1
|
Mack BM, Lebar MD. AFED, a comprehensive resource for Aspergillus flavus gene expression profiling. Database (Oxford) 2025; 2025:baaf033. [PMID: 40250417 PMCID: PMC12007493 DOI: 10.1093/database/baaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025]
Abstract
The Aspergillus flavus expression database (AFED) is a comprehensive resource dedicated to exploring gene expression in A. flavus, a significant fungal pathogen that threatens food security by contaminating crops with aflatoxin. Given the complex regulation of aflatoxin biosynthesis and the lack of centralized expression data resources for this important pathogen, a database integrating diverse experimental conditions is essential for understanding its biology and developing control strategies. Public RNA sequencing data were used to quantify gene expression abundance for 604 A. flavus samples from 52 experiments. Using abundance data, we created an AFED accessible through a web-based interface that allows for the expression profiles of genes to be conveniently examined across different growth conditions and life cycle stages. Expression profiles can be visualized through either an interactive bar plot for single gene queries or a heatmap for multiple gene queries. A gene co-expression network based on samples containing at least 10 million mapped reads is also available, which allows users to identify genes that are co-expressed with an individual gene or set of genes and displays the functional enrichment among the co-expressed genes. Database URL: https://a-flavus-expression-db-jyqnpeuvta-uc.a.run.app.
Collapse
Affiliation(s)
- Brian M Mack
- Food and Feed Safety Research, Southern Regional Research Center, Agriculture Research Service, United States Department of Agriculture (USDA), 1100 Allen Toussaint Blvd, New Orleans, LA 70124, United States
| | - Matthew D Lebar
- Food and Feed Safety Research, Southern Regional Research Center, Agriculture Research Service, United States Department of Agriculture (USDA), 1100 Allen Toussaint Blvd, New Orleans, LA 70124, United States
| |
Collapse
|
2
|
Yu Q, Jiang X. Unilateral and Bilateral Disulfurating Reagents for the Synthesis of Unsymmetrical Polysulfides. Chemistry 2025; 31:e202404029. [PMID: 39821407 DOI: 10.1002/chem.202404029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/17/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Polysulfides play an essential role across various fields, including life sciences, pharmaceuticals, food science, and materials science. However, the controlled sequential installation of groups at both ends of an S-S motif poses enormous challenges due to the reversible nature of the covalent S-S bond. Utilizing unique disulfide reagents presents one of the most straightforward approaches for constructing diverse polysulfides. This concept highlights the initiatives and advancements in polysulfide synthesis facilitated by unilateral or bilateral disulfide reagents. Furthermore, ongoing research is focused on recently reported methodologies for synthesizing unsymmetrical disulfides.
Collapse
Affiliation(s)
- Qing Yu
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
3
|
Bates RW, Pham TL, Sae-Lao P. Hydroxylamine natural products. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2025; 93:1-172. [PMID: 40113375 DOI: 10.1016/bs.alkal.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Natural products containing the hydroxylamine group are discussed. These include acyclic hydroxylamines, isoxazolidines, 1,2-oxazines, diketopiperazines, endocyclic hydroxylamines with larger ring sizes, N-hydroxy and N-methoxypyrroles, -indoles, -carbazoles and -carbolines, pyridones, other rings with an exocyclic hydroxylamine, O-acylhydroxylamines and compounds that may be regarded as unprecedented or having little precedent. Isolation, characterization, biosynthesis and synthesis are covered.
Collapse
Affiliation(s)
- Roderick W Bates
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore.
| | - Thang Loi Pham
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore
| | - Patcharaporn Sae-Lao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore
| |
Collapse
|
4
|
Yu Q, Zhang X, Jiang X. Bilateral Unsymmetrical Disulfurating Reagent Design for Polysulfide Construction. Angew Chem Int Ed Engl 2024; 63:e202408158. [PMID: 38923731 DOI: 10.1002/anie.202408158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Polysulfides are significant compounds in life science, pharmaceutical science, and materials science. Therefore, polysulfide construction is in great demand. The controllable sequential installation of groups on both ends of a S-S motif faces an enormous challenge owing to the reversible nature of the covalent S-S bond. A library was established with two divergent mask groups for bilateral unsymmetrical disulfurating reagents (R1O-SS-SO2R2). Sequential coupling with preferential activation of the S-SO2 bond (37.6 kcal/mol) and controllable activation of the S-O bond (54.8 kcal/mol) in the presence of the S-S bond (62.0 kcal/mol) enabled successive reactions at each end of the S-S motif to afford unsymmetrical disulfides and trisulfides, even for the cross-linkage of natural products, pharmaceuticals, peptides, and a protein (bovine serum albumin).
Collapse
Affiliation(s)
- Qing Yu
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - XiangJin Zhang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Xuefeng Jiang
- Hainan Institute of East China Normal University, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
5
|
Ehinger FJ, Hertweck C. Biosynthesis and recruitment of reactive amino acids in nonribosomal peptide assembly lines. Curr Opin Chem Biol 2024; 81:102494. [PMID: 38936328 DOI: 10.1016/j.cbpa.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Reactive amino acid side chains play important roles in the binding of peptides to specific targets. In addition, their reactivity enables selective peptide conjugation and functionalization for pharmaceutical purposes. Diverse reactive amino acids are incorporated into nonribosomal peptides, which serve as a source for drug candidates. Notable examples include (poly)unsaturated (enamine, alkyne, and furyl) and halogenated residues, strained carbacycles (cyclopropyl and cyclopropanol), small heterocycles (oxirane and aziridine), and reactive N-N functionalities (hydrazones, diazo compounds, and diazeniumdiolates). Their biosynthesis requires diverse biocatalysts for sophisticated reaction mechanisms. Several avenues have been identified for their incorporation into peptides, the recruitment by adenylation domains or ligases, on-line modifications, and enzymatic tailoring reactions. Combined with protein engineering approaches, this knowledge provides new opportunities in synthetic biology and bioorthogonal chemistry.
Collapse
Affiliation(s)
- Friedrich Johannes Ehinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
6
|
Shen X, Lei C, Zhang A, Wang L, Chen D, Qi L, Hu Y, Chen G, Ran H, Yin WB. Stimulating Novel and Bioactive Metabolite Production by Cocultivation of Two Fungi ─Aspergillus oryzae and Epicoccum dendrobii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39020512 DOI: 10.1021/acs.jafc.4c04764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Fungi produce various bioactive secondary metabolites (SMs) as protective and weaponized tools to enhance survival in shared ecological niches. By mimicking a competitive ecosystem, cocultivation has been proven to be particularly successful in stimulating SM discovery. Here, we reported the identification of four novel metabolites, epiclactones A and B, epioxochromane and aoergostane, from the coculture of two biotechnologically important strains, Aspergillus oryzae and Epicoccum dendrobii. Transcriptome and metabolome analyses revealed widespread silent gene activation during fungal-fungal interaction. The majority of differentially expressed gene clusters were summarized for both strains. Based on these highly activated biosynthetic pathways, we suggested that a bidirectional chemical defense occurred under cocultivation. E. dendrobii enhanced the production of the spore inhibitor, fumigermin. Moreover, A. oryzae highly accumulated the antifungal agent kojic acid with a yield of up to 1.10 g/L. This study provides an excellent example for the discovery of hidden natural products by cocultivation.
Collapse
Affiliation(s)
- Xiangrui Shen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, PR China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chengzhi Lei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Anxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Denghui Chen
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Landa Qi
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Yiliang Hu
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Guocan Chen
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Huomiao Ran
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, PR China
| | - Wen-Bing Yin
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, PR China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
7
|
Li B, Liu BX, Rao W, Shen SS, Sheng D, Wang SY. Copper-Catalyzed Chemoselective Coupling of N-Dithiophthalimides and Alkyl Halides: Synthesis of Unsymmetrical Disulfides and Sulfides. Org Lett 2024; 26:3634-3639. [PMID: 38660998 DOI: 10.1021/acs.orglett.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this paper, we report an unprecedented copper-catalyzed disulfides or sulfides coupling reaction involving unactivated alkyl halides and N-dithiophthalimides. This reaction can be conducted under mild conditions using low-cost metal catalysts and exhibits high chemical selectivity and functional group compatibility, enabling the efficient assembly of various sulfides and disulfides.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Johnson CW, Ohashi M, Tang Y. How Fungi Biosynthesize 3-Nitropropanoic Acid: The Simplest yet Lethal Mycotoxin. Org Lett 2024; 26:3158-3163. [PMID: 38588324 PMCID: PMC11390343 DOI: 10.1021/acs.orglett.4c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We uncovered the biosynthetic pathway of the lethal mycotoxin 3-nitropropanoic acid (3-NPA) from koji mold Aspergillus oryzae. The biosynthetic gene cluster (BGC) of 3-NPA, which encodes an amine oxidase and a decarboxylase, is conserved in many fungi used in food processing, although most of the strains have not been reported to produce 3-NPA. Our discovery will lead to efforts that improve the safety profiles of these indispensable microorganisms in making food, alcoholic beverages, and seasoning.
Collapse
Affiliation(s)
- Colin W. Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, 90095, United States
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, 90095, United States
| |
Collapse
|
9
|
Fan J, Wei PL, Yin WB. Formation of Bridged Disulfide in Epidithiodioxopiperazines. Chembiochem 2024; 25:e202300770. [PMID: 38116907 DOI: 10.1002/cbic.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Epidithiodioxopiperazine (ETP) alkaloids, featuring a 2,5-diketopiperazine core and transannular disulfide bridge, exhibit a broad spectrum of biological activities. However, the structural complexity has prevented efficient chemical synthesis and further clinical research. In the past few decades, many achievements have been made in the biosynthesis of ETPs. Here, we discuss the biosynthetic progress and summarize them as two comprehensible metabolic principles for better understanding the complex pathways of α, α'- and α, β'-disulfide bridged ETPs. Specifically, we systematically outline the catalytic machineries to install α, α'- and α, β'-disulfide by flavin-containing oxygenases. This concept would contribute to the medical and industrial applications of ETPs.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Yu Y, Chen J, Huang M, Jiang Y, Zhou X, Wang J, Li J, Cao H. Transition-Metal-Free Disulfuration of Amides with Trisulfide Dioxides via Formation of Unaccessible S-S-N Bonds. J Org Chem 2024; 89:3590-3596. [PMID: 38364441 DOI: 10.1021/acs.joc.3c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Under transition-metal-free conditions, trisulfide dioxides were used as disulfurating reagents to react with a wide range of amides, affording various substituted N-disulfanyl amides in good yields. Furthermore, the gram-scale experiment has confirmed the practicability of this approach.
Collapse
Affiliation(s)
- Yue Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, 528437, P. R. China
| | - Jianxin Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Mingzhou Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yuhao Jiang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xianhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jinsong Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jiaxin Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, 528437, P. R. China
| |
Collapse
|
11
|
Zhao H, Ren Y, Xie F, Dai H, Liu H, Fu C, Müller R. Nobachelins, new siderophores from Nocardiopsisbaichengensis protecting Caenorhabditiselegans from Pseudomonasaeruginosa infection. Synth Syst Biotechnol 2023; 8:640-646. [PMID: 37927895 PMCID: PMC10622741 DOI: 10.1016/j.synbio.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
The biosynthetic potential of actinobacteria to produce novel natural products is still regarded as immense. In this paper, we correlated a cryptic biosynthetic gene cluster to chemical molecules by genome mining and chemical analyses, leading to the discovery of a new group of catecholate-hydroxamate siderophores, nobachelins, from Nocardiopsisbaichengensis DSM 44845. Nobachelin biosynthesis genes are conserved in several bacteria from the family Nocardiopsidaceae. Structurally, nobachelins feature fatty-acylated hydroxy-ornithine and a rare chlorinated catecholate group. Intriguingly, nobachelins rescued Caenorhabditiselegans from Pseudomonasaeruginosa-mediated killing.
Collapse
Affiliation(s)
- Haowen Zhao
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, 316021, Zhoushan, China
| | - Yuhao Ren
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, 201203, Shanghai, China
| | - Feng Xie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Huanqin Dai
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hongwei Liu
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
12
|
Hasan NS, Ling JG, Bakar MFA, Seman WMKW, Murad AMA, Bakar FDA, Khalid RM. The Lichen Flavin-Dependent Halogenase, DnHal: Identification, Heterologous Expression and Functional Characterization. Appl Biochem Biotechnol 2023; 195:6708-6736. [PMID: 36913095 DOI: 10.1007/s12010-022-04304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 03/14/2023]
Abstract
Enzymatic halogenation captures scientific interest considering its feasibility in modifying compounds for chemical diversity. Currently, majority of flavin-dependent halogenases (F-Hals) were reported from bacterial origin, and as far as we know, none from lichenized fungi. Fungi are well-known producers of halogenated compounds, so using available transcriptomic dataset of Dirinaria sp., we mined for putative gene encoding for F-Hal. Phylogenetic-based classification of the F-Hal family suggested a non-tryptophan F-Hals, similar to other fungal F-Hals, which mainly act on aromatic compounds. However, after the putative halogenase gene from Dirinaria sp., dnhal was codon-optimized, cloned, and expressed in Pichia pastoris, the ~63 kDa purified enzyme showed biocatalytic activity towards tryptophan and an aromatic compound methyl haematommate, which gave the tell-tale isotopic pattern of a chlorinated product at m/z 239.0565 and 241.0552; and m/z 243.0074 and 245.0025, respectively. This study is the start of understanding the complexities of lichenized fungal F-hals and its ability to halogenate tryptophan and other aromatic. compounds which can be used as green alternatives for biocatalysis of halogenated compounds.
Collapse
Affiliation(s)
- Nurain Shahera Hasan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Jonathan Guyang Ling
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Faizal Abu Bakar
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Wan Mohd Khairulikhsan Wan Seman
- Malaysia Genome & Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Rozida Mohd Khalid
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
13
|
Lin C, Feng XL, Liu Y, Li ZC, Li XZ, Qi J. Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic Fusarium. J Fungi (Basel) 2023; 9:850. [PMID: 37623621 PMCID: PMC10455296 DOI: 10.3390/jof9080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium species are among the filamentous fungi with the most pronounced impact on agricultural production and human health. The mycotoxins produced by pathogenic Fusarium not only attack various plants including crops, causing various plant diseases that lead to reduced yields and even death, but also penetrate into the food chain of humans and animals to cause food poisoning and consequent health hazards. Although sporadic studies have revealed some of the biosynthetic pathways of Fusarium toxins, they are insufficient to satisfy the need for a comprehensive understanding of Fusarium toxin production. In this study, we focused on 35 serious pathogenic Fusarium species with available genomes and systematically analyzed the ubiquity of the distribution of identified Fusarium- and non-Fusarium-derived fungal toxin biosynthesis gene clusters (BGCs) in these species through the mining of core genes and the comparative analysis of corresponding BGCs. Additionally, novel sesterterpene synthases and PKS_NRPS clusters were discovered and analyzed. This work is the first to systematically analyze the distribution of related mycotoxin biosynthesis in pathogenic Fusarium species. These findings enhance the knowledge of mycotoxin production and provide a theoretical grounding for the prevention of fungal toxin production using biotechnological approaches.
Collapse
Affiliation(s)
- Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhao-chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
14
|
Maud L, Boyer F, Durrieu V, Bornot J, Lippi Y, Naylies C, Lorber S, Puel O, Mathieu F, Snini SP. Effect of Streptomyces roseolus Cell-Free Supernatants on the Fungal Development, Transcriptome, and Aflatoxin B1 Production of Aspergillus flavus. Toxins (Basel) 2023; 15:428. [PMID: 37505697 PMCID: PMC10467112 DOI: 10.3390/toxins15070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Crop contamination by aflatoxin B1 (AFB1), an Aspergillus-flavus-produced toxin, is frequently observed in tropical and subtropical regions. This phenomenon is emerging in Europe, most likely as a result of climate change. Alternative methods, such as biocontrol agents (BCAs), are currently being developed to reduce the use of chemicals in the prevention of mycotoxin contamination. Actinobacteria are known to produce many bioactive compounds, and some of them can reduce in vitro AFB1 concentration. In this context, the present study aims to analyze the effect of a cell-free supernatant (CFS) from Streptomyces roseolus culture on the development of A. flavus, as well as on its transcriptome profile using microarray assay and its impact on AFB1 concentration. Results demonstrated that in vitro, the S. roseolus CFS reduced the dry weight and conidiation of A. flavus from 77% and 43%, respectively, and was therefore associated with a reduction in AFB1 concentration reduction to levels under the limit of quantification. The transcriptomic data analysis revealed that 5198 genes were differentially expressed in response to the CFS exposure and among them 5169 were downregulated including most of the genes involved in biosynthetic gene clusters. The aflatoxins' gene cluster was the most downregulated. Other gene clusters, such as the aspergillic acid, aspirochlorine, and ustiloxin B gene clusters, were also downregulated and associated with a variation in their concentration, confirmed by LC-HRMS.
Collapse
Affiliation(s)
- Louise Maud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Florian Boyer
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France;
| | - Julie Bornot
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Claire Naylies
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Sophie Lorber
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Olivier Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, UPS, 31062 Toulouse, France; (Y.L.); (C.N.); (S.L.); (O.P.)
| | - Florence Mathieu
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| | - Selma P. Snini
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31326 Toulouse, France; (L.M.); (F.B.); (J.B.)
| |
Collapse
|
15
|
Morgan KD. The use of nitrogen-15 in microbial natural product discovery and biosynthetic characterization. Front Microbiol 2023; 14:1174591. [PMID: 37234518 PMCID: PMC10206073 DOI: 10.3389/fmicb.2023.1174591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
This mini-review covers the use of nitrogen-15 in bacterial and fungal natural product discovery and biosynthetic characterization from 1970 to 2022. Nitrogen is an important element in a number of bioactive and structurally intriguing natural products including alkaloids, non-ribosomal peptides, and hybrid natural products. Nitrogen-15 can be detected at natural abundance utilizing two-dimensional nuclear magnetic resonance and mass spectrometry. Additionally, it is a stable isotope that can be added to growth media for both filamentous fungi and bacteria. With stable isotope feeding, additional two-dimensional nuclear magnetic resonance and mass spectrometry strategies have become available, and there is a growing trend to use nitrogen-15 stable isotope feeding for the biosynthetic characterization of natural products. This mini-review will catalog the use of these strategies, analyze the strengths and weaknesses of the different approaches, and suggest future directions for the use of nitrogen-15 in natural product discovery and biosynthetic characterization.
Collapse
|
16
|
Tiwari P, Dufossé L. Focus and Insights into the Synthetic Biology-Mediated Chassis of Economically Important Fungi for the Production of High-Value Metabolites. Microorganisms 2023; 11:1141. [PMID: 37317115 PMCID: PMC10222946 DOI: 10.3390/microorganisms11051141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Substantial progress has been achieved and knowledge gaps addressed in synthetic biology-mediated engineering of biological organisms to produce high-value metabolites. Bio-based products from fungi are extensively explored in the present era, attributed to their emerging importance in the industrial sector, healthcare, and food applications. The edible group of fungi and multiple fungal strains defines attractive biological resources for high-value metabolites comprising food additives, pigments, dyes, industrial chemicals, and antibiotics, including other compounds. In this direction, synthetic biology-mediated genetic chassis of fungal strains to enhance/add value to novel chemical entities of biological origin is opening new avenues in fungal biotechnology. While substantial success has been achieved in the genetic manipulation of economically viable fungi (including Saccharomyces cerevisiae) in the production of metabolites of socio-economic relevance, knowledge gaps/obstacles in fungal biology and engineering need to be remedied for complete exploitation of valuable fungal strains. Herein, the thematic article discusses the novel attributes of bio-based products from fungi and the creation of high-value engineered fungal strains to promote yield, bio-functionality, and value-addition of the metabolites of socio-economic value. Efforts have been made to discuss the existing limitations in fungal chassis and how the advances in synthetic biology provide a plausible solution.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, F-97490 Saint-Denis, France
| |
Collapse
|
17
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
18
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
19
|
Yang F, He GC, Sun SH, Song TT, Min XT, Ji DW, Guo SY, Chen QA. Selective C-S Bond Constructions Using Inorganic Sulfurs via Photoinduced Electron Donor-Acceptor Activation. J Org Chem 2022; 87:14241-14249. [PMID: 36219805 DOI: 10.1021/acs.joc.2c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By complementing traditional transition metal catalysis, photoinduced catalysis has emerged as a versatile and sustainable way to achieve carbon-heteroatom bond formation. This work discloses a visible-light-induced reaction for the formation of a C-S bond from aryl halides and inorganic sulfuration agents via electron donor-acceptor (EDA) complex photocatalysis. Divergent formations of organic sulfide and disulfide have been demonstrated under mild conditions. Preliminary mechanistic studies suggest that visible-light-induced intracomplex charge transfer within the monosulfide-anion-containing EDA complex permits the C-S bond construction reactivity.
Collapse
Affiliation(s)
- Fan Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shao-Han Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Qi J, Han H, Sui D, Tan S, Liu C, Wang P, Xie C, Xia X, Gao JM, Liu C. Efficient production of a cyclic dipeptide (cyclo-TA) using heterologous expression system of filamentous fungus Aspergillus oryzae. Microb Cell Fact 2022; 21:146. [PMID: 35843946 PMCID: PMC9290255 DOI: 10.1186/s12934-022-01872-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Cyclic dipeptides are an important class of natural products owing to their structural diversity and biological activities. In fungi, the cyclo-ring system is formed through the condensation of two α-amino acids via non-ribosomal peptide synthetase (NRPS). However, there are few investigations on the functional identification of this enzyme. Additionally, information on how to increase the production of cyclic dipeptide molecules is relatively scarce. Results We isolated the Eurotium cristatum NWAFU-1 fungus from Jing-Wei Fu brick tea, whose fermentation metabolites contain echinulin-related cyclic dipeptide molecules. We cloned the cirC gene, encoding an NRPS, from E. Cristatum NWAFU-1 and transferred it into the heterologous host Aspergillus oryzae. This transformant produced a novel metabolite possessing an l-tryptophan-l-alanine cyclic dipeptide backbone (Cyclo-TA). Based on the results of heterologous expression and microsomal catalysis, CriC is the first NRPS characterized in fungi that catalyzes the formation of a cyclic dipeptide from l-tryptophan and l-alanine. After substrate feeding, the final yield reached 34 mg/L. In this study, we have characterized a novel NRPS and developed a new method for cyclic dipeptide production. Conclusions In this study we successfully expressed the E. Cristatum NWAFU-1 criC gene in A. oryzae to efficiently produce cyclic dipeptide compounds. Our findings indicate that the A. oryzae heterologous expression system constitutes an efficient method for the biosynthesis of fungal Cyclic dipeptides. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01872-8.
Collapse
Affiliation(s)
- Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China.,Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haiyan Han
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Dan Sui
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Shengnan Tan
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Changli Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, HarbinHeilongjiang, 150040, China.
| |
Collapse
|
21
|
Cochereau B, Meslet-Cladière L, Pouchus YF, Grovel O, Roullier C. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered? Molecules 2022; 27:3157. [PMID: 35630634 PMCID: PMC9144378 DOI: 10.3390/molecules27103157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, living organisms produce a wide variety of specialized metabolites to perform many biological functions. Among these specialized metabolites, some carry halogen atoms on their structure, which can modify their chemical characteristics. Research into this type of molecule has focused on how organisms incorporate these atoms into specialized metabolites. Several families of enzymes have been described gathering metalloenzymes, flavoproteins, or S-adenosyl-L-methionine (SAM) enzymes that can incorporate these atoms into different types of chemical structures. However, even though the first halogenation enzyme was discovered in a fungus, this clade is still lagging behind other clades such as bacteria, where many enzymes have been discovered. This review will therefore focus on all halogenation enzymes that have been described in fungi and their associated metabolites by searching for proteins available in databases, but also by using all the available fungal genomes. In the second part of the review, the chemical diversity of halogenated molecules found in fungi will be discussed. This will allow the highlighting of halogenation mechanisms that are still unknown today, therefore, highlighting potentially new unknown halogenation enzymes.
Collapse
Affiliation(s)
- Bastien Cochereau
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Laurence Meslet-Cladière
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| |
Collapse
|
22
|
Efficient preparation of unsymmetrical disulfides by nickel-catalyzed reductive coupling strategy. Nat Commun 2022; 13:2588. [PMID: 35546155 PMCID: PMC9095708 DOI: 10.1038/s41467-022-30256-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
Disulfides are widely found in natural products and find a wide range of applications in life sciences, materials chemistry and other fields. The preparation of disulfides mainly rely on oxidative couplings of two sulfur containing compounds. This strategy has many side reactions and other shortcomings. Herein, we describe the reductive nickel-catalyzed cross-electrophile coupling of unactivated alkyl bromides with symmetrical alkyl- and aryltetrasulfides to form alkyl-alkyl and aryl-alkyl unsymmetrical disulfides. This approach for disulfide synthesis is practical, relies on easily available, unfunctionalized substrates, and is scalable. We investigated the mechanism of this transformation and found that the tetrasulfide compound does not selectively break the central S–S bond, but regio-selectively generates trisulfide intermediates. The preparation of disulfides mainly relies on oxidative couplings of two sulfur-containing compounds, a strategy which has side reactions and other shortcomings. In this work, the authors present a reductive nickel-catalyzed cross-electrophile coupling of unactivated alkyl bromides with symmetrical tetrasulfides to form unsymmetrical disulfides, proceeding via trisulfide intermediates.
Collapse
|
23
|
Redrado S, Esteban P, Domingo MP, Lopez C, Rezusta A, Ramirez-Labrada A, Arias M, Pardo J, Galvez EM. Integration of In Silico and In Vitro Analysis of Gliotoxin Production Reveals a Narrow Range of Producing Fungal Species. J Fungi (Basel) 2022; 8:jof8040361. [PMID: 35448592 PMCID: PMC9030297 DOI: 10.3390/jof8040361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Gliotoxin is a fungal secondary metabolite with impact on health and agriculture since it might act as virulence factor and contaminate human and animal food. Homologous gliotoxin (GT) gene clusters are spread across a number of fungal species although if they produce GT or other related epipolythiodioxopiperazines (ETPs) remains obscure. Using bioinformatic tools, we have identified homologous gli gene clusters similar to the A. fumigatus GT gene cluster in several fungal species. In silico study led to in vitro confirmation of GT and Bisdethiobis(methylthio)gliotoxin (bmGT) production in fungal strain cultures by HPLC detection. Despite we selected most similar homologous gli gene cluster in 20 different species, GT and bmGT were only detected in section Fumigati species and in a Trichoderma virens Q strain. Our results suggest that in silico gli homology analyses in different fungal strains to predict GT production might be only informative when accompanied by analysis about mycotoxin production in cell cultures.
Collapse
Affiliation(s)
- Sergio Redrado
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
| | - Patricia Esteban
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | | | - Concepción Lopez
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Antonio Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Ariel Ramirez-Labrada
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Maykel Arias
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
| | - Eva M. Galvez
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
- Correspondence:
| |
Collapse
|
24
|
Reddy RJ, Shankar A, Kumar JJ, Sharadha N, Krishna GR. Diethyl phosphite-mediated switchable synthesis of bis(imidazoheterocycles) derived disulfanes and sulfanes using imidazoheterocycles and octasulfur. NEW J CHEM 2022. [DOI: 10.1039/d1nj05226h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique diethyl phosphite-mediated switchable synthesis of bis(imidazoheterocycle)-derived disulfanes and sulfanes using imidazoheterocycles with sulfur is reported. Moreover, imidazo[1,2-a]pyridine-indole derived thioethers were also realized.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Angothu Shankar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Gamidi Rama Krishna
- X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
25
|
Sweany RR, Mack BM, Moore GG, Gilbert MK, Cary JW, Lebar MD, Rajasekaran K, Damann Jr. KE. Genetic Responses and Aflatoxin Inhibition during Co-Culture of Aflatoxigenic and Non-Aflatoxigenic Aspergillus flavus. Toxins (Basel) 2021; 13:794. [PMID: 34822579 PMCID: PMC8618995 DOI: 10.3390/toxins13110794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin is a carcinogenic mycotoxin produced by Aspergillus flavus. Non-aflatoxigenic (Non-tox) A. flavus isolates are deployed in corn fields as biocontrol because they substantially reduce aflatoxin contamination via direct replacement and additionally via direct contact or touch with toxigenic (Tox) isolates and secretion of inhibitory/degradative chemicals. To understand touch inhibition, HPLC analysis and RNA sequencing examined aflatoxin production and gene expression of Non-tox isolate 17 and Tox isolate 53 mono-cultures and during their interaction in co-culture. Aflatoxin production was reduced by 99.7% in 72 h co-cultures. Fewer than expected unique reads were assigned to Tox 53 during co-culture, indicating its growth and/or gene expression was inhibited in response to Non-tox 17. Predicted secreted proteins and genes involved in oxidation/reduction were enriched in Non-tox 17 and co-cultures compared to Tox 53. Five secondary metabolite (SM) gene clusters and kojic acid synthesis genes were upregulated in Non-tox 17 compared to Tox 53 and a few were further upregulated in co-cultures in response to touch. These results suggest Non-tox strains can inhibit growth and aflatoxin gene cluster expression in Tox strains through touch. Additionally, upregulation of other SM genes and redox genes during the biocontrol interaction demonstrates a potential role of inhibitory SMs and antioxidants as additional biocontrol mechanisms and deserves further exploration to improve biocontrol formulations.
Collapse
Affiliation(s)
- Rebecca R. Sweany
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Brian M. Mack
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Geromy G. Moore
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Matthew K. Gilbert
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA; (B.M.M.); (M.K.G.); (J.W.C.); (M.D.L.)
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Kenneth E. Damann Jr.
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA 70808, USA;
| |
Collapse
|
26
|
Zhang SS, Xue J, Gu Q, Jiang X, You SL. Dearomatization reaction of β-naphthols with disulfurating reagents. Org Biomol Chem 2021; 19:8761-8771. [PMID: 34581384 DOI: 10.1039/d1ob01731d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
p-TsOH-catalyzed intermolecular dearomatization reactions of β-naphthols with disulfurating reagents were developed. Various β-naphthalenones bearing a quaternary carbon stereogenic center were obtained smoothly in good to excellent yields with high chemoselectivity in the presence of 5 mol% p-TsOH. This reaction features mild reaction conditions and excellent functional group tolerance.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Jiahui Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
27
|
Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, Goss RJM. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Chem Soc Rev 2021; 50:9443-9481. [PMID: 34368824 PMCID: PMC8407142 DOI: 10.1039/d0cs01551b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.
Collapse
Affiliation(s)
- Charlotte Crowe
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Samuel Molyneux
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Sunil V. Sharma
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Ying Zhang
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Danai S. Gkotsi
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Helen Connaris
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Rebecca J. M. Goss
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| |
Collapse
|
28
|
Du Z, Qi Q, Gao W, Ma L, Liu Z, Wang R, Chen J. Electrochemical Heteroatom-Heteroatom Bond Construction. CHEM REC 2021; 22:e202100178. [PMID: 34463430 DOI: 10.1002/tcr.202100178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/30/2023]
Abstract
Heteroatom-heteroatom linkage, with S-S bond as a presentative motif, served a crucial role in biochemicals, pharmaceuticals, pesticides, and material sciences. Thus, preparation of the privileged scaffold has always been attracting tremendous attention from the synthetic community. However, classic protocols suffered from several drawbacks, such as toxic and unstable agents, poor functional group tolerance, multiple steps, and explosive oxidizing regents as well as the transitional metal catalysts. Electrochemical organic synthesis exhibited a promising alternative to the traditional chemical reaction due to the sustainable electricity can be employed as the traceless redox agents. Hence, toxic and explosive oxidants and/or transitional metals could be discarded under mild reaction with high efficiency. In this context, a series of electrochemical approaches for the construction of heteroatom-heteroatom bond were reviewed. Notably, most of the cases illustrated the dehydrogenative feature with the clean energy molecules hydrogen as the sole by-product.
Collapse
Affiliation(s)
- Zhiying Du
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qiqi Qi
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Archives of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Zhenxian Liu
- Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|
29
|
Daba GM, Mostafa FA, Elkhateeb WA. The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool. BIORESOUR BIOPROCESS 2021; 8:52. [PMID: 38650252 PMCID: PMC10992763 DOI: 10.1186/s40643-021-00408-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/16/2021] [Indexed: 01/07/2023] Open
Abstract
Aspergillus oryzae (A. oryzae) is a filamentous micro-fungus that is used from centuries in fermentation of different foods in many countries all over the world. This valuable fungus is also a rich source of many bioactive secondary metabolites. Moreover, A. oryzae has a prestigious secretory system that allows it to secrete high concentrations of proteins into its culturing medium, which support its use as biotechnological tool in veterinary, food, pharmaceutical, and industrial fields. This review aims to highlight the significance of this valuable fungus in food industry, showing its generosity in production of nutritional and bioactive metabolites that enrich food fermented by it. Also, using A. oryzae as a biotechnological tool in the field of enzymes production was described. Furthermore, domestication, functional genomics, and contributions of A. oryzae in functional production of human pharmaceutical proteins were presented. Finally, future prospects in order to get more benefits from A. oryzae were discussed.
Collapse
Affiliation(s)
- Ghoson M Daba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Division, National Research Centre, El Buhouth Street, Dokki, Giza, 12311, Egypt.
| | - Faten A Mostafa
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Division, National Research Centre, El Buhouth Street, Dokki, Giza, 12311, Egypt.
| | - Waill A Elkhateeb
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Division, National Research Centre, El Buhouth Street, Dokki, Giza, 12311, Egypt
| |
Collapse
|
30
|
Zhang Q, Li Y, Zhang L, Luo S. Catalytic Asymmetric Disulfuration by a Chiral Bulky Three‐Component Lewis Acid‐Base. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qi Zhang
- Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Department of Chemistry University of Chinese Academy of Sciences Beijing 100490 China
| | - Yao Li
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| | - Long Zhang
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| | - Sanzhong Luo
- Center of Basic Molecular Science Department of Chemistry Tsinghua University Beijing China
| |
Collapse
|
31
|
Zhang Q, Li Y, Zhang L, Luo S. Catalytic Asymmetric Disulfuration by a Chiral Bulky Three-Component Lewis Acid-Base. Angew Chem Int Ed Engl 2021; 60:10971-10976. [PMID: 33660896 DOI: 10.1002/anie.202101569] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Indexed: 01/07/2023]
Abstract
A three-component Lewis acid-base (Lewis trio) involving a bulky chiral primary amine, B(C6 F5 )3 and a bulky tertiary amine has been developed as an effective enamine catalyst for enantioselective disulfuration reactions. The bulky tertiary amine was found to activate a bulky primary-tertiary diamine-borane Lewis pair for enamine catalysis via frustrated interaction. The resulted chiral bulky Lewis trio (BLT) allows for the construction of chiral disulfides via direct disulfuration with β-ketocarbonyls or α-branched aldehydes in a practical and highly stereocontrolled manner.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100490, China
| | - Yao Li
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Moore GG. Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains. Crit Rev Food Sci Nutr 2021; 62:4208-4225. [PMID: 33506687 DOI: 10.1080/10408398.2021.1873731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.
Collapse
Affiliation(s)
- Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, New Orleans, USA
| |
Collapse
|
33
|
Jiang G, Zhang P, Ratnayake R, Yang G, Zhang Y, Zuo R, Powell M, Huguet-Tapia JC, Abboud KA, Dang LH, Teplitski M, Paul V, Xiao R, Ahammad KH, Zaman U, Hu Z, Cao S, Luesch H, Ding Y. Fungal Epithiodiketopiperazines Carrying α,β-Polysulfide Bridges from Penicillium steckii YE, and Their Chemical Interconversion. Chembiochem 2021; 22:416-422. [PMID: 32816319 PMCID: PMC7895331 DOI: 10.1002/cbic.202000403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Indexed: 11/09/2022]
Abstract
Some fungal epithiodiketopiperazine alkaloids display α,β-polysulfide bridges alongside diverse structural variations. However, the logic of their chemical diversity has rarely been explored. Here, we report the identification of three new (2, 3, 8) and five known (1, 4-7) epithiodiketopiperazines of this subtype from a marine-derived Penicillium sp. The structure elucidation was supported by multiple spectroscopic analyses. Importantly, we observed multiple nonenzymatic interconversions of these analogues in aqueous solutions and organic solvents. Furthermore, the same biosynthetic origin of these compounds was supported by one mined gene cluster. The dominant analogue (1) demonstrated selective cytotoxicity to androgen-sensitive prostate cancer cells and HIF-depleted colorectal cells and mild antiaging activities, linking the bioactivity to oxidative stress. These results provide crucial insight into the formation of fungal epithiodiketopiperazines through chemical interconversions.
Collapse
Affiliation(s)
- Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Guang Yang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Yi Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Ran Zuo
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Magan Powell
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - José C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, 32611, FL, USA
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, 32611, FL, USA
| | - Long H Dang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
- Department of Medicine, University of Florida, Gainesville, 32610, FL, USA
| | - Max Teplitski
- Soil and Water Science Department, University of Florida, Gainesville, 32610, FL, USA
| | - Valerie Paul
- Smithsonian Marine Station at Ft., Pierce, 701 Seaway Drive, Ft. Pierce, 34949, FL, USA
| | - Rui Xiao
- Departments of Aging and Geriatric Research, Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida, Gainesville, 32610, FL, USA
| | - K H Ahammad
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Uz Zaman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii, 96720, USA
| | - Zhenquan Hu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong,Shenzhen, Guangdong, 518172, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawaii, 96720, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
34
|
Jin S, Li SJ, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental-Sulfur-Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β-CF 3 -1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:881-888. [PMID: 32985082 DOI: 10.1002/anie.202009194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/15/2020] [Indexed: 02/03/2023]
Abstract
Divergent synthesis for precise constructions of cyclic unsymmetrical diaryl disulfides or diselenides and polythiophenes from CF3 -containing 1,3-enynes and S8 was developed when the ortho group is F, Cl, Br, and NO2 on aromatic rings. Meanwhile, disulfides (diselenides) were also quickly constructed when the ortho group is H. These transformations undergo cascade thiophene construction/selective C3-position thiolation process, featuring simple operations, divergent synthesis, broad substrate scope, readily available starting materials, and valuable products. A novel plausible radical annulation process was proposed and validated by DFT calculations for the first time. A series of derivatizations about the thiophene (TBT) and disulfides were also well-represented.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
35
|
Tsunematsu Y, Maeda N, Sato M, Hara K, Hashimoto H, Watanabe K, Hertweck C. Specialized Flavoprotein Promotes Sulfur Migration and Spiroaminal Formation in Aspirochlorine Biosynthesis. J Am Chem Soc 2020; 143:206-213. [PMID: 33351612 DOI: 10.1021/jacs.0c08879] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidithiodiketopiperazines (ETPs) are a class of ecologically and medicinally important cyclodipeptides bearing a reactive transannular disulfide bridge. Aspirochlorine, an antifungal and toxic ETP isolated from Aspergillus oryzae used in sake brewing, deviates from the common ETP scaffold owing to its unusual ring-enlarged disulfide bridge linked to a spiroaminal ring system. Although this disulfide ring system is implicated in the biological activity of ETPs the biochemical basis for this derailment has remained a mystery. Here we report the discovery of a novel oxidoreductase (AclR) that represents the first-in-class enzyme catalyzing both a carbon-sulfur bond migration and spiro-ring formation, and that the acl pathway involves a cryptic acetylation as a prerequisite for the rearrangement. Genetic screening in A. oryzae identified aclR as the candidate for the complex biotransformation, and the aclR-deficient mutant provided the biosynthetic intermediate, unexpectedly harboring an acetyl group. In vitro assays showed that AclR alone promotes 1,2-sulfamyl migration, elimination of the acetoxy group, and spiroaminal formation. AclR features a thioredoxin oxidoreductase fold with a noncanonical CXXH motif that is distinct from the CXXC in the disulfide forming oxidase for the ETP biosynthesis. Crystallographic and mutational analyses of AclR revealed that the CXXH motif is crucial for catalysis, whereas the flavin-adenine dinucleotide is required as a support of the protein fold, and not as a redox cofactor. AclR proved to be a suitable bioinformatics handle to discover a number of related fungal gene clusters that potentially code for the biosynthesis of derailed ETP compounds. Our results highlight a specialized role of the thioredoxin oxidoreductase family enzyme in the ETP pathway and expand the chemical diversity of small molecules bearing an aberrant disulfide pharmacophore.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.,Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Naoya Maeda
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kodai Hara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Hashimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
36
|
Oka M, Katsube D, Tsuji T, Iida H. Phototropin-Inspired Chemoselective Synthesis of Unsymmetrical Disulfides: Aerobic Oxidative Heterocoupling of Thiols Using Flavin Photocatalysis. Org Lett 2020; 22:9244-9248. [PMID: 33226236 DOI: 10.1021/acs.orglett.0c03458] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inspired by the photochemical mechanism of a plant blue-light receptor, a unique flavin-based photocatalytic system was developed for the chemoselective heterocoupling of two different thiols, which enabled the facile synthesis of unsymmetrical disulfides. Owing to the redox- and photo-organocatalysis of flavin, the coupling reaction took place under mild metal-free conditions and visible light irradiation with the use of air, which is recognized as the ideal green oxidant.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Daichi Katsube
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Takeshi Tsuji
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504 Japan
| |
Collapse
|
37
|
Jin S, Li S, Ma X, Su J, Chen H, Lan Y, Song Q. Elemental‐Sulfur‐Enabled Divergent Synthesis of Disulfides, Diselenides, and Polythiophenes from β‐CF
3
‐1,3‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Shi‐Jun Li
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis Zhengzhou University 100 Science Avenue Zhengzhou Henan 450001 P. R. China
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation College of Material Sciences Engineering at Huaqiao University 668 Jimei Blvd Xiamen Fujian 361021 P. R. China
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University College of Chemistry at Fuzhou University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
38
|
Uka V, Cary JW, Lebar MD, Puel O, De Saeger S, Diana Di Mavungu J. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr Rev Food Sci Food Saf 2020; 19:2797-2842. [PMID: 33337039 DOI: 10.1111/1541-4337.12638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.
Collapse
Affiliation(s)
- Valdet Uka
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Division of Pharmacy, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - Jeffrey W Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Matthew D Lebar
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Abstract
An efficient moduling disulfuration was developed for polysulfide construction via a bilateral six-membered thiamine disulfurating reagent. Under the control of energy release of ring strain, diverse unsymmetrical trisulfides and tetrasulfides were generated through the assembly of nucleophiles on both sides of the sulfur-sulfur motif. This strategy exhibits features of high efficiency, mild conditions, and general scope.
Collapse
Affiliation(s)
- Jiahui Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
40
|
Li X, Mai S, Li X, Xu J, Xu H, Song Q. Cu-Catalyzed o-Amino Benzofuranthioether Formation from N-Tosylhydrazone-Bearing Thiocarbamates and Arylative Electrophiles. Org Lett 2020; 22:7874-7878. [PMID: 32990445 DOI: 10.1021/acs.orglett.0c02778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An important framework of o-amino benzofuranthioethers was constructed by Cu-catalyzed arylative cyclization of N-tosylhydrazone-bearing thiocarbamates with silylaryl triflates or ArI. This transformation provides a novel strategy for the synthesis of valuable arylative o-amino benzofuranthioethers in moderate yields which could not be obtained from known methods. The reaction features smart design, efficient construction, and mild reaction conditions.
Collapse
Affiliation(s)
- Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Shaoyu Mai
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Xin Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Hetao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
41
|
Dai J, Zhu M, Qi X, Wang Y, Li H, Tang S, Wang Q, Chen A, Liu M, Gu Q, Li D, Li J. Fungal mycotoxin penisuloxazin A, a novel C-terminal Hsp90 inhibitor and characteristics of its analogues on Hsp90 function related to binding sites. Biochem Pharmacol 2020; 182:114218. [PMID: 32949584 DOI: 10.1016/j.bcp.2020.114218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Hsp90 is a promising drug target for cancer therapy. However, toxicity and moderate effect are limitations of current inhibitors owing to broad protein degradation. The fungal mycotoxin penisuloxazin A (PNSA) belongs to a new epipolythiodiketopiperazines (ETPs) possessing a rare 3H-spiro[benzofuran-2,2'-piperazine] ring system. PNSA bound to cysteine residues C572/C598 of CT-Hsp90 with disulfide bonds and inhibits Hsp90 activity, resulting in apoptosis and growth inhibition of HCT116 cells in vitro and in vivo. We identified that analogues PEN-A and HDN-1 bound to C572/C597 and C572 of CT-Hsp90α respectively, with binding pattern very similar to PNSA. These ETPs exhibited different effects on ATPase activity, dimerization formation and selectivity on client protein of Hsp90, indicating client recognition of Hsp90 can be exactly regulated by different sites of Hsp90. Our findings not only offer new chemotypes for anticancer drug development, but also help to better understand biological function of Hsp90 for exploring inhibitor with some client protein bias.
Collapse
Affiliation(s)
- Jiajia Dai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Meilin Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Yanjuan Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Huilin Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Academy of Sciences, Shanghai 201203, PR China
| | - Qiang Wang
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, PR China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| |
Collapse
|
42
|
Sahharova LT, Gordeev EG, Eremin DB, Ananikov VP. Pd-Catalyzed Synthesis of Densely Functionalized Cyclopropyl Vinyl Sulfides Reveals the Origin of High Selectivity in a Fundamental Alkyne Insertion Step. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liliya T. Sahharova
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Evgeniy G. Gordeev
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
- The Bridge@USC, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Valentine P. Ananikov
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
43
|
Minges H, Sewald N. Recent Advances in Synthetic Application and Engineering of Halogenases. ChemCatChem 2020. [DOI: 10.1002/cctc.202000531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hannah Minges
- Organic and Bioorganic Chemistry Department of Chemistry Bielefeld University Universitätsstraße 25 33501 Bielefeld Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry Department of Chemistry Bielefeld University Universitätsstraße 25 33501 Bielefeld Germany
| |
Collapse
|
44
|
Zhu M, Zhang X, Huang X, Wang H, Anjum K, Gu Q, Zhu T, Zhang G, Li D. Irregularly Bridged Epipolythiodioxopiperazines and Related Analogues: Sources, Structures, and Biological Activities. JOURNAL OF NATURAL PRODUCTS 2020; 83:2045-2053. [PMID: 32543845 DOI: 10.1021/acs.jnatprod.9b01283] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are a class of biologically active fungal secondary metabolites characterized by a bridged polysulfide piperazine ring. Regularly, the sulfide functionality is attached in the α-positions of the dioxopiperazine scaffold. However, ETPs possessing irregular sulfur bridges have rarely been explored. This review summarizes that 83 compounds of this subtype have been isolated and characterized since the discovery of gliovirin in 1982. Herein, particular emphasis is given to the isolation, chemistry, and biological activity of this subtype. For a better understanding, a relevant summary focusing on the source microorganisms and their taxonomy is provided and will help elucidate the fascinating chemistry and biology of these unusual ETPs.
Collapse
Affiliation(s)
- Meilin Zhu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, People's Republic of China
| | - Xuewen Zhang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, People's Republic of China
| | - Xuenan Huang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, People's Republic of China
| | - Haotian Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, People's Republic of China
| | - Komal Anjum
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
45
|
Wang D, Liang X, Xiong M, Zhu H, Zhou Y, Pan Y. Synthesis of unsymmetrical disulfides via PPh 3-mediated reductive coupling of thiophenols with sulfonyl chlorides. Org Biomol Chem 2020; 18:4447-4451. [PMID: 32469364 DOI: 10.1039/d0ob00804d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A facile and rapid synthesis of unsymmetrical aryl disulfides using PPh3-mediated reductive coupling of thiophenols with aryl sulfonyl chlorides was described. Good functional group tolerance and scalability were achieved in this strategy. More importantly, the approach enables the introduction of sulfonyl chlorides into the synthesis of asymmetric organic disulfides under catalyst- and base-free conditions. Using this method, unsymmetrical aromatic disulfides could be prepared from inexpensive and readily available starting materials in moderate to excellent isolated yields, through a nucleophilic substitution pathway.
Collapse
Affiliation(s)
- Dungai Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xiao Liang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Mingteng Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Heping Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yifeng Zhou
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
46
|
Jannapu Reddy R, Waheed M, Rama Krishna G. Phenylboronic acid-catalyzed tandem construction of S-S and C-S bonds: a new method for the synthesis of benzyl disulfanylsulfone derivatives from S-benzyl thiosulfonates. Org Biomol Chem 2020; 18:3243-3248. [PMID: 32285079 DOI: 10.1039/d0ob00442a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A unique phenylboronic acid-catalyzed dimerization-sulfonylation of S-benzyl thiosulfonates has been disclosed. A metal-free tandem construction of S-S and C-S bonds is an operationally simple method to access a wide range of benzyl disulfanylsulfone derivatives in high to excellent yields. Moreover, the robustness of this tandem transformation has been demonstrated by gram-scale reactions, and a plausible mechanism is also proposed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Md Waheed
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Gamidi Rama Krishna
- X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
47
|
Huang ZL, Ye W, Zhu MZ, Kong YL, Li SN, Liu S, Zhang WM. Interaction of a Novel Zn2Cys6 Transcription Factor DcGliZ with Promoters in the Gliotoxin Biosynthetic Gene Cluster of the Deep-Sea-Derived Fungus Dichotomomyces cejpii. Biomolecules 2019; 10:E56. [PMID: 31905743 PMCID: PMC7022936 DOI: 10.3390/biom10010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
Gliotoxin is an important epipolythiodioxopiperazine, which was biosynthesized by the gli gene cluster in Aspergillus genus. However, the regulatory mechanism of gliotoxin biosynthesis remains unclear. In this study, a novel Zn2Cys6 transcription factor DcGliZ that is responsible for the regulation of gliotoxin biosynthesis from the deep-sea-derived fungus Dichotomomyces cejpii was identified. DcGliZ was expressed in Escherichia coli and effectively purified from inclusion bodies by refolding. Using electrophoretic mobility shift assay, we demonstrated that purified DcGliZ can bind to gliG, gliM, and gliN promoter regions in the gli cluster. Furthermore, the binding kinetics and affinity of DcGliZ protein with different promoters were measured by surface plasmon resonance assays, and the results demonstrated the significant interaction of DcGliZ with the gliG, gliM, and gliN promoters. These new findings would lay the foundation for the elucidation of future gliotoxin biosynthetic regulation mechanisms in D. cejpii.
Collapse
Affiliation(s)
| | - Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Z.-L.H.); (M.-Z.Z.); (Y.-L.K.); (S.-N.L.); (S.L.)
| | | | | | | | | | - Wei-Min Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Z.-L.H.); (M.-Z.Z.); (Y.-L.K.); (S.-N.L.); (S.L.)
| |
Collapse
|
48
|
rmtA-Dependent Transcriptome and Its Role in Secondary Metabolism, Environmental Stress, and Virulence in Aspergillus flavus. G3-GENES GENOMES GENETICS 2019; 9:4087-4096. [PMID: 31601618 PMCID: PMC6893206 DOI: 10.1534/g3.119.400777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aspergillus flavus colonizes numerous oil seed crops such as maize, peanuts, treenuts and cottonseed worldwide, contaminating them with aflatoxins and other harmful toxins. Previously our lab characterized the gene rmtA, which encodes an arginine methyltransferase in A. flavus, and demonstrated its role governing the expression of regulators in the aflatoxin gene cluster and subsequent synthesis of toxin. Furthermore, our studies revealed that rmtA also controls conidial and sclerotial development implicating it as an epigenetic regulator in A. flavus. To confirm this, we performed a RNA sequencing analysis to ascertain the extent of rmtA’s influence on the transcriptome of A. flavus. In this analysis we identified over 2000 genes that were rmtA-dependent, including over 200 transcription factor genes, as well as an uncharacterized secondary metabolite gene cluster possibly responsible for the synthesis of an epidithiodiketopiperazine-like compound. Our results also revealed rmtA-dependent genes involved in multiple types of abiotic stress response in A. flavus. Importantly, hundreds of genes active during maize infection were also regulated by rmtA. In addition, in the animal infection model, rmtA was dispensable for virulence, however forced overexpression of rmtA increased mortality with respect to the wild type.
Collapse
|
49
|
Greco C, Pfannenstiel BT, Liu JC, Keller NP. Depsipeptide Aspergillicins Revealed by Chromatin Reader Protein Deletion. ACS Chem Biol 2019; 14:1121-1128. [PMID: 31117395 DOI: 10.1021/acschembio.9b00161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expression of biosynthetic gene clusters (BGCs) in filamentous fungi is highly regulated by epigenetic remodeling of chromatin structure. Two classes of histone modifying proteins, writers (which place modifications on histone tails) and erasers (which remove the modifications), have been used extensively to activate cryptic BGCs in fungi. Here, for the first time, we present activation of a cryptic BGC by a third category of histone modifying proteins, reader proteins that recognize histone tail modifications and commonly mediate writer and eraser activity. Loss of the reader SntB (Δ sntB) resulted in the synthesis of two cryptic cyclic hexa-depsipeptides, aspergillicin A and aspergillicin F, in the fungus Aspergillus flavus. Liquid chromatography, high resolution mass spectrometry, and NMR analysis coupled with bioinformatic analysis and gene deletion experiments revealed that a six adenylation (A) domain nonribosomal peptide synthetase (NRPS, called AgiA) and O-methyltransferase (AgiB) were required for metabolite formation. A proposed biosynthetic scheme illustrates the requirement for unusual NRPS domains, such as a starting condensation domain and a thiolesterase domain proposed to cyclize the depsipeptides. This latter activity has only been found in bacterial but not fungal NRPS. The agi BGC-unique to A. flavus and some closely related species (e.g., A. oryzae, A. arachidicola)-is located next to a conserved Aspergillus siderophore BGC syntenic to other fungi.
Collapse
Affiliation(s)
- Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | | | - James C. Liu
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, United States
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, United States
| |
Collapse
|
50
|
Frisvad J, Hubka V, Ezekiel C, Hong SB, Nováková A, Chen A, Arzanlou M, Larsen T, Sklenář F, Mahakarnchanakul W, Samson R, Houbraken J. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol 2019; 93:1-63. [PMID: 30108412 PMCID: PMC6080641 DOI: 10.1016/j.simyco.2018.06.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aflatoxins and ochratoxins are among the most important mycotoxins of all and producers of both types of mycotoxins are present in Aspergillus section Flavi, albeit never in the same species. Some of the most efficient producers of aflatoxins and ochratoxins have not been described yet. Using a polyphasic approach combining phenotype, physiology, sequence and extrolite data, we describe here eight new species in section Flavi. Phylogenetically, section Flavi is split in eight clades and the section currently contains 33 species. Two species only produce aflatoxin B1 and B2 (A. pseudotamarii and A. togoensis), and 14 species are able to produce aflatoxin B1, B2, G1 and G2: three newly described species A. aflatoxiformans, A. austwickii and A. cerealis in addition to A. arachidicola, A. minisclerotigenes, A. mottae, A. luteovirescens (formerly A. bombycis), A. nomius, A. novoparasiticus, A. parasiticus, A. pseudocaelatus, A. pseudonomius, A. sergii and A. transmontanensis. It is generally accepted that A. flavus is unable to produce type G aflatoxins, but here we report on Korean strains that also produce aflatoxin G1 and G2. One strain of A. bertholletius can produce the immediate aflatoxin precursor 3-O-methylsterigmatocystin, and one strain of Aspergillus sojae and two strains of Aspergillus alliaceus produced versicolorins. Strains of the domesticated forms of A. flavus and A. parasiticus, A. oryzae and A. sojae, respectively, lost their ability to produce aflatoxins, and from the remaining phylogenetically closely related species (belonging to the A. flavus-, A. tamarii-, A. bertholletius- and A. nomius-clades), only A. caelatus, A. subflavus and A. tamarii are unable to produce aflatoxins. With exception of A. togoensis in the A. coremiiformis-clade, all species in the phylogenetically more distant clades (A. alliaceus-, A. coremiiformis-, A. leporis- and A. avenaceus-clade) are unable to produce aflatoxins. Three out of the four species in the A. alliaceus-clade can produce the mycotoxin ochratoxin A: A. alliaceus s. str. and two new species described here as A. neoalliaceus and A. vandermerwei. Eight species produced the mycotoxin tenuazonic acid: A. bertholletius, A. caelatus, A. luteovirescens, A. nomius, A. pseudocaelatus, A. pseudonomius, A. pseudotamarii and A. tamarii while the related mycotoxin cyclopiazonic acid was produced by 13 species: A. aflatoxiformans, A. austwickii, A. bertholletius, A. cerealis, A. flavus, A. minisclerotigenes, A. mottae, A. oryzae, A. pipericola, A. pseudocaelatus, A. pseudotamarii, A. sergii and A. tamarii. Furthermore, A. hancockii produced speradine A, a compound related to cyclopiazonic acid. Selected A. aflatoxiformans, A. austwickii, A. cerealis, A. flavus, A. minisclerotigenes, A. pipericola and A. sergii strains produced small sclerotia containing the mycotoxin aflatrem. Kojic acid has been found in all species in section Flavi, except A. avenaceus and A. coremiiformis. Only six species in the section did not produce any known mycotoxins: A. aspearensis, A. coremiiformis, A. lanosus, A. leporis, A. sojae and A. subflavus. An overview of other small molecule extrolites produced in Aspergillus section Flavi is given.
Collapse
Affiliation(s)
- J.C. Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - C.N. Ezekiel
- Department of Microbiology, Babcock University, Ilishan Rémo, Nigeria
| | - S.-B. Hong
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea
| | - A. Nováková
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - A.J. Chen
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - M. Arzanlou
- Department of Plant Protection, University of Tabriz, Tabriz, Iran
| | - T.O. Larsen
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - F. Sklenář
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - W. Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| |
Collapse
|