing of fluorinated vectors, two alkylated OEIs, aOEI-C8 and aOEI-C12, were fabricated as controls with similar molecular structure and hydrophobicity to that of f0.7OEI, respectively. In vitro investigations showed that the superior gene delivery exhibited by f0.7OEI NAs derived from the potent endosomal disruption capability of fluorinated vectors in the presence of serum, which was essentially attributed to the serum protein adsorption resistance of the f0.7OEI NAs. Therefore, this work provides an innovative approach to siRNA delivery as well as insights into fluorine-associated serum resistance.
Collapse
Affiliation(s)
- Tingbin Zhang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Xiaowei Ma
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Ningqiang Gong
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Xiaoli Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
- Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Via Montpellier 1 , 00133 Rome , Italy
| | - Xiaoxia Ye
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Bo Hu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Chunhui Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Jian-Hua Tian
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Andrea Magrini
- Department of Biomedicine and Prevention , University of Rome Tor Vergata , Via Montpellier 1 , 00133 Rome , Italy
| | - Jinchao Zhang
- Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P. R. China
| | - Jin-Feng Xing
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , P. R. China
| | - Massimo Bottini
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
- Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Via Montpellier 1 , 00133 Rome , Italy
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| |
Collapse
|
17
|
Li Y, Li Y, Ji W, Lu Z, Liu L, Shi Y, Ma G, Zhang X. Positively Charged Polyprodrug Amphiphiles with Enhanced Drug Loading and Reactive Oxygen Species-Responsive Release Ability for Traceable Synergistic Therapy. J Am Chem Soc 2018; 140:4164-4171. [DOI: 10.1021/jacs.8b01641] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanhui Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weihong Ji
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linying Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Shi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Ding F, Mou Q, Ma Y, Pan G, Guo Y, Tong G, Choi CHJ, Zhu X, Zhang C. A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711242] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fei Ding
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Quanbing Mou
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Yuan Ma
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Gaifang Pan
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Yuanyuan Guo
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Chung Hang Jonathan Choi
- Department of Electronic Engineering (Biomedical Engineering); The Chinese University of Hong Kong, China; Shatin New Territories Hong Kong China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
19
|
Ding F, Mou Q, Ma Y, Pan G, Guo Y, Tong G, Choi CHJ, Zhu X, Zhang C. A Crosslinked Nucleic Acid Nanogel for Effective siRNA Delivery and Antitumor Therapy. Angew Chem Int Ed Engl 2018; 57:3064-3068. [DOI: 10.1002/anie.201711242] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Fei Ding
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Quanbing Mou
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Yuan Ma
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Gaifang Pan
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Yuanyuan Guo
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Chung Hang Jonathan Choi
- Department of Electronic Engineering (Biomedical Engineering); The Chinese University of Hong Kong, China; Shatin New Territories Hong Kong China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
20
|
Abstract
A self-consistent field theory is applied to study structural properties of micelles formed upon spontaneous assembly of diblock copolymers comprising soluble dendron block covalently linked to insoluble linear block in selective solvent. The structure of spherical micelles is analyzed as a function of degrees of polymerization of the blocks and number of generations and branching functionality of the dendron block. We demonstrate that for a given molecular mass of blocks both the hydrodynamic dimensions of the micelles and the aggregation number decrease as a function of the degree of branching of the dendron block. However, the number of potentially functionalizable terminal segments of dendrons in the corona exposed to the solution increases compared to the number of terminal groups in the corona of linear diblock copolymer micelle. This result may have important implications for construction of linear-dendritic block copolymer micelles with smart functionalities for targeted drug and gene delivery.
Collapse
Affiliation(s)
- Inna O. Lebedeva
- Institut des Sciences
Analytiques et de Physico-Chimie pour l’Environnement et les
Matériaux, UMR 5254 CNRS UPPA, Pau, France
- Peter the Great St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
| | - Ekaterina B. Zhulina
- Institute
of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- St. Petersburg National University of Informational Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institut des Sciences
Analytiques et de Physico-Chimie pour l’Environnement et les
Matériaux, UMR 5254 CNRS UPPA, Pau, France
- Peter the Great St. Petersburg State Polytechnic University, 195251 St. Petersburg, Russia
- Institute
of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- St. Petersburg National University of Informational Technologies, Mechanics and Optics, 197101 St. Petersburg, Russia
| |
Collapse
|
21
|
Wang C, Du L, Zhou J, Meng L, Cheng Q, Wang C, Wang X, Zhao D, Huang Y, Zheng S, Cao H, Zhang J, Deng L, Liang Z, Dong A. Elaboration on the Distribution of Hydrophobic Segments in the Chains of Amphiphilic Cationic Polymers for Small Interfering RNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32463-32474. [PMID: 28862422 DOI: 10.1021/acsami.7b07337] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hydrophobization of cationic polymers, as an efficient strategy, had been widely developed in the structure of cationic polymer micelles to improve the delivery efficiency of nucleic acids. However, the distribution of hydrophobic segments in the polymer chains is rarely considered. Here, we have elaborated three types of hydrophobized polyethylene glycol (PEG)-blocked cationic polymers with different distributions of the hydrophobic segments in the polymer chains PEG-PAM-PDP (E-A-D), PEG-PDP-PAM (E-D-A), and PEG-P(AM/DP) (E-(A/D)), which were synthesized by reversible addition-fragmentation chain transfer polymerization of methoxy PEG, cationic monomer aminoethyl methacrylate, and pH-sensitive hydrophobic monomer 2-diisopropylaminoethyl methacrylate, respectively. In aqueous solution, all of the three copolymers, E-A-D, E-D-A, and E-(A/D), were able to spontaneously form nanosized micelles (100-150 nm) (ME-A-D, ME-D-A, and ME-(A/D)) and well-incorporated small interfering RNA (siRNA) into complex micelles (CMs). The effect of distributions of the hydrophobic segments on siRNA delivery had been evaluated in vitro and in vivo. Compared with ME-D-A and ME-(A/D), ME-A-D showed the best siRNA binding capacity to form stable ME-A-D/siRNA CMs less than 100 nm, mediated the best gene-silencing efficiency and inhibition effect of tumor cell growth in vitro, and showed better liver gene-silencing effect in vivo. In the case of ME-(A/D) with a random distribution of cationic and hydrophobic segments, a gene-silencing efficiency higher than Lipo2000 but lesser than ME-A-D and ME-D-A was obtained. As the mole ratio of positive and negative charges increased, ME-D-A/siRNA and ME-A-D/siRNA showed similar performances in size, zeta potential, cell uptake, and gene silencing, but ME-(A/D)/siRNA showed reversed performances. In addition, ME-A-D as the best siRNA carrier was evaluated in the tumor tissue in the xenograft murine model and showed good anticancer capacity. Obviously, the distribution of the hydrophobic segments in the amphiphilic cationic polymer chains should be seriously considered in the design of siRNA vectors.
Collapse
Affiliation(s)
- Changrong Wang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | | | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
| | | | | | - Chun Wang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
| | | | | | - Yuanyu Huang
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology , Beijing 100081, China
| | | | | | - Jianhua Zhang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
| | - Liandong Deng
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
| | - Zicai Liang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| |
Collapse
|
22
|
Lebedeva IO, Zhulina EB, Leermakers FAM, Borisov OV. Dendron and Hyperbranched Polymer Brushes in Good and Poor Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1315-1325. [PMID: 28134533 DOI: 10.1021/acs.langmuir.6b04285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a theory of conformational transition triggered by inferior solvent strength in brushes formed by dendritically branched macromolecules tethered to planar, concave, or convex cylindrical and spherical surfaces. In the regime of linear elasticity for brush-forming dendrons, an analytical strong stretching self-consistent field (SS-SCF) approach provides brush conformational properties as a function of solvent strength. A boxlike model is applied to describe the collapse transition in brushes formed by macromolecules with arbitrary treelike topology, including hyperbranched polymers. We demonstrate that an increase in the degree of branching, that is, an increase in the number of generations or/and functionality of branching points in tethered macromolecules, makes the swelling-to-collapse transition less sharp. A decrease in surface curvature has a similar effect. The numerical Scheutjens-Fleer self-consistent field approach is used to analyze the collapse transition in dendron brushes in the nonlinear stretching regime. It is demonstrated that inferior solvent strength suppresses stratification that is exhibited under good solvent conditions by densely grafted dendron brushes.
Collapse
Affiliation(s)
- Inna O Lebedeva
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France
- The Peter the Great St.Petersburg Polytechnic University , 195251, St. Petersburg, Russia
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004, St. Petersburg, Russia
- National Research University of Information Technologies, Mechanics and Optics , 197101, St. Petersburg, Russia
| | - Frans A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University , 6703 HB Wageningen, The Netherlands
| | - Oleg V Borisov
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS UPPA, Pau, France
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004, St. Petersburg, Russia
- National Research University of Information Technologies, Mechanics and Optics , 197101, St. Petersburg, Russia
| |
Collapse
|
23
|
Xiao YP, Zhang J, Liu YH, Huang Z, Wang B, Zhang YM, Yu XQ. Cross-linked polymers with fluorinated bridges for efficient gene delivery. J Mater Chem B 2017; 5:8542-8553. [DOI: 10.1039/c7tb02158e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new strategy for the construction of fluorinated cationic polymers for gene delivery was introduced.
Collapse
Affiliation(s)
- Ya-Ping Xiao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
24
|
Kwok A, Eggimann GA, Heitz M, Reymond JL, Hollfelder F, Darbre T. Efficient Transfection of siRNA by Peptide Dendrimer-Lipid Conjugates. Chembiochem 2016; 17:2223-2229. [DOI: 10.1002/cbic.201600485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Albert Kwok
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Gabriela A. Eggimann
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Marc Heitz
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| | - Florian Hollfelder
- Department of Biochemistry; University of Cambridge; 80 Tennis Court Road Cambridge CB2 1GA UK
| | - Tamis Darbre
- Department of Chemistry and Biochemistry; University of Bern; Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
25
|
Freyer JL, Brucks SD, Gobieski GS, Russell ST, Yozwiak CE, Sun M, Chen Z, Jiang Y, Bandar JS, Stockwell BR, Lambert TH, Campos LM. Clickable Poly(ionic liquids): A Materials Platform for Transfection. Angew Chem Int Ed Engl 2016; 55:12382-6. [PMID: 27578602 PMCID: PMC6552664 DOI: 10.1002/anie.201605214] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/11/2016] [Indexed: 11/10/2022]
Abstract
The potential applications of cationic poly(ionic liquids) range from medicine to energy storage, and the development of efficient synthetic strategies to target innovative cationic building blocks is an important goal. A post-polymerization click reaction is reported that provides facile access to trisaminocyclopropenium (TAC) ion-functionalized macromolecules of various architectures, which are the first class of polyelectrolytes that bear a formal charge on carbon. Quantitative conversions of polymers comprising pendant or main-chain secondary amines were observed for an array of TAC derivatives in three hours using near equimolar quantities of cyclopropenium chlorides. The resulting TAC polymers are biocompatible and efficient transfection agents. This robust, efficient, and orthogonal click reaction of an ionic liquid, which we term ClickabIL, allows straightforward screening of polymeric TAC derivatives. This platform provides a modular route to synthesize and study various properties of novel TAC-based polymers.
Collapse
Affiliation(s)
- Jessica L Freyer
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Spencer D Brucks
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Graham S Gobieski
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Sebastian T Russell
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Carrie E Yozwiak
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Mengzhen Sun
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Zhixing Chen
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Yivan Jiang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Tristan H Lambert
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA.
| | - Luis M Campos
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA.
| |
Collapse
|
26
|
Freyer JL, Brucks SD, Gobieski GS, Russell ST, Yozwiak CE, Sun M, Chen Z, Jiang Y, Bandar JS, Stockwell BR, Lambert TH, Campos LM. Clickable Poly(ionic liquids): A Materials Platform for Transfection. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica L. Freyer
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Spencer D. Brucks
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Graham S. Gobieski
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | | | - Carrie E. Yozwiak
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Mengzhen Sun
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Zhixing Chen
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Yivan Jiang
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Brent R. Stockwell
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Tristan H. Lambert
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Luis M. Campos
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| |
Collapse
|
27
|
Li Y, Hei M, Xu Y, Qian X, Zhu W. Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery. Int J Pharm 2016; 511:689-702. [PMID: 27426108 DOI: 10.1016/j.ijpharm.2016.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023]
Abstract
Effective gene delivery system plays an importmant role in the gene therapy. Mesoporous silica nanoparticle (MSN) has become one potential gene delivery vector because of its high stability, good biodegradability and low cytotoxicity. Herein, MSN-based dual intracellular responsive gene delivery system CMSN-A was designed and fabricated. Short chain ammonium group, which is modified with disulfide bond and amide bond simultaneously, is facilely grafted onto the mesoporous silica nanoparticles. As-synthesized CMSN-A is endowed with small size (80-110nm), large conical pores (15-23nm), and moderate Zeta potential (+25±2mV), which behaves high gene loading capacity, good stability and effectively gene transfection. Moreover, CMSN-A exhibits dual micro-environment responsive (lower pH, more reducing substances) due to the redox-sensitive disulfide bond and pH-sensitive amide bond in the short chain ammonium group. The cellular uptake study indicates that CMSN-A could transfer both plasmid DNA (pDNA) and siRNA into different kinds of tumour cells, which demonstrate the promising potential of CMSN-A as effective and safe gene-delivery vectors.
Collapse
Affiliation(s)
- Yujie Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingyang Hei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
28
|
Liu J, Wang R, Ma D, Li Y, Wei C, Xi Z. Branch-PCR Constructed Stable shRNA Transcription Nanoparticles Have Long-Lasting RNAi Effect. Chembiochem 2016; 17:1038-42. [PMID: 26972444 DOI: 10.1002/cbic.201600047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/21/2023]
Abstract
RNA interference (RNAi) is a cellular process for gene silencing. Because of poor serum stability, transferring dsRNA directly into the target cells is a challenge. We report a facile and universal strategy to construct short hairpin RNA (shRNA) transcription nanoparticles with multiple shRNA transcription templates by PCR with flexible branched primers (branch-PCR). Compared with conventional linear shRNA transcription templates, these shRNA transcription nanoparticles show excellent stability against digestion by exonuclease III. Importantly, we found that our highly stable shRNA transcription nanoparticles can also be transcribed and thus induce efficient and long-lasting RNAi with picomolar activity in living mammalian cells. These chemically well-defined branch-PCR-generated stable shRNA transcription nanoparticles might facilitate RNAi delivery with a long-lasting RNAi effects.
Collapse
Affiliation(s)
- Jianbing Liu
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Runyu Wang
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Dejun Ma
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yanyan Li
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Chao Wei
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Zhen Xi
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Li L, He ZY, Wei XW, Wei YQ. Recent advances of biomaterials in biotherapy. Regen Biomater 2016; 3:99-105. [PMID: 27047675 PMCID: PMC4817323 DOI: 10.1093/rb/rbw007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 02/05/2023] Open
Abstract
Biotherapy mainly refers to the intervention and the treatment of major diseases with biotechnologies or bio-drugs, which include gene therapy, immunotherapy (vaccines and antibodies), bone marrow transplantation and stem-cell therapy. In recent years, numerous biomaterials have emerged and were utilized in the field of biotherapy due to their biocompatibility and biodegradability. Generally, biomaterials can be classified into natural or synthetic polymers according to their source, both of which have attracted much attention. Notably, biomaterials-based non-viral gene delivery vectors in gene therapy are undergoing rapid development with the emergence of surface-modified or functionalized materials. In immunotherapy, biomaterials appear to be attractive means for enhancing the delivery efficacy and the potency of vaccines. Additionally, hydrogels and scaffolds are ideal candidates in stem-cell therapy and tissue engineering. In this review, we present an introduction of biomaterials used in above biotherapy, including gene therapy, immunotherapy, stem-cell therapy and tissue engineering. We also highlighted the biomaterials which have already entered the clinical evaluation
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhi-Yao He
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xia-Wei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yu-Quan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
30
|
Wang H, Wei H, Huang Q, Liu H, Hu J, Cheng Y, Xiao J. Nucleobase-modified dendrimers as nonviral vectors for efficient and low cytotoxic gene delivery. Colloids Surf B Biointerfaces 2015; 136:1148-55. [DOI: 10.1016/j.colsurfb.2015.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/10/2015] [Accepted: 11/07/2015] [Indexed: 12/30/2022]
|
31
|
Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, Zhang Q, Cheng Y. Self-Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, Zhang Q, Cheng Y. Self-Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery. Angew Chem Int Ed Engl 2015; 54:11647-51. [PMID: 26260847 DOI: 10.1002/anie.201501461] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/30/2015] [Indexed: 01/08/2023]
Abstract
An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low-molecular-weight fluorodendrimers for efficient gene delivery. These materials self-assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Yitong Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Yu Wang
- Changzheng Hospital, Department of Orthopedic Oncology, Shanghai (China)
| | - Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Tianfu Li
- China Institute of Atomic Energy, Beijing (China)
| | - Hongmei Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China).
| |
Collapse
|
33
|
Douat C, Aisenbrey C, Antunes S, Decossas M, Lambert O, Bechinger B, Kichler A, Guichard G. A cell-penetrating foldamer with a bioreducible linkage for intracellular delivery of DNA. Angew Chem Int Ed Engl 2015; 54:11133-7. [PMID: 26246005 DOI: 10.1002/anie.201504884] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/04/2015] [Indexed: 12/21/2022]
Abstract
Despite significant advances in foldamer chemistry, tailored delivery systems based on foldamer architectures, which provide a high level of control over secondary structure, are curiously rare among non-viral technologies for transporting nucleic acids into cells. A potent pH-responsive, bioreducible cell-penetrating foldamer (CPF) was developed through covalent dimerization of a short (8-mer) amphipathic oligourea sequence bearing histidine-type units. This CPF exhibits a high capacity to assemble with pDNA and mediates efficient delivery of nucleic acids into the cell. Furthermore, it does not adversely affect cellular viability and was shown to compare favorably with a cognate peptide transfection agent based on His-rich sequences.
Collapse
Affiliation(s)
- Céline Douat
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac (France).,CNRS, CBMN, UMR 5248, 33600 Pessac (France)
| | - Christopher Aisenbrey
- Membrane Biophysics and NMR, Chemistry Institute, University of Strasbourg-CNRS UMR7177, 4, Rue Blaise Pascal, 67008 Strasbourg (France)
| | - Stéphanie Antunes
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac (France).,CNRS, CBMN, UMR 5248, 33600 Pessac (France)
| | - Marion Decossas
- CNRS, CBMN, UMR 5248, 33600 Pessac (France).,Univ. Bordeaux, CBMN, UMR 5248, All. Geoffroy Saint-Hilaire, 33600 Pessac (France)
| | - Olivier Lambert
- CNRS, CBMN, UMR 5248, 33600 Pessac (France).,Univ. Bordeaux, CBMN, UMR 5248, All. Geoffroy Saint-Hilaire, 33600 Pessac (France)
| | - Burkhard Bechinger
- Membrane Biophysics and NMR, Chemistry Institute, University of Strasbourg-CNRS UMR7177, 4, Rue Blaise Pascal, 67008 Strasbourg (France)
| | - Antoine Kichler
- Laboratoire "Vecteurs: Synthèse et Applications Thérapeutiques", UMR 7199 CNRS-Université de Strasbourg, Labex Medalis, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch cedex (France).
| | - Gilles Guichard
- Univ. Bordeaux, CBMN, UMR 5248, Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac (France). .,CNRS, CBMN, UMR 5248, 33600 Pessac (France).
| |
Collapse
|
34
|
Douat C, Aisenbrey C, Antunes S, Decossas M, Lambert O, Bechinger B, Kichler A, Guichard G. A Cell-Penetrating Foldamer with a Bioreducible Linkage for Intracellular Delivery of DNA. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Hong CA, Eltoukhy AA, Lee H, Langer R, Anderson DG, Nam YS. Dendrimeric siRNA for Efficient Gene Silencing. Angew Chem Int Ed Engl 2015; 54:6740-4. [PMID: 25892329 DOI: 10.1002/anie.201412493] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/09/2015] [Indexed: 11/09/2022]
Abstract
Programmable molecular self-assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second-generation dendrimers of siRNA can be effectively complexed with a low-molecular-weight, cationic polymer (poly(β-amino ester), PBAE) to generate stable nanostructures about 160 nm in diameter via strong electrostatic interactions. Condensation and gene silencing efficiencies increase with the increased generation of siRNA dendrimers due to a high charge density and structural flexibility.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
| | - Ahmed A Eltoukhy
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul (Republic of Korea)
| | - Robert Langer
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Daniel G Anderson
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA).
| | - Yoon Sung Nam
- Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea).
| |
Collapse
|
36
|
Hong CA, Eltoukhy AA, Lee H, Langer R, Anderson DG, Nam YS. Dendrimeric siRNA for Efficient Gene Silencing. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Chang H, Zhang Y, Li L, Cheng Y. Efficient delivery of small interfering RNA into cancer cells using dodecylated dendrimers. J Mater Chem B 2015; 3:8197-8202. [DOI: 10.1039/c5tb01257k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dodecylated dendrimers show significantly improved gene silencing efficacy after dodecylation. Among the dendrimers, G4-23C12 shows the highest gene knockdown efficacy.
Collapse
Affiliation(s)
- Hong Chang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yueming Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
38
|
Khan OF, Zaia EW, Yin H, Bogorad RL, Pelet JM, Webber MJ, Zhuang I, Dahlman JE, Langer R, Anderson DG. Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo. Angew Chem Int Ed Engl 2014; 53:14397-401. [PMID: 25354018 PMCID: PMC4785599 DOI: 10.1002/anie.201408221] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/03/2014] [Indexed: 12/11/2022]
Abstract
A library of dendrimers was synthesized and optimized for targeted small interfering RNA (siRNA) delivery to different cell subpopulations within the liver. Using a combinatorial approach, a library of these nanoparticle-forming materials was produced wherein the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length, and evaluated for their ability to deliver siRNA to liver cell subpopulations. Interestingly, two lead delivery materials could be formulated in a manner to alter their tissue tropism within the liver-with formulations from the same material capable of preferentially delivering siRNA to 1) endothelial cells, 2) endothelial cells and hepatocytes, or 3) endothelial cells, hepatocytes, and tumor cells in vivo. The ability to broaden or narrow the cellular destination of siRNA within the liver may provide a useful tool to address a range of liver diseases.
Collapse
Affiliation(s)
- Omar F. Khan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Edmond W. Zaia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hao Yin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Roman L. Bogorad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jeisa M. Pelet
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew J. Webber
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Iris Zhuang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James E. Dahlman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Department of Chemical Engineering, and Institute for Medical, Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel G. Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Department of Chemical Engineering, and Institute for Medical, Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Khan OF, Zaia EW, Yin H, Bogorad RL, Pelet JM, Webber MJ, Zhuang I, Dahlman JE, Langer R, Anderson DG. Ionizable Amphiphilic Dendrimer-Based Nanomaterials with Alkyl-Chain-Substituted Amines for Tunable siRNA Delivery to the Liver Endothelium In Vivo. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew Chem Int Ed Engl 2014; 53:13126-30. [PMID: 25267331 DOI: 10.1002/anie.201407272] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/20/2014] [Indexed: 02/02/2023]
Abstract
A novel ferrocenium capped amphiphilic pillar[5]arene (FCAP) was synthesized and self-assembled to cationic vesicles in aqueous solution. The cationic vesicles, displaying low cytotoxicity and significant redox-responsive behavior due to the redox equilibrium between ferrocenium cations and ferrocenyl groups, allow building an ideal glutathione (GSH)-responsive drug/siRNA co-delivery system for rapid drug release and gene transfection in cancer cells in which higher GSH concentration exists. This is the first report of redox-responsive vesicles assembled from pillararenes for drug/siRNA co-delivery; besides enhancing the bioavailability of drugs for cancer cells and reducing the adverse side effects for normal cells, these systems can also overcome the drug resistance of cancer cells. This work presents a good example of rational design for an effective stimuli-responsive drug/siRNA co-delivery system.
Collapse
Affiliation(s)
- Yincheng Chang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100 (P.R. China)
| | | | | | | | | | | | | |
Collapse
|
41
|
Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z. Cationic Vesicles Based on Amphiphilic Pillar[5]arene Capped with Ferrocenium: A Redox-Responsive System for Drug/siRNA Co-Delivery. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407272] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Liu X, Zhou J, Yu T, Chen C, Cheng Q, Sengupta K, Huang Y, Li H, Liu C, Wang Y, Posocco P, Wang M, Cui Q, Giorgio S, Fermeglia M, Qu F, Pricl S, Shi Y, Liang Z, Rocchi P, Rossi JJ, Peng L. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew Chem Int Ed Engl 2014; 53:11822-7. [PMID: 25219970 DOI: 10.1002/anie.201406764] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/03/2014] [Indexed: 11/06/2022]
Abstract
siRNA delivery remains a major challenge in RNAi-based therapy. Here, we report for the first time that an amphiphilic dendrimer is able to self-assemble into adaptive supramolecular assemblies upon interaction with siRNA, and effectively delivers siRNAs to various cell lines, including human primary and stem cells, thereby outperforming the currently available nonviral vectors. In addition, this amphiphilic dendrimer is able to harness the advantageous features of both polymer and lipid vectors and hence promotes effective siRNA delivery. Our study demonstrates for the first time that dendrimer-based adaptive supramolecular assemblies represent novel and versatile means for functional siRNA delivery, heralding a new age of dendrimer-based self-assembled drug delivery in biomedical applications.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325 (France); Centre de Recherche en Cancérologie de Marseille, INSERM, UMR1068 (France); Institut Paoli-Calmettes, Marseille (France); Aix-Marseille Université (France); CNRS, UMR7258, Marseille (France)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu X, Zhou J, Yu T, Chen C, Cheng Q, Sengupta K, Huang Y, Li H, Liu C, Wang Y, Posocco P, Wang M, Cui Q, Giorgio S, Fermeglia M, Qu F, Pricl S, Shi Y, Liang Z, Rocchi P, Rossi JJ, Peng L. Adaptive Amphiphilic Dendrimer-Based Nanoassemblies as Robust and Versatile siRNA Delivery Systems. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Zhou Z, Ma X, Murphy CJ, Jin E, Sun Q, Shen Y, Van Kirk EA, Murdoch WJ. Molecularly Precise Dendrimer-Drug Conjugates with Tunable Drug Release for Cancer Therapy. Angew Chem Int Ed Engl 2014; 53:10949-55. [DOI: 10.1002/anie.201406442] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/29/2014] [Indexed: 11/10/2022]
|
45
|
Zhou Z, Ma X, Murphy CJ, Jin E, Sun Q, Shen Y, Van Kirk EA, Murdoch WJ. Molecularly Precise Dendrimer-Drug Conjugates with Tunable Drug Release for Cancer Therapy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Bromfield SM, Posocco P, Fermeglia M, Tolosa J, Herreros-López A, Pricl S, Rodríguez-López J, Smith DK. Shape-Persistent and Adaptive Multivalency: Rigid Transgeden (TGD) and Flexible PAMAM Dendrimers for Heparin Binding. Chemistry 2014; 20:9666-74. [DOI: 10.1002/chem.201402237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Indexed: 11/06/2022]
|
47
|
Chang H, Wang H, Shao N, Wang M, Wang X, Cheng Y. Surface-engineered dendrimers with a diaminododecane core achieve efficient gene transfection and low cytotoxicity. Bioconjug Chem 2014; 25:342-50. [PMID: 24410081 DOI: 10.1021/bc400496u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cationic dendrimers are widely used as gene vectors; however, these materials are usually associated with unsatisfied transfection efficiency and biocompatibility. In this study, we used an aliphatic hydrocarbon-cored polyamidoamine (PAMAM) dendrimer as an alternative to traditional cationic PAMAM dendrimers in the design of efficient gene vectors. Diaminododecane-cored generation 4 (C12G4) PAMAM dendrimer showed dramatically higher efficacy in luciferase and EGFP gene transfection than diaminoethane-cored generation 4 (C2G4) and diaminohexane-cored generation 4 (C6G4) PAMAM dendrimers. The viability of cells incubated with C12G4 at transfection concentrations is above 90%. The significantly improved gene transfection efficacy of C12G4 is attributed to the hydrophobic core of C12G4 which increases the cellular uptake of dendrimer/DNA polyplexes. Further modification of C12G4 with functional ligands such as arginine, 2,4-diamino-1,3,5-triazine, and fluorine compounds significantly increase its transfection efficiency on several cell lines. These results suggest that diaminododecane-cored dendrimers can be developed as a versatile scaffold in the design of efficient gene vectors.
Collapse
Affiliation(s)
- Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai, 200241, P.R. China
| | | | | | | | | | | |
Collapse
|
48
|
Wei T, Liu J, Ma H, Cheng Q, Huang Y, Zhao J, Huo S, Xue X, Liang Z, Liang XJ. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. NANO LETTERS 2013; 13:2528-34. [PMID: 23634882 DOI: 10.1021/nl400586t] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Poor penetration of therapeutic drugs into tumors is a major challenge in anticancer therapy, especially in solid tumors, leading to reduced therapeutic efficacy in vivo. In the study, we used a new tumor-penetrating peptide, CRGDK, to conjugate onto the surface of doxorubicin encapsulated nanoscale micelles. The CRGDK peptide triggered specific binding to neuropilin-1, leading to enhanced cellular uptake and cytotoxicity in vitro and highly accumulation and penetration in the tumors in vivo.
Collapse
Affiliation(s)
- Tuo Wei
- Chinese Academy of Sciences (CAS) Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | | | | | | | | | | | | | | | | | | |
Collapse
|