1
|
Qin X, Zhang M, Liang J, Xu S, Fu X, Liu Z, Tian T, Song J, Lin Y. Nanoparticles encapsulating antigenic peptides induce tolerogenic dendritic cells in situ for treating systemic lupus erythematosus. J Control Release 2025; 380:943-956. [PMID: 39983922 DOI: 10.1016/j.jconrel.2025.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Using Tetrahedral framework nucleic acids, we combined antigenic peptides to create the "DART" vaccine: DNA framework-Antigenic peptide-RNA modification-Targeting aptamer coupling. Generating antigen-specific tolerogenic dendritic cells (tolDCs), for systemic lupus erythematosus (SLE) is a potential therapeutic strategy for addressing compromised autoimmune tolerance. However, simple antigenic peptides degrade easily, lack specificity for delivery to dendritic cells (DCs), and cannot transform DCs to tolDCs. Therefore, this study aims to employ DART to generate tolDCs and compare DART-treated DCs to tolDCs. DART improved peptide stability, specifically targeted DCs, induced tolDCs in situ, and showed promising outcomes in mitigating SLE symptoms in the MRL/lpr mouse model. DART effectively normalized the plasma cytokine levels, glomerulonephritis, and joint lesions in MRL/lpr mice. These findings highlight the potential of the DART vaccine to induce transformation of DCs to tolDCs and address SLE symptoms, suggesting novel therapeutic utility. These findings may advance vaccine design for various autoimmune diseases.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Xu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Xiao Fu
- The Affiliated Hainan Hospital of Hainan Medical University, Haikou 570101, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Ouyang L, Wang J, Liu B, Xie M, Wang L, Fan C, Chao J. Parameter Pool-Assisted Centrifugation Sorter for Multiscale Higher-Order DNA Nanomaterials. ACS NANO 2025; 19:3830-3838. [PMID: 39810629 DOI: 10.1021/acsnano.4c15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Higher-order DNA nanomaterials have emerged as programmable tools for probing biological processes, constructing metamaterials, and manipulating mechanically active nanodevices with the multifunctionality and high-performance attributes. However, their utility is limited by intricate mixtures formed during hierarchical multistage assembly, as standard techniques like gel electrophoresis lack the resolution and applicability needed for precise characterization and enrichment. Thus, it is urgent to develop a sorter that provides high separation resolution, broad scope, and bioactive functionality. Here, we present a versatile and scalable sorting pipeline based on a centrifugation parameter pool capable of distinguishing DNA nanomaterials across multiple scales. By tuning parameters, we achieved high-throughput classification of nanostructures, spanning from DNA tile-based constructs to DNA origami-based assemblies (∼50 MDa, 75,000 bp), surpassing conventional methods. Furthermore, we optimized the separation resolution to less than 78 kDa (∼120 bp) at a large scale by sorting DNA tetrahedron structures using this systematic parameter pool-assisted centrifugation strategy. This sorter maintains the integrity and functionality of bioactive materials, facilitating a seamless transition from assembly to application, allowing for integration with proteins and other components to achieve the fabrication of complex functional materials and programmable molecular machines across interdisciplinary fields within the nanotechnology community.
Collapse
Affiliation(s)
- Lilin Ouyang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Junke Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Bing Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
3
|
Gao Q, He T, Chen L, Zhu S, Li C, Zeng Y, Luo S, Chen S, Chen X, Yu S, Ye Z, Wu ZS. Triangle-toothed gear occlude-guided universal nanotechnology constructs 3D symmetric DNA polyhedra with high assembly efficiency for precision cancer therapy. J Colloid Interface Sci 2025; 677:1045-1060. [PMID: 39178668 DOI: 10.1016/j.jcis.2024.08.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Chemotherapy is commonly used to treat malignant tumors. However, conventional chemotherapeutic drugs often cannot distinguish between tumor and healthy cells, resulting in adverse effects and reduced therapeutic efficacy. Therefore, zigzag-shaped gear-occlude-guided cymbal-closing (ZGC) DNA nanotechnology was developed based on the mirror-symmetry principle to efficiently construct symmetric DNA polyhedra. This nanotechnology employed simple mixing steps for efficient sequence design and assembly. A targeting aptamer was installed at a user-defined position using an octahedron as a model structure. Chemotherapeutic drug-loaded polyhedral objects were subsequently delivered into tumor cells. Furthermore, anticancer drug-loaded DNA octahedra were intravenously injected into a HeLa tumor-bearing mouse model. Assembly efficiency was almost 100 %, with no residual building blocks identified. Moreover, this nanotechnology required a few DNA oligonucleotides, even for complex polyhedrons. Symmetric DNA polyhedrons retained their structural integrity for 24 h in complex biological environments, guaranteeing prolonged circulation without drug leakage in the bloodstream and promoting efficient accumulation in tumor tissues. In addition, DNA octahedra were cleared relatively slowly from tumor tissues. Similarly, tumor growth was significantly inhibited in vivo, and a therapeutic outcome comparable to that of conventional gene-chemo combination therapy was observed. Moreover, no systemic toxicity was detected. These findings indicate the potential application of ZGC DNA nanotechnology in precision medicine.
Collapse
Affiliation(s)
- Qian Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tenghang He
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shidan Zhu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yi Zeng
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu Chen
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Xiangru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Suhong Yu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zaisheng Ye
- Department of Gastric Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
4
|
Xiao Y, Liang Z, Shyngys M, Baekova A, Cheung S, Muljadi MB, Bai Q, Zeng L, Choi CHJ. In Vivo Interactions of Nucleic Acid Nanostructures With Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2314232. [PMID: 39263835 PMCID: PMC11733725 DOI: 10.1002/adma.202314232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/03/2024] [Indexed: 09/13/2024]
Abstract
Nucleic acid nanostructures, derived from the assembly of nucleic acid building blocks (e.g., plasmids and oligonucleotides), are important intracellular carriers of therapeutic cargoes widely utilized in preclinical nanomedicine applications, yet their clinical translation remains scarce. In the era of "translational nucleic acid nanotechnology", a deeper mechanistic understanding of the interactions of nucleic acid nanostructures with cells in vivo will guide the development of more efficacious nanomedicines. This review showcases the recent progress in dissecting the in vivo interactions of four key types of nucleic acid nanostructures (i.e., tile-based, origami, spherical nucleic acid, and nucleic acid nanogel) with cells in rodents over the past five years. Emphasis lies on the cellular-level distribution of nucleic acid nanostructures in various organs and tissues and the cellular responses induced by their cellular entry. Next, in the spirit of preclinical translation, this review features the latest interactions of nucleic acid nanostructures with cells in large animals and humans. Finally, the review offers directions for studying the interactions of nucleic acid nanostructures with cells from both materials and biology perspectives and concludes with some regulatory updates.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Zhihui Liang
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Moldir Shyngys
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Aiana Baekova
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Suen Cheung
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Mathias Billy Muljadi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Qianqian Bai
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Lula Zeng
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkShatinNew TerritoriesHong Kong
| |
Collapse
|
5
|
Ouyang Y, Zhang P, Willner I. DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications. Angew Chem Int Ed Engl 2024; 63:e202411118. [PMID: 39037936 DOI: 10.1002/anie.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore. The article presents a comprehensive review addressing methods to assemble and characterize the DNA tetrahedra nanostructures, and diverse applications of DNA tetrahedra framework are discussed. Topics being addressed include the application of structurally functionalized DNA tetrahedra nanostructure for the assembly of diverse optical or electrochemical sensing platforms and functionalized intracellular sensing and imaging modules. In addition, the triggered reconfiguration of DNA tetrahedra nanostructures and dynamic networks and circuits emulating biological transformations are introduced. Moreover, the functionalization of DNA tetrahedra frameworks with nanoparticles provides building units for the assembly of optical devices and for the programmed crystallization of nanoparticle superlattices. Finally, diverse applications of DNA tetrahedra in the field of nanomedicine are addressed. These include the DNA tetrahedra-assisted permeation of nanocarriers into cells for imaging, controlled drug release, active chemodynamic/photodynamic treatment of target tissues, and regenerative medicine.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Current address: Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
6
|
Kar A, Baral B, Subudhi U. Minimum number of oligonucleotide-based stable monomeric branched DNA nanostructure: Biochemical and biophysical study. Int J Biol Macromol 2024; 276:133930. [PMID: 39025185 DOI: 10.1016/j.ijbiomac.2024.133930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
DNA has been employed as building blocks for the construction of nanomaterials due to their programmability and wide range applications. The functional branched DNA (bDNA) nanostructure is largely dependent on the sequence and structural symmetry. Despite the discovery of different structures, the synthesis of bDNA nanostructures from optimal number of oligonucleotides is yet to be explored. In the current study, for the first time we demonstrate the designing of stable monomeric bDNA structures using two or three oligonucleotides. Furthermore, the stability of bDNA nanostructures was thoroughly investigated in presence of different pH, cations, fetal bovine serum and DNase I. The thermodynamic parameters indicated that hydrogen bonding and van der Waals interactions played a major role during self-assembly of bDNA nanostructures. From the gel retardation assay, we confirmed the binding of complementary oligonucleotides to the bDNA nanostructures, thus can be explored for target specific transcript regulation. In conclusion, the self-assembled DNA nanostructures developed from optimal oligonucleotides are stable in physiological environment and can be used for biomedical applications.
Collapse
Affiliation(s)
- Avishek Kar
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bineeth Baral
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
8
|
Zhu S, Peng H, Kong H, Yan Q, Xia K, Wang L, Zhu Y, Luo S. Visualization of the hepatic and renal cell uptake and trafficking of tetrahedral DNA origami in tumour. Cell Prolif 2024; 57:e13643. [PMID: 38572799 PMCID: PMC11294413 DOI: 10.1111/cpr.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
DNA nanostructures, known for their programmability, ease of modification, and favourable biocompatibility, have gained widespread application in the biomedical field. Among them, Tetrahedral DNA Origami (TDOs), as a novel DNA nanostructure, possesses well-defined structures, multiple modification sites, and large cavities, making it a promising drug carrier. However, current understanding of TDOs' interactions with biological systems, particularly with target cells and organs, remains unexplored, limiting its further applications in biomedicine. In this work, we prepared TDOs with an average particle size of 40 nm and labelled them with Cy5 fluorescent molecules. Following intravenous injection in mice, the uptake of TDOs by different types of liver and kidney cells was observed. Results indicated that TDOs accumulate in renal tubules and are metabolized by Kupffer cells, epithelial cells, and hepatocytes in the liver. Additionally, in a tumour-bearing mouse model, TDOs passively targeted tumour tissues and exhibited excellent tumour penetration and retention after rapid metabolism in hepatocytes. Our findings provide crucial insights for the development of TDO-based drug delivery systems.
Collapse
Affiliation(s)
- Shitai Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied Physics, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongzhen Peng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
- Institute of Materiobiology, College of Sciences, Shanghai UniversityShanghaiChina
| | - Huating Kong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Qinglong Yan
- Institute of Materiobiology, College of Sciences, Shanghai UniversityShanghaiChina
- Xiangfu LaboratoryJiashanChina
| | - Kai Xia
- Xiangfu LaboratoryJiashanChina
- Shanghai Frontier Innovation Research InstituteShanghaiChina
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied Physics, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Materiobiology, College of Sciences, Shanghai UniversityShanghaiChina
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied Physics, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Materiobiology, College of Sciences, Shanghai UniversityShanghaiChina
| | - Shihua Luo
- Department of TraumatologyRui Jin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
9
|
Sharma A, Vaswani P, Bhatia D. Revolutionizing cancer therapy using tetrahedral DNA nanostructures as intelligent drug delivery systems. NANOSCALE ADVANCES 2024; 6:3714-3732. [PMID: 39050960 PMCID: PMC11265600 DOI: 10.1039/d4na00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
DNA nanostructures have surfaced as intriguing entities with vast potential in biomedicine, notably in the drug delivery area. Tetrahedral DNA nanostructures (TDNs) have received worldwide attention from among an array of different DNA nanostructures due to their extraordinary stability, great biocompatibility, and ease of functionalization. TDNs could be readily synthesized, making them attractive carriers for chemotherapeutic medicines, nucleic acid therapeutics, and imaging probes. Their varied uses encompass medication delivery, molecular diagnostics, biological imaging, and theranostics. This review extensively highlights the mechanisms of functional modification of TDNs and their applications in cancer therapy. Additionally, it discusses critical concerns and unanswered problems that require attention to increase the future application of TDNs in developing cancer treatment.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University Mathura Uttar Pradesh-281406 India
| | - Payal Vaswani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj 382355 Gandhinagar India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj 382355 Gandhinagar India
| |
Collapse
|
10
|
Wang W, Wang W, Chen Y, Lin M, Chen YR, Zeng R, He T, Shen Z, Wu ZS. Superlarge, Rigidified DNA Tetrahedron with a Y-Shaped Backbone for Organizing Biomolecules Spatially and Maintaining Their Full Bioactivity. ACS NANO 2024; 18:18257-18281. [PMID: 38973121 DOI: 10.1021/acsnano.3c13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A major impediment to the clinical translation of DNA tiling nanostructures is a technical bottleneck for the programmable assembly of DNA architectures with well-defined local geometry due to the inability to achieve both sufficient structural rigidity and a large framework. In this work, a Y-backbone was inserted into each face to construct a superlarge, sufficiently rigidified tetrahedral DNA nanostructure (called RDT) with extremely high efficiency. In RDT, the spatial size increased by 6.86-fold, and the structural rigidity was enhanced at least 4-fold, contributing to an ∼350-fold improvement in the resistance to nucleolytic degradation even without a protective coating. RDT can be mounted onto an artificial lipid-bilayer membrane with molecular-level precision and well-defined spatial orientation that can be validated using the fluorescence resonance energy transfer (FRET) assay. The spatial orientation of Y-shaped backbone-rigidified RDT is unachievable for conventional DNA polyhedrons and ensures a high level of precision in the geometric positioning of diverse biomolecules with an approximately homogeneous environment. In tests of RDT, surface-confined horseradish peroxidase (HRP) exhibited nearly 100% catalytic activity and targeting aptamer-immobilized gold nanoparticles showed 5.3-fold enhanced cellular internalization. Significantly, RDT exhibited a 27.5-fold enhanced structural stability in a bodily environment and did not induce detectable systemic toxicity.
Collapse
Affiliation(s)
- Weijun Wang
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaxin Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Mengling Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yan-Ru Chen
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ruijin Zeng
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tenghang He
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine of the Ministry of Education, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
11
|
Kashani GK, Naghib SM, Soleymani S, Mozafari MR. A review of DNA nanoparticles-encapsulated drug/gene/protein for advanced controlled drug release: Current status and future perspective over emerging therapy approaches. Int J Biol Macromol 2024; 268:131694. [PMID: 38642693 DOI: 10.1016/j.ijbiomac.2024.131694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
In the last ten years, the field of nanomedicine has experienced significant progress in creating novel drug delivery systems (DDSs). An effective strategy involves employing DNA nanoparticles (NPs) as carriers to encapsulate drugs, genes, or proteins, facilitating regulated drug release. This abstract examines the utilization of DNA NPs and their potential applications in strategies for controlled drug release. Researchers have utilized the distinctive characteristics of DNA molecules, including their ability to self-assemble and their compatibility with living organisms, to create NPs specifically for the purpose of delivering drugs. The DNA NPs possess numerous benefits compared to conventional drug carriers, such as exceptional stability, adjustable dimensions and structure, and convenient customization. Researchers have successfully achieved a highly efficient encapsulation of different therapeutic agents by carefully designing their structure and composition. This advancement enables precise and targeted delivery of drugs. The incorporation of drugs, genes, or proteins into DNA NPs provides notable advantages in terms of augmenting therapeutic effectiveness while reducing adverse effects. DNA NPs serve as a protective barrier for the enclosed payloads, preventing their degradation and extending their duration in the body. The protective effect is especially vital for delicate biologics, such as proteins or gene-based therapies that could otherwise be vulnerable to enzymatic degradation or quick elimination. Moreover, the surface of DNA NPs can be altered to facilitate specific targeting towards particular tissues or cells, thereby augmenting the accuracy of delivery. A significant benefit of DNA NPs is their capacity to regulate the kinetics of drug release. Through the manipulation of the DNA NPs structure, scientists can regulate the rate at which the enclosed cargo is released, enabling a prolonged and regulated dispensation of medication. This control is crucial for medications with limited therapeutic ranges or those necessitating uninterrupted administration to attain optimal therapeutic results. In addition, DNA NPs have the ability to react to external factors, including alterations in temperature, pH, or light, which can initiate the release of the payload at precise locations or moments. This feature enhances the precision of drug release control. The potential uses of DNA NPs in the controlled release of medicines are extensive. The NPs have the ability to transport various therapeutic substances, for example, drugs, peptides, NAs (NAs), and proteins. They exhibit potential for the therapeutic management of diverse ailments, including cancer, genetic disorders, and infectious diseases. In addition, DNA NPs can be employed for targeted drug delivery, traversing biological barriers, and surpassing the constraints of conventional drug administration methods.
Collapse
Affiliation(s)
- Ghazal Kadkhodaie Kashani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia; Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
12
|
Wang W, Lin M, Chen YR, Wang W, Lv J, Chen Y, Yin H, Shen Z, Wu ZS. Y-Shaped Backbone-Rigidified DNA Tiles for the Construction of Supersized Nondeformable Tetrahedrons for Precise Cancer Therapies. Anal Chem 2024; 96:1488-1497. [PMID: 38232037 DOI: 10.1021/acs.analchem.3c03923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
While engineered DNA nanoframeworks have been extensively exploited for delivery of diagnostic and therapeutic regents, DNA tiling-based DNA frameworks amenable to applications in living systems lag much behind. In this contribution, by developing a Y-shaped backbone-based DNA tiling technique, we assemble Y-shaped backbone-rigidified supersized DNA tetrahedrons (RDT) with 100% efficiency for precisely targeted tumor therapy. RDT displays unparalleled rigidness and unmatched resistance to nuclease degradation so that it almost does not deform under the force exerted by the atomic force microscopy tip, and the residual amount is not less than 90% upon incubating in biological media for 24 h, displaying at least 11.6 times enhanced degradation resistance. Without any targeting ligand, RDT enters the cancer cell in a targeted manner, and internalization specificity is up to 15.8. Moreover, 77% of RDT objects remain intact within living cells for 14 h. The drug loading content of RDT is improved by 4-8 times, and RDT almost 100% eliminates the unintended drug leakage in a stimulated physiological medium. Once systemically administrated into HeLa tumor-bearing mouse models, doxorubicin-loaded RDTs preferentially accumulate in tumor sites and efficiently suppress tumor growth without detectable off-target toxicity. The Y-DNA tiling technique offers invaluable insights into the development of structural DNA nanotechnology for precise medicine.
Collapse
Affiliation(s)
- Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
| | - Mengling Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jinrui Lv
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaxin Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hongwei Yin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhifa Shen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
13
|
Velusamy A, Sharma R, Rashid SA, Ogasawara H, Salaita K. DNA mechanocapsules for programmable piconewton responsive drug delivery. Nat Commun 2024; 15:704. [PMID: 38267454 PMCID: PMC10808132 DOI: 10.1038/s41467-023-44061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024] Open
Abstract
The mechanical dysregulation of cells is associated with a number of disease states, that spans from fibrosis to tumorigenesis. Hence, it is highly desirable to develop strategies to deliver drugs based on the "mechanical phenotype" of a cell. To achieve this goal, we report the development of DNA mechanocapsules (DMC) comprised of DNA tetrahedrons that are force responsive. Modeling shows the trajectory of force-induced DMC rupture and predicts how applied force spatial position and orientation tunes the force-response threshold. DMCs functionalized with adhesion ligands mechanically denature in vitro as a result of cell receptor forces. DMCs are designed to encapsulate macromolecular cargos such as dextran and oligonucleotide drugs with minimal cargo leakage and high nuclease resistance. Force-induced release and uptake of DMC cargo is validated using flow cytometry. Finally, we demonstrate force-induced mRNA knockdown of HIF-1α in a manner that is dependent on the magnitude of cellular traction forces. These results show that DMCs can be effectively used to target biophysical phenotypes which may find useful applications in immunology and cancer biology.
Collapse
Affiliation(s)
| | - Radhika Sharma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Yang J, Wang J, Liu X, Chen Y, Liang Y, Wang Q, Jiang S, Zhang C. Translocation of Proteins through Solid-State Nanopores Using DNA Polyhedral Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303715. [PMID: 37496044 DOI: 10.1002/smll.202303715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Indexed: 07/28/2023]
Abstract
The detection of biomolecules at the single molecule level has important applications in the fields of biosensing and biomedical diagnosis. The solid-state nanopore (SS nanopore) is a sensitive tool for detecting single molecules because of its unique label-free and low sample consumption properties. SS nanopore translocation of small biomolecules is typically driven by an electronic field force and is thus influenced by the charge, shape, and size of the target molecules. Therefore, it remains challenging to control the translocation of biomolecules through SS nanopores, particularly for different proteins with complex conformations and unique charges. Toward this problem, a DNA polyhedral carrier coating strategy to assist protein translocation through SS nanopores is developed, which facilitates target protein detection. The current signal-to-noise ratios are improved significantly using this DNA carrier loading strategy. The proposed method should aid the detection of proteins, which are difficult to translocate through nanopores. This coating-assisted method offers a wide range of applications for SS nanopore detection and promotes the development of single-molecule detection.
Collapse
Affiliation(s)
- Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Juan Wang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xuan Liu
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yiming Chen
- School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
| | - Yuan Liang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Qi Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shuoxing Jiang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Cheng Zhang
- School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Meng X, O'Hare D, Ladame S. Surface immobilization strategies for the development of electrochemical nucleic acid sensors. Biosens Bioelectron 2023; 237:115440. [PMID: 37406480 DOI: 10.1016/j.bios.2023.115440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Following the recent pandemic and with the emergence of cell-free nucleic acids in liquid biopsies as promising biomarkers for a broad range of pathologies, there is an increasing demand for a new generation of nucleic acid tests, with a particular focus on cost-effective, highly sensitive and specific biosensors. Easily miniaturized electrochemical sensors show the greatest promise and most typically rely on the chemical functionalization of conductive materials or electrodes with sequence-specific hybridization probes made of standard oligonucleotides (DNA or RNA) or synthetic analogues (e.g. Peptide Nucleic Acids or PNAs). The robustness of such sensors is mostly influenced by the ability to control the density and orientation of the probe at the surface of the electrode, making the chemistry used for this immobilization a key parameter. This exhaustive review will cover the various strategies to immobilize nucleic acid probes onto different solid electrode materials. Both physical and chemical immobilization techniques will be presented. Their applicability to specific electrode materials and surfaces will also be discussed as well as strategies for passivation of the electrode surface as a way of preventing electrode fouling and reducing nonspecific binding.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK. https://in.linkedin.com/https://www.linkedin.com/profile/view?id=xiaotong-meng-888IC
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Hong S, Jiang W, Ding Q, Lin K, Zhao C, Wang X. The Current Progress of Tetrahedral DNA Nanostructure for Antibacterial Application and Bone Tissue Regeneration. Int J Nanomedicine 2023; 18:3761-3780. [PMID: 37457798 PMCID: PMC10348378 DOI: 10.2147/ijn.s403882] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Recently, programmable assembly technologies have enabled the application of DNA in the creation of new nanomaterials with unprecedented functionality. One of the most common DNA nanostructures is the tetrahedral DNA nanostructure (TDN), which has attracted great interest worldwide due to its high stability, simple assembly procedure, high predictability, perfect programmability, and excellent biocompatibility. The unique spatial structure of TDN allows it to penetrate cell membranes in abundance and regulate cellular biological properties as a natural genetic material. Previous studies have demonstrated that TDNs can regulate various cellular biological properties, including promoting cells proliferation, migration and differentiation, inhibiting cells apoptosis, as well as possessing anti-inflammation and immunomodulatory capabilities. Furthermore, functional molecules can be easily modified at the vertices of DNA tetrahedron, DNA double helix structure, DNA tetrahedral arms or DNA tetrahedral cage structure, enabling TDN to be used as a nanocarrier for a variety of biological applications, including targeted therapies, molecular diagnosis, biosensing, antibacterial treatment, antitumor strategies, and tissue regeneration. In this review, we mainly focus on the current progress of TDN-based nanomaterials for antimicrobial applications, bone and cartilage tissue repair and regeneration. The synthesis and characterization of TDN, as well as the biological merits are introduced. In addition, the challenges and prospects of TDN-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Shebin Hong
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Weidong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Qinfeng Ding
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Cancan Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Li J, Yan R, Shi S, Lin Y. Recent progress and application of the tetrahedral framework nucleic acid materials on drug delivery. Expert Opin Drug Deliv 2023; 20:1511-1530. [PMID: 37898874 DOI: 10.1080/17425247.2023.2276285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION The application of DNA framework nucleic acid materials in the biomedical field has witnessed continual expansion. Among them, tetrahedral framework nucleic acids (tFNAs) have gained significant traction as the foremost biological vectors due to their superior attributes of editability, low immunogenicity, biocompatibility, and biodegradability. tFNAs have demonstrated promising results in numerous in vitro and in vivo applications. AREAS COVERED This review summarizes the latest research on tFNAs in drug delivery, including a discussion of the advantages of tFNAs in regulating biological behaviors, and highlights the updated development and advantageous applications of tFNAs-based nanostructures from static design to dynamically responsive design. EXPERT OPINION tFNAs possess distinct biological regulatory attributes and can be taken up by cells without the requirement of transfection, differentiating them from other biological vectors. tFNAs can be easily physically/chemically modified and seamlessly incorporated with other functional systems. The static design of the tFNAs-based drug delivery system makes it versatile, reproducible, and predictable. Further use of the dynamic response mechanism of DNA to external stimuli makes tFNAs-based drug delivery more effective and specific, improving the uptake and utilization of the payload by the intended target. Dynamic targeting is poised to become the future primary approach for drug delivery.
Collapse
Affiliation(s)
- Jiajie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Plastic Surgery and Cosmetic Dermatology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ran Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
19
|
Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 2023; 13:916-941. [PMID: 36970219 PMCID: PMC10031267 DOI: 10.1016/j.apsb.2022.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers. However, efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging. Recently, more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating. Due to the flexibility and deformability of nucleic acids, the nanoassemblies could be fabricated with different shapes and structures. With hybridization, nucleic acid nanoassemblies, including DNA and RNA nanostructures, can be applied to enhance RNA therapeutics and diagnosis. This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
Collapse
Affiliation(s)
- Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kunmeng Yang
- The First Norman Bethune College of Clinical Medicine, Jilin University, Changchun 130061, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yachen Peng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
20
|
Huang J, Gambietz S, Saccà B. Self-Assembled Artificial DNA Nanocompartments and Their Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202253. [PMID: 35775957 DOI: 10.1002/smll.202202253] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization is the strategy evolved by nature to control reactions in space and time. The ability to emulate this strategy through synthetic compartmentalization systems has rapidly evolved in the past years, accompanied by an increasing understanding of the effects of spatial confinement on the thermodynamic and kinetic properties of the guest molecules. DNA nanotechnology has played a pivotal role in this scientific endeavor and is still one of the most promising approaches for the construction of nanocompartments with programmable structural features and nanometer-scaled addressability. In this review, the design approaches, bioapplications, and theoretical frameworks of self-assembled DNA nanocompartments are surveyed. From DNA polyhedral cages to virus-like capsules, the construction principles of such intriguing architectures are illustrated. Various applications of DNA nanocompartments, including their use for programmable enzyme scaffolding, single-molecule studies, biosensing, and as artificial nanofactories, ending with an ample description of DNA nanocages for biomedical purposes, are then reported. Finally, the theoretical hypotheses that make DNA nanocompartments, and nanosystems in general, a topic of great interest in modern science, are described and the progresses that have been done until now in the comprehension of the peculiar phenomena that occur within nanosized environments are summarized.
Collapse
Affiliation(s)
- Jing Huang
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Sabrina Gambietz
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| | - Barbara Saccà
- ZMB, Faculty of Biology, University Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
21
|
Tian T, Zhang T, Shi S, Gao Y, Cai X, Lin Y. A dynamic DNA tetrahedron framework for active targeting. Nat Protoc 2023; 18:1028-1055. [PMID: 36670289 DOI: 10.1038/s41596-022-00791-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 01/22/2023]
Abstract
An active targeting strategy-enabled DNA tetrahedron delivery vehicle could facilitate stable drug encapsulation and stimuli-responsive on-demand release, building a universal platform for different drug delivery requirements. Owing to the excellent biocompatible nature, programmability and remarkable cell and tissue permeability, the tetrahedral DNA nanostructure (TDN) has proven its value in the delivery of various bioactive molecules. We previously described this as a static multifunctional complex in our earlier protocol. However, static structures and passive targeting behavior might introduce off-target effects under complicated biological conditions. Therefore, in this Protocol Extension, we present a major update of the TDN delivery vehicle enabling an active targeting strategy to be used for stimuli-sensitive conformation changes and on-site cargo release, which could avoid drawbacks, including complex and time-consuming fabrication processes and undetermined cell penetration ability of other DNA-based delivery vehicles. Upon exquisite design of TDN size based on cargo type, one-pot annealing is applied to fabricate the Tiamat-designed TDN exoskeleton. Then the design of the dynamic DNA apparatus can be based on the target and environmental stimuli, including DNA strand hybridization-based and pH-sensitive DNA apparatus, and careful titration of strand lengths and mismatches is achieved using polyacrylamide and agarose gel electrophoresis, or fluorophore modifications. Finally, cargo loading strategies are designed, including site and stand titration and cargo encapsulation verification. The dynamic structures show promising targetability and effectiveness in antitumor and anti-inflammatory treatment in vitro and in vivo. Assembly and characterization in the lab takes ~5 d, and the timing for the verification of biostability and biological applications depends on the uses.
Collapse
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China.
| |
Collapse
|
22
|
Lin Y, Li Q, Wang L, Guo Q, Liu S, Zhu S, Sun Y, Fan Y, Sun Y, Li H, Tian X, Luo D, Shi S. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. Int J Oral Sci 2022; 14:51. [PMID: 36316311 PMCID: PMC9622686 DOI: 10.1038/s41368-022-00199-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
With the emergence of DNA nanotechnology in the 1980s, self-assembled DNA nanostructures have attracted considerable attention worldwide due to their inherent biocompatibility, unsurpassed programmability, and versatile functions. Especially promising nanostructures are tetrahedral framework nucleic acids (tFNAs), first proposed by Turberfield with the use of a one-step annealing approach. Benefiting from their various merits, such as simple synthesis, high reproducibility, structural stability, cellular internalization, tissue permeability, and editable functionality, tFNAs have been widely applied in the biomedical field as three-dimensional DNA nanomaterials. Surprisingly, tFNAs exhibit positive effects on cellular biological behaviors and tissue regeneration, which may be used to treat inflammatory and degenerative diseases. According to their intended application and carrying capacity, tFNAs could carry functional nucleic acids or therapeutic molecules through extended sequences, sticky-end hybridization, intercalation, and encapsulation based on the Watson and Crick principle. Additionally, dynamic tFNAs also have potential applications in controlled and targeted therapies. This review summarized the latest progress in pure/modified/dynamic tFNAs and demonstrated their regenerative medicine applications. These applications include promoting the regeneration of the bone, cartilage, nerve, skin, vasculature, or muscle and treating diseases such as bone defects, neurological disorders, joint-related inflammatory diseases, periodontitis, and immune diseases.
Collapse
Affiliation(s)
- Yunfeng Lin
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Li
- grid.16821.3c0000 0004 0368 8293School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- grid.458506.a0000 0004 0497 0637The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Zhangjiang Laboratory, Shanghai, China
| | - Quanyi Guo
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shuyun Liu
- grid.488137.10000 0001 2267 2324Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, China
| | - Shihui Zhu
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yu Sun
- grid.73113.370000 0004 0369 1660Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yujiang Fan
- grid.13291.380000 0001 0807 1581National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yong Sun
- grid.13291.380000 0001 0807 1581College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Haihang Li
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Xudong Tian
- Jiangsu Trautec Medical Technology Company Limited, Changzhou, China
| | - Delun Luo
- Chengdu Jingrunze Gene Technology Company Limited, Chengdu, China
| | - Sirong Shi
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Kumar A, Ahmad A, Ansari MM, Gowd V, Rashid S, Chaudhary AA, Rudayni HA, Alsalamah SA, Khan R. Functionalized-DNA nanostructures as potential targeted drug delivery systems for cancer therapy. Semin Cancer Biol 2022; 86:54-68. [PMID: 36087856 DOI: 10.1016/j.semcancer.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 01/14/2023]
Abstract
Seeman's pioneer idea has led to the foundation of DNA nanostructures, resulting in a remarkable advancement in DNA nanotechnology. Over the last few decades, remarkable advances in drug delivery techniques have resulted in the self-assembly of DNA for encapsulating candidate drug molecules. The nuclear targeting capability of DNA nanostructures is lies within their high spatial addressability and tremendous potential for active targeting. However, effective programming and assembling those DNA molecules remains a challenge, making the path to DNA nanostructures for real-world applications difficult. Because of their small size, most nanostructures are self-capable of infiltrating into the tumor cellular environment. Furthermore, to enable controlled and site-specific delivery of encapsulated drug molecules, DNA nanostructures are functionalized with special moieties that allow them to bind specific targets and release cargo only at targeted sites rather than non-specific sites, resulting in the prevention/limitation of cellular toxicity. In light of this, the current review seeks to shed light on the versatility of the DNA molecule as a targeting and encapsulating moiety for active drugs in order to achieve controlled and specific drug release with spatial and temporal precision. Furthermore, this review focused on the challenges associated with the construction of DNA nanostructures as well as the most recent advances in the functionalization of DNA nanostructures using various materials for controlled and targeted delivery of medications for cancer therapy.
Collapse
Affiliation(s)
- Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Anas Ahmad
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Vemana Gowd
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Sulaiman A Alsalamah
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
24
|
He W, Zhao Y, Xing S, Zhang Y, Wang L, Liu H. DNA Tetrahedron Framework Guided Conjugation and Assembly of Gold Nanoparticles. Chempluschem 2022; 87:e202200159. [PMID: 35822636 DOI: 10.1002/cplu.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Au nanoparticles (AuNPs) have been extensively used to assemble programmable structures that feature various functions. One central challenge of precisely directed assembly is to make valence-programmable building blocks. Herein, we use the DNA tetrahedron framework to stoichiometrically conjugate to Au nanoparticles, which results in monovalent building blocks at nanometer scale. We further fabricated high-order Au-tetrahedron structures to verify the ability of the blocks for building assemblies. These structures represent an exploration of an avenue to monovalent AuNPs, and provide the feasibility of precisely manipulating nanoparticles into prescribed assemblies.
Collapse
Affiliation(s)
- Wei He
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Zhao
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Shu Xing
- Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Yinan Zhang
- Key Laboratory of Advanced Civil Engineering Materials of, Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201200, P. R. China
| | - Huajie Liu
- Key Laboratory of Advanced Civil Engineering Materials of, Ministry of Education, Shanghai Research Institute for Intelligent Autonomous Systems, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
25
|
Mathur D, Rogers KE, Díaz SA, Muroski ME, Klein WP, Nag OK, Lee K, Field LD, Delehanty JB, Medintz IL. Determining the Cytosolic Stability of Small DNA Nanostructures In Cellula. NANO LETTERS 2022; 22:5037-5045. [PMID: 35580267 PMCID: PMC9233082 DOI: 10.1021/acs.nanolett.2c00917] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA nanostructures have proven potential in biomedicine. However, their intracellular interactions─especially cytosolic stability─remain mostly unknown and attempts to discern this are confounded by the complexities of endocytic uptake and entrapment. Here, we bypass the endocytic uptake and evaluate the DNA structural stability directly in live cells. Commonly used DNA structures─crosshairs and a tetrahedron─were labeled with a multistep Förster resonance energy transfer dye cascade and microinjected into the cytosol of transformed and primary cells. Energy transfer loss, as monitored by fluorescence microscopy, reported the structure's direct time-resolved breakdown in cellula. The results showed rapid degradation of the DNA crosshair within 20 min, while the tetrahedron remained consistently intact for at least 1 h postinjection. Nuclease assays in conjunction with a current understanding of the tetrahedron's torsional rigidity confirmed its higher stability. Such studies can inform design parameters for future DNA nanostructures where programmable degradation rates may be required.
Collapse
Affiliation(s)
- Divita Mathur
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Katherine E Rogers
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- American Society of Engineering Education, Washington, DC 20036, United States
| | - William P Klein
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Kwahun Lee
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- American Society of Engineering Education, Washington, DC 20036, United States
| | - Lauren D Field
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
- National Research Council, Washington, DC 20001, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, US Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
26
|
Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res 2022; 10:40. [PMID: 35606345 PMCID: PMC9125017 DOI: 10.1038/s41413-022-00212-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 02/08/2023] Open
Abstract
The physicochemical nature of DNA allows the assembly of highly predictable structures via several fabrication strategies, which have been applied to make breakthroughs in various fields. Moreover, DNA nanostructures are regarded as materials with excellent editability and biocompatibility for biomedical applications. The ongoing maintenance and release of new DNA structure design tools ease the work and make large and arbitrary DNA structures feasible for different applications. However, the nature of DNA nanostructures endows them with several stimulus-responsive mechanisms capable of responding to biomolecules, such as nucleic acids and proteins, as well as biophysical environmental parameters, such as temperature and pH. Via these mechanisms, stimulus-responsive dynamic DNA nanostructures have been applied in several biomedical settings, including basic research, active drug delivery, biosensor development, and tissue engineering. These applications have shown the versatility of dynamic DNA nanostructures, with unignorable merits that exceed those of their traditional counterparts, such as polymers and metal particles. However, there are stability, yield, exogenous DNA, and ethical considerations regarding their clinical translation. In this review, we first introduce the recent efforts and discoveries in DNA nanotechnology, highlighting the uses of dynamic DNA nanostructures in biomedical applications. Then, several dynamic DNA nanostructures are presented, and their typical biomedical applications, including their use as DNA aptamers, ion concentration/pH-sensitive DNA molecules, DNA nanostructures capable of strand displacement reactions, and protein-based dynamic DNA nanostructures, are discussed. Finally, the challenges regarding the biomedical applications of dynamic DNA nanostructures are discussed.
Collapse
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yanjing Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, 300070, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
27
|
Gao Y, Chen X, Tian T, Zhang T, Gao S, Zhang X, Yao Y, Lin Y, Cai X. A Lysosome-Activated Tetrahedral Nanobox for Encapsulated siRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201731. [PMID: 35511782 DOI: 10.1002/adma.202201731] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/30/2022] [Indexed: 02/05/2023]
Abstract
Tetrahedral framework nucleic acids (tFNAs) have attracted extensive attention as drug nanocarriers because of their excellent cellular uptake. However, for oligonucleotide cargos, tFNA mainly acts as a static delivery platform generated via sticky-ended ligation. Here, inspired by the original stable space inside the tetrahedral scaffold, a dynamic lysosome-activated tFNA nanobox is fabricated for completely encapsulating a short interfering RNA (siRNA) of interest. The closed tetrahedral structure endows cargo siRNA with greater resistance against RNase and serum and enables solid integration with the vehicle during delivery. Moreover, the pH-responsive switch of nanobox allows the controlled release of siRNA upon entry into lysosomes at cell culture temperature. Based on protective loading and active unloading, an excellent silencing effect on the target tumor necrosis factor alpha (TNFα) gene is achieved in in vitro and in vivo experiments. Conclusively, the nanobox offers a dynamic pH-sensitive confinement delivery system for siRNA and can be an extendable strategy for other small RNA.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Sichuan Chengdu 610041 China
| |
Collapse
|
28
|
Guo L, Zhang Y, Wang Y, Xie M, Dai J, Qu Z, Zhou M, Cao S, Shi J, Wang L, Zuo X, Fan C, Li J. Directing Multivalent Aptamer-Receptor Binding on the Cell Surface with Programmable Atom-Like Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202117168. [PMID: 35226386 DOI: 10.1002/anie.202117168] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Multivalent interactions of biomolecules play pivotal roles in physiological and pathological settings. Whereas the directionality of the interactions is crucial, the state-of-the-art synthetic multivalent ligand-receptor systems generally lack programmable approaches for orthogonal directionality. Here, we report the design of programmable atom-like nanoparticles (aptPANs) to direct multivalent aptamer-receptor binding on the cell interface. The positions of the aptamer motifs can be prescribed on tetrahedral DNA frameworks to realize atom-like orthogonal valence and direction, enabling the construction of multivalent molecules with fixed aptamer copy numbers but different directionality. These directional-yet-flexible aptPAN molecules exhibit the adaptability to the receptor distribution on cell surfaces. We demonstrate the high-affinity tumor cell binding with a linear aptPAN oligomer (≈13-fold improved compared to free aptamers), which leads to ≈50 % suppression of cell growth.
Collapse
Affiliation(s)
- Linjie Guo
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yueyue Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yue Wang
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mo Xie
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiangbing Dai
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mo Zhou
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Shuting Cao
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiye Shi
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiang Li
- Division of Physical Biology Department, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
29
|
Zhu CY, Li FL, Zhang YW, Gupta RK, Patel SKS, Lee JK. Recent Strategies for the Immobilization of Therapeutic Enzymes. Polymers (Basel) 2022; 14:polym14071409. [PMID: 35406282 PMCID: PMC9003532 DOI: 10.3390/polym14071409] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Therapeutic enzymes play important roles in modern medicine due to their high affinity and specificity. However, it is very expensive to use them in clinical medicine because of their low stability and bioavailability. To improve the stability and effectiveness of therapeutic enzymes, immobilization techniques have been employed to enhance the applications of therapeutic enzymes in the past few years. Reported immobilization techniques include entrapment, adsorption, and covalent attachment. In addition, protein engineering is often used to improve enzyme properties; however, all methods present certain advantages and limitations. For carrier-bound immobilization, the delivery and release of the immobilized enzyme depend on the properties of the carrier and enzyme. In this review, we summarize the advantages and challenges of the current strategies developed to deliver therapeutic enzymes and provide a future perspective on the immobilization technologies used for therapeutic enzyme delivery.
Collapse
Affiliation(s)
- Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
| | - Fei-Long Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; (C.-Y.Z.); (F.-L.L.)
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| | - Rahul K. Gupta
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea;
- Correspondence: (Y.-W.Z.); (S.K.S.P.); (J.-K.L.); Tel.: +82-2-450-3505 (J.-K.L.)
| |
Collapse
|
30
|
Guo L, Zhang Y, Wang Y, Xie M, Dai J, Qu Z, Zhou M, Cao S, Shi J, Wang L, Zuo X, Fan C, Li J. Directing Multivalent Aptamer‐Receptor Binding on the Cell Surface with Programmable Atom‐Like Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Linjie Guo
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Yueyue Zhang
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yue Wang
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mo Xie
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Jiangbing Dai
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| | - Mo Zhou
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Shuting Cao
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Jiye Shi
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
| | - Lihua Wang
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| | - Jiang Li
- Division of Physical Biology Department CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- The Interdisciplinary Research Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University 200240 Shanghai China
| |
Collapse
|
31
|
Shi S, Li Y, Zhang T, Xiao D, Tian T, Chen T, Zhang Y, Li X, Lin Y. Biological Effect of Differently Sized Tetrahedral Framework Nucleic Acids: Endocytosis, Proliferation, Migration, and Biodistribution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57067-57074. [PMID: 34802237 DOI: 10.1021/acsami.1c20657] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the advent of nanotechnology, DNA nanostructures have been widely applied in various fields, particularly biology and biomedicine. Tetrahedral framework nucleic acids (TFNAs), a novel type of DNA nanomaterial, have attracted considerable attention due to their simple synthesis, high accessibility, structural stability, and versatility. However, to date, the interaction of differently sized TFNAs with living systems and their ability to be endocytosed and biodistributed in mouse is still not fully understood. To screen for the optimal TFNA size and structures, TFNA endocytosis, proliferation, and migration were tested in adipose stem cells (ASCs). We found that the internalization of differently sized TFNAs in ASCs was remarkably different. Although all TFNAs could enter ASCs, T21 had the best membrane-penetrating ability. After exposure of ASCs to TFNAs of different sizes, the proliferation and migration of cells were enhanced, especially with T21. Importantly, T21 could access the brain and accumulate over time. This study improves our understanding of the influence of TFNA size on the biological behavior of ASCs, which will help in choosing optimal TFNA size for biomedical applications.
Collapse
Affiliation(s)
- Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Tianjin Medical University School of Stomatology, Tianjin 300203, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Tianyu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Yan J, Zhan X, Zhang Z, Chen K, Wang M, Sun Y, He B, Liang Y. Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. J Nanobiotechnology 2021; 19:412. [PMID: 34876145 PMCID: PMC8650297 DOI: 10.1186/s12951-021-01164-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
Recently, DNA nanostructures with vast application potential in the field of biomedicine, especially in drug delivery. Among these, tetrahedral DNA nanostructures (TDN) have attracted interest worldwide due to their high stability, excellent biocompatibility, and simplicity of modification. TDN could be synthesized easily and reproducibly to serve as carriers for, chemotherapeutic drugs, nucleic acid drugs and imaging probes. Therefore, their applications include, but are not restricted to, drug delivery, molecular diagnostics, and biological imaging. In this review, we summarize the methods of functional modification and application of TDN in cancer treatment. Also, we discuss the pressing questions that should be targeted to increase the applicability of TDN in the future.
Collapse
Affiliation(s)
- Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Keqi Chen
- Department of Clinical Laboratory, Qingdao Special Servicemen Recuperation Centre of PLA Navy, Qingdao, 266021, China
| | - Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- School of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
33
|
Liu J, Yan L, He S, Hu J. Engineering DNA quadruplexes in DNA nanostructures for biosensor construction. NANO RESEARCH 2021; 15:3504-3513. [PMID: 35401944 PMCID: PMC8983328 DOI: 10.1007/s12274-021-3869-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 06/14/2023]
Abstract
DNA quadruplexes are nucleic acid conformations comprised of four strands. They are prevalent in human genomes and increasing efforts are being directed toward their engineering. Taking advantage of the programmability of Watson-Crick base-pairing and conjugation methodology of DNA with other molecules, DNA nanostructures of increasing complexity and diversified geometries have been artificially constructed since 1980s. In this review, we investigate the interweaving of natural DNA quadruplexes and artificial DNA nanostructures in the development of the ever-prosperous field of biosensing, highlighting their specific roles in the construction of biosensor, including recognition probe, signal probe, signal amplifier and support platform. Their implementation in various sensing scenes was surveyed. And finally, general conclusion and future perspective are discussed for further developments.
Collapse
Affiliation(s)
- Jingxin Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
- Shenzhen Bey Laboratory, Shenzhen, 518132 China
| |
Collapse
|
34
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
35
|
Zhang T, Tian T, Lin Y. Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107820. [PMID: 34787933 DOI: 10.1002/adma.202107820] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Strategies for functionalizing diverse tetrahedral framework nucleic acids (tFNAs) have been extensively explored since the first successful fabrication of tFNA by Turberfield. One-pot annealing of at least four DNA single strands is the most common method to prepare tFNA, as it optimizes the cost, yield, and speed of assembly. Herein, the focus is on four key merits of tFNAs and their potential for biomedical applications. The natural ability of tFNA to scavenge reactive oxygen species, along with remarkable enhancement in cellular endocytosis and tissue permeability based on its appropriate size and geometry, promotes cell-material interactions to direct or probe cell behavior, especially to treat inflammatory and degenerative diseases. Moreover, the structural programmability of tFNA enables the development of static tFNA-based nanomaterials via engineering of functional oligonucleotides or therapeutic molecules, and dynamic tFNAs via attachment of stimuli-responsive DNA apparatuses, leading to potential applications in targeted therapies, tissue regeneration, antitumor strategies, and antibacterial treatment. Although there are impressive performance and significant progress, the challenges and prospects of functionalizing tFNA-based nanostructures are still indicated in this review.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
36
|
Gangrade A, Stephanopoulos N, Bhatia D. Programmable, self-assembled DNA nanodevices for cellular programming and tissue engineering. NANOSCALE 2021; 13:16834-16846. [PMID: 34622910 DOI: 10.1039/d1nr04475c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
DNA-based nanotechnology has evolved into an autonomous, highly innovative, and dynamic field of research at the nexus of supramolecular chemistry, nanotechnology, materials science, and biotechnology. DNA-based materials, including origami nanodevices, have started to emerge as an ideal scaffold for use in cellular programming, tissue engineering, and drug delivery applications. We cover herein the applications for DNA as a scaffold for interfacing with, and guiding, the activity of biological systems like cells and tissues. Although DNA is a highly programmable molecular building block, it suffers from a lack of functional capacity for guiding and modulating cells. Coupling DNA to biologically active molecules can bestow bioactivity to these nanodevices. The main goal of such nanodevices is to synthesize systems that can bind to cells and mimic the extracellular environment, and serve as a highly promising toolbox for multiple applications in cellular programming and tissue engineering. DNA-based programmable devices offer a highly promising approach for programming collections of cells, tissue engineering, and regenerative medicine applications.
Collapse
Affiliation(s)
- Ankit Gangrade
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, USA
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology Gandhinagar, India.
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, India
| |
Collapse
|
37
|
The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 2021; 6:351. [PMID: 34620843 PMCID: PMC8497566 DOI: 10.1038/s41392-021-00727-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
DNA, a genetic material, has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades, including tissue regeneration, disease prevention, inflammation inhibition, bioimaging, biosensing, diagnosis, antitumor drug delivery, and therapeutics. With the rapid progress in DNA nanotechnology, multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson-Crick base-pairing for molecular self-assembly. Some DNA materials could functionally change cell biological behaviors, such as cell migration, cell proliferation, cell differentiation, autophagy, and anti-inflammatory effects. Some single-stranded DNAs (ssDNAs) or RNAs with secondary structures via self-pairing, named aptamer, possess the ability of targeting, which are selected by systematic evolution of ligands by exponential enrichment (SELEX) and applied for tumor targeted diagnosis and treatment. Some DNA nanomaterials with three-dimensional (3D) nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents. While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies, and also proved with great potential in the biological and medical use, there is still a long way to go for the eventual application of DNA materials in real life. Here in this review, we conducted a comprehensive survey of the structural development history of various DNA nanomaterials, introduced the principles of different DNA nanomaterials, summarized their biological applications in different fields, and discussed the current challenges and further directions that could help to achieve their applications in the future.
Collapse
|
38
|
Nahi O, Kulak AN, Kress T, Kim YY, Grendal OG, Duer MJ, Cayre OJ, Meldrum FC. Incorporation of nanogels within calcite single crystals for the storage, protection and controlled release of active compounds. Chem Sci 2021; 12:9839-9850. [PMID: 34349958 PMCID: PMC8293999 DOI: 10.1039/d1sc02991f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Nanocarriers have tremendous potential for the encapsulation, storage and delivery of active compounds. However, current formulations often employ open structures that achieve efficient loading of active agents, but that suffer undesired leakage and instability of the payloads over time. Here, a straightforward strategy that overcomes these issues is presented, in which protein nanogels are encapsulated within single crystals of calcite (CaCO3). Demonstrating our approach with bovine serum albumin (BSA) nanogels loaded with (bio)active compounds, including doxorubicin (a chemotherapeutic drug) and lysozyme (an antibacterial enzyme), we show that these nanogels can be occluded within calcite host crystals at levels of up to 45 vol%. Encapsulated within the dense mineral, the active compounds are stable against harsh conditions such as high temperature and pH, and controlled release can be triggered by a simple reduction of the pH. Comparisons with analogous systems - amorphous calcium carbonate, mesoporous vaterite (CaCO3) polycrystals, and calcite crystals containing polymer vesicles - demonstrate the superior encapsulation performance of the nanogel/calcite system. This opens the door to encapsulating a broad range of existing nanocarrier systems within single crystal hosts for the efficient storage, transport and controlled release of various active guest species.
Collapse
Affiliation(s)
- Ouassef Nahi
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Alexander N Kulak
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas Kress
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd. Cambridge CB2 1EW UK
| | - Yi-Yeoun Kim
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Ola G Grendal
- The European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38000 Grenoble France
| | - Melinda J Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd. Cambridge CB2 1EW UK
| | - Olivier J Cayre
- School of Chemical and Process Engineering, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
39
|
Huang Q, Chen B, Shen J, Liu L, Li J, Shi J, Li Q, Zuo X, Wang L, Fan C, Li J. Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. J Am Chem Soc 2021; 143:10735-10742. [PMID: 34242004 DOI: 10.1021/jacs.1c04942] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence anisotropy (FA) holds great potential for multiplexed analysis and imaging of biomolecules since it can effectively discriminate fluorophores with overlapping emission spectra. Nevertheless, its susceptibility to environmental variation hampers its widespread applications in biology and biotechnology. In this study, we design FA DNA frameworks (FAFs) by scaffolding fluorophores in a fluorescent protein-like microenvironment. We find that the FA stability of the fluorophores is remarkably improved due to the sequestration effects of FAFs. The FA level of the fluorophores can be finely tuned when placed at different locations on an FAF, analogous to spectral shifts of protein-bound fluorophores. The high programmability of FAFs further enables the design of a spectrum of encoded FA barcodes for multiplexed sensing of nucleic acids and multiplexed labeling of live cells. This FAF system thus establishes a new paradigm for designing multiplexing FA probes for cellular imaging and other biological applications.
Collapse
Affiliation(s)
- Qiuling Huang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiajun Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
40
|
Rutten I, Daems D, Lammertyn J. Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces. J Mater Chem B 2021; 8:3606-3615. [PMID: 31922167 DOI: 10.1039/c9tb02439e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interaction between a bioreceptor and its target is key in developing sensitive, specific and robust diagnostic devices. Suboptimal interbioreceptor distances and bioreceptor orientation on the sensor surface, resulting from uncontrolled deposition, impede biomolecular interactions and lead to a decreased biosensor performance. In this work, we studied and implemented a 3D DNA origami design, for the first time comprised of assay specifically tailored anchoring points for the nanostructuring of the bioreceptor layer on the surface of disc-shaped microparticles in the continuous microfluidic environment of the innovative EvalutionTM platform. This bioreceptor immobilization strategy resulted in the formation of a less densely packed surface with reduced steric hindrance and favoured upward orientation. This increased bioreceptor accessibility led to a 4-fold enhanced binding kinetics and a 6-fold increase in binding efficiency compared to a directly immobilized non-DNA origami reference system. Moreover, the DNA origami nanotailored biosensing concept outperformed traditional aptamer coupling with respect to limit of detection (11 × improved) and signal-to-noise ratio (2.5 × improved) in an aptamer-based sandwich bioassay. In conclusion, our results highlight the potential of these DNA origami nanotailored surfaces to improve biomolecular interactions at the sensing surface, thereby increasing the overall performance of biosensing devices. The combination of the intrinsic advantages of DNA origami together with a smart design enables bottom-up nanoscale engineering of the sensor surface, leading towards the next generation of improved diagnostic sensing devices.
Collapse
Affiliation(s)
- Iene Rutten
- KU Leuven, Department of Biosystems, Biosensors group, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | | | | |
Collapse
|
41
|
Copp W, Pontarelli A, Wilds CJ. Recent Advances of DNA Tetrahedra for Therapeutic Delivery and Biosensing. Chembiochem 2021; 22:2237-2246. [PMID: 33506614 DOI: 10.1002/cbic.202000835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/16/2021] [Indexed: 11/11/2022]
Abstract
The chemical and self-assembly properties of nucleic acids make them ideal for the construction of discrete structures and stimuli-responsive devices for a diverse array of applications. Amongst the various three-dimensional assemblies, DNA tetrahedra are of particular interest, as these structures have been shown to be readily taken up by the cell, by the process of caveolin-mediated endocytosis, without the need for transfection agents. Moreover, these structures can be readily modified with a diverse range of pendant groups to confer greater functionality. This minireview highlights recent advances related to applications of this interesting DNA structure including the delivery of therapeutic agents ranging from small molecules to oligonucleotides in addition to its use for sensing and imaging various species within the cell.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
42
|
Feng L, Li J, Sun J, Wang L, Fan C, Shen J. Recent Advances of DNA Nanostructure-Based Cell Membrane Engineering. Adv Healthc Mater 2021; 10:e2001718. [PMID: 33458966 DOI: 10.1002/adhm.202001718] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Indexed: 01/30/2023]
Abstract
Materials that can regulate the composition and structure of the cell membrane to fabricate engineered cells with defined functions are in high demand. Compared with other biomolecules, DNA has unique advantages in cell membrane engineering due to its excellent programmability and biocompatibility. Especially, the near-atomic scale precision of DNA nanostructures facilitates the investigation of structure-property relations on the cell membrane. In this review, first the state of the art of functional DNA nanostructures is summarized, and then the overview of the use of DNA nanostructures to engineer the cell membrane is presented. Subsequently, applications of DNA nanostructures in modifying cell membrane morphology, controlling ions transport, and synthesizing high precise liposomes are highlighted. Finally, the challenges and outlook on using DNA nanostructures for cell membrane engineering are discussed.
Collapse
Affiliation(s)
- Lingyu Feng
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiang Li
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Lihua Wang
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
43
|
Ree BJ, Mato Y, Xiang L, Kim J, Isono T, Satoh T. Topologically controlled phase transitions and nanoscale film self-assemblies of cage poly(ε-caprolactone) and its counterparts. Polym Chem 2021. [DOI: 10.1039/d0py01567a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the first quantitative investigation of nanoscale film morphologies of a cage-shaped poly(ε-caprolactone) and its counterparts in star, cyclic, and linear topologies through synchrotron grazing incidence X-ray scattering analysis.
Collapse
Affiliation(s)
- Brian J. Ree
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Yoshinobu Mato
- Graduate School of Chemical Sciences and Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Li Xiang
- Department of Chemistry
- Pohang University of Science and Technology
- Pohang 37673
- Republic of Korea
| | - Jehan Kim
- PLS-II Beamline Division
- Pohang Accelerator Laboratory
- Pohang 37673
- Republic of Korea
| | - Takuya Isono
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| | - Toshifumi Satoh
- Faculty of Engineering
- Hokkaido University
- Sapporo 060-8628
- Japan
| |
Collapse
|
44
|
Li D, Li X, Yang F, Yuan R, Xiang Y. Targeted Delivery of DNA Framework-Encapsulated Native Therapeutic Protein into Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54489-54496. [PMID: 33253532 DOI: 10.1021/acsami.0c17887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A protein-based therapy is significantly challenged by the successful delivery of native proteins into the targeted cancer cells. We address this challenge here using an all-sealed divalent aptamer tetrahedral DNA framework (asdTDF) delivery platform, in which the protein drug is encapsulated inside the cavity of the framework stoichiometrically via a reversible chemical bond. The ligase-assisted seal of the nicks results in highly enhanced TDF stability of the against nuclease digestion to effectively protect the therapeutic protein from degradation. In addition, the divalent aptamer sequences incorporated into the framework favor it with a target-specific and efficient delivery capability. Importantly, upon being readily delivered into the targeted cancer cells, endogenous glutathione can trigger the release of the native therapeutic protein from the TDF in a traceless fashion by cleaving the reversible chemical bond, thereby leading to effective apoptosis of the specific cancer cells.
Collapse
Affiliation(s)
- Daxiu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
45
|
Kimna C, Lieleg O. Molecular micromanagement: DNA nanotechnology establishes spatio-temporal control for precision medicine. BIOPHYSICS REVIEWS 2020; 1:011305. [PMID: 38505628 PMCID: PMC10903406 DOI: 10.1063/5.0033378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 03/21/2024]
Abstract
Current advances in DNA nanotechnology pinpoint exciting perspectives for the design of customized, patient-specific treatments. This advance is made possible by the exceptionally high precision and specificity that are typical for DNA base pairing on the one hand and our growing ability to harness those features in synthetic, DNA-based constructs on the other hand. Modern medicine may soon benefit from recent developments in this field, especially regarding the targeted delivery of drugs and the rational interference of synthetic DNA strands with cellular oligonucleotides. In this Review, we summarize selected examples from the area of DNA nanotechnology, where the development of precisely controlled, advanced functional mechanisms was achieved. To demonstrate the high versatility of these rationally designed structures, we categorize the dynamic DNA-based materials suggested for precision medicine according to four fundamental tasks: "hold & release," "heal," "detect & measure," as well as "guide & direct." In all the biomedical applications we highlight, DNA strands not only constitute structural building blocks but allow for creating stimuli-responsive objects, serve as an active cargo, or act as molecular control/guidance tools. Moreover, we discuss several issues that need to be considered when DNA-based structures are designed for applications in the field of precision medicine. Even though the majority of DNA-based objects have not been used in clinical settings yet, recent progress regarding the stability, specificity, and control over the dynamic behavior of synthetic DNA structures has advanced greatly. Thus, medical applications of those nanoscopic objects should be feasible in the near future.
Collapse
|
46
|
Copp W, Wilds CJ. O 6 -Alkylguanine DNA Alkyltransferase Mediated Disassembly of a DNA Tetrahedron. Chemistry 2020; 26:14802-14806. [PMID: 32543755 DOI: 10.1002/chem.202002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 11/05/2022]
Abstract
Tetrahedron DNA structures were formed by the assembly of three-way junction (TWJ) oligonucleotides containing O6 -2'-deoxyguanosine-alkylene-O6 -2'-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2'-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6 -alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
47
|
Chen B, Mei L, Wang Y, Guo G. Advances in intelligent DNA nanomachines for targeted cancer therapy. Drug Discov Today 2020; 26:1018-1029. [PMID: 33217344 DOI: 10.1016/j.drudis.2020.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 02/05/2023]
Abstract
As an emerging field, DNA nanotechnology has been applied to the fabrication of drug delivery systems. Unprecedented spatial addressability and intrinsic sequence encoding enable DNA strands to self-assemble into well-defined 2D and 3D DNA nanostructures with specifically controlled sizes, shapes and surface charges. Multifunctional DNA nanostructures have been created and applied as promising platforms for drug delivery, imaging, and theranostics. Advantages of chemotherapy, gene therapy, and immunotherapy, among others, have been integrated into such functional nanodevices, showing potential in tumor-targeted therapy and diagnosis. In this review, we summarize general methods for the construction of DNA nanodevices and focus on targeting strategies favored by the compatibility of DNA nanotechnology. Additionally, we highlight the outlook and challenges facing the use of DNA nanotechnology in cancer therapy.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
48
|
Rajwar A, Kharbanda S, Chandrasekaran AR, Gupta S, Bhatia D. Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems. ACS APPLIED BIO MATERIALS 2020; 3:7265-7277. [PMID: 35019470 DOI: 10.1021/acsabm.0c00916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology is a unique field that provides simple yet robust design techniques for self-assembling nanoarchitectures with extremely high potential for biomedical applications. Though the field began to exploit DNA to build various nanoscale structures, it has now taken a different path, diverging from the creation of complex structures to functional DNA nanodevices that explore various biological systems and mechanisms. Here, we present a brief overview of DNA nanotechnology, summarizing the key strategies for construction of various DNA nanodevices, with special focus on three-dimensional (3D) nanocages or polyhedras. We then discuss biological applications of 3D DNA nanocages, particularly tetrahedral DNA cages, in their ability to program and modulate cellular systems, in biosensing, and as tools for targeted therapeutics. We conclude with a final discussion on challenges and perspectives of 3D DNA nanodevices in biomedical applications.
Collapse
Affiliation(s)
- Anjali Rajwar
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Sumit Kharbanda
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.,Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.,Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
49
|
Tian T, Xiao D, Zhang T, Li Y, Shi S, Zhong W, Gong P, Liu Z, Li Q, Lin Y. A Framework Nucleic Acid Based Robotic Nanobee for Active Targeting Therapy. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202007342] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Wenyu Zhong
- Key Lab for Biomechanical Engineering of Sichuan Province Sichuan University Chengdu Sichuan 610065 China
| | - Ping Gong
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Zhan Liu
- Key Lab for Biomechanical Engineering of Sichuan Province Sichuan University Chengdu Sichuan 610065 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
- College of Biomedical Engineering Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
50
|
Obuobi S, Mayandi V, Nor NAM, Lee BJ, Lakshminarayanan R, Ee PLR. Nucleic acid peptide nanogels for the treatment of bacterial keratitis. NANOSCALE 2020; 12:17411-17425. [PMID: 32794541 DOI: 10.1039/d0nr03095c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cage-shaped nucleic acid nanocarriers are promising molecular scaffolds for the organization of polypeptides. However, there is an unmet need for facile loading strategies that truly emulate nature's host-guest systems to drive encapsulation of antimicrobial peptides (AMPs) without loss of biological activity. Herein, we develop DNA nanogels with rapid in situ loading of L12 peptide during the thermal annealing process. By leveraging the binding affinity of L12 to the polyanionic core, we successfully confine the AMPs within the DNA nanogel. We report that the thermostability of L12 in parallel with the high encapsulation efficiency, low toxicity and sustained drug release of the pre-loaded L12 nanogels can be translated into significant antimicrobial activity. Using an S. aureus model of infectious bacterial keratitis, we observe fast resolution of clinical symptoms and significant reduction of bacterial bioburden. Collectively, this study paves the way for the development of DNA nanocarriers for caging AMPs with immense significance to address the rise of resistance.
Collapse
Affiliation(s)
- Sybil Obuobi
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543.
| | | | | | | | | | | |
Collapse
|