1
|
Dai P, Luo C, Xu Z, Sun S, Tian Y, Zhang KY, Lo KKW, Liu S, Huang W, Wang H, Zhao Q. Phosphorescent Iridium(III) Phenanthrolinedione Complexes as Lifetime-Responsive Bioorthogonal Probes for Wash-Free Time-Resolved Bioimaging of Cellular Labeling. Angew Chem Int Ed Engl 2025:e202504230. [PMID: 40264284 DOI: 10.1002/anie.202504230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Fluorogenic bioorthogonal probes are crucial tools in biomedical research, which enable non-invasive, wash-free imaging of specific biomolecules in living systems. Lifetime-responsive bioorthogonal probes represent another promising and attractive alternative, offering the potential for real-time, wash-free visualization of bioorthogonal labeling processes via photoluminescence lifetime imaging microscopy (PLIM). However, their widespread application is limited by the lack of suitable lifetime-responsive probes. Herein, a series of phosphorescent iridium(III) phenanthrolinedione complexes were reported. Intriguingly, upon bioorthogonal reaction with an α-angelica lactone derivative, the complexes exhibited remarkable emission responses in three distinct manners, which were found to correlate with the different emissive excited states of the complexes. Crucially, two of the complexes maintained similar emission intensity but exhibited significant emission lifetime elongation during labeling reactions, which facilitated simultaneous and discriminative visualization of the reacted and unreacted probes in cellular imaging without the need for washing steps. One of the complexes was used for organelle targeting and specific protein labeling through bioorthogonal reactions in living cells. The intracellular probe transportation and labeling dynamics were visualized and analyzed using PLIM. This work highlights the unique potential of lifetime-responsive iridium(III) complexes as powerful chemical tools for live-cell imaging and unveiling the spatiotemporal dynamics of biomolecules during bioorthogonal reactions.
Collapse
Affiliation(s)
- Peiling Dai
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Chenxiao Luo
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Zhiqi Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Shuaishuai Sun
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Yuyang Tian
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry and State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Shujuan Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Wei Huang
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Qiang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM) and College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| |
Collapse
|
2
|
Geppert M, Müller M, Scherer KJ, Henzler J, Winter RF. Singlet, Doublet, and Triplet Emissions of Diarylamine-Modified Bismuth Pincer Complexes. Chemistry 2025:e202500384. [PMID: 40214182 DOI: 10.1002/chem.202500384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
We present six bismuth complexes (NCRN)BiX2 (X = Cl, I) with diarylamine-modified pincer ligands (NCRN = (4-R-C6H4)2N-C6H2-(CH2NMe2)2-1,3; R = Me, O, NMe2) and report on their optoelectronic, photophysical, and electrochemical properties. The complexes exhibit intriguing photophysical behavior, with the p-tolyl and p-anisyl derivatives showing phosphorescence at 77 K in frozen solvent matrices and at room temperature (r.t.) in the solid state. In THF solutions at r.t., only ligand-based fluorescence is observed with strongly reduced quantum yields compared to free proligands NCHRN. Electrochemical studies reveal up to three reversible one-electron oxidations. The NMe2-substituted complexes display the lowest oxidation potentials and the largest number of redox waves. Radical cations [NCHNMe2N]+ and [(NCNMe2N)BiX2]+ are chemically stable and fluoresce weakly in the near-infrared (NIR) at ca. 1200 nm.
Collapse
Affiliation(s)
- Marcel Geppert
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Michelle Müller
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Katharina J Scherer
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jessica Henzler
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
3
|
Geppert M, Müller M, Linseis M, Winter RF. Room-temperature phosphorescence and static excimer excitation of pyrene-modified ( NCN) pincer bismuth complexes. Dalton Trans 2025; 54:1779-1783. [PMID: 39804203 DOI: 10.1039/d4dt03304c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
We present the synthesis, characterization, and photophysical properties of two pyrene-modified (NCN) pincer bismuth complexes, where the pyrenyl residues are either part of the cyclometalating pincer ligand (1) or bound as monodentate ligands to the BiIII ion (2). Both complexes are dually emissive at 77 K. For complex 2, pyrenyl phosphorescence persists at r.t. in degassed CH2Cl2, albeit with reduced intensity. This renders 2 one of only a handful of Bi complexes showing this property.
Collapse
Affiliation(s)
- Marcel Geppert
- Department of Chemistry, Universität Konstanz, 78464 Konstanz, Germany.
| | - Michelle Müller
- Department of Chemistry, Universität Konstanz, 78464 Konstanz, Germany.
| | - Michael Linseis
- Department of Chemistry, Universität Konstanz, 78464 Konstanz, Germany.
| | - Rainer F Winter
- Department of Chemistry, Universität Konstanz, 78464 Konstanz, Germany.
| |
Collapse
|
4
|
Rigolot V, Simon C, Bouchet A, Lancel L, Di Battista V, Karpov D, Vauzeilles B, Spriet C, Sliwa M, Bohic S, Biot C, Lion C. Click-ready iridium(iii) complexes as versatile bioimaging probes for bioorthogonal metabolic labeling. RSC Chem Biol 2024:d4cb00255e. [PMID: 39668813 PMCID: PMC11632520 DOI: 10.1039/d4cb00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
Herein, we report the synthesis, photophysical characterization and validation of iridium(iii)-polypyridine complexes functionalized for click chemistry and bioorthogonal chemistry, as well as their versatile applications as probes in bioimaging studies exploiting metabolic labeling. The designed dyes are conjugated to chemical reporters in a specific manner within cells by CuAAC ligation and display attractive photophysical properties in the UV-visible range. They are indeed highly photostable and emit in the far-red to near-IR region with long lifetimes and large Stokes shifts. We demonstrate that they can be efficiently used to monitor nascent intracellular sialylated glycoconjugates in bioorthogonal MOE studies with a varied panel of optical and non-optical techniques, namely conventional UV-vis laser scanning confocal microscopy (for routine purposes), UV-vis time-resolved luminescence imaging (for specificity and facilitated multiplexing with nano-environment sensitivity), synchrotron radiation based X-ray fluorescence nanoimaging (for high resolution, elemental mapping and quantification in situ) and inductively coupled plasma mass spectrometry (for routine quantification on cell populations with high statistical confidence). The synthesized Ir(iii) complexes were utilized in single labeling experiments, as well as in dual click-labeling experiments utilizing two distinct monosaccharide reporters relevant to the same metabolic pathway.
Collapse
Affiliation(s)
- Vincent Rigolot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| | - Clémence Simon
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| | - Aude Bouchet
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'Environnement Lille France
| | - Lucas Lancel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| | | | - Dmitry Karpov
- Univ. Grenoble Alpes, INSERM, UA 07 Synchrotron Radiation for Biomedicine (STROBE) Grenoble ID16A France
- Nano-imaging beamline, European Synchrotron Radiation Facility Grenoble France
| | - Boris Vauzeilles
- Chemical Biology Department, Univ. Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles UPR 2301 91198 Gif-sur-Yvette France
| | - Corentin Spriet
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille US 41 - UAR 2014 - PLBS Lille France
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'Environnement Lille France
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau France
| | - Sylvain Bohic
- Univ. Grenoble Alpes, INSERM, UA 07 Synchrotron Radiation for Biomedicine (STROBE) Grenoble ID16A France
- Nano-imaging beamline, European Synchrotron Radiation Facility Grenoble France
| | - Christophe Biot
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| | - Cédric Lion
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille France
| |
Collapse
|
5
|
Ahrens JJ, Denison M, Garcia S, Gupta S, Kocarek TA, Sevrioukova IF, Turro C, Kodanko JJ. Mixed Ru(II)-Ir(III) Complexes as Photoactive Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4. Inorg Chem 2024; 63:18509-18518. [PMID: 39283981 PMCID: PMC11458343 DOI: 10.1021/acs.inorgchem.4c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is a crucial enzyme in human drug metabolism. To garner photochemical control over the inhibition of CYP3A4, a potent Ir(III)-based inhibitor of CYP3A4 was complexed with two Ru(II)-based photocaging groups. Chemical, photochemical, and biological properties of the photocaged inhibitors were characterized. Importantly, mixed Ru(II)-Ir(III) complexes strongly absorb green light, which facilitates the photochemical release of the Ir(III) inhibitor from the Ru(II) caging fragment [Ru(tpy)(Me2bpy)]2+, where tpy = 2,2':6',2″-terpyridine and Me2bpy = 6,6'-dimethyl-2,2'-bipyridine. Emission turn on, type II heme binding, and more potent inhibition under light vs dark conditions were observed. The study also demonstrated that a Ru(II)-Ir(III) conjugate can be photoactivated to exert cytotoxic effects on MCF-7 breast cancer cells upon green light exposure. Additionally, a synthesized analogue with one [Ru(TPA)]2+ fragment (TPA = tris(pyridin-2-ylmethyl)amine) and two Ir(III) centers, although resistant to photochemical release, showed strong inhibition of CYP3A4 both in purified form and in CYP3A4-overexpressing HepG2 cells, with nanomolar potency. These mixed Ru(II)-Ir(III) compounds can permeate cell membranes and inhibit CYP3A4, presenting a new class of bioactive compounds.
Collapse
Affiliation(s)
- Justin J Ahrens
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Santana Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sayak Gupta
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Wayne State University, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
6
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
7
|
Geppert M, Jellinek K, Linseis M, Bodensteiner M, Geppert J, Unterlass MM, Winter RF. Dual Fluorescence and Phosphorescence Emissions from Dye-Modified ( NCN)-Bismuth Pincer Thiolate Complexes. Inorg Chem 2024; 63:14876-14888. [PMID: 39078292 PMCID: PMC11323247 DOI: 10.1021/acs.inorgchem.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the synthesis, characterization, and photophysical properties of four new dye-modified (NCN)Bi pincer complexes with two mercaptocoumarin or mercaptopyrene ligands. Their photophysical properties were probed by UV/vis spectroscopy, photoluminescence (PL) studies, and time-dependent density functional theory (TD-DFT) calculations. Absorption spectra of the complexes are dominated by mixed pyrene or coumarin π → π*/n(pS) → pyrene or coumarin π* transitions. While unstable toward reductive elimination of the corresponding disulfide under irradiation at room temperature, the complexes provide stable emissions at 77 K. Under these conditions, coumarin complexes 2 and 4 exhibit exclusively green phosphorescence at 508 nm. In contrast, the emissive properties of pyrene complexes 1 and 3 depend on the excitation wavelength and on sample concentration. Irradiation into the lowest-energy absorption band exclusively triggers red phosphorescence from the pyrenyl residues at 640 nm. At concentrations c < 1 μM, excitation into higher excited electronic states results in blue pyrene fluorescence. With increasing c (1-100 μM), the emission profile changes to dual fluorescence and phosphorescence emission, with a steady increase of the phosphorescence intensity, until at c ≥ 1 mM only red phosphorescence ensues. Progressive red-shifts and broadening of steady-state excitation spectra with increasing sample concentration suggest the presence of static excimers, as we observe it for concentrated solutions of pyrene. Crystalline and powdered samples of 1 indeed show intermolecular association through π-stacking. TD-DFT calculations on model dimers and a tetramer of 1 support the idea of aggregation-induced intersystem crossing (AI-ISC) as the underlying reason for this behavior.
Collapse
Affiliation(s)
- Marcel Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Kai Jellinek
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Jessica Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Meng T, Shi X, Chen H, Xu Z, Qin W, Wei K, Yang X, Huang J, Liao C. Mitochondrial-targeted cyclometalated Ir(III)-5,7-dibromo/dichloro-2-methyl-8-hydroxyquinoline complexes and their anticancer efficacy evaluation in Hep-G2 cells. Metallomics 2024; 16:mfae032. [PMID: 38955388 DOI: 10.1093/mtomcs/mfae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Both 8-hydroxyquinoline compounds and iridium (Ir) complexes have emerged as potential novel agents for tumor therapy. In this study, we synthesized and characterized two new Ir(III) complexes, [Ir(L1)(bppy)2] (Br-Ir) and [Ir(L2)(bppy)2] (Cl-Ir), with 5,7-dibromo-2-methyl-8-hydroxyquinoline (HL-1) or 5,7-dichloro-2-methyl-8-hydroxyquinoline as the primary ligand. Complexes Br-Ir and Cl-Ir successfully inhibited antitumor activity in Hep-G2 cells. In addition, complexes Br-Ir and Cl-Ir were localized in the mitochondrial membrane and caused mitochondrial damage, autophagy, and cellular immunity in Hep-G2 cells. We tested the proteins related to mitochondrial and mitophagy by western blot analysis, which showed that they triggered mitophagy-mediated apoptotic cell death. Remarkably, complex Br-Ir showed high in vivo antitumor activity, and the tumor growth inhibition rate was 63.0% (P < 0.05). In summary, our study on complex Br-Ir revealed promising results in in vitro and in vivo antitumor activity assays.
Collapse
Affiliation(s)
- Ting Meng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Xiongzhi Shi
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, China
| | - Hongfen Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Zhong Xu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Weirong Qin
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Kehua Wei
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Xin Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing Jiangsu, China
| | - Jin Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| | - Chuanan Liao
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning Guangxi, China
| |
Collapse
|
9
|
Yang GG, Zhao YQ, Zhang L, Sun S, Liu B, Han X. Monitoring the Mitochondrial Viscosity Changes During Cuproptosis with Iridium(III) Complex Probe via In Situ Phosphorescence Lifetime Imaging. Anal Chem 2024; 96:5931-5939. [PMID: 38573171 DOI: 10.1021/acs.analchem.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cuproptosis is a novel copper-dependent form of programmed cell death, displaying important regulatory functions in many human diseases, including cancer. However, the relationship between the changes in mitochondrial viscosity, a key factor associated with cellular malfunction, and cuproptosis is still unclear. Herein, we prepared a phosphorescent iridium (Ir) complex probe for precisely monitoring the changes of mitochondrial viscosity during cuprotosis via phosphorescence lifetime imaging. The Ir complex probe possessed microsecond lifetimes (up to 1 μs), which could be easily distinguished from cellular autofluorescence to improve the imaging contrast and sensitivity. Benefiting from the long phosphorescence lifetime, excellent viscosity selectivity, and mitochondrial targeting abilities, the Ir complex probe could monitor the increase in the mitochondrial viscosity during cuproptosis (from 46.8 to 68.9 cP) in a quantitative manner. Moreover, through in situ fluorescence imaging, the Ir complex probe successfully monitored the increase in viscosity in zebrafish treated with lipopolysaccharides or elescolomol-Cu2+, which were well-known cuproptosis inducers. We anticipate that this new Ir complex probe will be a useful tool for in-depth understanding of the biological effects of mitochondrial viscosity during cuproptosis.
Collapse
Affiliation(s)
- Gang-Gang Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Ying Qing Zhao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Lan Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Sujuan Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Bin Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
10
|
Li Y, Zhang Q, Wang Q, Wang X, Wang J, Zhu X, Chen X, Wang S, Sun X, Zhou H. Three-Four Photon Transition Mn(II) Complex Monitoring Lysosome-Related ATP in Real Time via Fluorescence Lifetime Imaging. Anal Chem 2024; 96:3535-3543. [PMID: 38353024 DOI: 10.1021/acs.analchem.3c05390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Currently, in situ monitoring of the adenosine triphosphate (ATP) level in lysosomes is critical to understand their involvement in various biological processes, but it remains difficult due to the interferences of limited targeting and low resolution of fluorescent probes. Herein, we report a classic Mn(II) probe (FX2-MnCl2) with near-infrared (NIR) nonlinear (NLO) properties, accompanied by three-four photon transition and fivefold fluorescence enhancement in the presence of ATP. FX2-MnCl2 combines with ATP through dual recognition sites of diethoxy and manganese ions to reflect slightly fluorescence lifetime change. Through the synergy of multiphoton fluorescence imaging (MP-FI) and multiphoton fluorescence lifetime imaging microscopy (MP-FLIM), it is further demonstrated that FX2-MnCl2 displays lysosome-specific targeting behavior, which can monitor lysosome-related ATP migration under NIR laser light. This work provides a novel multiphoton transformation fluorescence complex, which might be a potential candidate as a simple and straightforward biomarker of lysosome ATP in vitro for clinical diagnosis.
Collapse
Affiliation(s)
- Yaqin Li
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Qiong Zhang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Qiqi Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xuan Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xingxing Chen
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
11
|
Hu M, Zhou XL, Xiao TX, Hao L, Li Y. Inducing and monitoring mitochondrial pH changes with an iridium(III) complex via two-photon lifetime imaging. Dalton Trans 2023; 52:15859-15865. [PMID: 37828856 DOI: 10.1039/d3dt02541a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Real-time monitoring of mitochondrial dynamic changes plays a key role in the development of mitochondria-targeted anticancer theranostic agents. In this work, a pH-responsive and mitochondria-targeted cyclometalated iridium(III) complex MitoIr-NH has been explored as a novel anticancer agent. MitoIr-NH displayed pH-responsive phosphorescence intensity and lifetime, accumulated in mitochondria, showed higher antiproliferative activity and induced a series of mitochondria-related events. Moreover, MitoIr-NH could simultaneously induce mitophagy and quantitatively monitor mitochondrial pH changes through two-photon phosphorescence lifetime imaging microscopy (TPPLIM) in a real-time manner.
Collapse
Affiliation(s)
- Meng Hu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Xin-Lan Zhou
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Tian-Xin Xiao
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
12
|
Liu T, Zhang C, Huo S, Zhou Y, Yi Y, Zhu G. Target-Controlled Redox Reaction and Ru(II) Release of a Smart Metal-Organic Framework Nanomaterial for Highly Sensitive Ratiometric Homogeneous Electroanalysis of Cadmium(II). Inorg Chem 2023; 62:17425-17432. [PMID: 37812810 DOI: 10.1021/acs.inorgchem.3c02760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
In this work, a highly sensitive ratiometric homogeneous electroanalysis (HEA) strategy of cadmium(II) (Cd2+) was proposed via a Cd2+-controlled redox reaction and Ru(bpy)32+ (Ru(II)) release from a smart metal-organic framework (MOF) nanomaterial. For achieving this purpose, Ru(II) was entrapped ingeniously into the pores of an MOF material (UiO-66-NH2) and subsequently gated by the double-strand hybrids of a Cd2+-aptamer (Apt) and its complementary sequences (CP) to form a novel smart nanomaterial (denoted as Ru@UiO-66-NH2); meanwhile, Fe(III) was selected as an additional probe present in electrolyte to facilitate the Ru(II) redox reaction: Fe(III) + Ru(II) → Fe(II) + Ru(III). Owing to the strong binding effect of the Cd2+ target to the specific Apt, the Apt-CP hybridization at Ru@UiO-66-NH2 would be destroyed in the presence of Cd2+, and the related Apt was further induced away from the smart nanomaterial, leading to the opening of the gate and release of Ru(II). Meanwhile, the released Ru(II) was quickly oxidized chemically by Fe(III) to Ru(III). On the basis of the generated Ru(III) and consumed Fe(III), the ratio of the reduction currents between Ru(III) and Fe(III) exhibits an enhancement and it is dependent on the level of Cd2+; thus, a novel HEA strategy of Cd2+ was then designed. Under the optimal conditions, the HEA sensor shows a wide linearity ranging from 10.0 pM to 500.0 nM, and the achieved detection limit of Cd2+ is 3.3 pM. The as-designed ratiometric HEA strategy not only offers a unique idea to realize a simple and sensitive assay for Cd2+ but also possesses significant potential as an effective tool to be introduced for other target analysis just via altering the specific Apt.
Collapse
Affiliation(s)
- Tingting Liu
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, P.R. China
| | - Conglin Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shuhao Huo
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yifan Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yinhui Yi
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, P.R. China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha 410019, P.R. China
- The Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, P.R. China
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, and Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
13
|
Lin B, Li Z, Lin Y, Shu Y, Wang J. Evaluation of intracellular lipid droplets viscosity by a probe with high fluorescence quantum yield. Anal Chim Acta 2023; 1279:341776. [PMID: 37827674 DOI: 10.1016/j.aca.2023.341776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Lipid droplets (LDs) are an important organelle as the main energy storage site in cells. LDs viscosity controls the material and energy exchange between it and other organelles. Furthermore, the LDs metabolic abnormalities, cell dysfunction, some diseases may be attributed to the singular LDs viscosity. Currently, the fluorescent probes for sensing the variations of LDs viscosity are still scarce and expose some drawbacks of low fluorescence quantum yield, low sensitivity and LDs polarity interference. Thus, the development of high performance probes is significant to detect LDs viscosity. RESULTS We hereby provide a lipophilic fluorescent probe (TPE-BET) with high fluorescence quantum yield (Φf, 0.91 in glycerol) for imaging LDs viscosity in living cells. With the increase of viscosity from 0.54 cp to 934 cp, the fluorescence at λex/λem = 405/520 nm and the fluorescence quantum yield of TPE-BET linearly increased by 64.9 and 128.5 folds, respectively. Meanwhile, the outstanding LDs staining capability of TPE-BET may provide a high spatial resolution for LDs imaging. The cell imaging of TPE-BET not only successfully observed the viscosity variations of LDs in cell stress models, e.g., ferroptosis, inflammation and mitophagy, but also revealed the increased viscosity and extracellular delivery of LDs in heavy metal cell injury models (Hg/As) for the first time, which may supply concrete evidence for understanding the structure and function of LDs. SIGNIFICANCE This represents a new fluorescent probe TPE-BET with high fluorescence quantum yield for imaging LDs viscosity, which may decrease the dose of probe and excitation light intensity along with the improvement on signal noise ratio (S/N). The imaging results of TPE-BET clarified that LDs viscosity may be an appraisal index on cell differentiation, state evaluation and drug screening.
Collapse
Affiliation(s)
- Bo Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhenru Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yanna Lin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
14
|
Liu T, Zhou R, Zhang C, Yi Y, Zhu G. Homogeneous voltammetric sensing strategy for lead ions based on aptamer gated methylthionine chloride@UiO-66-NH 2 framework as smart target-stimulated responsive nanomaterial. Chem Commun (Camb) 2023; 59:3771-3774. [PMID: 36912279 DOI: 10.1039/d3cc00940h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Herein an innovative electrochemical method is proposed for the determination of lead ions (Pb2+) based on a homogeneous voltammetric (HVC) sensing strategy using an aptamer gated methylthionine chloride@UiO-66-NH2 framework as a smart target-stimulated responsive material. The proposed HVC sensor exhibits excellent sensing performance: ultralow detection limit (0.166 pM) and wide linearity (5.0 pM-500.0 nM), simultaneously, it avoids electrodeposition processes and it is simple to modify the electrode compared to previous electrochemical methods for Pb2+ detection. Thus our method shows great potential in the highly efficient detection of Pb2+ and other heavy metal ions by simply altering the related specific aptamer.
Collapse
Affiliation(s)
- Tingting Liu
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Ruiyong Zhou
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Conglin Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Yinhui Yi
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Gangbing Zhu
- School of Emergency Management, School of the Environment and Safety Engineering, Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, P. R. China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, P. R. China
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, P. R. China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, P. R. China
| |
Collapse
|
15
|
Post-Functionalization of Organometallic Complexes via Click-Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196494. [PMID: 36235030 PMCID: PMC9614606 DOI: 10.3390/molecules27196494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
CuAAC (Cu catalyzed azide-alkyne cycloaddition) click-reaction is a simple and powerful method for the post-synthetic modification of organometallic complexes of transition metals. This approach allows the selective introduction of additional donor sites or functional groups to the periphery of the ligand environment. This is especially important if a metalloligand with free donor sites, which are of the same nature as the primary site for the coordination of the primary metal, has to be created. The concept of post-synthetic modification of organometallic complexes by click-reaction is relatively recent and the currently available experimental material does not yet allow us to identify trends and formulate recommendations to address specific problems. In the present study, we have applied the CuAAC reaction for the post-synthetic modification of diimine mononuclear complexes Re(I), Pt(II) and Ir(III) with C≡C bonds at the periphery of the ligand environment and demonstrated that click-chemistry is a powerful tool for the tunable chemical post-synthetic modification of coordination compounds.
Collapse
|
16
|
Mitochondria-targeted cyclometalated iridium (III) complex for H 2S-responsive intracellular redox regulation as potent photo-oxidation anticancer agent. J Biol Inorg Chem 2022; 27:641-651. [PMID: 36058946 DOI: 10.1007/s00775-022-01957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Owing to the safety and low toxicity, photodynamic therapy (PDT) for cancer treatment has received extensive attention. However, the excess H2S in cancer cells reduces the PDT efficiency, because H2S indirectly depletes the reactive oxygen species (ROS). To improve anticancer efficiency, a mitochondria-targeted iridium(III) complex Ir-MMB has been developed as H2S consumer and photo-oxidation anticancer agent. On the one hand, complex Ir-MMB can consume H2S with sensitive phosphorescence turn-on, which has been successfully applied to exogenous and endogenous H2S response imaging in living cells. On the other hand, Ir-MMB can enhance its anticancer activity and cause photo-oxidation damage via catalyzing the oxidation of reduced form of nicotinamide-adenine dinucleotide (NADH) to NAD+ and producing H2O2 under light, and ultimately results in cell apoptosis through mitochondrial depolarization and ROS production.
Collapse
|
17
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
18
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|
19
|
Zhou J, Li J, Zhang KY, Liu S, Zhao Q. Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
|
21
|
Shen J, Rees TW, Ji L, Chao H. Recent advances in ruthenium(II) and iridium(III) complexes containing nanosystems for cancer treatment and bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Zhang Y, Qiao J. Near-infrared emitting iridium complexes: Molecular design, photophysical properties, and related applications. iScience 2021; 24:102858. [PMID: 34381981 PMCID: PMC8340135 DOI: 10.1016/j.isci.2021.102858] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Organic light-emitting diodes (OLEDs) have become popular displays from small screens of wearables to large screens of televisions. In those active-matrix OLED displays, phosphorescent iridium(III) complexes serve as the indispensable green and red emitters because of their high luminous efficiency, excellent color tunability, and high durability. However, in contrast to their brilliant success in the visible region, iridium complexes are still underperforming in the near-infrared (NIR) region, particular in poor luminous efficiency according to the energy gap law. In this review, we first recall the basic theory of phosphorescent iridium complexes and explore their full potential for NIR emission. Next, the recent advances in NIR-emitting iridium complexes are summarized by highlighting design strategies and the structure-properties relationship. Some important implications for controlling photophysical properties are revealed. Moreover, as promising applications, NIR-OLEDs and bio-imaging based on NIR Ir(III) complexes are also presented. Finally, challenges and opportunities for NIR-emitting iridium complexes are envisioned.
Collapse
Affiliation(s)
- Yanxin Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
23
|
Hao L, Zhong YM, Tan CP, Mao ZW. Quantitative tracking of endoplasmic reticulum viscosity during ferroptosis by an iridium complex via TPPLM. Chem Commun (Camb) 2021; 57:5040-5042. [PMID: 33881416 DOI: 10.1039/d1cc01062j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we report a neutral iridium complex, [Ir(4-(2-pyridinyl)benzaldehyde)2(acetylacetone)] (Ir-ER), with viscosity-responsive phosphorescent emission intensity and lifetime. Quantitative measurement by two-photon phosphorescent lifetime imaging shows that the viscosity of ER increases significantly in the process of erastin-induced ferroptosis. Our work provides an effective strategy for quantitative measurement of the micro-environmental alternations of subcellular organelles during a specific cell death process.
Collapse
Affiliation(s)
- Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yan-Mei Zhong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Li Y, Zhu Y, Cai X, Guo J, Yao C, Pan Q, Wang X, Wang KN. A benzothiazole-based near-infrared fluorescent probe for sensing SO 2 derivatives and viscosity in HeLa cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119457. [PMID: 33485241 DOI: 10.1016/j.saa.2021.119457] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The unbalanced metabolism of sulfur dioxide can cause various diseases, such as neurological disorders and lung cancer. Until now, some researches revealed that the normal function of lysosomes would be disrupted by its abnormal viscosity. As a signal molecule, sulfur dioxide (SO2) plays an important role in lysosome metabolism. However, the connection of metabolism between the SO2 and viscosity in lysosomes is still unknown. Herein, we developed a benzothiazole-based near-infrared (NIR) fluorescent probe (Triph-SZ), which can monitor the SO2 derivatives and respond to the change of viscosity in lysosomes through two-photon imaging. Triph-SZ present high sensitivity and selectivity fluorescence response with the addition of SO2 derivatives based on the nucleophilic addition, and it also exhibits a sensitive fluorescence enhancement to environmental viscosity, which allows Triph-SZ to be employed to monitor the level of HSO3- and viscosity changes in lysosomes by the two-photon fluorescence lifetime imaging microscopy.
Collapse
Affiliation(s)
- Yibing Li
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong, China
| | - Yilin Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuzi Cai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Avenue, Guangzhou, Guangdong, China
| | - Jimin Guo
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong, China
| | - Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiling Pan
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, No. 183 West Zhongshan Avenue, Guangzhou, Guangdong, China.
| | - Kang-Nan Wang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.
| |
Collapse
|
25
|
Zhang H, Zhang DY, Shen J, Mao ZW. 3D CoPt nanostructures hybridized with iridium complexes for multimodal imaging and combined photothermal-chemotherapy. J Inorg Biochem 2021; 219:111429. [PMID: 33780685 DOI: 10.1016/j.jinorgbio.2021.111429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Combined photothermal-chemotherapy has shown great potential in improving the efficiency of tumor treatment. In this article, we have designed a new type of nanocomposite Ir-CoPt-PVP composed of cobalt/platinum alloy nanoparticles (CoPt) and iridium(III) complex (Ir) for combined photothermal therapy (PTT) and chemotherapy. The obtained CoPt was synthesized by a simple solvothermal method and modified by polyvinyl pyrrolidone (PVP), which exhibited excellent photothermal efficiency and stability, and can also be a bimodal bioimaging contrast agent in photothermal imaging (PTI) and photoacoustic imaging (PAI). Furthermore, the combination therapy has shown obvious tumor cell-growth inhibition in vitro. Overall, the results revealed the great potential of Ir-CoPt-PVP nanocomposites in improving therapeutic efficiency by photothermal-chemotherapy and photothermal/photoacoustic imaging.
Collapse
Affiliation(s)
- Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
26
|
Yan Z, Xue J, Zhou M, Wang J, Zhang Y, Wang Y, Qiao J, He Y, Li P, Zhang S, Zhang X. Dynamic Monitoring of Phase-Separated Biomolecular Condensates by Photoluminescence Lifetime Imaging. Anal Chem 2021; 93:2988-2995. [PMID: 33512148 DOI: 10.1021/acs.analchem.0c05011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The formation of biomolecular condensates is driven by liquid-liquid phase separation, which is prevalent in cells to govern crucial cellular functions. However, understanding the properties of phase-separated condensates remains very challenging for the lack of suitable techniques. Here, we report a photoluminescence lifetime imaging method for real-time monitoring of phase-separated condensates, both in vitro and in living cells, using a microsecond-scale photoluminescence lifetime probe based on iridium complex. The probe has a large Stokes shift, excellent cell permeability, and minimal cell autofluorescence interference. With this method, the dynamic process of phase separation of fused in sarcoma protein has been well explored, showing high spatiotemporal resolution and high throughput. Beginning with initial formation, the protein droplets get bigger and more viscous, and then a final maturation to solidified aggregates has been characterized. This study paves the path for a deeper understanding of the properties of phase-separated biomolecular condensates.
Collapse
Affiliation(s)
- Zihe Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianfeng Xue
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Min Zhou
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Jinyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanxin Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan Wang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Juan Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Luminescent probes for luminescence lifetime sensing and imaging in live cells: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Yan H, Ni H, Yang Y, Shan C, Yang X, Li X, Cao J, Wu W, Liu W, Tang Y. Smart nanoprobe based on two-photon sensitized terbium-carbon dots for dual-mode fluorescence thermometer and antibacterial. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Wei X, Lu Y, Zhang X, Chen ML, Wang JH. Recent advances in single-cell ultra-trace analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Chen F, Bai M, Cao X, Zhao Y, Xue J, Zhao Y. Click-encoded rolling FISH for visualizing single-cell RNA polyadenylation and structures. Nucleic Acids Res 2020; 47:e145. [PMID: 31584096 PMCID: PMC6902020 DOI: 10.1093/nar/gkz852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/19/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
Spatially resolved visualization of RNA processing and structures is important for better studying single-cell RNA function and landscape. However, currently available RNA imaging methods are limited to sequence analysis, and not capable of identifying RNA processing events and structures. Here, we developed click-encoded rolling FISH (ClickerFISH) for visualizing RNA polyadenylation and structures in single cells. In ClickerFISH, RNA 3′ polyadenylation tails, single-stranded and duplex regions are chemically labeled with different clickable DNA barcodes. These barcodes then initiate DNA rolling amplification, generating repetitive templates for FISH to image their subcellular distributions. Combined with single-molecule FISH, the proposed strategy can also obtain quantitative information of RNA of interest. Finally, we found that RNA poly(A) tailing and higher-order structures are spatially organized in a cell type-specific style with cell-to-cell heterogeneity. We also explored their spatiotemporal patterns during cell cycle stages, and revealed the highly dynamic organization especially in S phase. This method will help clarify the spatiotemporal architecture of RNA polyadenylation and structures.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
31
|
Zhang J, Liu J, Liu X, Liu B, Song S, He X, Che C, Si M, Yang G, Liu Z. Lysosome-targeted chemotherapeutics: Anticancer mechanism of N-heterocyclic carbene iridium(III) complex. J Inorg Biochem 2020; 207:111063. [PMID: 32222581 DOI: 10.1016/j.jinorgbio.2020.111063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 01/07/2023]
Abstract
N-heterocyclic carbenes-modified half-sandwich iridium(III) complex [(η5-C5Me4C6H4C6H5)Ir(C^C)Cl]PF6 (C1) (where C^C is a N-heterocyclic carbene ligand) can effectively prevent the proliferation of human cervical cancer cells. Here, this study aims to investigate the in-deep anticancer effects of this complex on non-small cell lung cancer cells and explore the underlying molecular mechanism. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that iridium(III) complex had potent cytotoxicity studies towards non-small cell lung cancer cells (A549), human lung squamous cells (L78), human cervical cancer cells (Hela) and human bronchial epithelial cells (BEAS-2B). Colocalization and cellular uptake studies were analyzed by confocal microscopy. Notably, C1 targeted lysosomes and entered the cancer cells partially through an energy-dependent pathway, inducing the release of cathepsins and other proteins. These proteins regulated lysosomal-mitochondrial dysfunction, thus leading to the release of cytochrome c (cyt c), which amplified apoptotic signals by activating many downstream pathways such as caspase pathways to promote cell apoptosis. The results showed that the inhibitory mechanism of this organometallic iridium(III) complex may involve caspase-associated apoptosis initiated by the lysosomal-mitochondrial pathway.
Collapse
Affiliation(s)
- Junming Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jinfeng Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Baoqing Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Shaohua Song
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xiangdong He
- Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Chengchuan Che
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Meiru Si
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ge Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
32
|
Wei R, Zhang L, Xu S, Zhang Q, Qi Y, Hu HY. A single component self-assembled thermally activated delayed fluorescence nanoprobe. Chem Commun (Camb) 2020; 56:2550-2553. [DOI: 10.1039/c9cc09957c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel versatile thermally activated delayed fluorescence (TADF) nanoprobe, AI-Cz-NP, was constructed by self-assembly of a single-component amphiphilic monomer for potential applications in confocal imaging and time-resolved fluorescence imaging.
Collapse
Affiliation(s)
- Rao Wei
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| | - Yongxiu Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian
- China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation
- Institute of Materia Medica
- Peking Union Medical College and Chinese Academy of Medical Sciences
- Beijing
| |
Collapse
|
33
|
Wu Q, Zhang KY, Dai P, Zhu H, Wang Y, Song L, Wang L, Liu S, Zhao Q, Huang W. Bioorthogonal “Labeling after Recognition” Affording an FRET-Based Luminescent Probe for Detecting and Imaging Caspase-3 via Photoluminescence Lifetime Imaging. J Am Chem Soc 2019; 142:1057-1064. [DOI: 10.1021/jacs.9b12191] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Wu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Peiling Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Hengyu Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yun Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Linna Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Ling Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Xi’an Institute of Flexible Electronics (XIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| |
Collapse
|
34
|
Salmain M, Fischer-Durand N, Rudolf B. Bioorthogonal Conjugation of Transition Organometallic Complexes to Peptides and Proteins: Strategies and Applications. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michèle Salmain
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Nathalie Fischer-Durand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Bogna Rudolf
- Department of Organic Chemistry; Faculty of Chemistry; University of Lodz; 91-403 Lodz Poland
| |
Collapse
|
35
|
Wu W, Guan R, Liao X, Yan X, Rees TW, Ji L, Chao H. Bimodal Visualization of Endogenous Nitric Oxide in Lysosomes with a Two-Photon Iridium(III) Phosphorescent Probe. Anal Chem 2019; 91:10266-10272. [PMID: 31291720 DOI: 10.1021/acs.analchem.9b02415] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a fundamental signaling molecule that shows complex effects on the catabolic autophagy process, which is closely linked with lysosomal function. In this study, a new lysosome-targeted, pH-independent, and two-photon phosphorescent iridium(III) complex, Ir-BPDA, has been investigated for endogenous NO detection and imaging. The rational design of the probe, as the addition of the morpholine moieties and the substitution of a benzyl group in the amino group in Ir-BPDA, facilitates its accumulation in lysosomes and makes the reaction product with NO, Ir-BPDA-NO, insusceptible in its phosphorescence intensity and lifetime against pH changes (pH 4-10), well suited for lysosomal NO detection (pH 4-6). Furthermore, Ir-BPDA exhibits a fast and 50-fold response to NO in phosphorescence intensity and a two-photon cross-section as high as 60 GM after the reaction, as well as a notably increased phosphorescence lifetime from 200.1 to 619.6 ns. Thus, accompanied by its photostability, Ir-BPDA enabled the detection of NO in the lipopolysaccharide-stimulated macrophages and zebrafish model, revealing the endogenous lysosomal NO distribution during inflammation in vivo by means of both TPM and PLIM imaging techniques.
Collapse
Affiliation(s)
- Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xu Yan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , 400201 , P. R. China
| |
Collapse
|
36
|
Jiang J, Qian Y, Xu Z, Lv Z, Tao P, Xie M, Liu S, Huang W, Zhao Q. Enhancing singlet oxygen generation in semiconducting polymer nanoparticles through fluorescence resonance energy transfer for tumor treatment. Chem Sci 2019; 10:5085-5094. [PMID: 31183060 PMCID: PMC6524665 DOI: 10.1039/c8sc05501g] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
Photosensitizers (PSs) are of particular importance for efficient photodynamic therapy (PDT). Challenges for PSs simultaneously possessing strong light-absorbing ability, high 1O2 generation by effective intersystem crossing from the singlet to the triplet state, good water-solubility and excellent photostability still exist. Reported here are a new kind of dual-emissive semiconducting polymer nanoparticles (SPNs) containing fluorescent BODIPY derivatives and near-infrared (NIR) phosphorescent iridium(iii) complexes. In the SPNs, the BODIPY units serve as the energy donors in the fluorescence resonance energy transfer (FRET) process for enhancing the light absorption of the SPNs. The NIR emissive iridium(iii) complexes are chosen as the energy acceptors and efficient photosensitizers. The ionized semiconducting polymers can easily self-assemble to form hydrophilic nanoparticles and homogeneously disperse in aqueous solution. Meanwhile, the conjugated backbone of SPNs provides effective shielding for the two luminophores from photobleaching. Thus, an excellent overall performance of the SPN-based PSs has been realized and the high 1O2 yield (0.97) resulting from the synergistic effect of BODIPY units and iridium(iii) complexes through the FRET process is among the best reported for PSs. In addition, owing to the phosphorescence quenching of iridium(iii) complexes caused by 3O2, the SPNs can also be utilized for O2 mapping in vitro and in vivo, which assists in the evaluation of the PDT process and provides important instructions in early-stage cancer diagnosis.
Collapse
Affiliation(s)
- Jiayang Jiang
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
| | - Yuanyuan Qian
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
| | - Zihan Xu
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
| | - Zhuang Lv
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
| | - Peng Tao
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
| | - Mingjuan Xie
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710072 , Shaanxi , China .
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China . ;
| |
Collapse
|
37
|
Li Q, Shi C, Zhang X, Tao P, Zhao Q, Yuan A. Comparison of Structural and Optical Properties for N-Embedded Polycyclic and Non-Embedded Cationic Phosphorescent Iridium(III) Complexes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qiuxia Li
- School of Material Science and Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
| | - Chao Shi
- School of Material Science and Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
| | - Xinghua Zhang
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
| | - Peng Tao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); 210023 Nanjing P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); 210023 Nanjing P. R. China
| | - Aihua Yuan
- School of Material Science and Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
| |
Collapse
|
38
|
Yin Z, Cheng X, Liu R, Li X, Hang L, Hang W, Xu J, Yan X, Li J, Tian Z. Chemical and Topographical Single‐Cell Imaging by Near‐Field Desorption Mass Spectrometry. Angew Chem Int Ed Engl 2019; 58:4541-4546. [DOI: 10.1002/anie.201813744] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zhibin Yin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoling Cheng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Rong Liu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoping Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Le Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 China
| | - Jingyi Xu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaomei Yan
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jianfeng Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
39
|
Yin Z, Cheng X, Liu R, Li X, Hang L, Hang W, Xu J, Yan X, Li J, Tian Z. Chemical and Topographical Single‐Cell Imaging by Near‐Field Desorption Mass Spectrometry. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zhibin Yin
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoling Cheng
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Rong Liu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoping Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Le Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Wei Hang
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen 361005 China
| | - Jingyi Xu
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaomei Yan
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jianfeng Li
- Ministry of Education (MOE) Key Laboratory of Spectrochemical Analysis and Instrumentation College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
40
|
Chai Y, Gao Y, Xiong H, Lv W, Yang G, Lu C, Nie J, Ma C, Chen Z, Ren J, Wang F. A near-infrared fluorescent probe for monitoring leucine aminopeptidase in living cells. Analyst 2019; 144:463-467. [DOI: 10.1039/c8an01486h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel water-soluble near-infrared fluorescent probe (CHMC-M-Leu) for specific monitoring of LAP in vitro and in vivo.
Collapse
|
41
|
Chelushkin PS, Tunik SP. Phosphorescence Lifetime Imaging (PLIM): State of the Art and Perspectives. SPRINGER SERIES IN CHEMICAL PHYSICS 2019. [DOI: 10.1007/978-3-030-05974-3_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Li J, Chen H, Zeng L, Rees TW, Xiong K, Chen Y, Ji L, Chao H. Mitochondria-targeting cyclometalated iridium(iii) complexes for tumor hypoxic imaging and therapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00081j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The organometallic anthraquinone iridium(iii) complexes display an efficient turn-on phosphorescence response to hypoxia. The complexes can induce cell apoptosis in HeLa cells via mitochondrial dysfunction and caspase-3 activation making them excellent candidates as theranostic agents for hypoxic cancer cells.
Collapse
Affiliation(s)
- Jia Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hongmin Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
43
|
Hu X, Xu Z, Hu J, Dong C, Lu Y, Wu X, Wumaier M, Yao T, Shi S. A redox-activated theranostic nanoplatform: toward glutathione-response imaging guided enhanced-photodynamic therapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00894b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A redox-sensitive nanoagent (DCMn-RA) for dual-mode GSH detection, NIR-II imaging and enhanced PDT is described.
Collapse
Affiliation(s)
- Xiaochun Hu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Zhenli Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Jiwen Hu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P.R. China
| | - Chunyan Dong
- Breast Cancer Center
- Shanghai East Hospital
- Tongji University
- 200120 Shanghai
- P.R. China
| | - Yonglin Lu
- Breast Cancer Center
- Shanghai East Hospital
- Tongji University
- 200120 Shanghai
- P.R. China
| | - Xuewen Wu
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Maierhaba Wumaier
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Tianming Yao
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| | - Shuo Shi
- Shanghai Key Lab of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Tongji University
- 200092 Shanghai
| |
Collapse
|
44
|
Boyaala R, Touzani R, Roisnel T, Dorcet V, Caytan E, Jacquemin D, Boixel J, Guerchais V, Doucet H, Soulé JF. Catalyst-Controlled Regiodivergent C–H Arylation Site of Fluorinated 2-Arylpyridine Derivatives: Application to Luminescent Iridium(III) Complexes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rabab Boyaala
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohamed Premier, 60000 Oujda, Morocco
| | - Rachid Touzani
- Laboratoire de Chimie Appliquée et Environnement (LCAE), Faculté des Sciences, Université Mohamed Premier, 60000 Oujda, Morocco
| | | | | | - Elsa Caytan
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
| | - Denis Jacquemin
- UMR CNRS 6230, CEISAM, Université de Nantes, 2 rue de la Houssinière, 44322 Cedex 3 Nantes, France
| | | | | | - Henri Doucet
- Univ Rennes, CNRS UMR6226, F-3500 Rennes, France
| | | |
Collapse
|
45
|
Hao L, Li ZW, Zhang DY, He L, Liu W, Yang J, Tan CP, Ji LN, Mao ZW. Monitoring mitochondrial viscosity with anticancer phosphorescent Ir(iii) complexes via two-photon lifetime imaging. Chem Sci 2018; 10:1285-1293. [PMID: 30809342 PMCID: PMC6357858 DOI: 10.1039/c8sc04242j] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Precise quantitative measurement of viscosity at the subcellular level presents great challenges. Two-photon phosphorescence lifetime imaging microscopy (TPPLIM) can reflect micro-environmental changes of a chromophore in a quantitative manner. Phosphorescent iridium complexes are potential TPPLIM probes due to their rich photophysical properties including environment-sensitive long-lifetime emission and high two-photon absorption (TPA) properties. In this work, a series of iridium(iii) complexes containing rotatable groups are developed as mitochondria-targeting anticancer agents and quantitative viscosity probes. Among them, Ir6 ([Ir(ppy-CHO)2(dppe)]PF6; ppy-CHO: 4-(2-pyridyl)benzaldehyde; dppe: cis-1,2-bis(diphenylphosphino)ethene) shows satisfactory TPA properties and long lifetimes (up to 1 μs). The emission intensities and lifetimes of Ir6 are viscosity-dependent, which is mainly attributed to the configurational changes in the diphosphine ligand as proved by 1H NMR spectra. Ir6 displays potent cytotoxicity, and mechanism investigations show that it can accumulate in mitochondria and induce apoptotic cell death. Moreover, Ir6 can induce mitochondrial dysfunction and monitor the changes in mitochondrial viscosity simultaneously in a real-time and quantitative manner via TPPLIM. Upon Ir6 treatment, a time-dependent increase in viscosity and heterogeneity is observed along with the loss of membrane potential in mitochondria. In summary, our work shows that multifunctional phosphorescent metal complexes can induce and precisely detect microenvironmental changes simultaneously at the subcellular level using TPPLIM, which may deepen the understanding of the cell death mechanisms induced by these metallocompounds.
Collapse
Affiliation(s)
- Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| | - Zhi-Wei Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| | - Liang He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| | - Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China . ;
| |
Collapse
|
46
|
Yang Y, Xia M, Zhao H, Zhang S, Zhang X. A Cell-Surface-Specific Ratiometric Fluorescent Probe for Extracellular pH Sensing with Solid-State Fluorophore. ACS Sens 2018; 3:2278-2285. [PMID: 30350591 DOI: 10.1021/acssensors.8b00514] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extracellular acidity is correlated with the development of various pathological states and bulk pH measurements could not report surface acidity. In this study, we have developed a ratiometric fluorescent probe that aggregates upon interaction with cells, allowing persistent labeling of cells and in situ measurement of cell surface pH. The ternary nanoplatform is constructed by a convenient noncovalent combination of bovine serum albumin protected gold nanoclusters (BSA-AuNCs), fluorescein isothiocyanate (FITC) labeled cationic peptides (CPs), and FITC-free CPs. The red fluorescent AuNCs serve as reference fluorophore, while FITC labeled peptides act as specific recognition element for H+ and FITC unlabeled peptides are used for delivery. The probe displays a sensitive fluorescence ratiometric response for pH in the range of 5.0-9.5 with calculated p Ka of 7.2. Further studies have demonstrated that this nanosensor also has properties of high selectivity, reversibility to pH fluctuations, as well as low cytotoxicity. The new surface pH-measurement tool was validated in mapping extracellular pH and monitoring acidification regarding cell metabolism, demonstrating its potential for bioimaging and biosensing.
Collapse
Affiliation(s)
- Yan Yang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, P.R. China
| | - Mengchan Xia
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, P.R. China
| | - Hansen Zhao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, P.R. China
| | - Sichun Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, P.R. China
| | - Xinrong Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
47
|
Connell TU, Donnelly PS. Labelling proteins and peptides with phosphorescent d6 transition metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Schibilla F, Holthenrich A, Song B, Linard Matos AL, Grill D, Rota Martir D, Gerke V, Zysman-Colman E, Ravoo BJ. Phosphorescent cationic iridium(iii) complexes dynamically bound to cyclodextrin vesicles: applications in live cell imaging. Chem Sci 2018; 9:7822-7828. [PMID: 30429991 PMCID: PMC6194495 DOI: 10.1039/c8sc02875c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
We report cationic Ir(iii) complexes functionalized with adamantyl groups designed to bind to β-cyclodextrin vesicles (CDV) with high affinity (K a = 1 × 106 M-1). The emission of the complexes is tuned by changing the nature of the cyclometalating ligands. The host-guest adduct of CDV and Ir(iii) complexes shows increased and significantly blue-shifted emission due to the lower mobility of the Ir(iii)-complexes residing in the less polar environment of the vesicle surface. Ir(iii)-decorated CDV are efficiently taken up by cells and can be used in live cell imaging. The CDV act as carriers to transport the phosphorescent complexes into cells where they selectively stain mitochondria.
Collapse
Affiliation(s)
- Frauke Schibilla
- Organic Chemistry Institute and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Correnstrasse 40 , 48149 Münster , Germany .
| | - Anna Holthenrich
- Institute of Medical Biochemistry , Center for Molecular Biology of Inflammation , Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , Westfälische Wilhelms-Universität Münster , Von-Esmarch-Strasse 56 , 48149 Münster , Germany
| | - Boyi Song
- Organic Semiconductor Centre , EaStCHEM School of Chemistry , University of St Andrews , St. Andrews , Fife KY16 9ST , UK .
| | - Anna Lívia Linard Matos
- Institute of Medical Biochemistry , Center for Molecular Biology of Inflammation , Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , Westfälische Wilhelms-Universität Münster , Von-Esmarch-Strasse 56 , 48149 Münster , Germany
| | - David Grill
- Institute of Medical Biochemistry , Center for Molecular Biology of Inflammation , Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , Westfälische Wilhelms-Universität Münster , Von-Esmarch-Strasse 56 , 48149 Münster , Germany
| | - Diego Rota Martir
- Organic Semiconductor Centre , EaStCHEM School of Chemistry , University of St Andrews , St. Andrews , Fife KY16 9ST , UK .
| | - Volker Gerke
- Institute of Medical Biochemistry , Center for Molecular Biology of Inflammation , Cells-in-Motion Cluster of Excellence (EXC1003-CiM) , Westfälische Wilhelms-Universität Münster , Von-Esmarch-Strasse 56 , 48149 Münster , Germany
| | - Eli Zysman-Colman
- Organic Semiconductor Centre , EaStCHEM School of Chemistry , University of St Andrews , St. Andrews , Fife KY16 9ST , UK .
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Correnstrasse 40 , 48149 Münster , Germany .
| |
Collapse
|
49
|
Zhang D, Zheng Y, Zhang H, Sun J, Tan C, He L, Zhang W, Ji L, Mao Z. Delivery of Phosphorescent Anticancer Iridium(III) Complexes by Polydopamine Nanoparticles for Targeted Combined Photothermal-Chemotherapy and Thermal/Photoacoustic/Lifetime Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800581. [PMID: 30356964 PMCID: PMC6193176 DOI: 10.1002/advs.201800581] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/28/2018] [Indexed: 05/03/2023]
Abstract
Recently, phosphorescent iridium complexes have demonstrated great potential as anticancer and imaging agents. Dopamine is a melanin-like mimic of mussel adhesive protein that can self-polymerize to form polydopamine (PDA) nanoparticles that demonstrate favorable biocompatibility, near-infrared absorption, and photothermal effects. Herein, PDA nanoparticles are functionalized with β-cyclodextrin (CD) substitutions, which are further assembled with adamantane-modified arginine-glycine-aspartic acid (Ad-RGD) tripeptides to target integrin-rich tumor cells. The thus formed PDA-CD-RGD nanoparticles can deliver a phosphorescent iridium(III) complexes LysoIr ([Ir(ppy)2(l)]PF6, ppy = 2-phenylpyridine, L = (1-(2-quinolinyl)-β-carboline) to form a theranostic platform LysoIr@PDA-CD-RGD. It is demonstrated that LysoIr@PDA-CD-RGD can be applied for targeted combined cancer photothermal-chemotherapy and thermal/photoacoustic/two-photon phosphorescence lifetime imaging under both in vitro and in vivo conditions. This work provides a useful strategy to construct multifunctional nanocomposites for the optimization of metal-based anticancer agents for further biomedical applications.
Collapse
Affiliation(s)
- Dong‐Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Jing‐Hua Sun
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Liang He
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Wei Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Liang‐Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
50
|
Zhang KY, Zhang T, Wei H, Wu Q, Liu S, Zhao Q, Huang W. Phosphorescent iridium(iii) complexes capable of imaging and distinguishing between exogenous and endogenous analytes in living cells. Chem Sci 2018; 9:7236-7240. [PMID: 30288243 PMCID: PMC6148462 DOI: 10.1039/c8sc02984a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Many luminescent probes have been developed for intracellular imaging and sensing. During cellular luminescence sensing, it is difficult to distinguish species generated inside cells from those internalized from extracellular environments since they are chemically the same and lead to the same luminescence response of the probes. Considering that endogenous species usually give more information about the physiological and pathological parameters of the cells while internalized species often reflect the extracellular environmental conditions, we herein reported a series of cyclometalated iridium(iii) complexes as phosphorescent probes that are partially retained in the cell membrane during their cellular uptake. The utilization of the probes for sensing and distinguishing between exogenous and endogenous analytes has been demonstrated using hypoxia and hypochlorite as two examples of target analytes. The endogenous analytes lead to the luminescence response of the intracellular probes while the exogenous analytes are reported by the probes retained in the cell membrane during their internalization.
Collapse
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Taiwei Zhang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Qi Wu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ;
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors , Institute of Advanced Materials (IAM) , Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China . ; .,Xi'an Institute of Flexible Electronics (XIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , P. R. China
| |
Collapse
|