1
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
2
|
Chen J, Fang M, Li Y, Ding H, Zhang X, Jiang X, Zhang J, Zhang C, Lu Z, Luo M. Cell surface protein-protein interaction profiling for biological network analysis and novel target discovery. LIFE MEDICINE 2024; 3:lnae031. [PMID: 39872863 PMCID: PMC11749001 DOI: 10.1093/lifemedi/lnae031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 01/30/2025]
Abstract
The secretome is composed of cell surface membrane proteins and extracellular secreted proteins that are synthesized via secretory machinery, accounting for approximately one-third of human protein-encoding genes and playing central roles in cellular communication with the external environment. Secretome protein-protein interactions (SPPIs) mediate cell proliferation, apoptosis, and differentiation, as well as stimulus- or cell-specific responses that regulate a diverse range of biological processes. Aberrant SPPIs are associated with diseases including cancer, immune disorders, and illness caused by infectious pathogens. Identifying the receptor/ligand for a secretome protein or pathogen can be a challenging task, and many SPPIs remain obscure, with a large number of orphan receptors and ligands, as well as viruses with unknown host receptors, populating the SPPI network. In addition, proteins with known receptors/ligands may also interact with alternative uncharacterized partners and exert context-dependent effects. In the past few decades, multiple varied approaches have been developed to identify SPPIs, and these methods have broad applications in both basic and translational research. Here, we review and discuss the technologies for SPPI profiling and the application of these technologies in identifying novel targets for immunotherapy and anti-infectious agents.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Maoxin Fang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuwei Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Haodong Ding
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoyi Jiang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jinlan Zhang
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhigang Lu
- The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai 200240, China
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min Luo
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Söllner J, Derler I. Genetic code expansion, an emerging tool in the Ca 2+ ion channel field. J Physiol 2024; 602:3297-3313. [PMID: 38695316 DOI: 10.1113/jp285840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 07/17/2024] Open
Abstract
Various methods for characterizing binding forces as well as for monitoring and remote control of ion channels are still emerging. A recent innovation is the direct incorporation of unnatural amino acids (UAAs) with corresponding biophysical or biochemical properties, which are integrated using genetic code expansion technology. Minimal changes to natural amino acids, which are achieved by chemical synthesis of corresponding UAAs, are valuable tools to provide insight into the contributions of physicochemical properties of side chains in binding events. To gain unique control over the conformational changes or function of ion channels, a series of light-sensitive, chemically reactive and posttranslationally modified UAAs have been developed and utilized. Here, we present the existing UAA tools, their mode of action, their potential and limitations as well as their previous applications to Ca2+-permeable ion channels.
Collapse
Affiliation(s)
- Julia Söllner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
5
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
6
|
Guo QR, Cao YJ. Applications of genetic code expansion technology in eukaryotes. Protein Cell 2024; 15:331-363. [PMID: 37847216 PMCID: PMC11074999 DOI: 10.1093/procel/pwad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
Unnatural amino acids (UAAs) have gained significant attention in protein engineering and drug development owing to their ability to introduce new chemical functionalities to proteins. In eukaryotes, genetic code expansion (GCE) enables the incorporation of UAAs and facilitates posttranscriptional modification (PTM), which is not feasible in prokaryotic systems. GCE is also a powerful tool for cell or animal imaging, the monitoring of protein interactions in target cells, drug development, and switch regulation. Therefore, there is keen interest in utilizing GCE in eukaryotic systems. This review provides an overview of the application of GCE in eukaryotic systems and discusses current challenges that need to be addressed.
Collapse
Affiliation(s)
- Qiao-ru Guo
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
7
|
Fröhlich M, Söllner J, Derler I. Insights into the dynamics of the Ca2+ release-activated Ca2+ channel pore-forming complex Orai1. Biochem Soc Trans 2024; 52:747-760. [PMID: 38526208 DOI: 10.1042/bst20230815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
An important calcium (Ca2+) entry pathway into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel, which controls a series of downstream signaling events such as gene transcription, secretion and proliferation. It is composed of a Ca2+ sensor in the endoplasmic reticulum (ER), the stromal interaction molecule (STIM), and the Ca2+ ion channel Orai in the plasma membrane (PM). Their activation is initiated by receptor-ligand binding at the PM, which triggers a signaling cascade within the cell that ultimately causes store depletion. The decrease in ER-luminal Ca2+ is sensed by STIM1, which undergoes structural rearrangements that lead to coupling with Orai1 and its activation. In this review, we highlight the current understanding of the Orai1 pore opening mechanism. In this context, we also point out the questions that remain unanswered and how these can be addressed by the currently emerging genetic code expansion (GCE) technology. GCE enables the incorporation of non-canonical amino acids with novel properties, such as light-sensitivity, and has the potential to provide novel insights into the structure/function relationship of CRAC channels at a single amino acid level in the living cell.
Collapse
Affiliation(s)
- Maximilian Fröhlich
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Julia Söllner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
8
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
9
|
Wang Z, Rabb JD, Lin Q. Orthogonal Crosslinking: A Strategy to Generate Novel Protein Topology and Function. Chemistry 2023; 29:e202202828. [PMID: 36251567 PMCID: PMC9839582 DOI: 10.1002/chem.202202828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 11/27/2022]
Abstract
Compared to the disulfide bond, other naturally occurring intramolecular crosslinks have received little attention, presumably due to their rarity in the vast protein space. Here we presented examples of natural non-disulfide crosslinks, which we refer to as orthogonal crosslinks, emphasizing their effect on protein topology and function. We summarize recent efforts on expanding orthogonal crosslinks by using either the enzymes that catalyze protein circularization or the genetic code expansion strategy to add electrophilic amino acids site-specifically in proteins. The advantages and disadvantages of each method are discussed, along with their applications to generate novel protein topology and function. In particular, we highlight our recent work on spontaneous orthogonal crosslinking, in which a carbamate-based crosslink was generated in situ, and its applications in designing orthogonally crosslinked domain antibodies with their topology-mimicking bacterial adhesins.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| | - Johnathan D Rabb
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| |
Collapse
|
10
|
Cao L, Wang L. New covalent bonding ability for proteins. Protein Sci 2022; 31:312-322. [PMID: 34761448 PMCID: PMC8819847 DOI: 10.1002/pro.4228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
To expand protein's covalent bonding ability, latent bioreactive unnatural amino acids have been designed and genetically encoded into proteins, which react with specific natural amino acid residues through proximity-enabled bioreactivity. The resultant new covalent bonds can be selectively created within and between proteins in vitro, in cells, and in vivo. Offering diverse properties previously unattainable, these covalent linkages have been harnessed to enhance protein properties, to modulate protein function, to probe ligand-receptor binding, to identify elusive protein interactions, and to develop covalent protein drugs. Selective introduction of covalent bonds into proteins is affording novel avenues for biological studies, synthetic biology, and biotherapeutics.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry and the Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
11
|
Rudolf S, Kaempf K, Vu O, Meiler J, Beck‐Sickinger AG, Coin I. Binding of Natural Peptide Ligands to the Neuropeptide Y
5
Receptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sarina Rudolf
- Institute of Biochemistry Faculty of Life Science Leipzig University 04103 Leipzig Germany
| | - Kerstin Kaempf
- Institute of Biochemistry Faculty of Life Science Leipzig University 04103 Leipzig Germany
| | - Oanh Vu
- Chemistry Department Vanderbilt University Nashville TN 37212 USA
| | - Jens Meiler
- Chemistry Department Vanderbilt University Nashville TN 37212 USA
- Center for Structural Biology Department of Biological Sciences Vanderbilt University Nashville TN 37212 USA
- Institute of Drug Design Faculty of Medicine Leipzig University 04103 Leipzig Germany
| | | | - Irene Coin
- Institute of Biochemistry Faculty of Life Science Leipzig University 04103 Leipzig Germany
| |
Collapse
|
12
|
Rudolf S, Kaempf K, Vu O, Meiler J, Beck-Sickinger AG, Coin I. Binding of Natural Peptide Ligands to the Neuropeptide Y 5 Receptor. Angew Chem Int Ed Engl 2022; 61:e202108738. [PMID: 34822209 PMCID: PMC8766924 DOI: 10.1002/anie.202108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 01/28/2023]
Abstract
The binding mode of natural peptide ligands to the Y5 G protein-coupled receptor (Y5 R), an attractive therapeutic target for the treatment of obesity, is largely unknown. Here, we apply complementary biochemical and computational approaches, including scanning of the receptor surface with a genetically encoded crosslinker, Ala-scanning of the ligand and double-cycle mutagenesis, to map interactions in the ligand-receptor interface and build a structural model of the NPY-Y5 R complex guided by the experimental data. In the model, the carboxyl (C)-terminus of bound NPY is placed close to the extracellular loop (ECL) 3, whereas the characteristic α-helical segment of the ligand drapes over ECL1 and is tethered towards ECL2 by a hydrophobic cluster. We further show that the other two natural ligands of Y5 R, peptide YY (PYY) and pancreatic polypeptide (PP) dock to the receptor in a similar pose.
Collapse
Affiliation(s)
- Sarina Rudolf
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Leipzig 04103, Germany
| | - Kerstin Kaempf
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Leipzig 04103, Germany
| | - Oanh Vu
- Chemistry Department, Vanderbilt University, Nashville, Tennessee 37212, U.S.A
| | - Jens Meiler
- Chemistry Department, Vanderbilt University, Nashville, Tennessee 37212, U.S.A
- Center for Structural Biology, Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37212, U.S.A
- Institute of Drug Design, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | | | - Irene Coin
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
13
|
Böttke T, Ernicke S, Serfling R, Ihling C, Burda E, Gurevich VV, Sinz A, Coin I. Exploring GPCR-arrestin interfaces with genetically encoded crosslinkers. EMBO Rep 2020; 21:e50437. [PMID: 32929862 PMCID: PMC7645262 DOI: 10.15252/embr.202050437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
β-arrestins (βarr1 and βarr2) are ubiquitous regulators of G protein-coupled receptor (GPCR) signaling. Available data suggest that β-arrestins dock to different receptors in different ways. However, the structural characterization of GPCR-arrestin complexes is challenging and alternative approaches to study GPCR-arrestin complexes are needed. Here, starting from the finger loop as a major site for the interaction of arrestins with GPCRs, we genetically incorporate non-canonical amino acids for photo- and chemical crosslinking into βarr1 and βarr2 and explore binding topologies to GPCRs forming either stable or transient complexes with arrestins: the vasopressin receptor 2 (rhodopsin-like), the corticotropin-releasing factor receptor 1, and the parathyroid hormone receptor 1 (both secretin-like). We show that each receptor leaves a unique footprint on arrestins, whereas the two β-arrestins yield quite similar crosslinking patterns. Furthermore, we show that the method allows defining the orientation of arrestin with respect to the GPCR. Finally, we provide direct evidence for the formation of arrestin oligomers in the cell.
Collapse
Affiliation(s)
- Thore Böttke
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigLeipzigGermany
| | - Stefan Ernicke
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigLeipzigGermany
| | - Robert Serfling
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigLeipzigGermany
| | - Christian Ihling
- Institute of PharmacyDepartment of Pharmaceutical Chemistry and BioanalyticsCharles Tanford Protein CenterMartin Luther University Halle‐WittenbergHalle/SaaleGermany
| | - Edyta Burda
- Institute of PharmacyFaculty of MedicineUniversity of LeipzigLeipzigGermany
| | | | - Andrea Sinz
- Institute of PharmacyDepartment of Pharmaceutical Chemistry and BioanalyticsCharles Tanford Protein CenterMartin Luther University Halle‐WittenbergHalle/SaaleGermany
| | - Irene Coin
- Institute of BiochemistryFaculty of Life SciencesUniversity of LeipzigLeipzigGermany
| |
Collapse
|
14
|
Capturing Peptide-GPCR Interactions and Their Dynamics. Molecules 2020; 25:molecules25204724. [PMID: 33076289 PMCID: PMC7587574 DOI: 10.3390/molecules25204724] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Many biological functions of peptides are mediated through G protein-coupled receptors (GPCRs). Upon ligand binding, GPCRs undergo conformational changes that facilitate the binding and activation of multiple effectors. GPCRs regulate nearly all physiological processes and are a favorite pharmacological target. In particular, drugs are sought after that elicit the recruitment of selected effectors only (biased ligands). Understanding how ligands bind to GPCRs and which conformational changes they induce is a fundamental step toward the development of more efficient and specific drugs. Moreover, it is emerging that the dynamic of the ligand–receptor interaction contributes to the specificity of both ligand recognition and effector recruitment, an aspect that is missing in structural snapshots from crystallography. We describe here biochemical and biophysical techniques to address ligand–receptor interactions in their structural and dynamic aspects, which include mutagenesis, crosslinking, spectroscopic techniques, and mass-spectrometry profiling. With a main focus on peptide receptors, we present methods to unveil the ligand–receptor contact interface and methods that address conformational changes both in the ligand and the GPCR. The presented studies highlight a wide structural heterogeneity among peptide receptors, reveal distinct structural changes occurring during ligand binding and a surprisingly high dynamics of the ligand–GPCR complexes.
Collapse
|
15
|
Li S, Yang B, Kobayashi T, Yu B, Liu J, Wang L. Genetically encoding thyronine for fluorescent detection of peroxynitrite. Bioorg Med Chem 2020; 28:115665. [PMID: 32828428 DOI: 10.1016/j.bmc.2020.115665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
Peroxynitrite is a highly reactive oxidant effecting cell signaling and cell death. Here we report a fluorescent protein probe to selectively detect peroxynitrite. A novel unnatural amino acid, thyronine (Thy), was genetically encoded in E. coli and mammalian cells by evolving an orthogonal tRNAPyl/ThyRS pair. Incorporation of Thy into the chromophore of sfGFP or cpsGFP afforded a virtually non-fluorescent reporter. Upon treatment with peroxynitrite, Thy was converted into tyrosine via O-dearylation, regenerating GFP fluorescence in a time- and concentration-dependent manner. Genetically encoded thyronine may also be valuable for other redox applications.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States.
| |
Collapse
|
16
|
Song H, Wang Y, Wang R, Zhang X, Liu Y, Jia G, Chen PR. SFPQ Is an FTO-Binding Protein that Facilitates the Demethylation Substrate Preference. Cell Chem Biol 2020; 27:283-291.e6. [PMID: 31981477 DOI: 10.1016/j.chembiol.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/15/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
The fat mass and obesity-associated protein (FTO) is the first identified demethylase of the internal RNA modification N6-methyladenosine (m6A), which also exhibits demethylation activity toward N6,2'-O-dimethyladenosine (m6Am) and N1-methyladenosine (m1A). Demethylation of m6A at specific sites on target transcripts is a key enzymatic function of FTO that modulates diverse physiological and/or pathological processes. However, how FTO selects target RNA and whether additional interaction proteins facilitate this process remain elusive. Herein, via the genetically encoded and site-specific photocrosslinking strategy, we identified the major RNA-binding protein SFPQ as a direct interaction partner of FTO. Our study showed that FTO and SFPQ were located in close proximity throughout the transcriptome and that overexpression of SFPQ led to the demethylation of adjacent m6As, likely through recruiting FTO to these specific RNA sites. These results uncovered a new layer of regulation mechanism that may assist FTO to gain substrate specificity.
Collapse
Affiliation(s)
- Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruixiang Wang
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Xiao Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaping Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
17
|
Hu W, Yuan Y, Wang CH, Tian HT, Guo AD, Nie HJ, Hu H, Tan M, Tang Z, Chen XH. Genetically Encoded Residue-Selective Photo-Crosslinker to Capture Protein-Protein Interactions in Living Cells. Chem 2019. [DOI: 10.1016/j.chempr.2019.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237-266. [PMID: 31092687 PMCID: PMC6610526 DOI: 10.1042/ebc20180042] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Collapse
Affiliation(s)
| | - Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
19
|
Serfling R, Lorenz C, Etzel M, Schicht G, Böttke T, Mörl M, Coin I. Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. Nucleic Acids Res 2019; 46:1-10. [PMID: 29177436 PMCID: PMC5758916 DOI: 10.1093/nar/gkx1156] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/09/2017] [Indexed: 11/12/2022] Open
Abstract
The pyrrolysyl-tRNA synthetase/tRNAPyl pair is the most versatile and widespread system for the incorporation of non-canonical amino acids (ncAAs) into proteins in mammalian cells. However, low yields of ncAA incorporation severely limit its applicability to relevant biological targets. Here, we generate two tRNAPyl variants that significantly boost the performance of the pyrrolysine system. Compared to the original tRNAPyl, the engineered tRNAs feature a canonical hinge between D- and T-loop, show higher intracellular concentrations and bear partially distinct post-transcriptional modifications. Using the new tRNAs, we demonstrate efficient ncAA incorporation into a G-protein coupled receptor (GPCR) and simultaneous ncAA incorporation at two GPCR sites. Moreover, by incorporating last-generation ncAAs for bioorthogonal chemistry, we achieve GPCR labeling with small organic fluorophores on the live cell and visualize stimulus-induced GPCR internalization. Such a robust system for incorporation of single or multiple ncAAs will facilitate the application of a wide pool of chemical tools for structural and functional studies of challenging biological targets in live mammalian cells.
Collapse
Affiliation(s)
- Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Christian Lorenz
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Maja Etzel
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Gerda Schicht
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Thore Böttke
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Liu J, Li S, Aslam NA, Zheng F, Yang B, Cheng R, Wang N, Rozovsky S, Wang PG, Wang Q, Wang L. Genetically Encoding Photocaged Quinone Methide to Multitarget Protein Residues Covalently in Vivo. J Am Chem Soc 2019; 141:9458-9462. [PMID: 31184146 DOI: 10.1021/jacs.9b01738] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically introducing covalent bonds into proteins in vivo with residue specificity is affording innovative ways for protein research and engineering, yet latent bioreactive unnatural amino acids (Uaas) genetically encoded to date react with one to few natural residues only, limiting the variety of proteins and the scope of applications amenable to this technology. Here we report the genetic encoding of (2 R)-2-amino-3-fluoro-3-(4-((2-nitrobenzyl)oxy) phenyl) propanoic acid (FnbY) in Escherichia coli and mammalian cells. Upon photoactivation, FnbY generated a reactive quinone methide (QM), which selectively reacted with nine natural amino acid residues placed in proximity in proteins directly in live cells. In addition to Cys, Lys, His, and Tyr, photoactivated FnbY also reacted with Trp, Met, Arg, Asn, and Gln, which are inaccessible with existing latent bioreactive Uaas. FnbY thus dramatically expanded the number of residues for covalent targeting in vivo. QM has longer half-life than the intermediates of conventional photo-cross-linking Uaas, and FnbY exhibited cross-linking efficiency higher than p-azido-phenylalanine. The photoactivatable and multitargeting reactivity of FnbY with selectivity toward nucleophilic residues will be valuable for addressing diverse proteins and broadening the scope of applications through exploiting covalent bonding in vivo for chemical biology, biotherapeutics, and protein engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Nayyar A Aslam
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Rujin Cheng
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| |
Collapse
|
21
|
Seidel L, Zarzycka B, Katritch V, Coin I. Exploring Pairwise Chemical Crosslinking To Study Peptide-Receptor Interactions. Chembiochem 2019; 20:683-692. [PMID: 30565820 DOI: 10.1002/cbic.201800582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 01/29/2023]
Abstract
Pairwise crosslinking is a powerful technique to characterize interactions between G protein coupled receptors and their ligands in the live cell. In this work, the "thiol trapping" method, which exploits the proximity-enhanced reaction between haloacetamides and cysteine, is examined to identify intermolecular pairs of vicinal positions. By incorporating cysteine into the corticotropin-releasing factor receptor and either α-chloro- or α-bromoacetamide groups into its ligands, it is shown that thiol trapping provides highly reproducible signals and a low background, and represents a valid alternative to classical "disulfide trapping". The method is advantageous if reducing agents are required during sample analysis. Moreover, it can provide partially distinct spatial constraints, thus giving access to a wider dataset for molecular modeling. Finally, by applying recombinant mini-Gs, GTPγS, and Gαs-depleted HEK293 cells to modulate Gs coupling, it is shown that yields of crosslinking increase in the presence of elevated levels of Gs.
Collapse
Affiliation(s)
- Lisa Seidel
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Bruederstrasse 34, 04103, Leipzig, Germany
| | - Barbara Zarzycka
- Department of Biological Sciences, Bridge Institute, University of Southern California, 1002 Childs Way, MCB 317, Los Angeles, CA, 90089-3502, USA
| | - Vsevolod Katritch
- Department of Biological Sciences, Bridge Institute, University of Southern California, 1002 Childs Way, MCB 317, Los Angeles, CA, 90089-3502, USA.,Department of Chemistry, Bridge Institute, University of Southern California, 1002 Childs Way, MCB 317, Los Angeles, CA, 90089-3502, USA
| | - Irene Coin
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Bruederstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
22
|
Nguyen TA, Cigler M, Lang K. Expanding the Genetic Code to Study Protein-Protein Interactions. Angew Chem Int Ed Engl 2018; 57:14350-14361. [PMID: 30144241 DOI: 10.1002/anie.201805869] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are central to many biological processes. A considerable challenge consists however in understanding and deciphering when and how proteins interact, and this can be particularly difficult when interactions are weak and transient. The site-specific incorporation of unnatural amino acids (UAAs) that crosslink with nearby molecules in response to light provides a powerful tool for mapping transient protein-protein interactions and for defining the structure and topology of protein complexes both in vitro and in vivo. Complementary strategies consist in site-specific incorporation of UAAs bearing electrophilic moieties that react with natural nucleophilic amino acids in a proximity-dependent manner, thereby chemically stabilizing low-affinity interactions and providing additional constraints on distances and geometries in protein complexes. Herein, we review how UAAs bearing fine-tuned chemical moieties that react with proteins in their vicinity can be utilized to map, study, and characterize weak and transient protein-protein interactions in living systems.
Collapse
Affiliation(s)
- Tuan-Anh Nguyen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Marko Cigler
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 4, 85748, Garching, Germany
| |
Collapse
|
23
|
Nguyen TA, Cigler M, Lang K. Expanding the Genetic Code to Study Protein-Protein Interactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tuan-Anh Nguyen
- Center for Integrated Protein Science Munich (CIPSM); Department of Chemistry; Group of Synthetic Biochemistry; Technical University of Munich; Institute for Advanced Study; Lichtenbergstr. 4 85748 Garching Germany
| | - Marko Cigler
- Center for Integrated Protein Science Munich (CIPSM); Department of Chemistry; Group of Synthetic Biochemistry; Technical University of Munich; Institute for Advanced Study; Lichtenbergstr. 4 85748 Garching Germany
| | - Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM); Department of Chemistry; Group of Synthetic Biochemistry; Technical University of Munich; Institute for Advanced Study; Lichtenbergstr. 4 85748 Garching Germany
| |
Collapse
|
24
|
Aloush N, Schvartz T, König AI, Cohen S, Brozgol E, Tam B, Nachmias D, Ben-David O, Garini Y, Elia N, Arbely E. Live Cell Imaging of Bioorthogonally Labelled Proteins Generated With a Single Pyrrolysine tRNA Gene. Sci Rep 2018; 8:14527. [PMID: 30267004 PMCID: PMC6162220 DOI: 10.1038/s41598-018-32824-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/19/2018] [Indexed: 11/08/2022] Open
Abstract
Genetic code expansion enables the incorporation of non-canonical amino acids (ncAAs) into expressed proteins. ncAAs are usually encoded by a stop codon that is decoded by an exogenous orthogonal aminoacyl tRNA synthetase and its cognate suppressor tRNA, such as the pyrrolysine [Formula: see text] pair. In such systems, stop codon suppression is dependent on the intracellular levels of the exogenous tRNA. Therefore, multiple copies of the tRNAPyl gene (PylT) are encoded to improve ncAA incorporation. However, certain applications in mammalian cells, such as live-cell imaging applications, where labelled tRNAs contribute to background fluorescence, can benefit from the use of less invasive minimal expression systems. Accordingly, we studied the effect of tRNAPyl on live-cell fluorescence imaging of bioorthogonally-labelled intracellular proteins. We found that in COS7 cells, a decrease in PylT copy numbers had no measurable effect on protein expression levels. Importantly, reducing PylT copy numbers improved the quality of live-cell images by enhancing the signal-to-noise ratio and reducing an immobile tRNAPyl population. This enabled us to improve live cell imaging of bioorthogonally labelled intracellular proteins, and to simultaneously label two different proteins in a cell. Our results indicate that the number of introduced PylT genes can be minimized according to the transfected cell line, incorporated ncAA, and application.
Collapse
Affiliation(s)
- Noa Aloush
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Tomer Schvartz
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Andres I König
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Sarit Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Eugene Brozgol
- Physics Department and Institute for Nanotechnology, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Benjamin Tam
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Oshrit Ben-David
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Yuval Garini
- Physics Department and Institute for Nanotechnology, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel
| | - Eyal Arbely
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel.
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
25
|
Simms J, Uddin R, Sakmar TP, Gingell JJ, Garelja ML, Hay DL, Brimble MA, Harris PW, Reynolds CA, Poyner DR. Photoaffinity Cross-Linking and Unnatural Amino Acid Mutagenesis Reveal Insights into Calcitonin Gene-Related Peptide Binding to the Calcitonin Receptor-like Receptor/Receptor Activity-Modifying Protein 1 (CLR/RAMP1) Complex. Biochemistry 2018; 57:4915-4922. [PMID: 30004692 DOI: 10.1021/acs.biochem.8b00502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcitonin gene-related peptide (CGRP) binds to the complex of the calcitonin receptor-like receptor (CLR) with receptor activity-modifying protein 1 (RAMP1). How CGRP interacts with the transmembrane domain (including the extracellular loops) of this family B receptor remains unclear. In this study, a photoaffinity cross-linker, p-azido l-phenylalanine (azF), was incorporated into CLR, chiefly in the second extracellular loop (ECL2) using genetic code expansion and unnatural amino acid mutagenesis. The method was optimized to ensure efficient photolysis of azF residues near the transmembrane bundle of the receptor. A CGRP analogue modified with fluorescein at position 15 was used for detection of ultraviolet-induced cross-linking. The methodology was verified by confirming the known contacts of CGRP to the extracellular domain of CLR. Within ECL2, the chief contacts were I284 on the loop itself and L291, at the top of the fifth transmembrane helix (TM5). Minor contacts were noted along the lip of ECL2 between S286 and L290 and also with M223 in TM3 and F349 in TM6. Full length molecular models of the bound receptor complex suggest that CGRP sits at the top of the TM bundle, with Thr6 of the peptide making contacts with L291 and H295. I284 is likely to contact Leu12 and Ala13 of CGRP, and Leu16 of CGRP is at the ECL/extracellular domain boundary of CLR. The reduced potency, Emax, and affinity of [Leu16Ala]-human α CGRP are consistent with this model. Contacts between Thr6 of CGRP and H295 may be particularly important for receptor activation.
Collapse
Affiliation(s)
- John Simms
- Aston University , Birmingham B4 7ET , U.K
- Coventry University , Priory Street , Coventry CV1 5FB , U.K
| | | | - Thomas P Sakmar
- The Rockefeller University , 1230 York Avenue , New York , New York 10065 , United States
| | - Joseph J Gingell
- University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | - Michael L Garelja
- University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | - Debbie L Hay
- University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | - Margaret A Brimble
- University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | - Paul W Harris
- University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | | | | |
Collapse
|
26
|
Coin I. Application of non-canonical crosslinking amino acids to study protein-protein interactions in live cells. Curr Opin Chem Biol 2018; 46:156-163. [PMID: 30077876 DOI: 10.1016/j.cbpa.2018.07.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023]
Abstract
The genetic incorporation of non-canonical amino acids (ncAAs) equipped with photo-crosslinking and chemical crosslinking moieties has found broad application in the study of protein-protein interactions from a unique perspective in live cells. We highlight here applications of photo-activatable ncAAs to map protein interaction surfaces and to capture protein-protein interactions, and we describe recent efforts to efficiently couple photo-crosslinking with mass spectrometric analysis. In addition, we describe recent advances in the development and application of ncAAs for chemical crosslinking, including protein stapling, photo-control of protein conformation, two-dimensional crosslinking, and stabilization of transient and low-affinity protein-protein interactions. We expect that the field will keep growing in the near future and enable the tackling of ambitious biological questions.
Collapse
Affiliation(s)
- Irene Coin
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04301 Leipzig, Germany.
| |
Collapse
|
27
|
Serfling R, Seidel L, Böttke T, Coin I. Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells. J Vis Exp 2018. [PMID: 29683449 DOI: 10.3791/57069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genetic incorporation of non-canonical amino acids (ncAAs) via amber stop codon suppression is a powerful technique to install artificial probes and reactive moieties onto proteins directly in the live cell. Each ncAA is incorporated by a dedicated orthogonal suppressor-tRNA/amino-acyl-tRNA-synthetase (AARS) pair that is imported into the host organism. The incorporation efficiency of different ncAAs can greatly differ, and be unsatisfactory in some cases. Orthogonal pairs can be improved by manipulating either the AARS or the tRNA. However, directed evolution of tRNA or AARS using large libraries and dead/alive selection methods are not feasible in mammalian cells. Here, a facile and robust fluorescence-based assay to evaluate the efficiency of orthogonal pairs in mammalian cells is presented. The assay allows screening tens to hundreds of AARS/tRNA variants with a moderate effort and within a reasonable time. Use of this assay to generate new tRNAs that significantly improve the efficiency of the pyrrolysine orthogonal system is described, along with the application of ncAAs to the study of G-protein coupled receptors (GPCRs), which are challenging objects for ncAA mutagenesis. First, by systematically incorporating a photo-crosslinking ncAA throughout the extracellular surface of a receptor, binding sites of different ligands on the intact receptor are mapped directly in the live cell. Second, by incorporating last-generation ncAAs into a GPCR, ultrafast catalyst-free receptor labeling with a fluorescent dye is demonstrated, which exploits bioorthogonal strain-promoted inverse Diels Alder cycloaddition (SPIEDAC) on the live cell. As ncAAs can be generally applied to any protein independently on its size, the method is of general interest for a number of applications. In addition, ncAA incorporation does not require any special equipment and is easily performed in standard biochemistry labs.
Collapse
Affiliation(s)
- Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Lisa Seidel
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Thore Böttke
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig;
| |
Collapse
|
28
|
Seidel L, Coin I. Mapping of Protein Interfaces in Live Cells Using Genetically Encoded Crosslinkers. Methods Mol Biol 2018; 1728:221-235. [PMID: 29405001 DOI: 10.1007/978-1-4939-7574-7_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the topology of protein-protein interactions is a matter of fundamental importance in the biomedical field. Biophysical approaches such as X-ray crystallography and nuclear magnetic resonance can investigate in detail only isolated protein complexes that are reconstituted in an artificial environment. Alternative methods are needed to investigate protein interactions in a physiological context, as well as to characterize protein complexes that elude the direct structural characterization. We describe here a general strategy to investigate protein interactions at the molecular level directly in the live mammalian cell, which is based on the genetic incorporation of photo- and chemical crosslinking noncanonical amino acids. First a photo-crosslinking amino acid is used to map putative interaction surfaces and determine which positions of a protein come into proximity of an associated partner. In a second step, the subset of residues that belong to the binding interface are substituted with a chemical crosslinker that reacts selectively with proximal cysteines strategically placed in the interaction partner. This allows determining inter-molecular spatial constraints that provide the basis for building accurate molecular models. In this chapter, we illustrate the detailed application of this experimental strategy to unravel the binding modus of the 40-mer neuropeptide hormone Urocortin1 to its class B G-protein coupled receptor, the corticotropin releasing factor receptor type 1. The approach is in principle applicable to any protein complex independent of protein type and size, employs established techniques of noncanonical amino acid mutagenesis, and is feasible in any molecular biology laboratory.
Collapse
Affiliation(s)
- Lisa Seidel
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Irene Coin
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
29
|
Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions. Nat Commun 2017; 8:2240. [PMID: 29269770 PMCID: PMC5740110 DOI: 10.1038/s41467-017-02409-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Covalently locking interacting proteins in situ is an attractive strategy for addressing the challenge of identifying weak and transient protein interactions, yet it is demanding to execute chemical reactions in live systems in a biocompatible, specific, and autonomous manner. Harnessing proximity-enabled reactivity of an unnatural amino acid incorporated in the bait toward a target residue of unknown proteins, here we genetically encode chemical cross-linkers (GECX) to cross-link interacting proteins spontaneously and selectively in live cells. Obviating an external trigger for reactivity and affording residue specificity, GECX enables the capture of low-affinity protein binding (affibody with Z protein), elusive enzyme-substrate interaction (ubiquitin-conjugating enzyme UBE2D3 with substrate PCNA), and endogenous proteins interacting with thioredoxin in E. coli cells, allowing for mass spectrometric identification of interacting proteins and crosslinking sites. This live cell chemistry-based approach should be valuable for investigating currently intangible protein interactions in vivo for better understanding of biology in physiological settings. Proteins associate via weak and transient interactions that are challenging to identify in vivo. Here, the authors use a genetically encoded chemical cross-linker to covalently lock interacting proteins in live cells, allowing them to identify the captured proteins by mass spectrometry.
Collapse
|
30
|
Wang L. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts. Acc Chem Res 2017; 50:2767-2775. [PMID: 28984438 DOI: 10.1021/acs.accounts.7b00376] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expansion of the genetic code allows unnatural amino acids (Uaas) to be site-specifically incorporated into proteins in live biological systems, thus enabling novel properties selectively introduced into target proteins in vivo for basic biological studies and for engineering of novel biological functions. Orthogonal components including tRNA and aminoacyl-tRNA synthetase (aaRS) are expressed in live cells to decode a unique codon (often the amber stop codon UAG) as the desired Uaa. Initially developed in E. coli, this methodology has now been expanded in multiple eukaryotic cells and animals. In this Account, we focus on addressing various biological challenges for rewriting the genetic code, describing impacts of code expansion on cell physiology and discussing implications for fundamental studies of code evolution. Specifically, a general method using the type-3 polymerase III promoter was developed to efficiently express prokaryotic tRNAs as orthogonal tRNAs and a transfer strategy was devised to generate Uaa-specific aaRS for use in eukaryotic cells and animals. The aaRSs have been found to be highly amenable for engineering substrate specificity toward Uaas that are structurally far deviating from the native amino acid, dramatically increasing the stereochemical diversity of Uaas accessible. Preparation of the Uaa in ester or dipeptide format markedly increases the bioavailability of Uaas to cells and animals. Nonsense-mediated mRNA decay (NMD), an mRNA surveillance mechanism of eukaryotic cells, degrades mRNA containing a premature stop codon. Inhibition of NMD increases Uaa incorporation efficiency in yeast and Caenorhabditis elegans. In bacteria, release factor one (RF1) competes with the orthogonal tRNA for the amber stop codon to terminate protein translation, leading to low Uaa incorporation efficiency. Contradictory to the paradigm that RF1 is essential, it is discovered that RF1 is actually nonessential in E. coli. Knockout of RF1 dramatically increases Uaa incorporation efficiency and enables Uaa incorporation at multiple sites, making it feasible to use Uaa for directed evolution. Using these strategies, the genetic code has been effectively expanded in yeast, mammalian cells, stem cells, worms, fruit flies, zebrafish, and mice. It is also intriguing to find out that the legitimate UAG codons terminating endogenous genes are not efficiently suppressed by the orthogonal tRNA/aaRS in E. coli. Moreover, E. coli responds to amber suppression pressure promptly using transposon insertion to inactivate the introduced orthogonal aaRS. Persistent amber suppression evading transposon inactivation leads to global proteomic changes with a notable up-regulation of a previously uncharacterized protein YdiI, for which an unexpected function of expelling plasmids is discovered. Genome integration of the orthogonal tRNA/aaRS in mice results in minor changes in RNA transcripts but no significant physiological impairment. Lastly, the RF1 knockout E. coli strains afford a previously unavailable model organism for studying otherwise intractable questions on code evolution in real time in the laboratory. We expect that genetically encoding Uaas in live systems will continue to unfold new questions and directions for studying biology in vivo, investigating the code itself, and reprograming genomes for synthetic biology.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmaceutical Chemistry
and the Cardiovascular Research Institute, University of California, San
Francisco, California 94158, United States
| |
Collapse
|
31
|
Seidel L, Zarzycka B, Zaidi SA, Katritch V, Coin I. Structural insight into the activation of a class B G-protein-coupled receptor by peptide hormones in live human cells. eLife 2017; 6. [PMID: 28771403 PMCID: PMC5542768 DOI: 10.7554/elife.27711] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022] Open
Abstract
The activation mechanism of class B G-protein-coupled receptors (GPCRs) remains largely unknown. To characterize conformational changes induced by peptide hormones, we investigated interactions of the class B corticotropin-releasing factor receptor type 1 (CRF1R) with two peptide agonists and three peptide antagonists obtained by N-truncation of the agonists. Surface mapping with genetically encoded photo-crosslinkers and pair-wise crosslinking revealed distinct footprints of agonists and antagonists on the transmembrane domain (TMD) of CRF1R and identified numerous ligand-receptor contact sites, directly from the intact receptor in live human cells. The data enabled generating atomistic models of CRF- and CRF(12-41)-bound CRF1R, further explored by molecular dynamics simulations. We show that bound agonist and antagonist adopt different folds and stabilize distinct TMD conformations, which involves bending of helices VI and VII around flexible glycine hinges. Conservation of these glycine hinges among all class B GPCRs suggests their general role in activation of these receptors. DOI:http://dx.doi.org/10.7554/eLife.27711.001
Collapse
Affiliation(s)
- Lisa Seidel
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Barbara Zarzycka
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, United States
| | - Saheem A Zaidi
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, United States
| | - Vsevolod Katritch
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, United States.,Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, United States
| | - Irene Coin
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
32
|
Koole C, Reynolds CA, Mobarec JC, Hick C, Sexton PM, Sakmar TP. Genetically encoded photocross-linkers determine the biological binding site of exendin-4 peptide in the N-terminal domain of the intact human glucagon-like peptide-1 receptor (GLP-1R). J Biol Chem 2017; 292:7131-7144. [PMID: 28283573 PMCID: PMC5409479 DOI: 10.1074/jbc.m117.779496] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/09/2017] [Indexed: 12/25/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) is a key therapeutic target in the management of type II diabetes mellitus, with actions including regulation of insulin biosynthesis and secretion, promotion of satiety, and preservation of β-cell mass. Like most class B G protein-coupled receptors (GPCRs), there is limited knowledge linking biological activity of the GLP-1R with the molecular structure of an intact, full-length, and functional receptor·ligand complex. In this study, we have utilized genetic code expansion to site-specifically incorporate the photoactive amino acid p-azido-l-phenylalanine (azF) into N-terminal residues of a full-length functional human GLP-1R in mammalian cells. UV-mediated photolysis of azF was then carried out to induce targeted photocross-linking to determine the proximity of the azido group in the mutant receptor with the peptide exendin-4. Cross-linking data were compared directly with the crystal structure of the isolated N-terminal extracellular domain of the GLP-1R in complex with exendin(9-39), revealing both similarities as well as distinct differences in the mode of interaction. Generation of a molecular model to accommodate the photocross-linking constraints highlights the potential influence of environmental conditions on the conformation of the receptor·peptide complex, including folding dynamics of the peptide and formation of dimeric and higher order oligomeric receptor multimers. These data demonstrate that crystal structures of isolated receptor regions may not give a complete reflection of peptide/receptor interactions and should be combined with additional experimental constraints to reveal peptide/receptor interactions occurring in the dynamic, native, and full-length receptor state.
Collapse
Affiliation(s)
- Cassandra Koole
- From the Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065
| | - Christopher A Reynolds
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Juan C Mobarec
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Caroline Hick
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia, and
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia, and
| | - Thomas P Sakmar
- From the Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065,
| |
Collapse
|
33
|
Wang L, Ishida A, Hashidoko Y, Hashimoto M. Dehydrogenation of the NH−NH Bond Triggered by Potassium
tert
‐Butoxide in Liquid Ammonia. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lei Wang
- Division of Applied Bioscience Graduate School of Agriculture Hokkaido University Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan
| | - Akiko Ishida
- Division of Applied Bioscience Graduate School of Agriculture Hokkaido University Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan
| | - Yasuyuki Hashidoko
- Division of Applied Bioscience Graduate School of Agriculture Hokkaido University Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience Graduate School of Agriculture Hokkaido University Kita 9, Nishi 9, Kita-ku Sapporo 060-8589 Japan
| |
Collapse
|
34
|
Wang L, Ishida A, Hashidoko Y, Hashimoto M. Dehydrogenation of the NH-NH Bond Triggered by Potassium tert-Butoxide in Liquid Ammonia. Angew Chem Int Ed Engl 2016; 56:870-873. [PMID: 27936299 DOI: 10.1002/anie.201610371] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Indexed: 12/24/2022]
Abstract
A novel strategy for the dehydrogenation of the NH-NH bond is disclosed using potassium tert-butoxide (tBuOK) in liquid ammonia (NH3 ) under air at room temperature. Its synthetic value is well demonstrated by the highly efficient synthesis of aromatic azo compounds (up to 100 % yield, 3 min), heterocyclic azo compounds, and dehydrazination of phenylhydrazine. The broad application of this strategy and its benefit to chemical biology is proved by a novel, convenient, one-pot synthesis of aliphatic diazirines, which are important photoreactive agents for photoaffinity labeling.
Collapse
Affiliation(s)
- Lei Wang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akiko Ishida
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yasuyuki Hashidoko
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| |
Collapse
|
35
|
Genetically encoding new bioreactivity. N Biotechnol 2016; 38:16-25. [PMID: 27721014 DOI: 10.1016/j.nbt.2016.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/25/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
The genetic code can be expanded to include unnatural amino acids (Uaas) by engineering orthogonal components involved in protein translation. To be compatible with live cells, side chains of Uaas have been limited to either chemically inert or bio-orthogonal (i.e., nonreactive toward biomolecules) functionalities. To introduce bioreactivity into live systems, the genetic code has recently been engineered to encode a new class of Uaas, the bioreactive Uaas. These Uaas, after being incorporated into proteins, specifically react with target natural amino acid residues via proximity-enabled bioreactivity, enabling the selective formation of new covalent linkages within and between proteins both in vitro and in live systems. The new covalent bonding ability has been harnessed within proteins to enhance photostability, increase thermostability, staple proteins recombinantly, and build optical nano-switches, and between proteins to pinpoint ligand-receptor interaction, target native receptors irreversibly, and generate covalent macromolecular inhibitors. These diverse bioreactivities, inaccessible to natural proteins, thus open doors to novel protein engineering and provide new avenues for biological studies, biotherapeutics and synthetic biology.
Collapse
|
36
|
Yang Y, Song H, Chen PR. Genetically encoded photocrosslinkers for identifying and mapping protein-protein interactions in living cells. IUBMB Life 2016; 68:879-886. [DOI: 10.1002/iub.1560] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/03/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University; Beijing China
| | - Haiping Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University; Beijing China
| | - Peng R. Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University; Beijing China
- Peking-Tsinghua Center for Life Sciences; Beijing China
| |
Collapse
|
37
|
Abstract
The site-specific incorporation of unnatural amino acids (Uaas) via genetic code expansion provides a powerful method to introduce synthetic moieties into specific positions of a protein directly in the live cell. The technique, first developed in bacteria, is nowadays widely applicable in mammalian cells. In general, different Uaas are incorporated with different efficiency. By comparing the incorporation efficiency of several Uaas recently designed for bioorthogonal chemistry, we present here a facile dual-fluorescence assay to evaluate relative yields of Uaa incorporation. Several biological questions can be addressed using Uaas tools. In recent years, photo-cross-linking Uaas have been extensively applied to map ligand-binding sites on G protein-coupled receptors (GPCRs). We describe a simple and efficient two-plasmid system to incorporate a photoactivatable Uaa into a class B GPCR, and demonstrate cross-linking to its nonmodified natural ligand.
Collapse
|
38
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
39
|
Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter. Nat Commun 2016; 7:11261. [PMID: 27089947 PMCID: PMC4838859 DOI: 10.1038/ncomms11261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/07/2016] [Indexed: 02/02/2023] Open
Abstract
Despite the well-established role of the human serotonin transporter (hSERT) in the treatment of depression, the molecular details of antidepressant drug binding are still not fully understood. Here we utilize amber codon suppression in a membrane-bound transporter protein to encode photocrosslinking unnatural amino acids (UAAs) into 75 different positions in hSERT. UAAs are incorporated with high specificity, and functionally active transporters have similar transport properties and pharmacological profiles compared with wild-type transporters. We employ ultraviolet-induced crosslinking with p-azido-L-phenylalanine (azF) at selected positions in hSERT to map the binding site of imipramine, a prototypical tricyclic antidepressant, and vortioxetine, a novel multimodal antidepressant. We find that the two antidepressants crosslink with azF incorporated at different positions within the central substrate-binding site of hSERT, while no crosslinking is observed at the vestibular-binding site. Taken together, our data provide direct evidence for defining the high-affinity antidepressant binding site in hSERT. Molecular details of how antidepressant drugs bind to the human serotonin transporter are not currently clear. Here, the authors introduce photo-cross-linkers into the protein and map the binding site of several antidepressants.
Collapse
|
40
|
Preface. Methods Enzymol 2016; 580:xvii-xxii. [DOI: 10.1016/s0076-6879(16)30242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Leisle L, Valiyaveetil F, Mehl RA, Ahern CA. Incorporation of Non-Canonical Amino Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 869:119-51. [PMID: 26381943 DOI: 10.1007/978-1-4939-2845-3_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this chapter we discuss the strengths, caveats and technical considerations of three approaches for reprogramming the chemical composition of selected amino acids within a membrane protein. In vivo nonsense suppression in the Xenopus laevis oocyte, evolved orthogonal tRNA and aminoacyl-tRNA synthetase pairs and protein ligation for biochemical production of semisynthetic proteins have been used successfully for ion channel and receptor studies. The level of difficulty for the application of each approach ranges from trivial to technically demanding, yet all have untapped potential in their application to membrane proteins.
Collapse
Affiliation(s)
- Lilia Leisle
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, 52246, Iowa City, IA, USA
| | - Francis Valiyaveetil
- Department of Physiology and Pharmacology, Oregon Health and Sciences University, 97239, Portland, OR, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University Corvallis, 97331, Corvallis, OR, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Road, 52246, Iowa City, IA, USA.
| |
Collapse
|
42
|
Wang W, Li T, Felsovalyi K, Chen C, Cardozo T, Krogsgaard M. Quantitative analysis of T cell receptor complex interaction sites using genetically encoded photo-cross-linkers. ACS Chem Biol 2014; 9:2165-72. [PMID: 25061810 PMCID: PMC4168801 DOI: 10.1021/cb500351s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The T cell receptor (TCR)-cluster
of differentiation 3 (CD3) signaling
complex plays an important role in initiation of adaptive immune responses,
but weak interactions have obstructed delineation of the individual
TCR-CD3 subunit interactions during T cell signaling. Here, we demonstrate
that unnatural amino acids (UAA) can be used to photo-cross-link subunits
of TCR-CD3 on the cell surface. Incorporating UAA in mammalian cells
is usually a low efficiency process. In addition, TCR-CD3 is composed
of eight subunits and both TCR and CD3 chains are required for expression
on the cell surface. Photo-cross-linking of UAAs for studying protein
complexes such as TCR-CD3 is challenging due to the difficulty of
transfecting and expressing multisubunit protein complexes in cells
combined with the low efficiency of UAA incorporation. Here, we demonstrate
that by systematic optimization, we can incorporate UAA in TCR-CD3
with high efficiency. Accordingly, the incorporated UAA can be used
for site-specific photo-cross-linking experiments to pinpoint protein
interaction sites, as well as to confirm interaction sites identified
by X-ray crystallography. We systemically compared two different photo-cross-linkers—p-azido-phenylalanine
(pAzpa) and H-p-Bz-Phe-OH (pBpa)—for their ability to map protein
subunit interactions in the 2B4 TCR. pAzpa was found to have higher
cross-linking efficiency, indicating that optimization of the selection
of the most optimal cross-linker is important for correct identification
of protein–protein interactions. This method is therefore suitable
for studying interaction sites of large, dynamic heteromeric protein
complexes associated with various cellular membrane systems.
Collapse
Affiliation(s)
| | | | | | - Chunlai Chen
- Pennsylvania
Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania United States
| | | | | |
Collapse
|
43
|
Tsukiji S, Hamachi I. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications. Curr Opin Chem Biol 2014; 21:136-43. [DOI: 10.1016/j.cbpa.2014.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/17/2022]
|
44
|
Kang JY, Kawaguchi D, Coin I, Xiang Z, O'Leary DDM, Slesinger PA, Wang L. In vivo expression of a light-activatable potassium channel using unnatural amino acids. Neuron 2014; 80:358-70. [PMID: 24139041 DOI: 10.1016/j.neuron.2013.08.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2013] [Indexed: 01/28/2023]
Abstract
Optical control of protein function provides excellent spatial-temporal resolution for studying proteins in situ. Although light-sensitive exogenous proteins and ligands have been used to manipulate neuronal activity, a method for optical control of neuronal proteins using unnatural amino acids (Uaa) in vivo is lacking. Here, we describe the genetic incorporation of a photoreactive Uaa into the pore of an inwardly rectifying potassium channel Kir2.1. The Uaa occluded the pore, rendering the channel nonconducting, and, on brief light illumination, was released to permit outward K(+) current. Expression of this photoinducible inwardly rectifying potassium (PIRK) channel in rat hippocampal neurons created a light-activatable PIRK switch for suppressing neuronal firing. We also expanded the genetic code of mammals to express PIRK channels in embryonic mouse neocortex in vivo and demonstrated a light-activated PIRK current in cortical neurons. These principles could be generally expanded to other proteins expressed in the brain to enable optical regulation.
Collapse
Affiliation(s)
- Ji-Yong Kang
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Coin I, Katritch V, Sun T, Xiang Z, Siu FY, Beyermann M, Stevens RC, Wang L. Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. Cell 2013; 155:1258-69. [PMID: 24290358 DOI: 10.1016/j.cell.2013.11.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/26/2013] [Accepted: 11/07/2013] [Indexed: 01/19/2023]
Abstract
Molecular determinants regulating the activation of class B G-protein-coupled receptors (GPCRs) by native peptide agonists are largely unknown. We have investigated here the interaction between the corticotropin releasing factor receptor type 1 (CRF1R) and its native 40-mer peptide ligand Urocortin-I directly in mammalian cells. By incorporating unnatural amino acid photochemical and new click-chemical probes into the intact receptor expressed in the native membrane of live cells, 44 intermolecular spatial constraints have been derived for the ligand-receptor interaction. The data were analyzed in the context of the recently resolved crystal structure of CRF1R transmembrane domain and existing extracellular domain structures, yielding a complete conformational model for the peptide-receptor complex. Structural features of the receptor-ligand complex yield molecular insights on the mechanism of receptor activation and the basis for discrimination between agonist and antagonist function.
Collapse
Affiliation(s)
- Irene Coin
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Grunbeck A, Sakmar TP. Probing G Protein-Coupled Receptor—Ligand Interactions with Targeted Photoactivatable Cross-Linkers. Biochemistry 2013; 52:8625-32. [DOI: 10.1021/bi401300y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amy Grunbeck
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New
York 10065, United States
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New
York 10065, United States
| |
Collapse
|
48
|
Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat Methods 2013; 10:885-8. [PMID: 23913257 DOI: 10.1038/nmeth.2595] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/28/2013] [Indexed: 01/03/2023]
Abstract
Natural proteins often rely on the disulfide bond to covalently link side chains. Here we genetically introduce a new type of covalent bond into proteins by enabling an unnatural amino acid to react with a proximal cysteine. We demonstrate the utility of this bond for enabling irreversible binding between an affibody and its protein substrate, capturing peptide-protein interactions in mammalian cells, and improving the photon output of fluorescent proteins.
Collapse
|
49
|
Pless SA, Ahern CA. Unnatural Amino Acids as Probes of Ligand-Receptor Interactions and Their Conformational Consequences. Annu Rev Pharmacol Toxicol 2013; 53:211-29. [DOI: 10.1146/annurev-pharmtox-011112-140343] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephan A. Pless
- Department of Anesthesiology, Pharmacology and Therapeutics and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Christopher A. Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242;
| |
Collapse
|
50
|
Ye S, Riou M, Carvalho S, Paoletti P. Expanding the genetic code in Xenopus laevis oocytes. Chembiochem 2013; 14:230-5. [PMID: 23292655 DOI: 10.1002/cbic.201200515] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Indexed: 01/12/2023]
Abstract
Heterologous expression of ligand-gated ion channels (LGICs) in Xenopus laevis oocytes combined with site-directed mutagenesis has been demonstrated to be a powerful approach to study structure-function relationships. In particular, introducing unnatural amino acids (UAAs) has enabled modifications that are not found in natural proteins. However, the current strategy relies on the technically demanding in vitro synthesis of aminoacylated suppressor tRNA. We report here a general method that circumvents this limitation by utilizing orthogonal aminoacyl-tRNA synthetase (aaRS)/suppressor tRNA(CUA) pairs to genetically encode UAAs in Xenopus oocytes. We show that UAAs inserted in the N-terminal domain of N-methyl-D-aspartate receptors (NMDARs) serve as photo-crosslinkers that lock the receptor in a discrete conformational state in response to UV photo treatment. Our method should be generally applicable to studies of other LGICs in Xenopus oocytes.
Collapse
Affiliation(s)
- Shixin Ye
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, Paris 75005, France.
| | | | | | | |
Collapse
|