1
|
Yang F, Yue B, Zhu L. Light-triggered Modulation of Supramolecular Chirality. Chemistry 2023; 29:e202203794. [PMID: 36653305 DOI: 10.1002/chem.202203794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Dynamically controlling the supramolecular chirality is of great significance in development of functional chiral materials, which is thus essential for the specific function implementation. As an external energy input, light is remote and accurate for modulating chiral assemblies. In non-polarized light control, some photochemically reactive units (e. g., azobenzene, ɑ-cyanostilbene, spiropyran, anthracene) or photo-induced directionally rotating molecular motors were designed to drive chiral transfer or amplification. Besides, photoexcitation induced assembly based physical approach was also explored recently to regulate supramolecular chirality beyond photochemical reactions. In addition, circularly polarized light was applied to induce asymmetric arrangement of organic molecules and asymmetric photochemical synthesis of inorganic metallic nanostructures, in which both wavelength and handedness of circularly polarized light have effects on the induced supramolecular chirality. Although light-triggered chiral assemblies have been widely applied in photoelectric materials, biomedical fields, soft actuator, chiral catalysis and chiral sensing, there is a lack of systematic review on this topic. In this review, we summarized the recent studies and perspectives in the constructions and applications of light-responsive chiral assembled systems, aiming to provide better knowledge for the development of multifunctional chiral nanomaterials.
Collapse
Affiliation(s)
- Fan Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
2
|
Xu M, Li G, Li W, An B, Sun J, Chen Z, Yu H, Li J, Yang G, Liu S. Exploring the Circular Polarization Capacity from Chiral Cellulose Nanocrystal Films for a Photo-Controlled Chiral Helix of Supramolecular Polymers. Angew Chem Int Ed Engl 2022; 61:e202117042. [PMID: 35132754 DOI: 10.1002/anie.202117042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 11/08/2022]
Abstract
Circularly polarized light (CPL) is key to asymmetric photochemistry as it could impart the chiral organization information into chemical products. Here, we demonstrate the circular polarization capacity of chiral cellulose nanocrystal (CNC) films to trigger photo-alignment of achiral supramolecular polymers into helical structures. Right-handed transmitted (T-) CPL was generated from self-assembled CNC films, which induced amorphous azobenzene (Azo) supramolecular polymers into chiral structures. The chiral induction effect of T-CPL is enhanced on Azo polymers with longer spacers. The absorptive dissymmetry factor (gabs ) values of liquid-crystal supramolecular polymers can be amplified significantly (over 10 times) after T-CPL irradiation. Moreover, by integrating carbon dots into CNC films, CPL emission with a considerable luminescence dissymmetry factor (glum ) up to -0.66 was achieved, and it could be used for the photo-alignment of Azo polymers with high chiroptical properties. This work provides new insight for the photo modulation of supramolecular polymers by CPL-active materials.
Collapse
Affiliation(s)
- Mingcong Xu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Guangyao Li
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Bang An
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Jiaming Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Guang Yang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China
| |
Collapse
|
3
|
Grewal S, Kumar P, Roy S, Bala I, Sah C, Kumar Pal S, Venkataramani S. Deciphering Internal and External π-Conjugation in C 3 -Symmetric Multiple Azobenzene Connected Systems in Self-Assembly. Chemistry 2022; 28:e202104602. [PMID: 35166400 DOI: 10.1002/chem.202104602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/28/2022]
Abstract
Two tripodal C3 -symmetric photoswitchable molecular systems T1 and T2 are reported that have extended conjugation at external and internal positions using an acryl group. The influence of the extended π-bonds in their absorption properties, thermal relaxation of the photoisomers and their propensities in forming supramolecular self-assemblies have been explored through spectroscopy, and microscopic studies. In particular, the investigations on the self-assembly have been carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), polarized optical microscopy (POM), X-ray diffraction studies (XRD) and atomic force microscopy (AFM). Remarkably, the position of the acryl group influences the behaviour of the two target molecules in supramolecular assembly, and also in the formation of photoresponsive organic hydrogels or microcrystals.
Collapse
Affiliation(s)
- Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Saonli Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Indu Bala
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Chitranjan Sah
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Xu M, Li G, Li W, An B, Sun J, Chen Z, Yu H, Li J, Yang G, Liu S. Exploring the Circular Polarization Capacity from Chiral Cellulose Nanocrystal Films for a Photo‐Controlled Chiral Helix of Supramolecular Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mingcong Xu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Guangyao Li
- Department of Chemistry and Chemical Engineering College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Bang An
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Jiaming Sun
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Guang Yang
- Department of Chemistry and Chemical Engineering College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| |
Collapse
|
5
|
Blagoeva B, Nedelchev L, Nazarova D, Stoykova E, Park J. Reversible supramolecular chiral structures induced in azopolymers by elliptically polarized light: influence of the irradiation wavelength and intensity. APPLIED OPTICS 2022; 61:B147-B155. [PMID: 35201135 DOI: 10.1364/ao.444159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Photoinduced supramolecular chiral structures in azo materials have been extensively studied for the development of all-optical switches and because of their influence on the properties of certain types of polarization holographic gratings. Here, we investigate chiral structures induced by irradiation with elliptically polarized light in thin films of four azopolymers denoted as PAZO, P1, P1-2, which are amorphous, and P2, which is liquid crystalline. Their formation is characterized in real time by the kinetics of azimuth rotation. The influence of the irradiation wavelength and intensity is also analyzed. The largest azimuth rotation per unit thickness is achieved in PAZO (33°/µm) and P1-2 (25°/µm). Reversibility of the chiral structures is demonstrated by a tenfold change in the direction of rotation. Our results also indicate that chiral structures formation occurs significantly faster than the induction of linear birefringence.
Collapse
|
6
|
Cheng X, Miao T, Ma Y, Zhang W. Chiral Expression and Morphology Control in Polymer Dispersion Systems. Chempluschem 2022; 87:e202100556. [DOI: 10.1002/cplu.202100556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaoxiao Cheng
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Tengfei Miao
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Yafei Ma
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Wei Zhang
- Soochow University Department of Polymer Science and Engineering No.199 Renai Road 215123 Suzhou CHINA
| |
Collapse
|
7
|
Yin L, Liu M, Ma H, Cheng X, Miao T, Zhang W, Zhu X. Induction and modulation of supramolecular chirality in side-chain azobenzene polymers through the covalent chiral domino effect. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1132-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Cheng X, Miao T, Ma Y, Zhu X, Zhang W, Zhu X. Controlling the Multiple Chiroptical Inversion in Biphasic Liquid-Crystalline Polymers. Angew Chem Int Ed Engl 2021; 60:24430-24436. [PMID: 34505335 DOI: 10.1002/anie.202109084] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/03/2021] [Indexed: 01/07/2023]
Abstract
While controlling the chirality and modulating the helicity is a challenging task, it attracts great research interest for gaining a better understanding of the origin of chirality in nature. Herein, structurally similar azobenzene (Azo) vinyl monomers were designed in which the alkyl chains comprised the chiral stereocenter with different achiral tail lengths. Combining the synchronous polymerization, supramolecular stacking and self-assembly, the multiple chiroptical inversion of the Azo-polymer supramolecular assemblies can be modulated by the tail length and DP of Azo blocks during in situ polymerization. The DP-, UV light-, temperature-, aging time-dependent chiroptical properties and liquid-crystalline (LC) characterization indicated that the amorphous-to-LC phase transition and biphasic LC interconversion allow the transcription of intra-chain π-π stacking, inter-chain H- and J-aggregation, thereby controlling the dynamic multiple reversal of supramolecular chirality.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yafei Ma
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoyan Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Cheng X, Miao T, Ma Y, Zhu X, Zhang W, Zhu X. Controlling the Multiple Chiroptical Inversion in Biphasic Liquid‐Crystalline Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yafei Ma
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Xiaoyan Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
10
|
Miao T, Cheng X, Ma H, He Z, Zhang Z, Zhou N, Zhang W, Zhu X. Transfer, Amplification, Storage, and Complete Self-Recovery of Supramolecular Chirality in an Achiral Polymer System. Angew Chem Int Ed Engl 2021; 60:18566-18571. [PMID: 34156135 DOI: 10.1002/anie.202107992] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Supramolecular chirality and its complete self-recovery ability are highly mystical in nature and biological systems, which remains a major challenge today. Herein, we demonstrate that partially cross-linked azobenzene (Azo) units can be employed as the potential chiral trigger to fully heal the destroyed helical superstructure in achiral nematic polymer system. Combining the self-assembly of Azo units and terminal hydroxyl groups in polymer side chains allows the vapor-induced chiral nematic phase and covalent fixation of the superstructure via acetal reaction. The induced helical structure of Azo units can be stored by inter-chain cross-linking, even after removal of the chiral source. Most interestingly, the stored chiral information can trigger perfect chiral self-recovery (CSR) behavior after being destroyed by UV light, heat, and solvents. The results pave a new way for producing novel chiroptical materials with reversible chirality from achiral sources.
Collapse
Affiliation(s)
- Tengfei Miao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
11
|
Miao T, Cheng X, Ma H, He Z, Zhang Z, Zhou N, Zhang W, Zhu X. Transfer, Amplification, Storage, and Complete Self‐Recovery of Supramolecular Chirality in an Achiral Polymer System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tengfei Miao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|
12
|
Yuan J, Lu X, Li Q, Lü Z, Lu Q. Reversible Micrometer-Scale Spiral Self-Assembly in Liquid Crystalline Block Copolymer Film with Controllable Chiral Response. Angew Chem Int Ed Engl 2021; 60:12308-12312. [PMID: 33749105 DOI: 10.1002/anie.202101102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/09/2021] [Indexed: 12/18/2022]
Abstract
The spiral is a fundamental structure in nature and spiral structures with controllable handedness are of increasing interest in the design of new chiroptical materials. In this study, micrometer-scale spiral structures with reversible chirality were fabricated based on the assembly of a liquid crystalline block copolymer film assisted by enantiopure tartaric acid. Mechanistic insight revealed that the formation of the spiral structures was closely related to the liquid crystalline properties of the major phase of block copolymer under the action of chiral tartaric acid. The chiral spiral structures with controllable handedness were easily erased under ultraviolet light irradiation and restored via thermal annealing. This facile thermal treatment method provides guidance for fabrication of chiral micrometer-scale spiral structures with adjustable chiral properties.
Collapse
Affiliation(s)
- Jianan Yuan
- School of Chemical Science and Technology, Tongji University, Siping Road No. 1239, Shanghai, 200092, China
| | - Xuemin Lu
- Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, China
| | - Qingxiang Li
- Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, China
| | - Zhiguo Lü
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, China
| | - Qinghua Lu
- School of Chemical Science and Technology, Tongji University, Siping Road No. 1239, Shanghai, 200092, China.,Shanghai Key Lab of Electrical & Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road No. 800, Shanghai, 200240, China
| |
Collapse
|
13
|
Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco-Inside Nano-Assemblies through RAFT Dispersion Polymerization of Galactose-Decorated Monomer. Angew Chem Int Ed Engl 2021; 60:11098-11103. [PMID: 33565244 PMCID: PMC8252037 DOI: 10.1002/anie.202015692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/31/2021] [Indexed: 01/15/2023]
Abstract
Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
| | - Haoran Zhang
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
| | - Thomas Bick
- Department of BiochemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Johannes Martin
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
- Chair of Polymer Materials and Polymer TechnologiesInstitute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Petra Wendler
- Department of BiochemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Alexander Böker
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
- Chair of Polymer Materials and Polymer TechnologiesInstitute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Ulrich Glebe
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
| |
Collapse
|
14
|
Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco‐Inside Nano‐Assemblies through RAFT Dispersion Polymerization of Galactose‐Decorated Monomer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Haoran Zhang
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
| | - Thomas Bick
- Department of Biochemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Johannes Martin
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Petra Wendler
- Department of Biochemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
| |
Collapse
|
15
|
Yuan J, Lu X, Li Q, Lü Z, Lu Q. Reversible Micrometer‐Scale Spiral Self‐Assembly in Liquid Crystalline Block Copolymer Film with Controllable Chiral Response. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jianan Yuan
- School of Chemical Science and Technology Tongji University Siping Road No. 1239 Shanghai 200092 China
| | - Xuemin Lu
- Shanghai Key Lab of Electrical & Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Dongchuan Road No. 800 Shanghai 200240 China
| | - Qingxiang Li
- Shanghai Key Lab of Electrical & Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Dongchuan Road No. 800 Shanghai 200240 China
| | - Zhiguo Lü
- School of Physics and Astronomy Key Laboratory of Artificial Structures and Quantum Control Shanghai Jiao Tong University Dongchuan Road No. 800 Shanghai 200240 China
| | - Qinghua Lu
- School of Chemical Science and Technology Tongji University Siping Road No. 1239 Shanghai 200092 China
- Shanghai Key Lab of Electrical & Thermal Aging School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Dongchuan Road No. 800 Shanghai 200240 China
| |
Collapse
|