1
|
Knight NML, Anderson DE, Mulrainey PT, Paterson LC, Lindsay DM, Tuttle T, Kerr WJ. Nitrile-tolerant Iridium-catalysed Hydrogen Isotope Exchange. Chemistry 2025; 31:e202500449. [PMID: 39960321 DOI: 10.1002/chem.202500449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Isotopically labelled molecules are vital tools within drug discovery and are used extensively to assess a given candidate's absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile. Related to this, transition metal-catalyzed hydrogen isotope exchange (HIE) has become a prominent technique for the rapid and selective late-stage installation of a deuterium or tritium label. Despite having a generally wide applicability, the current state-of-the-art in this specific field is limited when particularly co-ordinating motifs are present within a given molecule to be labelled. For example, the exceptional binding strength and sterically unencumbered nature of the nitrile functionality leads to inhibition of catalyst turnover, and has hindered the development of efficient methods for the HIE of nitrile-containing molecules. Herein, in silico solvent binding energy parameter approaches have been disclosed which have facilitated the discovery of uniquely tolerant neutral iridium catalyst species that demonstrate a significantly lower binding strength with nitrile functionality. In turn, we describe the first effective nitrile-tolerant HIE methodology enabled via ortho-directed C(sp2)-H activation using air- and moisture-stable iridium pre-catalysts of the type Ir(COD)(NHC)Cl under an atmosphere of deuterium gas. This methodology proceeds under mild and practically accessible reaction conditions with a range of directing groups, including heterocycles, ketones, and amines, with this class of catalyst also shown to be applicable towards bioactive molecules, resulting in products with high levels of isotopic labelling.
Collapse
Affiliation(s)
- Nathan M L Knight
- Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - David E Anderson
- Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Paul T Mulrainey
- Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Laura C Paterson
- Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - David M Lindsay
- Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Tell Tuttle
- Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - William J Kerr
- Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
2
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Lennox CB, Borchers TH, Gonnet L, Barrett CJ, Koenig SG, Nagapudi K, Friščić T. Direct mechanocatalysis by resonant acoustic mixing (RAM). Chem Sci 2023; 14:7475-7481. [PMID: 37449073 PMCID: PMC10337763 DOI: 10.1039/d3sc01591b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023] Open
Abstract
We demonstrate the use of a metal surface to directly catalyse copper-catalysed alkyne-azide click-coupling (CuAAC) reactions under the conditions of Resonant Acoustic Mixing (RAM) - a recently introduced and scalable mechanochemical methodology that uniquely eliminates the need for bulk solvent, as well as milling media. By using a simple copper coil as a catalyst, this work shows that direct mechanocatalysis can occur in an impact-free environment, relying solely on high-speed mixing of reagents against a metal surface, without the need for specially designed milling containers and media. By introducing an experimental setup that enables real-time Raman spectroscopy monitoring of RAM processes, we demonstrate 0th-order reaction kinetics for several selected CuAAC reactions, supporting surface-based catalysis. The herein presented RAM-based direct mechanocatalysis methodology is simple, enables the effective one-pot, two-step synthesis of triazoles via a combination of benzyl azide formation and CuAAC reactions on a wide scope of reagents, provides control over reaction stoichiometry that is herein shown to be superior to that seen in solution or by using more conventional CuCl catalyst, and is applied for simple gram-scale synthesis of the anticonvulsant drug Rufinamide.
Collapse
Affiliation(s)
- Cameron B Lennox
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Lori Gonnet
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Stefan G Koenig
- Small Molecule Pharmaceutical Sciences, Genentech Inc. One DNA Way South San Francisco CA 94080 USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc. One DNA Way South San Francisco CA 94080 USA
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| |
Collapse
|
4
|
Yoo K, Fabig S, Grätz S, Borchardt L. The impact of the physical state and the reaction phase in the direct mechanocatalytic Suzuki-Miyaura coupling reaction. Faraday Discuss 2023; 241:206-216. [PMID: 36200472 DOI: 10.1039/d2fd00100d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The direct mechanocatalytic Suzuki-Miyaura coupling reaction, utilizing palladium milling balls as active catalysts, was investigated regarding the physical state of the reagents and the reaction phase. The substitution patterns and functional groups of different aryl iodides were varied and different boronic acid derivates were utilized to achieve a wide range of substrate combinations. In the neat grinding experiments, liquid aryl iodides were more reactive than solid ones and a steric influence of the substituents, especially pronounced in ortho compounds, was observed. In order to overcome the general low reactivity of the solid phase, several liquid-assisted grinding experiments were conducted and the influence of substrate solubility and catalyst wettability analyzed. Among all LAG additives, EtOH showed the greatest impact on the reactivity, as it converts boronic acid derivatives into liquid and reactive esters under mechanochemical conditions, significantly speeding up the reaction.
Collapse
Affiliation(s)
- Kwangho Yoo
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Sven Fabig
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Sven Grätz
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Lars Borchardt
- Inorganic Chemistry I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
5
|
Wohlgemuth M, Mayer M, Rappen M, Schmidt F, Saure R, Grätz S, Borchardt L. From Inert to Catalytically Active Milling Media: Galvanostatic Coating for Direct Mechanocatalysis. Angew Chem Int Ed Engl 2022; 61:e202212694. [PMID: 36098910 PMCID: PMC9828539 DOI: 10.1002/anie.202212694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 01/12/2023]
Abstract
The inert milling balls, commonly utilized in mechanochemical reactions, were coated with a layer of Pd and utilized as catalyst in the direct mechanocatalytic Suzuki reaction. With high yields (>80 %), the milling balls can be recycled multiple times in the absence of any solvents, ligands, catalyst-molecules and -powders, while utilizing as little as 0.8 mg of Pd per coated milling ball. The coating sequence, the support material, and the layer thickness were examined towards archiving high catalyst retention, low abrasion and high conversion. The approach was transferred to the coating of milling vessels revealing the interplay between catalytically available surface area and the mechanical energy impact in direct mechanocatalysis.
Collapse
Affiliation(s)
- Maximilian Wohlgemuth
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maike Mayer
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Marisol Rappen
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Fabian Schmidt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Roman Saure
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Sven Grätz
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Lars Borchardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
6
|
Gao P, Jiang J, Maeda S, Kubota K, Ito H. Mechanochemically Generated Calcium‐Based Heavy Grignard Reagents and Their Application to Carbon–Carbon Bond‐Forming Reactions. Angew Chem Int Ed Engl 2022; 61:e202207118. [DOI: 10.1002/anie.202207118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Pan Gao
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Julong Jiang
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Department of Chemistry Faculty of Science Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo Hokkaido 060-8628 Japan
- Division of Applied Chemistry Graduate School of Engineering Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
7
|
Bolt RRA, Raby‐Buck SE, Ingram K, Leitch JA, Browne DL. Temperature‐Controlled Mechanochemistry for the Nickel‐Catalyzed Suzuki–Miyaura‐Type Coupling of Aryl Sulfamates via Ball Milling and Twin‐Screw Extrusion. **. Angew Chem Int Ed Engl 2022; 61:e202210508. [PMID: 36082766 PMCID: PMC9828252 DOI: 10.1002/anie.202210508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/12/2023]
Abstract
The nickel catalyzed Suzuki-Miyaura-type coupling of aryl sulfamates and boronic acid derivatives enabled by temperature-controlled mechanochemistry via the development of a programmable PID-controlled jar heater is reported. This base-metal-catalyzed, solvent-free, all-under-air protocol was also scaled 200-fold using twin-screw extrusion technology affording decagram quantities of material.
Collapse
Affiliation(s)
- Robert R. A. Bolt
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29-39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| | - Sarah E. Raby‐Buck
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29-39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| | - Katharine Ingram
- Syngenta, Jealott's Hill International Research CentreBracknell, BerkshireRG42 6EYUK
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29-39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29-39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|
8
|
Čarný T, Peňaška T, Andrejčák S, Šebesta R. Mechanochemical Pd‐Catalyzed Cross‐Coupling of Arylhalides and Organozinc Pivalates. Chemistry 2022; 28:e202202040. [DOI: 10.1002/chem.202202040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tomáš Čarný
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Tibor Peňaška
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Samuel Andrejčák
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry Faculty of Natural Sciences Comenius University in Bratislava Mlynská dolina, Ilkovičova 6 842 15 Bratislava Slovakia
| |
Collapse
|
9
|
Gao P, Jiang J, Maeda S, Kubota K, Ito H. Mechanochemically Generated Calcium‐Based Heavy Grignard Reagents and Their Application to Carbon−Carbon Bond‐Forming Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pan Gao
- Hokkaido University: Hokkaido Daigaku Institute for Chemical Reaction Design and Discovery JAPAN
| | - Julong Jiang
- Hokkaido University: Hokkaido Daigaku Chemistry JAPAN
| | - Satoshi Maeda
- Hokkaido University: Hokkaido Daigaku Chemistry JAPAN
| | - Koji Kubota
- Hokkaido University: Hokkaido Daigaku Division of Applied Chemistry JAPAN
| | - Hajime Ito
- Hokkaido University Division of Applied Chemistry Kita-13 Nishi-8Kita-ku 060-8628 Sapporo JAPAN
| |
Collapse
|
10
|
Williams MTJ, Morrill LC, Browne DL. Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect? CHEMSUSCHEM 2022; 15:e202102157. [PMID: 34767693 PMCID: PMC9300213 DOI: 10.1002/cssc.202102157] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Ball mills input energy to samples by pulverising the contents of the jar. Each impact on the sample or wall of the jar results in an instantaneous transmission of energy in the form of a temperature and pressure increase (volume reduction). Conversely, enantioselective organocatalytic reactions proceed through perceived delicate and well-organised transition states. Does there exist a dichotomy in the idea of enantioselective mechanochemical organocatalysis? This Review provides a survey of the literature reporting the combination of organocatalytic reactions with mechanochemical ball milling conditions. Where possible, direct comparisons of stirred in solution, stirred neat and ball milled processes are drawn with a particular focus on control of stereoselectivity.
Collapse
Affiliation(s)
- Matthew T. J. Williams
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London29–39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|
11
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
12
|
Nicholson WI, Howard JL, Magri G, Seastram AC, Khan A, Bolt RRA, Morrill LC, Richards E, Browne DL. Ball-Milling-Enabled Reactivity of Manganese Metal*. Angew Chem Int Ed Engl 2021; 60:23128-23133. [PMID: 34405513 PMCID: PMC8596600 DOI: 10.1002/anie.202108752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 01/17/2023]
Abstract
Efforts to generate organomanganese reagents under ball-milling conditions have led to the serendipitous discovery that manganese metal can mediate the reductive dimerization of arylidene malonates. The newly uncovered process has been optimized and its mechanism explored using CV measurements, radical trapping experiments, EPR spectroscopy, and solution control reactions. This unique reactivity can also be translated to solution whereupon pre-milling of the manganese is required.
Collapse
Affiliation(s)
| | - Joseph L. Howard
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Giuseppina Magri
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Alex C. Seastram
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Adam Khan
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Robert R. A. Bolt
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29–39 Brunswick SquareLondonWC1N 1AXUK
| | - Louis C. Morrill
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Emma Richards
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistryUniversity College London (UCL)School of Pharmacy29–39 Brunswick SquareLondonWC1N 1AXUK
| |
Collapse
|
13
|
Nicholson WI, Howard JL, Magri G, Seastram AC, Khan A, Bolt RRA, Morrill LC, Richards E, Browne DL. Ball‐Milling‐Enabled Reactivity of Manganese Metal**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Joseph L. Howard
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Giuseppina Magri
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Alex C. Seastram
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Adam Khan
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Robert R. A. Bolt
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square London WC1N 1AX UK
| | - Louis C. Morrill
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Emma Richards
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square London WC1N 1AX UK
| |
Collapse
|
14
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- William I. Nicholson
- School of Chemistry Cardiff University Park Place, Main Building Cardiff CF10 3AT UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | - Jamie A. Leitch
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| | - Ian Priestley
- Syngenta Ltd. Huddersfield Manufacturing Centre Huddersfield HD2 1FF UK
| | - Edouard Godineau
- Syngenta Crop Protection AG Schaffauserstrasse 101 4332 Stein Switzerland
| | | | - Duncan L. Browne
- Department of Pharmaceutical and Biological Chemistry University College London (UCL) School of Pharmacy 29–39 Brunswick Square, Bloomsbury London WC1N 1AX UK
| |
Collapse
|
15
|
Hou S, Meng M, Liu D, Zhang P. Mechanochemical Process to Construct Porous Ionic Polymers by Menshutkin Reaction. CHEMSUSCHEM 2021; 14:3059-3063. [PMID: 34213075 DOI: 10.1002/cssc.202101093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of porous ionic polymers (PIPs) via the Menshutkin reaction is intriguing because the reaction works smoothly in catalyst-free condition with 100 % atom utilization. However, the rotation of methane site, nonrigid knots, and charge interaction all may cause collapses of the channel, which is detrimental to the synthesis PIP in solid-state conditions. In this work, an inorganic salt (NaBr, NaCl: pollution-free and easy to recycle) was rationally chosen as the hard template and effectively prevented the intermolecular packing. Moreover, the increased surface area dramatically promoted the catalytic activity of PIP for cyclic carbonate synthesis. This work provides a green and efficient strategy to construct PIPs via the Menshutkin reaction.
Collapse
Affiliation(s)
- Shengtai Hou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Minshan Meng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Dandan Liu
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
16
|
Nicholson WI, Barreteau F, Leitch JA, Payne R, Priestley I, Godineau E, Battilocchio C, Browne DL. Direct Amidation of Esters by Ball Milling*. Angew Chem Int Ed Engl 2021; 60:21868-21874. [PMID: 34357668 DOI: 10.1002/anie.202106412] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/25/2022]
Abstract
The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.
Collapse
Affiliation(s)
- William I Nicholson
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| | - Fabien Barreteau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | - Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Riley Payne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Ian Priestley
- Syngenta Ltd., Huddersfield Manufacturing Centre, Huddersfield, HD2 1FF, UK
| | - Edouard Godineau
- Syngenta Crop Protection AG, Schaffauserstrasse 101, 4332, Stein, Switzerland
| | | | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, University College London (UCL), School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| |
Collapse
|
17
|
Abstract
Recent research endeavors have established that the mechanochemical activation of piezoelectric materials can open new avenues in redox chemistry. Impact forces, such as those imparted by a ball mill, have been shown to transform piezoelectric materials such as barium titanate (BaTiO3) into a highly polarized state, which can then donate an electron to a suitable oxidant and receive an electron from a suitable reductant, mimicking established photoredox catalytic cycles. Proof‐of‐concept studies have elucidated that mechanoredox chemistry holds great potential in sustainable and efficient radical‐based synthesis.
Collapse
Affiliation(s)
- Jamie A Leitch
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, WC1N 1AX, London, United Kingdom
| | - Duncan L Browne
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, WC1N 1AX, London, United Kingdom
| |
Collapse
|
18
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
19
|
Kubota K, Ito H. Development of Selective Reactions Using Ball Milling. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koji Kubota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University
| | - Hajime Ito
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University
| |
Collapse
|
20
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent-Free Catalytic C-H Methylation. Angew Chem Int Ed Engl 2021; 60:6660-6666. [PMID: 33031646 PMCID: PMC7986365 DOI: 10.1002/anie.202010202] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/29/2022]
Abstract
The mechanochemical, solvent-free, highly regioselective, rhodium-catalyzed C-H methylation of (hetero)arenes is reported. The reaction shows excellent functional-group compatibility and is demonstrated to work for the late-stage C-H methylation of biologically active compounds. The method requires no external heating and benefits from considerably shorter reaction times than previous solution-based C-H methylation protocols. Additionally, the mechanochemical approach is shown to enable the efficient synthesis of organometallic complexes that are difficult to generate conventionally.
Collapse
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Matic Hribersek
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | | | | | - Andreas Orthaber
- Department of Chemistry—Ångström LaboratoriesUppsala UniversityBox 52375120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
21
|
Chen C, Liu FS, Szostak M. BIAN-NHC Ligands in Transition-Metal-Catalysis: A Perfect Union of Sterically Encumbered, Electronically Tunable N-Heterocyclic Carbenes? Chemistry 2021; 27:4478-4499. [PMID: 32989914 PMCID: PMC7940599 DOI: 10.1002/chem.202003923] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Indexed: 12/12/2022]
Abstract
The discovery of NHCs (NHC = N-heterocyclic carbenes) as ancillary ligands in transition-metal-catalysis ranks as one of the most important developments in synthesis and catalysis. It is now well-recognized that the strong σ-donating properties of NHCs along with the ease of scaffold modification and a steric shielding of the N-wingtip substituents around the metal center enable dramatic improvements in catalytic processes, including the discovery of reactions that are not possible using other ancillary ligands. In this context, although the classical NHCs based on imidazolylidene and imidazolinylidene ring systems are now well-established, recently tremendous progress has been made in the development and catalytic applications of BIAN-NHC (BIAN = bis(imino)acenaphthene) class of ligands. The enhanced reactivity of BIAN-NHCs is a direct result of the combination of electronic and steric properties that collectively allow for a major expansion of the scope of catalytic processes that can be accomplished using NHCs. BIAN-NHC ligands take advantage of (1) the stronger σ-donation, (2) lower lying LUMO orbitals, (3) the presence of an extended π-system, (4) the rigid backbone that pushes the N-wingtip substituents closer to the metal center by buttressing effect, thus resulting in a significantly improved control of the catalytic center and enhanced air-stability of BIAN-NHC-metal complexes at low oxidation state. Acenaphthoquinone as a precursor enables facile scaffold modification, including for the first time the high yielding synthesis of unsymmetrical NHCs with unique catalytic properties. Overall, this results in a highly attractive, easily accessible class of ligands that bring major advances and emerge as a leading practical alternative to classical NHCs in various aspects of catalysis, cross-coupling and C-H activation endeavors.
Collapse
Affiliation(s)
- Changpeng Chen
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Feng-Shou Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
22
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent‐Free Catalytic C−H Methylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010202] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Matic Hribersek
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Swarna K. Baddigam
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| | | | - Andreas Orthaber
- Department of Chemistry—Ångström Laboratories Uppsala University Box 523 75120 Uppsala Sweden
| | - Paul J. Gates
- School of Chemistry University of Bristol Cantock's Close, Clifton Bristol BS8 1TS UK
| | - Lukasz T. Pilarski
- Department of Chemistry—BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
23
|
|
24
|
Báti G, Csókás D, Yong T, Tam SM, Shi RRS, Webster RD, Pápai I, García F, Stuparu MC. Mechanochemical Synthesis of Corannulene‐Based Curved Nanographenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gábor Báti
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Teoh Yong
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Si Man Tam
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Raymond R. S. Shi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Imre Pápai
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Felipe García
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
25
|
Báti G, Csókás D, Yong T, Tam SM, Shi RRS, Webster RD, Pápai I, García F, Stuparu MC. Mechanochemical Synthesis of Corannulene‐Based Curved Nanographenes. Angew Chem Int Ed Engl 2020; 59:21620-21626. [DOI: 10.1002/anie.202007815] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Gábor Báti
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Dániel Csókás
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Teoh Yong
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Si Man Tam
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Raymond R. S. Shi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Imre Pápai
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Felipe García
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
26
|
Cao Q, Crawford DE, Shi C, James SL. Greener Dye Synthesis: Continuous, Solvent‐Free Synthesis of Commodity Perylene Diimides by Twin‐Screw Extrusion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qun Cao
- School of Chemistry and Chemical EngineeringQueen's University Belfast David Keir Building, 39–123 Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| | - Deborah E. Crawford
- School of Chemistry and Chemical EngineeringQueen's University Belfast David Keir Building, 39–123 Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| | - Chengcheng Shi
- School of Chemistry and Chemical EngineeringQueen's University Belfast David Keir Building, 39–123 Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| | - Stuart L. James
- School of Chemistry and Chemical EngineeringQueen's University Belfast David Keir Building, 39–123 Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| |
Collapse
|
27
|
Cao Q, Crawford DE, Shi C, James SL. Greener Dye Synthesis: Continuous, Solvent‐Free Synthesis of Commodity Perylene Diimides by Twin‐Screw Extrusion. Angew Chem Int Ed Engl 2020; 59:4478-4483. [DOI: 10.1002/anie.201913625] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qun Cao
- School of Chemistry and Chemical EngineeringQueen's University Belfast David Keir Building, 39–123 Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| | - Deborah E. Crawford
- School of Chemistry and Chemical EngineeringQueen's University Belfast David Keir Building, 39–123 Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| | - Chengcheng Shi
- School of Chemistry and Chemical EngineeringQueen's University Belfast David Keir Building, 39–123 Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| | - Stuart L. James
- School of Chemistry and Chemical EngineeringQueen's University Belfast David Keir Building, 39–123 Stranmillis Road Belfast BT9 5AG Northern Ireland UK
| |
Collapse
|
28
|
Yu J, Ying P, Wang H, Xiang K, Su W. Mechanochemical Asymmetric Cross‐Dehydrogenative Coupling Reaction: Liquid‐Assisted Grinding Enables Reaction Acceleration and Enantioselectivity Control. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ping Ying
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hao Wang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Keyu Xiang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green PharmaceuticalsZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
29
|
Nicholson WI, Seastram AC, Iqbal SA, Reed‐Berendt BG, Morrill LC, Browne DL. N-Heterocyclic Carbene Acyl Anion Organocatalysis by Ball-Milling. CHEMSUSCHEM 2020; 13:131-135. [PMID: 31774627 PMCID: PMC6972762 DOI: 10.1002/cssc.201902346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 05/05/2023]
Abstract
The ability to conduct N-heterocyclic carbene-catalysed acyl anion chemistry under ball-milling conditions is reported for the first time. This process has been exemplified through applications to intermolecular-benzoin, intramolecular-benzoin, intermolecular-Stetter and intramolecular-Stetter reactions including asymmetric examples and demonstrates that this mode of mechanistically complex organocatalytic reaction can operate under solvent-minimised conditions.
Collapse
Affiliation(s)
- William I. Nicholson
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Alex C. Seastram
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Saqib A. Iqbal
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Benjamin G. Reed‐Berendt
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| | - Duncan L. Browne
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUnited Kingdom
| |
Collapse
|
30
|
Klein P, Lechner VD, Schimmel T, Hintermann L. Generation of Organozinc Reagents by Nickel Diazadiene Complex Catalyzed Zinc Insertion into Aryl Sulfonates. Chemistry 2020; 26:176-180. [PMID: 31591766 PMCID: PMC6973264 DOI: 10.1002/chem.201904545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 11/13/2022]
Abstract
The generation of arylzinc reagents (ArZnX) by direct insertion of zinc into the C−X bond of ArX electrophiles has typically been restricted to iodides and bromides. The insertions of zinc dust into the C−O bonds of various aryl sulfonates (tosylates, mesylates, triflates, sulfamates), or into the C−X bonds of other moderate electrophiles (X=Cl, SMe) are catalyzed by a simple NiCl2–1,4‐diazadiene catalyst system, in which 1,4‐diazadiene (DAD) stands for diacetyl diimines, phenanthroline, bipyridine and related ligands. Catalytic zincation in DMF or NMP solution at room temperature now provides arylzinc sulfonates, which undergo typical catalytic cross‐coupling or electrophilic substitution reactions.
Collapse
Affiliation(s)
- Philippe Klein
- Department Chemie und Zentralinstitut für Katalyseforschung, Technische Universität München, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Vivien Denise Lechner
- Department Chemie und Zentralinstitut für Katalyseforschung, Technische Universität München, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Tanja Schimmel
- Department Chemie und Zentralinstitut für Katalyseforschung, Technische Universität München, Lichtenbergstr. 4, 85748, Garching b. München, Germany.,JSB Gymnasium, 91575, Windsbach, Germany
| | - Lukas Hintermann
- Department Chemie und Zentralinstitut für Katalyseforschung, Technische Universität München, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
31
|
Vogt CG, Grätz S, Lukin S, Halasz I, Etter M, Evans JD, Borchardt L. Direct Mechanocatalysis: Palladium as Milling Media and Catalyst in the Mechanochemical Suzuki Polymerization. Angew Chem Int Ed Engl 2019; 58:18942-18947. [PMID: 31593331 PMCID: PMC6972522 DOI: 10.1002/anie.201911356] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Indexed: 11/10/2022]
Abstract
The milling ball is the catalyst. We introduce a palladium-catalyzed reaction inside a ball mill, which makes catalyst powders, ligands, and solvents obsolete. We present a facile and highly sustainable synthesis concept for palladium-catalyzed C-C coupling reactions, exemplarily showcased for the Suzuki polymerization of 4-bromo or 4-iodophenylboronic acid giving poly(para-phenylene). Surprisingly, we observe one of the highest degrees of polymerization (199) reported so far.
Collapse
Affiliation(s)
- Christian G. Vogt
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
| | - Sven Grätz
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| | - Stipe Lukin
- Laboratory for Green SynthesisRuđer Bošković InstituteBijenicka 54HR-10000ZagrebCroatia
| | - Ivan Halasz
- Laboratory for Green SynthesisRuđer Bošković InstituteBijenicka 54HR-10000ZagrebCroatia
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY)22607HamburgGermany
| | - Jack D. Evans
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
| | - Lars Borchardt
- Inorganic Chemistry ITechnische Universität DresdenBergstrasse 6601062DresdenGermany
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
32
|
Vogt CG, Grätz S, Lukin S, Halasz I, Etter M, Evans JD, Borchardt L. Direkte Mechanokatalyse: Palladium als Mahlmaterial und Katalysator in der mechanochemischen Suzuki‐Polymerisation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christian G. Vogt
- Anorganische Chemie ITechnische Universität Dresden Bergstraße 66 01062 Dresden Deutschland
| | - Sven Grätz
- Anorganische Chemie ITechnische Universität Dresden Bergstraße 66 01062 Dresden Deutschland
- Anorganische Chemie IRuhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Stipe Lukin
- Labor für Grüne SyntheseRuđer Bošković Institut Bijenicka 54 HR-10000 Zagreb Kroatien
| | - Ivan Halasz
- Labor für Grüne SyntheseRuđer Bošković Institut Bijenicka 54 HR-10000 Zagreb Kroatien
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY) 22607 Hamburg Deutschland
| | - Jack D. Evans
- Anorganische Chemie ITechnische Universität Dresden Bergstraße 66 01062 Dresden Deutschland
| | - Lars Borchardt
- Anorganische Chemie ITechnische Universität Dresden Bergstraße 66 01062 Dresden Deutschland
- Anorganische Chemie IRuhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
33
|
Cao Q, Stark RT, Fallis IA, Browne DL. A Ball-Milling-Enabled Reformatsky Reaction. CHEMSUSCHEM 2019; 12:2554-2557. [PMID: 31033237 PMCID: PMC6619031 DOI: 10.1002/cssc.201900886] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Indexed: 05/14/2023]
Abstract
An operationally simple one-jar one-step mechanochemical Reformatsky reaction using in situ generated organozinc intermediates under neat grinding conditions has been developed. Notable features of this reaction protocol are that it requires no solvent, no inert gases, and no pre-activation of the bulk zinc source. The developed process is demonstrated to have good substrate scope (39-82 % yield) and is effective irrespective of the initial morphology of the zinc source.
Collapse
Affiliation(s)
- Qun Cao
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Roderick T. Stark
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Ian A. Fallis
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
34
|
Pang Y, Ishiyama T, Kubota K, Ito H. Iridium(I)‐Catalyzed C−H Borylation in Air by Using Mechanochemistry. Chemistry 2019; 25:4654-4659. [DOI: 10.1002/chem.201900685] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yadong Pang
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tatsuo Ishiyama
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Koji Kubota
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Hajime Ito
- Division of Applied ChemistryGraduate School of EngineeringHokkaido University Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
35
|
Tissot M, Body N, Petit S, Claessens J, Genicot C, Pasau P. Synthesis of Electron-Deficient Heteroaromatic 1,3-Substituted Cyclobutyls via Zinc Insertion/Negishi Coupling Sequence under Batch and Automated Flow Conditions. Org Lett 2018; 20:8022-8025. [DOI: 10.1021/acs.orglett.8b03588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthieu Tissot
- Global Chemistry, UCB New Medicines, UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| | - Nathalie Body
- Department Chimie Organique, Université catholique de Louvain-la-Neuve, Place Louis Pasteur, 1, 1348 Louvain-la-Neuve, Belgium
| | - Sylvain Petit
- Chemical Process Research and Development, UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| | - Jehan Claessens
- Global Chemistry, UCB New Medicines, UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| | - Christophe Genicot
- Global Chemistry, UCB New Medicines, UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| | - Patrick Pasau
- Global Chemistry, UCB New Medicines, UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| |
Collapse
|
36
|
Howard JL, Brand MC, Browne DL. Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics. Angew Chem Int Ed Engl 2018; 57:16104-16108. [PMID: 30335216 PMCID: PMC6282732 DOI: 10.1002/anie.201810141] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 11/06/2022]
Abstract
A reaction manifold has been discovered in which the chemoselectivity can be altered by switching between neat milling and liquid assisted grinding (LAG) with polar additives. After investigation of the reaction mechanism, it has been established that this switching in reaction pathway is due to the neat mechanochemical conditions exhibiting different kinetics for a key step in the transformation. This proof of concept study demonstrates that mechanochemistry can be used to trap the kinetic product of a reaction. It is envisaged that, if this concept can be successfully applied to other transformations, novel synthetic processes could be discovered and known reaction pathways perturbed or diverted.
Collapse
Affiliation(s)
- Joseph L Howard
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| | - Michael C Brand
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| | - Duncan L Browne
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3EQ, UK
| |
Collapse
|
37
|
Howard JL, Brand MC, Browne DL. Switching Chemoselectivity: Using Mechanochemistry to Alter Reaction Kinetics. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph L. Howard
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| | - Michael C. Brand
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| | - Duncan L. Browne
- School of ChemistryCardiff University Main Building, Park Place Cardiff CF10 3EQ UK
| |
Collapse
|