1
|
Wang H, Xie J, Xiao M, Ke Y, Li J, Nie Z, Chen Q, Zhang Z. Spherical Nucleic Acid Probes on Floating-Gate Field-Effect Transistor Biosensors for Attomolar-Level Analyte Detection. ACS NANO 2024; 18:34391-34402. [PMID: 39609263 DOI: 10.1021/acsnano.4c14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Field-effect transistor (FET) sensors are attractive for the label-free detection of target biomolecules, offering ultrahigh sensitivity and a rapid response. However, conventional methods for modifying biomolecular probes on sensors often involve intricate and time-consuming procedures that require specialized training. Herein, we propose a simple and versatile approach to functionalize floating-gate (FG) FET sensors by exploiting the strong binding ability of polyvalent interactions and the three-dimensional structure of densely functionalized spherical nucleic acids (SNAs). Crucially, the SNAs can be easily deposited onto a dielectric layer under mild conditions, ensuring stable immobilization of the probes. Further, the SNAs show efficient and robust immobilization on various dielectric layers including Y2O3, Ta2O5, and HfO2, forming conjugates that resist denaturation by various agents. By modifying the DNA sequence within the SNAs, we achieved highly sensitive FG-FET biosensors for DNA, adenosine triphosphate, and viral nucleic acids at the attomolar level. For clinical samples detection, unamplified enterovirus 71 RNA at levels as low as 0.13 copies μL-1 was detected within 100 s. Moreover, the sensor attained 100% accuracy for analyte detection in both positive and negative samples. Our findings provide a general and simple method for fabricating FET-based biochemical sensors and demonstrate that the SNA-modified FG-FET biosensor is a versatile and reliable integrated platform for ultrasensitive biomarker detection.
Collapse
Affiliation(s)
- Haoran Wang
- Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Hunan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Jing Xie
- Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Mengmeng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Hunan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jiawang Li
- Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Hunan 411105, China
| | - Zongyu Nie
- Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Hunan 411105, China
| | - Qiaoshu Chen
- Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Hunan 411105, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Hunan Provincial Key Laboratory of Smart Carbon Materials and Advanced Sensing, Xiangtan University, Hunan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Wu D, Zhao Q, Wang Y, Zhang B, Tang X, Talap J, Sun J, Yang X. Fluorescent Iron-Doped Polymer Dot Nanozyme-Based Cascade System for Dual-Mode Detection of Acetylcholinesterase Activity and Its Inhibitors. Anal Chem 2024; 96:15682-15691. [PMID: 39292617 DOI: 10.1021/acs.analchem.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The advancement of acetylcholinesterase (AChE) activity and its inhibitor assays is crucial for clinical diagnosis, drug screening, and environmental monitoring. A nanozyme-mediated cascade reaction system could offer promising prospects for a wide range of applications in such biosensing; however, the creation of nanozyme catalysts with diverse functionalities remains a significant challenge. Herein, we have proposed a multifunctional iron-doped polymer dots (Fe-PDs) nanozyme possessing excellent fluorescence and peroxidase (POD)-mimicking activity. Notably, the Fe-PDs nanozyme is capable of catalyzing H2O2 to produce a series of reactive oxygen species, which can simultaneously quench the fluorescence of Fe-PDs and induce a chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB), enabling the dual-mode detection of H2O2 through both fluorescence turn-off and absorbance turn-on signals. Furthermore, by integrating acetylcholine (ACh) and choline oxidase (ChOx), we have developed a three-enzyme (AChE-ChOx-POD) cascade-based fluorometric and colorimetric dual-mode sensing platform for monitoring AChE activity and its inhibitors. The sensitive and convenient dual-mode sensor has achieved low limits of detection with 0.5 mU/mL (fluorometry) and 0.014 mU/mL (colorimetry) for AChE, respectively, which are superior to the traditional Ellman's assay. More significantly, this sensor can also be extended to detect the reversible and irreversible inhibitors of AChE, such as tacrine (IC50 = 23.3 nM) and carbaryl (LOD = 0.8 nM). We firmly believe that this innovative dual-mode nanozyme-involved multienzyme cascade system-based sensing strategy will stimulate further exploration and serve as a versatile and practical tool for biochemical sensing applications.
Collapse
Affiliation(s)
- Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Bing Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianqing Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jadera Talap
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi 830017, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Zhang B, Wang Y, Wu D, Zhao Q, Chen Y, Li Y, Sun J, Yang X. Fluorescent assay for acetylcholinesterase activity and inhibitor screening based on lanthanide organic/inorganic hybrid materials. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:314-321. [PMID: 38116865 DOI: 10.1039/d3ay01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
It is of great significance for the clinical diagnosis of Alzheimer's disease (AD) to achieve the on-site activity evaluation of acetylcholinesterase (AChE), the hydrolase of acetylcholine (ACh). Herein, we have developed a biosensing method endowed with considerable superiority based on the organic-inorganic hybrid composite Eu(DPA)3@Lap with excellent stability and fluorescent properties for this purpose by loading Eu3+ ions and 2,6-dipicolinic acid (DPA) into LAPONITE® (Lap). Through the comprehensive consideration of the specific hydrolysis of acetylthiocholine (ATCh) into thiocholine (TCh) by AChE, the high binding affinity of TCh to copper ion (Cu2+), and the selective fluorescence quenching ability of Cu2+, a simple Eu(DPA)3@Lap-based assay was developed to realize the rapid and convenient evaluation of AChE activity. Owning to the facile signal on-off-on response mode with a clear PET-based sensing mechanism, our assay presents favorable selectivity and sensitivity (LOD of 0.5 mU mL-1). Furthermore, the fluorescent assay was successfully applied for assessing AChE activity in human serum samples and screening potential AChE inhibitors, showing potential for application in the early diagnosis and drug screening of AD, as a new development path of AD therapy.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaoyao Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yushu Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Yang S, Du J, Wei M, Huang Y, Zhang Y, Wang Y, Li J, Wei W, Qiao Y, Dong H, Zhang X. Colorimetric-photothermal-magnetic three-in-one lateral flow immunoassay for two formats of biogenic amines sensitive and reliable quantification. Anal Chim Acta 2023; 1239:340660. [PMID: 36628753 DOI: 10.1016/j.aca.2022.340660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Rapid, simple, sensitive and reliable approaches for biogenic amines quantification in various food samples are essential to food safety. Lateral flow immunoassay (LFIA) has been wildly utilized in point-of-care testing (POCT) owing to its advantage of flexibility and feasibility. Here, we reported a Fe3O4@Au nanoparticles (NPs) (Fe3O4@AuNPs) based multimodal readout LFIA for rapid putrescine (Put) and histamine (His) quantification with a LOD down to 10 and 10 ng/mL in naked eye mode, 2.31 and 4.39 ng/mL in photothermal mode, 0.17 and 0.31 ng/mL in magnetic mode, respectively. Such multi-mode assay has been successfully used to detect Biogenic amines (BAs) in raw aquatic foods, including fish, prawns, beef, and pork, with overall recoveries ranging from 93.68 to 109.34%. Meanwhile, it is easily expanded to detect other typical BAs with high sensitivity by simply replacing antibodies. In view of the multi-signal reading, two quantitative formats, and high sensitivity, it may greatly widen the application of lateral flow detection in food safety.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China; Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Menglian Wei
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China
| | - Yan Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Yufan Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Yeyu Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Jinze Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China.
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China.
| |
Collapse
|
5
|
Singh MM, Satija J. Enzyme-assisted metal nanoparticles etching based plasmonic ELISA: Progress and insights. Anal Biochem 2022; 654:114820. [PMID: 35850200 DOI: 10.1016/j.ab.2022.114820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
The unique size and shape tunable localized surface plasmon resonance (LSPR) properties of the noble metal nanoparticle have been extensively exploited to realize a variety of enzyme-based optical biosensors. Although approaches like metal film deposition, nanoparticle aggregation, and synthesis & growth of metal nanoparticles are quite useful, metal nanoparticle etching-based biosensors offer greater sensitivity, selectivity, and stability against various environmental factors which makes this strategy easy to use for field applications. This review discusses the current state-of-art of plasmonic nanoparticle etching-based enzyme-linked immunosorbent assay (ELISA) realized for visual detection of various analytes. The naked eye detection, i.e. without any optical readout device, is the additional advantage of this sensing approach that reduces the analysis cost significantly making it feasible under resource-constrained settings. This review paper provides deeper insights into biocatalytic etching mechanisms of various plasmonic nanoparticles resulting in vivid color change as a function of analyte concentration. Although nanoparticle etching-based ELISA has huge potential, steps need to be taken to realize a point-of-care (POC) nanodiagnostic before its translation to a commercial technique or product that can be achieved in near future by integrating it with microfluidics technology and other technological avenues.
Collapse
Affiliation(s)
| | - Jitendra Satija
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Peng P, Liu C, Li Z, Xue Z, Mao P, Hu J, Xu F, Yao C, You M. Emerging ELISA Derived Technologies for in vitro Diagnostics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Self-assembled multiprotein nanostructures with enhanced stability and signal amplification capability for sensitive fluorogenic immunoassays. Biosens Bioelectron 2022; 206:114132. [PMID: 35245869 DOI: 10.1016/j.bios.2022.114132] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022]
Abstract
Fundamentally improving the sensing sensitivity of immunoassay remains a huge challenge, which limited further critical applications. Herein we designed a new immunoprobe by integrating biometric unit (antibody) and signal amplification element (enzyme) to form urease-antibody-CaHPO4 hybrid nanoflower (UAhNF) via the biomineralization process. The dual-functional UAhNF enhances the stability of urease in NaCl (10 mmol L-1) and high temperature (60 °C), and also maintains the ability of antibody recognition, fitting greatly well with the need for immunosensor. Using imidacloprid as a model target, the fixed coating antigens are competed with imidacloprid to capture primary antibodies, and the secondary antibody of UAhNF was linked to construct the competitive-type fluorogenic immunoassays. An in-situ etching process of copper nanoparticles initiated by urease is integrated with UAhNF-based immune response for further improving the detection sensitivity. The proposed immunosensor possessed a 50% inhibition concentration value of 0.72 ng mL-1, which is 30-fold lower than conventional enzyme-linked immunosorbent assay. This presented approach provided a versatile sensing tool by varying building blocks, making it practically functional for a variety of bioassay applications.
Collapse
|
8
|
Lengfeld J, Zhang H, Stoesz S, Murali R, Pass F, Greene MI, Goel PN, Grover P. Challenges in Detection of Serum Oncoprotein: Relevance to Breast Cancer Diagnostics. BREAST CANCER-TARGETS AND THERAPY 2021; 13:575-593. [PMID: 34703307 PMCID: PMC8524259 DOI: 10.2147/bctt.s331844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022]
Abstract
Breast cancer is a highly prevalent malignancy that shows improved outcomes with earlier diagnosis. Current screening and monitoring methods have improved survival rates, but the limitations of these approaches have led to the investigation of biomarker evaluation to improve early diagnosis and treatment monitoring. The enzyme-linked immunosorbent assay (ELISA) is a specific and robust technique ideally suited for the quantification of protein biomarkers from blood or its constituents. The continued clinical relevancy of this assay format will require overcoming specific technical challenges, including the ultra-sensitive detection of trace biomarkers and the circumventing of potential assay interference due to the expanding use of monoclonal antibody (mAb) therapeutics. Approaches to increasing the sensitivity of ELISA have been numerous and include employing more sensitive substrates, combining ELISA with the polymerase chain reaction (PCR), and incorporating nanoparticles as shuttles for detection antibodies and enzymes. These modifications have resulted in substantial boosts in the ability to detect extremely low levels of protein biomarkers, with some systems reliably detecting antigen at sub-femtomolar concentrations. Extensive utilization of mAb therapies in oncology has presented an additional contemporary challenge for ELISA, particularly when both therapeutic and assay antibodies target the same protein antigen. Resolution of issues such as epitope overlap and steric hindrance requires a rational approach to the design of diagnostic antibodies that takes advantage of modern antibody generation pipelines, epitope binning techniques and computational methods to strategically target biomarker epitopes. This review discusses technical strategies in ELISA implemented to date and their feasibility to address current constraints on sensitivity and problems with interference in the clinical setting. The impact of these recent advancements will depend upon their transformation from research laboratory protocols into facile, reliable detection systems that can ideally be replicated in point-of-care devices to maximize utilization and transform both the diagnostic and therapeutic monitoring landscape.
Collapse
Affiliation(s)
- Justin Lengfeld
- Martell Diagnostic Laboratories, Inc., Roseville, MN, 55113, USA
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven Stoesz
- Martell Diagnostic Laboratories, Inc., Roseville, MN, 55113, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology; Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Franklin Pass
- Martell Diagnostic Laboratories, Inc., Roseville, MN, 55113, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Wei D, Wang Y, Zhu N, Xiao J, Li X, Xu T, Hu X, Zhang Z, Yin D. A Lab-in-a-Syringe Device Integrated with a Smartphone Platform: Colorimetric and Fluorescent Dual-Mode Signals for On-Site Detection of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48643-48652. [PMID: 34623807 DOI: 10.1021/acsami.1c13273] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a portable lab-in-a-syringe device integrated with a smartphone sensing platform was designed for rapid, visual quantitative determination of organophosphorus pesticides (OPs) via colorimetric and fluorescent signals. The device was chiefly made up of a conjugate pad labeled with cetyltrimethylammonium bromide-coated gold nanoparticles (CTAB-Au NPs) and a sensing pad modified by ratiometric probes (red-emission quantum dots@SiO2 nanoparticles@green-emission quantum dots, rQDs@SiO2@gQDs probe), which was assembled through a disposable syringe and reusable plastic filter. In the detection system, thiocholine (Tch), the hydrolysis product of thioacetylcholine (ATch) by acetylcholinesterase (AchE), could trigger the aggregation of CTAB-Au NPs, resulting in a significant color change from red to purple. Then, CTAB-Au NPs flowed vertically upward and bound to the rQDs@SiO2@gQDs probe on the sensing pad, reducing the fluorescence resonance energy transfer effect between CTAB-Au NPs and gQDs. Meanwhile, rQDs embedded in SiO2 NPs remained stable as internal reference fluorescence, achieving a color transition from red to green. Thus, based on the inhibition of AChE activity by OPs, a colorimetric and fluorescent dual-mode platform was constructed for on-site detection of OPs. Using glyphosate as a model, with the support of a color recognizer application (APP) on a smartphone, the ratio of red and green channel values could be utilized for accurate OP quantitative analysis ranging from 0 to 10 μM with a detection limit of 2.81 nM (recoveries, 90.8-122.4%; CV, 1.2-3.4%). Overall, the portable lab-in-a-syringe device based on a smartphone sensing platform integrated sample monitoring and result analysis in the field, implying great potential for on-site detection of OPs.
Collapse
Affiliation(s)
- Dali Wei
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ting Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
10
|
Liu DM, Xu B, Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Zhang X, Li ZW, Wu Y, Ge X, Su L, Feng H, Wu Z, Yang H, Song J. Highly Controlled Janus Organic-Inorganic Nanocomposite as a Versatile Photoacoustic Platform. Angew Chem Int Ed Engl 2021; 60:17647-17653. [PMID: 34041827 DOI: 10.1002/anie.202105207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Indexed: 12/31/2022]
Abstract
Controlling the structural order of nanoparticles (NPs), morphology, and composition is of paramount significance in tailoring the physical properties of nanoassembly. However, the commonly reported symmetrical nanocomposites often suffer an interference or sacrifice of the photophysical properties of the original components. To address this challenge, we developed a novel type of organic-inorganic Janus nanocomposite (JNCP) with an asymmetric architecture, offering unique features such as the precisely controlled localization of components, combined modular optical properties, and independent stimuli. As a proof of concept, JNCPs were prepared by incorporating two photoacoustic (PA) imaging agents, namely an organic semiconducting dye and responsive gold nanoparticles (AuNP) assembly in separate compartments of JNCP. Theoretical simulation results confirmed that the formation mechanism of JNCPs arises from the entropy equilibrium in the system. The AuNP assembly generated a PA images with the variation of pH, while the semiconducting molecule served as an internal PA standard agent, leading to ratiometric PA imaging of pH. JNCP based probe holds great potential for real-time and accurate detection of diverse biological targets in living systems.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Zongsheng Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| |
Collapse
|
12
|
Zhang X, Li Z, Wu Y, Ge X, Su L, Feng H, Wu Z, Yang H, Song J. Highly Controlled Janus Organic‐Inorganic Nanocomposite as a Versatile Photoacoustic Platform. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Zhan‐Wei Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Zongsheng Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
13
|
Xianyu Y, Lin Y, Chen Q, Belessiotis‐Richards A, Stevens MM, Thomas MR. Iodide‐Mediated Rapid and Sensitive Surface Etching of Gold Nanostars for Biosensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunlei Xianyu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang 310058 China
- Fuli Institute of Food Science Zhejiang University Hangzhou Zhejiang 310058 China
- Ningbo Research Institute Zhejiang University Ningbo Zhejiang 315100 China
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Qu Chen
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Alexis Belessiotis‐Richards
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Michael R. Thomas
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
- London Centre for Nanotechnology University College London London WC1H 0AH UK
| |
Collapse
|
14
|
Xianyu Y, Lin Y, Chen Q, Belessiotis-Richards A, Stevens MM, Thomas MR. Iodide-Mediated Rapid and Sensitive Surface Etching of Gold Nanostars for Biosensing. Angew Chem Int Ed Engl 2021; 60:9891-9896. [PMID: 33590604 PMCID: PMC8251757 DOI: 10.1002/anie.202017317] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Indexed: 11/05/2022]
Abstract
Iodide-mediated surface etching can tailor the surface plasmon resonance of gold nanostars through etching of the high-energy facets of the nanoparticle protrusions in a rapid and sensitive way. By exploring the underlying mechanisms of this etching and the key parameters influencing it (such as iodide, oxygen, pH, and temperature), we show its potential in a sensitive biosensing system. Horseradish peroxidase-catalyzed oxidation of iodide enables control of the etching of gold nanostars to spherical gold nanoparticles, where the resulting spectral shift in the surface plasmon resonance yields a distinct color change of the solution. We further develop this enzyme-modulated surface etching of gold nanostars into a versatile platform for plasmonic immunoassays, where a high sensitivity is possible by signal amplification via magnetic beads and click chemistry.
Collapse
Affiliation(s)
- Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China.,Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Qu Chen
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alexis Belessiotis-Richards
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael R Thomas
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.,London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| |
Collapse
|
15
|
Du M, Zheng J, Tian S, Liu Y, Zheng Z, Wang H, Xia J, Ji X, He Z. DNAzyme Walker for Homogeneous Detection of Enterovirus EV71 and CVB3. Anal Chem 2021; 93:5606-5611. [PMID: 33764756 DOI: 10.1021/acs.analchem.1c00335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
When dealing with infectious pathogens, the risk of contamination or infection in the process of detecting them is nonnegligible. Separation-free detection will be beneficial in operation and safety. In this work, we proposed a DNAzyme walker for homogeneous and isothermal detection of enterovirus. The DNAzyme is divided into two inactivate subunits. When the subunit-conjugated antibody binds to the target virus, the activity of the DNAzyme recovers as a result of spatial proximity. The walker propels, and the fluorescence recovers. The final fluorescence intensity of the reaction mixture is related to the concentration of the target virus. The detection limit of this proposed method is 6.6 × 104 copies/mL for EV71 and 4.3 × 104 copies/mL for CVB3, respectively. Besides, this method was applied in detection of EV71 in clinical samples with a satisfactory result. The entire experiment is easy to operate, and the proposed method has great potential for practical use.
Collapse
Affiliation(s)
- Mingyuan Du
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jiao Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Songbai Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yucheng Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenhua Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jianbo Xia
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan 430072, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
A pH-responsive bioassay for sensitive colorimetric detection of adenosine triphosphate based on switchable DNA aptamer and metal ion-urease interactions. Anal Bioanal Chem 2021; 413:1533-1540. [PMID: 33462658 DOI: 10.1007/s00216-020-03136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
A facile and economic colorimetric strategy was designed for ATP detection by rationally using urease, a pH-responsive molecule, and a metal-mediated switchable DNA probe. By utilizing metal ions as a modulator of urease activity, the concentration of ATP is translated into pH change, which can be readily visualized by naked eye. An unmodified single-stranded DNA probe was designed, which consists of a target binding sequence and two flanked cytosine (C)-rich sequences. This C-rich single-stranded DNA can form a hairpin structure triggered by Ag+ ions via C-Ag+-C base mismatch. Upon introduction of ATP, Ag+-coordinated hairpin DNA structure will be broken and release the included Ag+, thus inhibiting the activity of urease. Conversely, urease can hydrolyze urea and raise pH value of the solution, resulting in the color change of the sensing solution. The proposed assay allows determination of ATP as low as 1.6 nM and shows a satisfactory result in human serum. Because of simple operation and low cost of this method, we believe it has a potential in point-of-care (POC) testing in resource-limited areas. Schematic illustration of pH-responsive colorimetric sensor for ATP detection based on switchable DNA aptamer and metal ion-urease interactions.
Collapse
|
17
|
Li L, Xing Z, Tang Q, Yang L, Dai L, Wang H, Yan T, Xu W, Ma H, Wei Q. Enzyme-Free Colorimetric Immunoassay for Protein Biomarker Enabled by Loading and Disassembly Behaviors of Polydopamine Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:8841-8848. [DOI: 10.1021/acsabm.0c01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhenyuan Xing
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qiaorong Tang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Tao Yan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Weiying Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
18
|
Gurunathan S, Qasim M, Choi Y, Do JT, Park C, Hong K, Kim JH, Song H. Antiviral Potential of Nanoparticles-Can Nanoparticles Fight Against Coronaviruses? NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1645. [PMID: 32825737 PMCID: PMC7557932 DOI: 10.3390/nano10091645] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases account for more than 20% of global mortality and viruses are responsible for about one-third of these deaths. Highly infectious viral diseases such as severe acute respiratory (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease (COVID-19) are emerging more frequently and their worldwide spread poses a serious threat to human health and the global economy. The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of 27 July 2020, SARS-CoV-2 has infected over 16 million people and led to the death of more than 652,434 individuals as on 27 July 2020 while also causing significant economic losses. To date, there are no vaccines or specific antiviral drugs to prevent or treat COVID-19. Hence, it is necessary to accelerate the development of antiviral drugs and vaccines to help mitigate this pandemic. Non-Conventional antiviral agents must also be considered and exploited. In this regard, nanoparticles can be used as antiviral agents for the treatment of various viral infections. The use of nanoparticles provides an interesting opportunity for the development of novel antiviral therapies with a low probability of developing drug resistance compared to conventional chemical-based antiviral therapies. In this review, we first discuss viral mechanisms of entry into host cells and then we detail the major and important types of nanomaterials that could be used as antiviral agents. These nanomaterials include silver, gold, quantum dots, organic nanoparticles, liposomes, dendrimers and polymers. Further, we consider antiviral mechanisms, the effects of nanoparticles on coronaviruses and therapeutic approaches of nanoparticles. Finally, we provide our perspective on the future of nanoparticles in the fight against viral infections.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Muhammad Qasim
- Center of Bioengineering and Nanomedicine, Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (S.G.); (Y.C.); (J.T.D.); (C.P.); (K.H.); (J.-H.K.)
| |
Collapse
|
19
|
Wang Y, Lei Q, Dong W, Mo X, Li H. Photoelectric effect driving PANI/PB multicolor visualized detection of CEA based on Ag 2S NPs@ZnO NTs. Anal Chim Acta 2020; 1108:61-69. [PMID: 32222245 DOI: 10.1016/j.aca.2020.02.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 01/13/2023]
Abstract
In this work, a multicolor visual immunoassay platform was developed. The photoelectric effects of Ag2S NPs@ZnO NTs made the color changes of PANI/PB, which enabled visual inspection of CEA. Under the visible light excitation, Ag2S NPs@ZnO NTs generates electron-holes. Where, photoelectrons will pass electrical circuit to PB and photoinduced holes will oxidize PANI, which making the PANI/PB composite changes from emerald green-blue-purple-black colors. When CEA was incubated, the migration rate of photogenerated carriers is slowed down owing to the steric hindrance, resulting in different color changes of PANI/PB. In addition, the average green channel of PANI/PB read by photoshop has a certain correlated linear relationship with the concentration of CEA. Meanwhile, we can observe the color transformation of PANI/PB with our own eyes. By integrating advantages of photoelectrochemistry and colorimetry, the linear range of CEA detection was 0.1-20 ng/mL, and the detection limit was 0.05 ng/mL (S/N = 3). More importantly, this multicolor sensing method is very convenient, simple and low-cost. The photocarriers-modulated colorimetric strategy also provides a novel idea for visual portable platform design in clinical diagnosis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Qin Lei
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, China; Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Wanxin Dong
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, China
| | - Xinxin Mo
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, China
| | - He Li
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Gao L, Yang Q, Wu P, Li F. Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst 2020; 145:4069-4078. [DOI: 10.1039/d0an00597e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights functional roles of nanomaterials for advancing conventional ELISA assays by serving as substrate-alternatives, enzyme-alternatives, or non-enzyme amplifiers.
Collapse
Affiliation(s)
- Lu Gao
- Key laboratory of Green Chemistry & Technology of Ministry of Education
- College of chemistry
- Analytical & Testing Center
- Sichuan University
- Chengdu
| | - Qianfan Yang
- Key laboratory of Green Chemistry & Technology of Ministry of Education
- College of chemistry
- Analytical & Testing Center
- Sichuan University
- Chengdu
| | - Peng Wu
- Key laboratory of Green Chemistry & Technology of Ministry of Education
- College of chemistry
- Analytical & Testing Center
- Sichuan University
- Chengdu
| | - Feng Li
- Key laboratory of Green Chemistry & Technology of Ministry of Education
- College of chemistry
- Analytical & Testing Center
- Sichuan University
- Chengdu
| |
Collapse
|
21
|
Cheng YH, Tang H, Yu RQ, Jiang JH. DNA-Programmed plasmonic ELISA for the ultrasensitive detection of protein biomarkers. Analyst 2020; 145:4860-4866. [DOI: 10.1039/d0an00656d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a novel DNA-programmed plasmonic enzyme-linked immunosorbent assay (ELISA) for the ultrasensitive detection of protein biomarkers with the naked eye.
Collapse
Affiliation(s)
- Yu-Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Hao Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
22
|
Gu Z, Fu A, Ye L, Kuerban K, Wang Y, Cao Z. Ultrasensitive Chemiluminescence Biosensor for Nuclease and Bacterial Determination Based on Hemin-Encapsulated Mesoporous Silica Nanoparticles. ACS Sens 2019; 4:2922-2929. [PMID: 31674771 DOI: 10.1021/acssensors.9b01303] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial determination, emerging as a critical step in the understanding of increasingly serious bacterial contaminations, remains a major challenge. Herein, a novel chemiluminescence biosensor was exploited for the ultrasensitive determination of nuclease activity and bacteria, in which, hemin, the chemiluminescent (CL) tag molecule was encapsulated into ordered mesopores of mesoporous silica nanoparticles with a specific DNA gate. The capped DNA could be specifically switched upon exposure to the DNA nuclease or bacterial lysate and allowed for an increased release of the encapsulated hemin, which therefore resulted in an obviously enhanced CL signal for the luminol-H2O2 system. Attributed to this unique behavior with the linear or sigmoidal relationship between CL intensity and DNA nuclease or bacterial concentration, the as-prepared CL biosensor could detect S1 nuclease activity in the concentration range 0.01-10.0 U with a detection limit of 0.1 mU, and Escherichia coli O157:H7 (E. coli) or Staphylococcus aureus (S. aureus) in the concentration ranges 101 to 109 cfu mL-1. The detection limit of E. coli and S. aureus was calculated to be 3.0 and 2.5 cfu mL-1, respectively, which was comparable or even better than that of previous studies. Thus, this detection method could achieve detectable levels without cell enrichment overnight. Moreover, the proposed biosensing system could be conducted in the homogeneous solution without separation and washing, greatly improving the reaction efficiency and simplifying the procedure. As expected, the novel CL biosensor promised a great potential for simple and convenient detection of nuclease and bacteria in fields such as food bacterial contamination, pharmaceuticals, and clinical analysis.
Collapse
Affiliation(s)
- Zefeng Gu
- Minhang Hospital & Department of Pharmaceutical Analysis at School of Pharmacy, Fudan University, Shanghai 201199, P. R. China
| | - Anchen Fu
- Minhang Hospital & Department of Pharmaceutical Analysis at School of Pharmacy, Fudan University, Shanghai 201199, P. R. China
| | - Li Ye
- Department of Microbiological and Biochemical Pharmacy at School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Kudelaidi Kuerban
- Department of Microbiological and Biochemical Pharmacy at School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhijuan Cao
- Minhang Hospital & Department of Pharmaceutical Analysis at School of Pharmacy, Fudan University, Shanghai 201199, P. R. China
| |
Collapse
|
23
|
Wang H, Wan K, Shi X. Recent Advances in Nanozyme Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805368. [PMID: 30589120 DOI: 10.1002/adma.201805368] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/15/2018] [Indexed: 05/21/2023]
Abstract
As a new generation of artificial enzymes, nanozymes have the advantages of high catalytic activity, good stability, low cost, and other unique properties of nanomaterials. Due to their wide range of potential applications, they have become an emerging field bridging nanotechnology and biology, attracting researchers in various fields to design and synthesize highly catalytically active nanozymes. However, the thorough understanding of experimental phenomena and the mechanisms beneath practical applications of nanozymes limits their rapid development. Herein, the progress of experimental and computational research of nanozymes on two issues over the past decade is briefly reviewed: (1) experimental development of new nanozymes mimicking different types of enzymes. This covers their structures and applications ranging from biosensing and bioimaging to therapeutics and environmental protection. (2) The catalytic mechanism proposed by experimental and theoretical study. The challenges and future directions of computational research in this field are also discussed.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaiwei Wan
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinghua Shi
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Li Y, Mansour H, Wang T, Poojari S, Li F. Naked-Eye Detection of Grapevine Red-Blotch Viral Infection Using a Plasmonic CRISPR Cas12a Assay. Anal Chem 2019; 91:11510-11513. [PMID: 31478642 DOI: 10.1021/acs.analchem.9b03545] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, we described a novel plasmonic CRISPR Cas12a assay for the visual, colorimetric detection of grapevine viral infections. Our assay generates rapid and specific colorimetric signals for nucleic acid amplicons by combining the unique target-induced incriminate single-stranded DNase activity of Cas12a with plasmon coupling of DNA functionalized gold nanoparticles. The practical applicability of our plasmonic assay was successfully demonstrated through the detection of emerging red-blotch viral infections in grapevine samples collected from commercial vineyards.
Collapse
Affiliation(s)
- Yongya Li
- College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , P.R. China.,Department of Chemistry, Centre for Biotechnology , Brock University , St. Catharines , Ontario L2S 3A1 , Canada
| | - Hayam Mansour
- Department of Chemistry, Centre for Biotechnology , Brock University , St. Catharines , Ontario L2S 3A1 , Canada.,Department of Cell Biology , National Research Centre , Cairo 12622 , Egypt
| | - Tony Wang
- Cool Climate Oenology and Viticulture Institute , Brock University , St. Catharines , Ontario L2S 3A1 , Canada
| | - Sudarsana Poojari
- Cool Climate Oenology and Viticulture Institute , Brock University , St. Catharines , Ontario L2S 3A1 , Canada
| | - Feng Li
- College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , P.R. China.,Department of Chemistry, Centre for Biotechnology , Brock University , St. Catharines , Ontario L2S 3A1 , Canada
| |
Collapse
|
25
|
Wang JJ, Lin Y, Jiang YZ, Zheng Z, Xie HY, Lv C, Chen ZL, Xiong LH, Zhang ZL, Wang H, Pang DW. Multifunctional Cellular Beacons with in Situ Synthesized Quantum Dots Make Pathogen Detectable with the Naked Eye. Anal Chem 2019; 91:7280-7287. [DOI: 10.1021/acs.analchem.9b00834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia-Jia Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Yong-Zhong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430072, P. R. China
| | - Zhenhua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Cheng Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Liang Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Ling-Hong Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China
| |
Collapse
|
26
|
Yan X, Wang T, Yao D, Xu J, Luo Q, Liu J. Interfacial Assembly of Signal Amplified Multienzymes and Biorecognized Antibody into Proteinosome for an Ultrasensitive Immunoassay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900350. [PMID: 30891901 DOI: 10.1002/smll.201900350] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Enzyme as signal tag has been widely employed in colorimetric immunoassays for decades. Nevertheless, it remains a great challenge to substantially improve the detection sensitivity of enzyme-based immunoassays, which inhibits further critical applications. To circumvent this confinement, a multifunctional self-assembled proteinosome based on the integration of signal amplification elements (enzyme) and biorecognition unit (antibody) is proposed for fabricating an immunoassay strategy with significantly enhanced sensitivity. Owing to the self-assembly technique, this proteinosome not only efficiently loads abundant enzymes to possess high catalytic activity, but also enhances enzymatic stability and maintains recognition ability of antibody. Using imidacloprid as a model target, the proteinosome-based immunoassay reaches a limit of detection down to the picogram mL-1 level, which is 150-fold lower than that of conventional enzyme-linked immunosorbent assay. This method provides a versatile approach for constructing spherical proteinosome as a recognizer and amplifier for profiling a broad range of target antigen.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
- College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tingting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun, 130012, China
| |
Collapse
|
27
|
Liu L, Hao Y, Deng D, Xia N. Nanomaterials-Based Colorimetric Immunoassays. NANOMATERIALS 2019; 9:nano9030316. [PMID: 30818816 PMCID: PMC6473401 DOI: 10.3390/nano9030316] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/05/2023]
Abstract
Colorimetric immunoassays for tumor marker detection have attracted considerable attention due to their simplicity and high efficiency. With the achievements of nanotechnology and nanoscience, nanomaterials-based colorimetric immunoassays have been demonstrated to be promising alternatives to conventional colorimetric enzyme-linked immunoassays. This review is focused on the progress in colorimetric immunoassays with the signal amplification of nanomaterials, including nanomaterials-based artificial enzymes to catalyze the chromogenic reactions, analyte-induced aggregation or size/morphology change of nanomaterials, nanomaterials as the carriers for loading enzyme labels, and chromogenic reactions induced by the constituent elements released from nanomaterials.
Collapse
Affiliation(s)
- Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Dehua Deng
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
28
|
Zhang P, Yang J, Liu D. Two-step signal amplification for high-sensitivity detection of biomarkers using gold nanoparticle-based conjugates. Electrophoresis 2019; 40:2211-2217. [PMID: 30672593 DOI: 10.1002/elps.201900007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 01/25/2023]
Abstract
The measurement of biomarkers in bodily fluids is extremely important for diagnosing disease, monitoring disease progression, and evaluating treatment efficacy. In this paper, we present a highly sensitive and compatible gold nanoparticle (AuNP)-based, two-step signal amplification system for biomarker detection. First, AuNPs were coated onto the surfaces of 96-well plates to generate rough surfaces, which enable immobilization of many more capture antibodies than a smooth substrate. As a result, detection sensitivity was enhanced significantly. Second, the horseradish peroxidase (HRP)-conjugated detection antibodies were labeled on large-size AuNPs, which increase the localized amounts of HRP and thus further lower the detection limit. Based on the consecutive signal amplification system, a high-sensitivity assay was achieved, with a LOD of 0.07 ng/mL for prostate-specific antigen (PSA). This assay was allowed to detect the PSA levels in clinical samples without changing the current standard immunoassay setups, showing great potential in many settings where immunoassays are needed.
Collapse
Affiliation(s)
- Pengjuan Zhang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, P. R. China
| | - Jie Yang
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, P. R. China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, P. R. China
| |
Collapse
|
29
|
Zhu D, Hu Y, Zhang XJ, Yang XT, Tang YY. Colorimetric and fluorometric dual-channel detection of α-fetoprotein based on the use of ZnS-CdTe hierarchical porous nanospheres. Mikrochim Acta 2019; 186:124. [DOI: 10.1007/s00604-018-3225-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023]
|
30
|
Cheng T, Li X, Huang P, Wang H, Wang M, Yang W. Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic. Mikrochim Acta 2019; 186:94. [PMID: 30631938 DOI: 10.1007/s00604-018-3209-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
An electrochemical and colorimetric dual-readout method is described for the determination of thrombin. A platinum nanoparticle (Pt NP) modified metal organic framework (MOF) acts as a peroxidase (POx) mimic that causes the formation of a blue product from 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide, with an absorption maximum at 650 nm. In addition, gold nanoparticles enrich initiators that trigger the hybridization chain reaction for dual signal amplification to generate an electrochemical current typically measured at 0.31 V (from -0.5 to -0.1 V) and allow quantitation of thrombin with high sensitivity and over a wide detection range. The colorimetric and electrochemical (dual) thrombin assay produces two kinds of signals which warrants accuracy, diversity, and an option for visual inspection. The dual-channel sensor allows for the quantitative determination of thrombin with a low detection limit (0.33 fM) for the electrochemical method and 0.17 pM for the colorimetric method) and over a wide detection range (1 fM to 10 nM for electrochemical method and 0.5 pM to 1 nM for colorimetric method). The electrochemical detection limit is lower than that of colorimetry, and the linear range is wider, which is more suitable for further quantitative analysis of the target. Graphical abstract Schematic representation of a colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework for color development and hybridization chain reaction for electrochemical signal. C-TBA: complementary sequences of thrombin aptamer, TBA: thrombin aptamer, I-Au NPs: initiators enriched by gold nanoparticles, S-AuE: sensing gold electrode, RS-AuE: reacted sensing gold electrode, TB: thrombin, MB: Methylene Blue, HCR: hybridization chain reaction.
Collapse
Affiliation(s)
- Ting Cheng
- Graduate Department, Anhui University of Traditional Chinese Medicine, Heifei, 230000, China
| | - Xiang Li
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China
| | - Peng Huang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China
| | - Han Wang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China
| | - Meixia Wang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China
| | - Wenming Yang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China.
| |
Collapse
|
31
|
Gao B, Chen X, Huang X, Pei K, Xiong Y, Wu Y, Duan H, Lai W, Xiong Y. Urease-induced metallization of gold nanorods for the sensitive detection of Salmonella enterica Choleraesuis through colorimetric ELISA. J Dairy Sci 2019; 102:1997-2007. [PMID: 30612795 DOI: 10.3168/jds.2018-15580] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/04/2018] [Indexed: 01/06/2023]
Abstract
We applied urease-induced silver metallization on the surface of gold nanorods (AuNR) to improve colorimetric ELISA for the rapid and sensitive detection of Salmonella enterica Choleraesuis. To this end, we introduced a biotin-streptavidin system as a bridge to determine the correlation between urease and S. enterica Choleraesuis concentrations. The captured urease can catalyze the hydrolysis of urea into carbon dioxide and ammonia, and the generated ammonia can then induce the deposition of silver shell on the surface of AuNR in the presence of silver nitrate and glucose. With the decreased aspect ratio (length divided by width) of AuNR, a multicolor change of AuNR solution and a significant blue shift in the longitudinal localized surface plasmon resonance absorption peak (Δλmax) of AuNR were obtained at the target concentrations of 1.21 × 101 to 1.21 × 108 cfu/mL. Consequently, the detection limits of our proposed colorimetric ELISA were as low as 1.21 × 102 cfu/mL for qualitative detection with naked eyes, and 1.21 × 101 cfu/mL for quantitative detection, in which changes in Δλmax of AuNR were recorded with a microplate reader. These values were at least 2 to 3 orders of magnitude lower than those obtained with conventional horseradish peroxidase-based ELISA. The analytical performance of our developed colorimetric ELISA in terms of selectivity, accuracy, reliability, and practicability were investigated by analyzing S. enterica Choleraesuis-spiked pasteurized whole milk samples.
Collapse
Affiliation(s)
- Bao Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China.
| | - Ke Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Ying Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Yunqing Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
32
|
Electrolyte-gated organic field-effect transistors (EGOFETs) as complementary tools to electrochemistry for the study of surface processes. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
33
|
Yang Y, Li C, Shi H, Chen T, Wang Z, Li G. A pH-responsive bioassay for paper-based diagnosis of exosomes via mussel-inspired surface chemistry. Talanta 2019; 192:325-330. [DOI: 10.1016/j.talanta.2018.09.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 12/25/2022]
|
34
|
Yang Q, Cai R, Xiao W, Wu Z, Liu X, Xu Y, Xu M, Zhong H, Sun G, Liu Q, Fu Q, Xiang J. Plasmonic ELISA for Sensitive Detection of Disease Biomarkers with a Smart Phone-Based Reader. NANOSCALE RESEARCH LETTERS 2018; 13:397. [PMID: 30519882 PMCID: PMC6281541 DOI: 10.1186/s11671-018-2806-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/19/2018] [Indexed: 05/24/2023]
Abstract
Serum myoglobin is one of the earliest markers for the diagnosis of acute myocardial infarction. It is, therefore, critical to develop a point-of-care testing technology for myoglobin detection. In this work, we reported a sensitive plasmonic immunoassay-based on enzyme-mediated localized surface plasmon resonance change of gold nanorods for the point-of-care testing detection of myoglobin. In addition, we developed a novel plasmonic immunoassay reader using the ambient light sensor of smart phone to increase the accessibility and utility of the plasmonic immunoassay. The linear detection range of gold nanorods-based plasmonic immunoassay for myoglobin detection was 0.1-1000 ng mL-1 and the limit of detection was 0.057 ng mL-1. Myoglobin in serum samples was also analyzed by the plasmonic immunoassay. The results were significantly correlated with those of conventional enzyme-linked immunosorbent assay. The plasmonic immunoassay, coupled with smart phone-based reader, could be widely used for point-of-care testing application of acute myocardial infarction, especially in the regions with limited technological resources.
Collapse
Affiliation(s)
- Quanli Yang
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Ruitian Cai
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Wei Xiao
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Zengfeng Wu
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Xia Liu
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Yan Xu
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Miaomiao Xu
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Hui Zhong
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Guodong Sun
- Department of Orthopedics, First Affliated Hospital, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Qihui Liu
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Qiangqiang Fu
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Orthopedics, First Affliated Hospital, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Junjian Xiang
- Institute of Biotranslational Medicine, Jinan University, Guangzhou, 510632 People’s Republic of China
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632 People’s Republic of China
| |
Collapse
|
35
|
Choi H, Jung Y. Applying Multivalent Biomolecular Interactions for Biosensors. Chemistry 2018; 24:19103-19109. [DOI: 10.1002/chem.201801408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Hyeongjoo Choi
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 Korea
| | - Yongwon Jung
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 Korea
| |
Collapse
|
36
|
A gold nanocluster chemical tongue sensor array for Alzheimer's disease diagnosis. Colloids Surf B Biointerfaces 2018; 173:478-485. [PMID: 30326364 DOI: 10.1016/j.colsurfb.2018.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/05/2018] [Accepted: 10/09/2018] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder in elderly people, and is associated with a heavy financial burden on our society. The use of serologic biomarkers is an attractive method to diagnose AD. Although the determination of blood-based biomarkers for AD has been explored in many studies, few practical diagnosis methods have been used in the clinic. In this work, we constructed a "chemical tongue" sensor array that is easy to use and based on four kinds of fluorescent gold nanoclusters (Au NCs) for discriminating between multiple proteins at nanomolar concentrations. The device utilizes a linear discrimination analysis based on fluorescence intensity response patterns. Using this chemical tongue sensor array, multiple proteins can be confidently identified even in complex biological systems, such as human urine. Most importantly, sera of AD patients could be effectively discriminated from those of osteoarthritis patients, or of healthy people. Also, the results obtained for the AD patients by the chemical tongue sensor array were validated by CSF determination. We conclude that the chemical tongue sensor array manufactured in this work paves the way for designing an auxiliary diagnosis method for AD that is less invasive and more convenient for the large-scale screening of patients.
Collapse
|
37
|
Xiong LH, He X, Zhao Z, Kwok RTK, Xiong Y, Gao PF, Yang F, Huang Y, Sung HHY, Williams ID, Lam JWY, Cheng J, Zhang R, Tang BZ. Ultrasensitive Virion Immunoassay Platform with Dual-Modality Based on a Multifunctional Aggregation-Induced Emission Luminogen. ACS NANO 2018; 12:9549-9557. [PMID: 30148962 DOI: 10.1021/acsnano.8b05270] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sensitive and accurate detection of highly contagious virus is urgently demanded for disease diagnosis and treatment. Herein, based on a multifunctional aggregation-induced emission luminogen (AIEgen), a dual-modality readout immunoassay platform for ultrasensitive detection of viruses has been successfully demonstrated. The platform is relied on virions immuno-bridged enzymatic hydrolysis of AIEgen, accompanying with the in situ formation of highly emissive AIE aggregates and shelling of silver on gold nanoparticles. As a result, robust turn-on fluorescence and naked-eye discernible plasmonic colorimetry composed dual-signal is achieved. By further taking advantage of effective immunomagnetic enrichment, EV71 virions, as an example, can be specifically detected with a limit of detection down to 1.4 copies/μL under fluorescence modality. Additionally, semiquantitative discerning of EV71 virions is realized in a broad range from 1.3 × 103 to 2.5 × 106 copies/μL with the naked eye. Most importantly, EV71 virions in 24 real clinical samples are successfully diagnosed with 100% accuracy. Comparing to the gold standard polymerase chain reaction (PCR) assay, our immunoassay platform do not need complicated sample pretreatment and expensive instruments. This dual-modality strategy builds a good capability for both colorimetry based convenient preliminary screening and fluorescence based accurate diagnosis of suspect infections in virus-stricken areas.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Zheng Zhao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Yu Xiong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Peng Fei Gao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Yalan Huang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Herman H-Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 00852, Hong Kong
- HKUST-Shenzhen Research Institute , Shenzhen 518057 , China
- NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
38
|
Miyagawa A, Inoue Y, Harada M, Okada T. Acoustic Sensing Based on Density Shift of Microspheres by Surface Binding of Gold Nanoparticles. ANAL SCI 2018; 33:939-944. [PMID: 28794331 DOI: 10.2116/analsci.33.939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we propose a concept for sensing based on density changes of microparticles (MPs) caused by a biochemical reaction. The MPs are levitated by a combined acoustic-gravitational force at a position determined by the density and compressibility. Importantly, the levitation is independent of the MPs sizes. When gold nanoparticles (AuNPs) are bound on the surface of polymer MPs through a reaction, the density of the MPs dramatically increases, and their levitation position in the acoustic-gravitational field is lowered. Because the shift of the levitation position is proportional to the number of AuNPs bound on one MP, we can determine the number of molecules involved in the reaction. The avidin-biotin reaction is used to demonstrate the effectiveness of this concept. The number of molecules involved in the reaction is very small because the reaction space is small for an MP; thus, the method has potential for highly sensitive detection.
Collapse
Affiliation(s)
| | - Yoshinori Inoue
- Department of Chemistry, Tokyo Institute of Technology.,Department of Applied Chemistry, Aichi Institute of Technology
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology
| |
Collapse
|
39
|
Chen X, Liang Y, Zhang W, Leng Y, Xiong Y. A colorimetric immunoassay based on glucose oxidase-induced AuNP aggregation for the detection of fumonisin B1. Talanta 2018; 186:29-35. [DOI: 10.1016/j.talanta.2018.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/09/2018] [Accepted: 04/07/2018] [Indexed: 12/31/2022]
|
40
|
Zhao Q, Piao J, Peng W, wang J, Gao W, Wu X, Wang H, Gong X, Chang J, Zhang B. A Metal Chelator as a Plasmonic Signal-Generation Superregulator for Ultrasensitive Colorimetric Bioassays of Disease Biomarkers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800295. [PMID: 30027059 PMCID: PMC6051378 DOI: 10.1002/advs.201800295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/12/2018] [Indexed: 05/14/2023]
Abstract
Enzyme-based assays have been widely applied in clinical diagnosis for decades. However, the intrinsic limitations of enzymes, such as low operation stability, mediocre sensitivity, and high cost in production and purification, heavily constrain their detection application. Here, an enzyme-free assay is reported that relies on the strong chelating capability of ethylenediamine tetraacetic acid disodium salt (EDTA•2Na, the chelator) for Au3+ ions, in which the cheap EDTA•2Na labeled by targeting moieties can selectively regulate the growth of plasmonic gold nanoparticles (AuNPs) at the target site subjecting to the concentration of analyte in samples. Independent of ambient temperature and unstable H2O2, EDTA•2Na perform superregulation in AuNPs plasmonic signal generation with distinct tonality and outstanding reliability. Upon integrating with silica nanoparticles as the signal amplifying platform, EDTA•2Na-regulated bioassay can lead to detection-sensitivity enhancements exceeding three orders of magnitude in protein detection, compared with the gold-standard assay. The limit of detection of the HBsAg and alpha fetoprotein (AFP) pushes down to 2.6 × 10-15 and 2.5 × 10-19 g mL-1, respectively. EDTA•2Na-regulated bioassay is also challenged in the clinical serum sample detection and a good consistency is found with the chemiluminescence immunoassay method in clinics.
Collapse
Affiliation(s)
- Qian Zhao
- School of Life SciencesTianjin Engineering Center of Micro‐Nano Biomaterials and Detection‐Treatment TechnologyTianjin UniversityTianjin300072China
| | - Jiafang Piao
- School of Life SciencesTianjin Engineering Center of Micro‐Nano Biomaterials and Detection‐Treatment TechnologyTianjin UniversityTianjin300072China
| | - Weipan Peng
- School of Life SciencesTianjin Engineering Center of Micro‐Nano Biomaterials and Detection‐Treatment TechnologyTianjin UniversityTianjin300072China
| | - Jun wang
- Institute of PhotomedicineShanghai Skin Disease HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200443China
| | - Weichen Gao
- School of Life SciencesTianjin Engineering Center of Micro‐Nano Biomaterials and Detection‐Treatment TechnologyTianjin UniversityTianjin300072China
| | - Xiaoli Wu
- School of Life SciencesTianjin Engineering Center of Micro‐Nano Biomaterials and Detection‐Treatment TechnologyTianjin UniversityTianjin300072China
| | - Hanjie Wang
- School of Life SciencesTianjin Engineering Center of Micro‐Nano Biomaterials and Detection‐Treatment TechnologyTianjin UniversityTianjin300072China
| | - Xiaoqun Gong
- School of Life SciencesTianjin Engineering Center of Micro‐Nano Biomaterials and Detection‐Treatment TechnologyTianjin UniversityTianjin300072China
| | - Jin Chang
- School of Life SciencesTianjin Engineering Center of Micro‐Nano Biomaterials and Detection‐Treatment TechnologyTianjin UniversityTianjin300072China
| | - Bingbo Zhang
- Institute of PhotomedicineShanghai Skin Disease HospitalThe Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200443China
| |
Collapse
|
41
|
MA XM, SUN M, LIN Y, LIU YJ, LUO F, GUO LH, QIU B, LIN ZY, CHEN GN. Progress of Visual Biosensor Based on Gold Nanoparticles. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61061-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Hou YH, Wang JJ, Jiang YZ, Lv C, Xia L, Hong SL, Lin M, Lin Y, Zhang ZL, Pang DW. A colorimetric and electrochemical immunosensor for point-of-care detection of enterovirus 71. Biosens Bioelectron 2018; 99:186-192. [DOI: 10.1016/j.bios.2017.07.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
43
|
Chen Y, Yin B, Dong M, Xianyu Y, Jiang X. Versatile T1-Based Chemical Analysis Platform Using Fe3+/Fe2+ Interconversion. Anal Chem 2017; 90:1234-1240. [DOI: 10.1021/acs.analchem.7b03961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yiping Chen
- Beijing Engineering
Research Center for BioNanotechnology and CAS Key Laboratory for Biological
Effects of Nanomaterials and Nano-safety, CAS Center for Excellence
in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, People’s Republic of China
| | - Binfeng Yin
- Beijing Engineering
Research Center for BioNanotechnology and CAS Key Laboratory for Biological
Effects of Nanomaterials and Nano-safety, CAS Center for Excellence
in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, People’s Republic of China
| | - Mingling Dong
- Beijing Engineering
Research Center for BioNanotechnology and CAS Key Laboratory for Biological
Effects of Nanomaterials and Nano-safety, CAS Center for Excellence
in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, People’s Republic of China
| | - Yunlei Xianyu
- Beijing Engineering
Research Center for BioNanotechnology and CAS Key Laboratory for Biological
Effects of Nanomaterials and Nano-safety, CAS Center for Excellence
in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, People’s Republic of China
| | - Xingyu Jiang
- Beijing Engineering
Research Center for BioNanotechnology and CAS Key Laboratory for Biological
Effects of Nanomaterials and Nano-safety, CAS Center for Excellence
in Nanoscience, National Center for NanoScience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, People’s Republic of China
- The University of Chinese Academy of Sciences, 19 A YuQuan Road, ShiJingShan
District, Beijing, 100049, People’s Republic of China
| |
Collapse
|
44
|
Tan MJ, Hong ZY, Chang MH, Liu CC, Cheng HF, Loh XJ, Chen CH, Liao CD, Kong KV. Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides. Biosens Bioelectron 2017; 96:167-172. [PMID: 28494368 DOI: 10.1016/j.bios.2017.05.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 01/29/2023]
Abstract
The binding of organometallic osmium carbonyl clusters onto the surface of gold nanoparticles (10OsCO-Au NPs) greatly enhanced the CO stretching vibration signal at ~2100cm-1, which is relatively free from interference due to the absorbance of biomolecules. By utilizing the acetylcholinesterase (AChE) mediated hydrolysis of acetylthiocholine to thiocholine where the activity of AChE is inhibited by the presence of organophosphate pesticides (OPPs), the subsequent thiocholine-induced aggregation of 10OsCO-Au NPs can be monitored by the change in color of the NPs solution and the variation in intensity of the SERS CO signal. The change in color offers a fast pre-screening method, whereas monitoring via SERS is used for greater accuracy and lower limit of detection (0.1 ppb) for quantitative detection. Its potential as a quick and accurate method of OPPs monitoring in consumer products was demonstrated in the detection of OPPs in real spiked samples such as beer.
Collapse
Affiliation(s)
- Mein Jin Tan
- Institute of Materials Research and Engineering, A*STAR Singapore, Singapore
| | - Zi-Yao Hong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Mei-Hua Chang
- Food and Drug Administration (FDA), Ministry of Health and Welfare, Taipei, Taiwan
| | - Chih-Chen Liu
- Food and Drug Administration (FDA), Ministry of Health and Welfare, Taipei, Taiwan
| | - Hwei-Fang Cheng
- Food and Drug Administration (FDA), Ministry of Health and Welfare, Taipei, Taiwan
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR Singapore, Singapore; Department of Materials Science and Engineering, National University of Singapore, Singapore
| | - Ching-Hsiang Chen
- Sustainable Energy Development Center, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chia-Ding Liao
- Food and Drug Administration (FDA), Ministry of Health and Welfare, Taipei, Taiwan.
| | - Kien Voon Kong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Kim D, Kwon HJ, Shin K, Kim J, Yoo RE, Choi SH, Soh M, Kang T, Han SI, Hyeon T. Multiplexible Wash-Free Immunoassay Using Colloidal Assemblies of Magnetic and Photoluminescent Nanoparticles. ACS NANO 2017; 11:8448-8455. [PMID: 28787118 DOI: 10.1021/acsnano.7b04088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal assemblies of nanoparticles possess both the intrinsic and collective properties of their constituent nanoparticles, which are useful in applications where ordinary nanoparticles are not well suited. Here, we report an immunoassay technique based on colloidal nanoparticle assemblies made of iron oxide nanoparticles (magnetic substrate) and manganese-doped zinc sulfide (ZnS:Mn) nanoparticles (photoluminescent substrate), both of which are functionalized with antibodies to capture target proteins in a sandwich assay format. After magnetic isolation of the iron oxide nanoparticle assemblies and their bound ZnS:Mn nanoparticle assemblies (MZSNAs), photoluminescence of the remaining MZSNAs is measured for the protein quantification, eliminating the need for washing steps and signal amplification. Using human C-reactive protein as a model biomarker, we achieve a detection limit of as low as 0.7 pg/mL, which is more than 1 order of magnitude lower than that of enzyme-linked immunosorbent assay (9.1 pg/mL) performed using the same pair of antibodies, while using only one-tenth of the antibodies. We also confirm the potential for multiplex detection by using two different types of photoluminescent colloidal nanoparticle assemblies simultaneously.
Collapse
Affiliation(s)
- Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
| | - Hyek Jin Kwon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Jaehyup Kim
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine , Seoul 03080, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Sang Ihn Han
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University , Seoul 08826, Republic of Korea
| |
Collapse
|
46
|
Ma J, Zhan L, Li RS, Gao PF, Huang CZ. Color-Encoded Assays for the Simultaneous Quantification of Dual Cancer Biomarkers. Anal Chem 2017; 89:8484-8489. [DOI: 10.1021/acs.analchem.7b02033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jun Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Lei Zhan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Rong Sheng Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Peng Fei Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry,
Ministry of Education, College of Chemistry and Chemical Engineering, ‡College of Pharmaceutical
Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
47
|
Abstract
Colorimetric detection of target analytes with high specificity and sensitivity is of fundamental importance to clinical and personalized point-of-care diagnostics. Because of their extraordinary optical properties, plasmonic nanomaterials have been introduced into colorimetric sensing systems, which provide significantly improved sensitivity in various biosensing applications. Here we review the recent progress on these plasmonic nanoparticles-based colorimetric nanosensors for ultrasensitive molecular diagnostics. According to their different colorimetric signal generation mechanisms, these plasmonic nanosensors are classified into two categories: (1) interparticle distance-dependent colorimetric assay based on target-induced forming cross-linking assembly/aggregate of plasmonic nanoparticles; and (2) size/morphology-dependent colorimetric assay by target-controlled growth/etching of the plasmonic nanoparticles. The sensing fundamentals and cutting-edge applications will be provided for each of them, particularly focusing on signal generation and/or amplification mechanisms that realize ultrasensitive molecular detection. Finally, we also discuss the challenge and give our future perspective in this emerging field.
Collapse
Affiliation(s)
- Longhua Tang
- State
Key Laboratory of Modern Optical Instrumentation, College of Optical
Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jinghong Li
- Department
of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
48
|
Huang X, Liu Y, Yung B, Xiong Y, Chen X. Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer. ACS NANO 2017; 11:5238-5292. [PMID: 28590117 DOI: 10.1021/acsnano.7b02618] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro biosensors have been an integral component for early diagnosis of cancer in the clinic. Among them, no-wash biosensors, which only depend on the simple mixing of the signal generating probes and the sample solution without additional washing and separation steps, have been found to be particularly attractive. The outstanding advantages of facile, convenient, and rapid response of no-wash biosensors are especially suitable for point-of-care testing (POCT). One fast-growing field of no-wash biosensor design involves the usage of nanomaterials as signal amplification carriers or direct signal generating elements. The analytical capacity of no-wash biosensors with respect to sensitivity or limit of detection, specificity, stability, and multiplexing detection capacity is largely improved because of their large surface area, excellent optical, electrical, catalytic, and magnetic properties. This review provides a comprehensive overview of various nanomaterial-enhanced no-wash biosensing technologies and focuses on the analysis of the underlying mechanism of these technologies applied for the early detection of cancer biomarkers ranging from small molecules to proteins, and even whole cancerous cells. Representative examples are selected to demonstrate the proof-of-concept with promising applications for in vitro diagnostics of cancer. Finally, a brief discussion of common unresolved issues and a perspective outlook on the field are provided.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang 330047, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States
| |
Collapse
|
49
|
Yu X, Xia Y, Tang Y, Zhang W, Yeh Y, Lu H, Zheng S. A Nanostructured Microfluidic Immunoassay Platform for Highly Sensitive Infectious Pathogen Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700425. [PMID: 28636164 PMCID: PMC7169616 DOI: 10.1002/smll.201700425] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/18/2017] [Indexed: 05/18/2023]
Abstract
Rapid and simultaneous detection of multiple potential pathogens by portable devices can facilitate early diagnosis of infectious diseases, and allow for rapid and effective implementation of disease prevention and treatment measures. The development of a ZnO nanorod integrated microdevice as a multiplex immunofluorescence platform for highly sensitive and selective detection of avian influenza virus (AIV) is described. The 3D morphology and unique optical property of the ZnO nanorods boost the detection limit of the H5N2 AIV to as low as 3.6 × 103 EID50 mL-1 (EID50 : 50% embryo infectious dose), which is ≈22 times more sensitive than conventional enzyme-linked immunosorbent assay. The entire virus capture and detection process could be completed within 1.5 h with excellent selectivity. Moreover, this microfluidic biosensor is capable of detecting multiple viruses simultaneously by spatial encoding of capture antibodies. One prominent feature of the device is that the captured H5N2 AIV can be released by simply dissolving ZnO nanorods under slightly acidic environment for subsequent off-chip analyses. As a whole, this platform provides a powerful tool for rapid detection of multiple pathogens, which may extent to the other fields for low-cost and convenient biomarker detection.
Collapse
Affiliation(s)
- Xu Yu
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yiqiu Xia
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yi Tang
- Wiley Lab/Avian VirologyDepartment of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Wen‐Long Zhang
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Yin‐Ting Yeh
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| | - Huaguang Lu
- Wiley Lab/Avian VirologyDepartment of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Si‐Yang Zheng
- Micro and Nano Integrated Biosystem (MINIBio) LaboratoryDepartment of Biomedical EngineeringThe Pennsylvania State UniversityN‐238 Millennium Science ComplexUniversity ParkPA16802USA
| |
Collapse
|
50
|
Xiong LH, He X, Xia J, Ma H, Yang F, Zhang Q, Huang D, Chen L, Wu C, Zhang X, Zhao Z, Wan C, Zhang R, Cheng J. Highly Sensitive Naked-Eye Assay for Enterovirus 71 Detection Based on Catalytic Nanoparticle Aggregation and Immunomagnetic Amplification. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14691-14699. [PMID: 28414215 DOI: 10.1021/acsami.7b02237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Development of sensitive, convenient, and cost-effective virus detection product is of great significance to meet the growing demand of clinical diagnosis at the early stage of virus infection. Herein, a naked-eye readout of immunoassay by means of virion bridged catalase-mediated in situ reduction of gold ions and growth of nanoparticles, has been successfully proposed for rapid visual detection of Enterovirus 71 (EV71). Through tailoring the morphologies of the produced gold nanoparticles (GNPs) varying between dispersion and aggregation, a distinguishing color changing was ready for observation. This colorimetric detection assay, by further orchestrating the efficient magnetic enrichment and the high catalytic activity of enzyme, is managed to realize highly sensitive detection of EV71 virions with the limit of detection (LOD) down to 0.65 ng/mL. Our proposed method showed a much lower LOD value than the commercial ELISA for EV71 virion detection. Comparing to the current clinical gold standard polymerase chain reaction (PCR) method, our strategy provided the same diagnostic outcomes after testing real clinical samples. Besides, this strategy has no need of complicated sample pretreatment or expensive instruments. Our presented naked-eye immunoassay method holds a promising prospect for the early detection of virus-infectious disease especially in resource-constrained settings.
Collapse
Affiliation(s)
- Ling-Hong Xiong
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
- School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, China
| | - Xuewen He
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, Hong Kong, China
| | - Junjie Xia
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Fan Yang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Qian Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Long Chen
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Chunli Wu
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Xiaomin Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Zheng Zhao
- Department of Chemistry, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) , Clear Water Bay, Kowloon, Hong Kong, China
| | - Chengsong Wan
- School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou 510515, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055, China
| |
Collapse
|