1
|
Tao S, Yang Y, Chen L, Xu J, Fu H, Chen H, Jiang W, Li R, Xue W, Zheng X. Electrochemical Synergistic Ni/Co-Catalyzed Carbonylative Cross-Electrophile Coupling of Aryl and Alkyl Halides with CO. JACS AU 2025; 5:1413-1420. [PMID: 40151257 PMCID: PMC11937974 DOI: 10.1021/jacsau.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Accessing unsymmetric ketones and achieving their carbon isotope labeling are crucial yet challenging tasks in both synthetic and medicinal chemistry. We report here an efficient electrochemical nickel-/cobalt-catalyzed carbonylative cross-electrophile coupling reaction. This method allows for the modular synthesis of a library of unsymmetric ketones from simple building blocks, including aryl halides, alkyl halides, and gaseous CO. The simultaneous use of nickel and cobalt salts as concerted catalysts ensures the high efficiency of this three-component carbonylative coupling. Furthermore, electrochemical reduction avoids the use of stoichiometric reductants, making this protocol more sustainable and attractive. The broad substrate scope and late-stage 13C isotope labeling of complex molecules derived from biologically active compounds highlight the practicality of this method.
Collapse
Affiliation(s)
- Shaokun Tao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yun Yang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Li Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Jiaqi Xu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Haiyan Fu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hua Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Weidong Jiang
- School
of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Ruixiang Li
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Weichao Xue
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xueli Zheng
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
2
|
Su L, Gao S, Chen L, Yan J, Jiang Y, Zheng Q, Liu J. A General Access to Aryl-Alkyl Ketones via Nickel-Catalyzed Carbonylative Reductive Cross-Coupling Reactions. Chem Asian J 2025:e202500214. [PMID: 39945408 DOI: 10.1002/asia.202500214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Transition-metal-catalyzed carbonylation reactions have emerged as a versatile and powerful strategy for the production of diverse value-added carbonyl-containing compounds. Nevertheless, the carbonylative synthesis of alkyl ketones, particularly those incorporating secondary or tertiary alkyl fragments, remains underexplored and poses significant challenges. Herein, we present a nickel-catalyzed carbonylative reductive cross-coupling reaction to synthesize a wide range of aryl-alkyl ketones from readily available alkyl halides, aryl iodides, and Mo(CO)6. This protocol exhibits excellent compatibility with primary, secondary, and tertiary alkyl electrophiles as well as aryl electrophiles bearing electron-withdrawing or electron-donating groups, offering a general access to aryl-alkyl ketones under mild conditions. Mechanistic studies reveal that Mo(CO)6 not only serves as a safe and effective CO surrogate, but also plays a crucial role in facilitating the nickel carbonyl species, which is critical for promoting the selective synthesis of aryl-alkyl ketones.
Collapse
Affiliation(s)
- Lei Su
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lijuan Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Yan
- Henan Energy Chemical Group Co. Ltd., Zhengzhou, Henan, 450046, China
| | - Yuanli Jiang
- Henan Energy Chemical Group Co. Ltd., Zhengzhou, Henan, 450046, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingshu Zheng
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Mühlfenzl KS, Enemærke VJ, Gahlawat S, Golbækdal PI, Munksgaard-Ottosen N, Neumann KT, Hopmann KH, Norrby PO, Elmore CS, Skrydstrup T. Nickel Catalyzed Carbonylative Cross Coupling for Direct Access to Isotopically Labeled Alkyl Aryl Ketones. Angew Chem Int Ed Engl 2024; 63:e202412247. [PMID: 39145496 DOI: 10.1002/anie.202412247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Here we present an effective nickel-catalyzed carbonylative cross-coupling for direct access to alkyl aryl ketones from readily accessible redox-activated tetrachlorophthalimide esters and aryl boronic acids. The methodology, which is run employing only 2.5 equivalents of CO and simple Ni(II) salts as the metal source, exhibits a broad substrate scope under mild conditions. Furthermore, this carbonylation chemistry provides an easy switch between isotopologues for stable (13CO) and radioactive (14CO) isotope labeling, allowing its adaptation to the late-stage isotope labeling of pharmaceutically relevant compounds. Based on DFT calculations as well as experimental evidence, a catalytic cycle is proposed involving a carbon-centered radical formed via nickel(I)-induced outer-sphere decarboxylative fragmentation of the redox-active ester.
Collapse
Affiliation(s)
- Kim S Mühlfenzl
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Vitus J Enemærke
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Sahil Gahlawat
- Department of Chemistry, UiT The Arctic University of Norway, Hansine Hansens veg 56, 9019, Tromsø
- Department of Chemistry, Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, Hansine Hansens veg 56, 9019, Tromsø
| | - Peter I Golbækdal
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Nikoline Munksgaard-Ottosen
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Karoline T Neumann
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, Hansine Hansens veg 56, 9019, Tromsø
| | - Per-Ola Norrby
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Troels Skrydstrup
- Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
4
|
Wang LC, Wu XF. Carbonylation Reactions at Carbon-Centered Radicals with an Adjacent Heteroatom. Angew Chem Int Ed Engl 2024; 63:e202413374. [PMID: 39248444 DOI: 10.1002/anie.202413374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Heteroatoms are essential to living organisms and present in almost all molecules with medicinal usage. The catalytic functionalization at the carbon-centered radical with an adjacent heteroatom provides an effective way to value added moiety while retaining the unique physicochemical and pharmacological properties of heteroatoms, which can promote the development of pharmaceutical and fine chemical production. Carbonylative transformation was discovered nearly a century ago which is an efficient method for the synthesis of carbonyl-containing molecules with potent applications in both industry and academia. Despite numerous advances in new reaction development, carbonylative transformation involving adjacent heteroatom carbon radical remain a subject that deserves to be discussed. In this minireview, we systematically summarized and discussed the recent advances in carbonylative transformations involving carbon-centered radicals with an adjacent heteroatom, including oxygen (O), nitrogen (N), phosphorus (P), silicon (Si), sulfur (S), boron (B), fluorine (F), and chlorine (Cl). The related reaction mechanism was also discussed.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
5
|
Zhang Y, Cao Q, Xi Y, Wu X, Qu J, Chen Y. Nickel-Catalyzed Carbonylative Negishi Cross-Coupling of Unactivated Secondary Alkyl Electrophiles with 1 atm CO Gas. J Am Chem Soc 2024; 146:7971-7978. [PMID: 38483538 DOI: 10.1021/jacs.4c02023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
We describe a nickel-catalyzed carbonylative cross-coupling of unactivated secondary alkyl electrophiles with the organozinc reagent at atmospheric CO gas, thus allowing the expedient construction of unsymmetric dialkyl ketones with broad functional group tolerance. The leverage of a newly developed NN2-pincer type ligand enables the chemoselective three-component carbonylation by overcoming the competing Negishi coupling, the undesired β-hydride elimination, and dehalogenation of alkyl iodides side pathways. Both alkyl iodides and alkyl tosylates are compatible in the single electron transfer involved mechanism.
Collapse
Affiliation(s)
- Yetong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qihang Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Kalinin DV, Ulven T. Functional-Group-Tolerant Pd-Catalyzed Carbonylative Negishi Coupling with Aryl Iodides. J Org Chem 2023; 88:16633-16638. [PMID: 37968936 DOI: 10.1021/acs.joc.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A chemoselective Pd-mediated carbonylative Negishi-type catalytic protocol for the synthesis of (hetero)aryl ketones is reported. The protocol employs the PEPPSI-IPr precatalyst and CO gas at atmospheric pressure (balloon) to foster the carbonylative coupling between diverse C(sp3)-hybridized organozinc reagents and a broad range of aryl iodides, including substrates carrying aldehyde, aniline, phenol, or carboxylic acid groups, and heteroaryls.
Collapse
Affiliation(s)
- Dmitrii V Kalinin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Cai SZ, Yu R, Li C, Zhong H, Dong X, Morandi B, Ye J, Fang X. Nickel-Catalyzed Enantioselective Hydrothiocarbonylation of Cyclopropenes. Org Lett 2023. [PMID: 38014880 DOI: 10.1021/acs.orglett.3c03563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hydrothiocarbonylation of olefins using carbon monoxide and thiols is a powerful method to synthesize thioesters from simple building blocks. Owing to the intrinsic challenges of catalyst poisoning, transition-metal-catalyzed asymmetric thiocarbonylation, particularly when utilizing earth abundant metals, remains rare in the literature. Herein, we report a nickel-catalyzed enantioselective hydrothiocarbonylation of cyclopropenes for the synthesis of a diverse collection of functionalized thioesters in good to excellent yields with high stereoselectivity. This new method employs an inexpensive, air-stable nickel(II) precursor, which provides enhanced catalyst fidelity against CO poisoning compared to nickel(0) catalysts.
Collapse
Affiliation(s)
- Song-Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hongyu Zhong
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Xichang Dong
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
8
|
Das A, Sangavi R, Gowrishankar S, Kumar R, Sankaralingam M. Deciphering the Mechanism of MRSA Targeting Copper(II) Complexes of NN2 Pincer-Type Ligands. Inorg Chem 2023; 62:18926-18939. [PMID: 37930252 DOI: 10.1021/acs.inorgchem.3c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
WHO lists AMR as one of the top ten global public health issues. Therefore, constant effort is needed to develop more efficient antimicrobial drugs. As a result, earth-abundant transition-metal complexes have emerged as an excellent solution. In this regard, new aminoquinoline-based copper(II) pincer complexes 1-3 were designed, synthesized, and characterized by modern spectroscopic techniques. It is worth mentioning that, at the highest concentration (1024 μg/mL) of complexes (1-3), the hemolysis was found to be <15%, implying their less toxicity. Further, the complexes effectively interfered with the growth of Gram positive MRSA and the fungus Candida albicans. Among them, complex 2 was promising (MIC = 16 μg/mL) against MRSA, which was better than the known antibacterial drug kanamycin (64 μg/mL) under identical conditions. The Alamar blue cell viability test and the MBC/MFC identified by spot assay were in accordance with MIC values. Moreover, the insilico studies explained the most probable mechanism of action as inhibition of cell wall biosynthesis and dysfunction of antibiotic sensing proteins. Similarly, the antifungal action might be due to the cell surface adhesion protein dysfunction by the complexes. Furthermore, we are expecting to draw these compounds for clinical applications.
Collapse
Affiliation(s)
- Athulya Das
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Ravichellam Sangavi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630 003, India
| | | | - Rajesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| |
Collapse
|
9
|
Wu X, Wang C, Liu N, Qu J, Chen Y. Nickel-catalyzed acylzincation of allenes with organozincs and CO. Nat Commun 2023; 14:6960. [PMID: 37907542 PMCID: PMC10618444 DOI: 10.1038/s41467-023-42716-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Transition metal-catalyzed carbonylative reaction with CO gas are among the central task in organic synthesis, enabling the construction of highly valuable carbonyl compound. Here, we show an earth-abundant nickel-catalyzed three-component tandem acylzincation/cyclization sequence of allene and alkylzinc reagent with 1 atm of CO under mild conditions. This protocol is featured by broad functional group tolerance with high reaction selectivity, providing a rapid and convenient synthetic method for the construction of diverse fully substituted benzotropone derivatives. Mechanistic studies reveal that the installation of a cyano group tethered to allene moiety enables the high regio- and stereoselectivity of this acylzincation of allene, allowing the selective formation of three consecutive C-C bonds in a highly efficient manner.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China
| | - Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road, Shanghai, China.
| |
Collapse
|
10
|
Das A, Sankaralingam M. Are Zn(II) pincer complexes efficient apoptosis inducers? a deep insight into their activity against A549 lung cancer cells. Dalton Trans 2023; 52:14465-14476. [PMID: 37772631 DOI: 10.1039/d3dt02419a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
To expand the array of chemotherapeutic drugs, earth-abundant metal complexes are found to be the future direction. In this regard, new zinc(II) complexes 1-3 of 8-aminoquinoline-based pincer ligands were synthesized, characterized and tested for their anticancer activity. The IC50 values of these complexes were estimated by an MTT assay to be 16.35-17.95 μM and 33.35-40 μM against A549 lung and MCF-7 breast cancer cells respectively. Among them, 3 was slightly better than the other complexes and, thus, subjected to detailed studies. Moreover, the ligand corresponding to 3 was less active against both the cell lines than the complex. Further, 3 showed no toxicity against normal fibroblast cell line L929, which instantly elevated the drug characteristic of our complex. An AO-EB staining assay revealed that 3 can induce apoptosis in A549, and it was quantified by flow cytometry as 22.77%. Moreover, the depolarization of the mitochondrial membrane potential determined by JC-1 staining indicated excess ROS production sites in the mitochondria, which was confirmed by carboxy-H2DCFDA staining. Interestingly, the present complexes show better activity than that of the standard drug cisplatin against A549 cells. Overall, the studies provided promising results that can be extended for clinical applications.
Collapse
Affiliation(s)
- Athulya Das
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
| |
Collapse
|
11
|
Singh S, Shinde VN, Kumar S, Meena N, Bhuvanesh N, Rangan K, Kumar A, Joshi H. Mono and Dinuclear Palladium Pincer Complexes of NNSe Ligand as a Catalyst for Decarboxylative Direct C-H Heteroarylation of (Hetero)arenes. Chem Asian J 2023; 18:e202300628. [PMID: 37602812 DOI: 10.1002/asia.202300628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
This report describes the synthesis of a new NNSe pincer ligand and its mono- and dinuclear palladium(II) pincer complexes. In the absence of a base, a dinuclear palladium pincer complex (C1) was isolated, while in the presence of Et3 N base a mononuclear palladium pincer complex (C2) was obtained. The new ligand and complexes were characterized using techniques like 1 H, 13 C{1 H} nuclear magnetic resonance (NMR), fourier transform infrared (FTIR), high-resolution mass spectrometry (HRMS), ultraviolet-visible (UV-Visible), and cyclic voltammetry. Both the complexes showed pincer coordination mode with a distorted square planar geometry. The complex C1 has two pincer ligands attached through a Pd-Pd bond in a dinuclear pincer fashion. The air and moisture-insensitive, thermally robust palladium pincer complexes were used as the catalyst for decarboxylative direct C-H heteroarylation of (hetero)arenes. Among the complexes, dinuclear pincer complex C1 showed better catalytic activity. A variety of (hetero)arenes were successfully activated (43-87 % yield) using only 2.5 mol % of catalyst loading under mild reaction conditions. The PPh3 and Hg poisoning experiments suggested a homogeneous nature of catalysis. A plausible reaction pathway was proposed for the dinuclear palladium pincer complex catalyzed decarboxylative C-H bond activation reaction of (hetero)arenes.
Collapse
Affiliation(s)
- Sohan Singh
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Sunil Kumar
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas, 77842-3012, USA
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, 333031, India
| | - Hemant Joshi
- ISC Laboratory, Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, 305817, India
| |
Collapse
|
12
|
Zhang P, Newhouse TR. Palladium-Catalyzed Carbonylative Difunctionalization of Unactivated Alkenes Initiated by Unstabilized Enolates. Angew Chem Int Ed Engl 2023; 62:e202307455. [PMID: 37319375 PMCID: PMC11090370 DOI: 10.1002/anie.202307455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
This report describes the first example of palladium-catalyzed carbonylative difunctionalization of unactivated alkenes initiated by enolate nucleophiles. The approach involves initiation by an unstabilized enolate nucleophile under an atmospheric pressure of CO and termination with a carbon electrophile. This process is compatible with a diverse range of electrophiles, including aryl, heteroaryl, and vinyl iodides to yield synthetically useful 1,5-diketone products, which were demonstrated to be precursors for multi-substituted pyridines. A PdI -dimer complex with two bridging CO units was observed although its role in catalysis is not yet understood.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT, 06511
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT, 06511
| |
Collapse
|
13
|
Rao N, Li YZ, Luo YC, Zhang Y, Zhang X. Nickel-Catalyzed Multicomponent Carbodifluoroalkylation of Electron-Deficient Alkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Na Rao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yun-Ze Li
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yun-Cheng Luo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanxia Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
14
|
El Chami K, Liu Y, Belahouane MA, Ma Y, Lagueux-Tremblay PL, Arndtsen BA. A Visible Light Driven Nickel Carbonylation Catalyst: The Synthesis of Acid Chlorides from Alkyl Halides. Angew Chem Int Ed Engl 2023; 62:e202213297. [PMID: 36576428 DOI: 10.1002/anie.202213297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
We describe here the development of a visible light driven nickel carbonylation catalyst. The combination of the large bite-angle Xantphos ligand with nickel(0) generates a catalyst capable of activating alkyl halides toward carbonylation at ambient temperature in the presence of blue light irradiation, and the reductive elimination of high energy acid chloride products. Unlike classical carbonylations, where the coordination of carbon monoxide inhibits the reactivity of earth abundant nickel catalysts, a CO-associated nickel is found to be the active catalyst in the reaction. Coupling the build-up of acid chlorides with nucleophile addition can be used to access various amides, esters and thioesters, including those of sterically encumbered substrates or with metal-reactive functionalities.
Collapse
Affiliation(s)
- Kristian El Chami
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| | - Yi Liu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| | - Mohammed A Belahouane
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| | - Yiyang Ma
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| | | | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| |
Collapse
|
15
|
Ai HJ, Geng HQ, Gu XW, Wu XF. Manganese-Catalyzed Alkoxycarbonylation of Alkyl Chlorides. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Han-Jun Ai
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xing-Wei Gu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning China
| |
Collapse
|
16
|
Liu N, Wu X, Qu J, Chen Y. Nickel-Catalyzed Aminocarbonylation of Aryl Iodides with 1 atm CO. Chem Asian J 2023; 18:e202201061. [PMID: 36373896 DOI: 10.1002/asia.202201061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Reported here is a nickel-catalyzed aminocarbonylation of aromatic iodides with (hetero)aryl anilines and alkyl amines under atmospheric CO pressure. The reaction features with broad substrate scope with excellent functional group tolerance, providing an expedient method for the construction of amide analogues. Notably, amino alcohols can be selectively transformed into the corresponding amides successfully without interfering the hydroxyl group under the current standard conditions.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
17
|
Jiang X, Sheng FT, Zhang Y, Deng G, Zhu S. Ligand Relay Catalysis Enables Asymmetric Migratory Reductive Acylation of Olefins or Alkyl Halides. J Am Chem Soc 2022; 144:21448-21456. [DOI: 10.1021/jacs.2c10785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaoli Jiang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Feng-Tao Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Yao Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Gao Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, China
| |
Collapse
|
18
|
Wang C, Wu X, Li H, Qu J, Chen Y. Carbonylative Cross‐Coupling Reaction of Allylic Alcohols and Organoalanes with 1 atm CO Enabled by Nickel Catalysis. Angew Chem Int Ed Engl 2022; 61:e202210484. [DOI: 10.1002/anie.202210484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Haiyan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
19
|
Yu R, Cai S, Li C, Fang X. Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022; 61:e202200733. [DOI: 10.1002/anie.202200733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Song‐Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
20
|
Carbonylative Cross‐Coupling Reaction of Allylic Alcohols and Organoalanes with 1 atm CO Enabled by Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Kang C, Xu J, Li X, Wang S, Jiang G, Ji F. Oxidative C-H/N-H Carbonylation of Benzamide by Nickel Catalysis with CO as the Carbonyl Source. J Org Chem 2022; 87:10390-10397. [PMID: 35881524 DOI: 10.1021/acs.joc.2c00673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and direct carbonylation of aminoquinoline benzamides has been developed using abundant and inexpensive Ni(OAc)2·4H2O as the catalyst and carbon monoxide as a cost-efficient C1 building block. This process features good functional-group tolerance and can be conducted on gram scale. The directing group can be easily removed under mild conditions.
Collapse
Affiliation(s)
- Chen Kang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Jiawei Xu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin 541004, China
| |
Collapse
|
22
|
Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Babin V, Taran F, Audisio D. Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges. JACS AU 2022; 2:1234-1251. [PMID: 35783167 PMCID: PMC9241029 DOI: 10.1021/jacsau.2c00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 05/04/2023]
Abstract
Carbon-14 (14C) is a gold standard technology routinely utilized in pharmaceutical and agrochemical industries for tracking synthetic organic molecules and providing their metabolic and safety profiles. While the state of the art has been dominated for decades by traditional multistep synthetic approaches, the recent emergence of late-stage carbon isotope labeling has provided new avenues to rapidly access carbon-14-labeled biologically relevant compounds. In particular, the development of carbon isotope exchange has represented a fundamental paradigm change, opening the way to unexplored synthetic transformations. In this Perspective, we discuss the recent developments in the field with a critical assessment of the literature. We subsequently discuss research directions and future challenges within this rapidly evolving field.
Collapse
|
24
|
Huo YW, Qi X, Wu XF. Nickel-Catalyzed Carbonylative Synthesis of α,β-Unsaturated Thioesters from Vinyl Triflates and Arylsulfonyl Chlorides. Org Lett 2022; 24:4009-4013. [PMID: 35613710 DOI: 10.1021/acs.orglett.2c01430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward and efficient synthesis of α,β-unsaturated thioesters has been developed via a nickel-catalyzed thiocarbonylation reaction of vinyl triflates with arylsulfonyl chlorides. With Mo(CO)6 as both CO source and reductant, a variety of α,β-unsaturated thioesters were obtained in moderate to good yields with very good functional group compatibility. It is noteworthy that the present method is the first example on nickel-catalyzed carbonylative synthesis of α,β-unsaturated thioesters by using arylsulfonyl chlorides as the coupling partner.
Collapse
Affiliation(s)
- Yong-Wang Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xinxin Qi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
25
|
Liu N, Wu X, Wang C, Qu J, Chen Y. Nickel-catalyzed alkoxycarbonylation of aryl iodides with 1 atm CO. Chem Commun (Camb) 2022; 58:4643-4646. [PMID: 35311870 DOI: 10.1039/d2cc00876a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A nickel-catalyzed alkoxycarbonylation of aromatic iodides with alcohols under atmospheric pressure of carbon monoxide is presented here. This operationally simple protocol allows the facile synthesis of (hetero)aromatic esters, exhibiting broad substrate scope with excellent functional group tolerance. Various primary and secondary aliphatic alcohols as well as phenols are suitable for this transformation.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
26
|
Hou L, Huang W, Wu X, Qu J, Chen Y. Nickel-Catalyzed Carbonylation of Cyclopropanol with Benzyl Bromide for Multisubstituted Cyclopentenone Synthesis. Org Lett 2022; 24:2699-2704. [PMID: 35389666 DOI: 10.1021/acs.orglett.2c00798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we reported a Ni-catalyzed carbonylation of cyclopropanol with benzyl bromide to afford multisubstituted cyclopentenone under 1 atm of CO. The reaction proceeds through cascade carbonylation of benzyl bromides, followed by generation of nickel homoenolate from cyclopropanols via β-C elimination to afford 1,4-diketones, which undergoes intramolecular Aldol condensation to furnish highly substituted cyclopentenone derivatives in moderate to good yields. The reaction exhibits high functional group tolerance with broad substrate scope.
Collapse
Affiliation(s)
- Liting Hou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Ai HJ, Yuan Y, Wu XF. Ruthenium pincer complex-catalyzed heterocycle compatible alkoxycarbonylation of alkyl iodides: substrate keeps the catalyst active. Chem Sci 2022; 13:2481-2486. [PMID: 35310509 PMCID: PMC8864804 DOI: 10.1039/d1sc06581e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/05/2022] [Indexed: 11/28/2022] Open
Abstract
The electron pair of the heteroatom in heterocycles will coordinate with metal catalysts and decrease or even inhibit their catalytic activity consequently. In this work, a pincer ruthenium-catalyzed heterocycle compatible alkoxycarbonylation of alkyl iodides has been developed. Benefitting from the pincer ligand, a variety of heterocycles, such as thiophenes, morpholine, unprotected indoles, pyrrole, pyridine, pyrimidine, furan, thiazole, pyrazole, benzothiadiazole, and triazole, are compatible here.
Collapse
Affiliation(s)
- Han-Jun Ai
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yang Yuan
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science 116023 Dalian Liaoning China
| |
Collapse
|
28
|
Ravn AK, Johansen MB, Skrydstrup T. Regioselective Hydroalkylation of Vinylarenes by Cooperative Cu and Ni Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anne K. Ravn
- Carbon Dioxide Activation Center (CADIAC) The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Martin B. Johansen
- Carbon Dioxide Activation Center (CADIAC) The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC) The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
29
|
Yao L, Wei P, Ying J, Wu XF. Nickel-catalyzed carbonylative domino cyclization of arylboronic acid pinacol esters with 2-alkynyl nitroarenes toward N-aroyl indoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00112h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A nickel-catalyzed carbonylative domino cyclization of arylboronic acid pinacol esters with 2-alkynyl nitroarenes has been developed.
Collapse
Affiliation(s)
- Lingyun Yao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ping Wei
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
30
|
Radulović NS, Nikolić MG, Mladenović MZ, Ranđelović P, Stojanović NM, Stojanović‐Radić Z, Jovanović L. Antispasmodic and antimicrobial activities of pyrazole‐containing ferrocenyl alkanols versus their phenyl analogs, and the entry point to potential multitarget treatment for inflammatory bowel diseases. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics University of Niš Niš Serbia
| | - Milica G. Nikolić
- Department of Chemistry, Faculty of Sciences and Mathematics University of Niš Niš Serbia
| | - Marko Z. Mladenović
- Department of Chemistry, Faculty of Sciences and Mathematics University of Niš Niš Serbia
| | - Pavle Ranđelović
- Department of Physiology, Faculty of Medicine University of Niš Niš Serbia
| | | | - Zorica Stojanović‐Radić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics University of Niš Niš Serbia
| | - Ljiljana Jovanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences University of Novi Sad Novi Sad Serbia
| |
Collapse
|
31
|
Ravn AK, Johansen MB, Skrydstrup T. Regioselective Hydroalkylation of Vinylarenes by Cooperative Cu and Ni Catalysis. Angew Chem Int Ed Engl 2021; 61:e202112390. [PMID: 34727415 DOI: 10.1002/anie.202112390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Indexed: 12/28/2022]
Abstract
Disclosed here is a dual copper and nickel catalytic system with a silyl hydride source for promoting the linear selective hydroalkylation of vinylarenes. This carbon-carbon bond-forming protocol is applied to couple a variety of functionalized vinylarenes with alkyl halides applying a nickel(II) NNN pincer complex in the presence of an NHC-ligated copper catalyst. This combination allows for a 1 mol % loading of the nickel catalyst leading to turnover numbers of up to 72. Over 40 examples are presented, including applications for pharmaceutical diversification. Labeling experiments demonstrated the regioselectivity of the reaction and revealed that the copper catalyst plays a crucial role in enhancing the rate for formation of the reactive linear alkyl nickel complex. Overall, the presented work provides a complimentary approach for hydroalkylation reactions, whilst providing a preliminary mechanistic understanding of the cooperativity between the copper and nickel complexes.
Collapse
Affiliation(s)
- Anne K Ravn
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Martin B Johansen
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
32
|
Ton SJ, Neumann KT, Nørby P, Skrydstrup T. Nickel-Mediated Alkoxycarbonylation for Complete Carbon Isotope Replacement. J Am Chem Soc 2021; 143:17816-17824. [PMID: 34643376 DOI: 10.1021/jacs.1c09170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Many commercial drugs, as well as upcoming pharmaceutically active compounds in the pipeline, display aliphatic carboxylic acids or derivatives thereof as key structural entities. Synthetic methods for rapidly accessing isotopologues of such compounds are highly relevant for undertaking critical pharmacological studies. In this paper, we disclose a direct synthetic route allowing for full carbon isotope replacement via a nickel-mediated alkoxycarbonylation. Employing a nickelII pincer complex ([(N2N)Ni-Cl]) in combination with carbon-13 labeled CO, alkyl iodide, sodium methoxide, photocatalyst, and blue LED light, it was possible to generate the corresponding isotopically labeled aliphatic carboxylates in good yields. Furthermore, the developed methodology was applied to the carbon isotope substitution of several pharmaceutically active compounds, whereby complete carbon-13 labeling was successfully accomplished. It was initially proposed that the carboxylation step would proceed via the in situ formation of a nickellacarboxylate, generated by CO insertion into the Ni-alkoxide bond. However, preliminary mechanistic investigations suggest an alternative pathway involving attack of an open shell species generated from the alkyl halide to a metal ligated CO to generate an acyl NiIII species. Subsequent reductive elimination involving the alkoxide eventually leads to carboxylate formation. An excess of the alkoxide was essential for obtaining a high yield of the product. In general, the presented methodology provides a simple and convenient setup for the synthesis and carbon isotope labeling of aliphatic carboxylates, while providing new insights about the reactivity of the N2N nickel pincer complex applied.
Collapse
Affiliation(s)
- Stephanie J Ton
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Peter Nørby
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
33
|
Chen J, Zhu S. Nickel-Catalyzed Multicomponent Coupling: Synthesis of α-Chiral Ketones by Reductive Hydrocarbonylation of Alkenes. J Am Chem Soc 2021; 143:14089-14096. [PMID: 34436887 DOI: 10.1021/jacs.1c07851] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A nickel-catalyzed, multicomponent regio- and enantioselective coupling via sequential hydroformylation and carbonylation from readily available starting materials has been developed. This modular multicomponent hydrofunctionalization strategy enables the straightforward reductive hydrocarbonylation of a broad range of unactivated alkenes to produce a wide variety of unsymmetrical dialkyl ketones bearing a functionalized α-stereocenter, including enantioenriched chiral α-aryl ketones and α-amino ketones. It uses chiral bisoxazoline as a ligand, silane as a reductant, chloroformate as a safe CO source, and a racemic secondary benzyl chloride or an N-hydroxyphthalimide (NHP) ester of a protected α-amino acid as the alkylation reagent. The benign nature of this process renders this method suitable for late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
34
|
Zhang X, Qi D, Jiao C, Liu X, Zhang G. Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN 2 pincer ligand. Nat Commun 2021; 12:4904. [PMID: 34385455 PMCID: PMC8361081 DOI: 10.1038/s41467-021-25222-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
Alkynes are amongst the most valuable functional groups in organic chemistry and widely used in chemical biology, pharmacy, and materials science. However, the preparation of alkyl-substituted alkynes still remains elusive. Here, we show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts. Key to the success of this coupling is the development of an easily accessible and bench-stable amide-type pincer ligand. This ligand allows naturally abundant alkyl amines as alkylating agents in Sonogashira reactions, and produces diverse alkynes in excellent yields under mild conditions. Salient merits of this chemistry include broad substrate scope and functional group tolerance, gram-scale synthesis, one-pot transformation, versatile late-stage derivatizations as well as the use of inexpensive pre-catalyst and readily available substrates. The high efficiency and strong practicability bode well for the widespread applications of this strategy in constructing functional molecules, materials, and fine chemicals. Alkynes are amongst the most valuable functional groups in organic chemistry, however, the preparation of alkyl-substituted alkynes still remains elusive. Here the authors show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
35
|
Wang W, Bao ZP, Qi X, Wu XF. Nickel-Catalyzed One-Pot Carbonylative Synthesis of 2-Mono- and 2,3-Disubstituted Thiochromenones from 2-Bromobenzenesulfonyl Chlorides and Alkynes. Org Lett 2021; 23:6589-6593. [PMID: 34370477 DOI: 10.1021/acs.orglett.1c02442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nickel-catalyzed one-pot carbonylation reaction of 2-bromobenzenesulfonyl chlorides with alkynes for the synthesis of thiochromenones has been established. Both terminal and internal alkynes were suitable substrates in this carbonylative transformation, and a broad range of 2-mono- and 2,3-disubstituted thiochromenone products were obtained in moderate to good yields with quite high functional group compatibility. Notably, this procedure presents the first example of nickel-catalyzed carbonylative synthesis of thiochromenones with 2-bromobenzenesulfonyl chlorides as a promising sulfur precursor.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Zhi-Peng Bao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, 116023, Dalian, Liaoning, China; Leibniz-Institut für Katalyse e.V. an der, Institution Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
36
|
Vogt N, Sandleben A, Kletsch L, Schäfer S, Chin MT, Vicic DA, Hörner G, Klein A. Role of the X Coligands in Cyclometalated [Ni(Phbpy)X] Complexes (HPhbpy = 6-Phenyl-2,2′-bipyridine). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Vogt
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Aaron Sandleben
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Lukas Kletsch
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Sascha Schäfer
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Mason T. Chin
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - David A. Vicic
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Gerald Hörner
- Institut für Chemie, Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany
| | - Axel Klein
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| |
Collapse
|
37
|
Abstract
Transition metal-catalyzed carbonylation reactions represent a direct and atom-economical approach to introduce oxygen functionality into organic compounds, with CO acting as an inexpensive and readily available C1 feedstock. Despite the long history of carbonylation catalysis, including many processes that have been industrialized at bulk scale, there remain several challenges to tackle. For example, noble metals such as Pd, Rh, and Ir are typically used as catalysts for carbonylation reactions, rather than earth-abundant alternatives. Additionally, while carbonylation of C(sp2)-hybridized substrates (e.g., aryl halides) is well-known, carbonylation of unactivated alkyl electrophiles, especially where β-hydride elimination can compete with desired CO migratory insertion at the catalyst site, remains challenging for many systems. Recently, base metal catalysis based on Mn, Co, and other metals has enabled advances in carbonylative coupling of alkyl electrophiles, though the nucleophiles are often limited to alcohols or amines to generate esters or amides as products. Thus, we have targeted base metal-catalyzed carbonylative C-C and C-E (E = N, H, Si, B) coupling reactions as a method for approaching diverse carbonyl compounds of synthetic importance.Initially, we designed a heterobimetallic catalyst platform for carbonylative C-C coupling of alkyl halides with arylboronic esters (i.e., carbonylative Suzuki-Miyaura coupling) to generate aryl alkyl ketones. Subsequently, we developed multicomponent carbonylation reactions of alkyl halides using NHC-Cu catalysts (NHC = N-heterocyclic carbene). These reactions operate by radical mechanisms, converting alkyl halides into either acyl radical or acyl halide intermediates that undergo subsequent C-C or C-E coupling at the Cu site. This mechanistic paradigm is relatively novel in the metal-catalyzed carbonylation area, allowing us to discover a previously unexplored chemical space in carbonylative coupling catalysis. We have successfully developed the following reactions: (a) hydrocarbonylative coupling of alkynes with alkyl halides; (b) borocarbonylative coupling of alkynes with alkyl halides; (c) reductive aminocarbonylation of alkyl halides with nitroarenes; (d) reductive carbonylation of alkyl halides; (e) carbonylative silylation of alkyl halides; (f) carbonylative borylation of alkyl halides. These reactions provide a broad range of valuable products including ketones, allylic alcohols, β-borylenones, amides, alcohols, acylsilanes, and acylborons in an efficient manner. Notably, the preparation of some of these products has previously required multistep syntheses, harsh conditions, or specialized reagents. By contrast, the multicomponent coupling platform that we have developed requires only readily available building blocks and rapidly increases molecular complexity in a single synthetic manipulation.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
38
|
Pedersen SS, Donslund AS, Mikkelsen JH, Bakholm OS, Papp F, Jensen KB, Gustafsson MBF, Skrydstrup T. A Nickel(II)-Mediated Thiocarbonylation Strategy for Carbon Isotope Labeling of Aliphatic Carboxamides. Chemistry 2021; 27:7114-7123. [PMID: 33452676 DOI: 10.1002/chem.202005261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 12/15/2022]
Abstract
A series of pharmaceutically relevant small molecules and biopharmaceuticals bearing aliphatic carboxamides have been successfully labeled with carbon-13. Key to the success of this novel carbon isotope labeling technique is the observation that 13 C-labeled NiII -acyl complexes, formed from a 13 CO insertion step with NiII -alkyl intermediates, rapidly react in less than one minute with 2,2'-dipyridyl disulfide to quantitatively form the corresponding 2-pyridyl thioesters. Either the use of 13 C-SilaCOgen or 13 C-COgen allows for the stoichiometric addition of isotopically labeled carbon monoxide. Subsequent one-pot acylation of a series of structurally diverse amines provides the desired 13 C-labeled carboxamides in good yields. A single electron transfer pathway is proposed between the NiII -acyl complexes and the disulfide providing a reactive NiIII -acyl sulfide intermediate, which rapidly undergoes reductive elimination to the desired thioester. By further optimization of the reaction parameters, reaction times down to only 11 min were identified, opening up the possibility of exploring this chemistry for carbon-11 isotope labeling. Finally, this isotope labeling strategy could be adapted to the synthesis of 13 C-labeled liraglutide and insulin degludec, representing two antidiabetic drugs.
Collapse
Affiliation(s)
- Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jesper H Mikkelsen
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Oskar S Bakholm
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Florian Papp
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kim B Jensen
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Magnus B F Gustafsson
- Global Research Technologies, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of, Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
39
|
Yao L, Ying J, Wu XF. Nickel-catalyzed cascade carbonylative synthesis of N-benzoyl indoles from 2-nitroalkynes and aryl iodides. Org Chem Front 2021. [DOI: 10.1039/d1qo01284c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed carbonylative cyclization of 2-nitroalkynes and aryl iodides has been developed for the expedite construction of N-benzoyl indole scaffolds.
Collapse
Affiliation(s)
- Lingyun Yao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
40
|
|
41
|
Zhou M, Zhao HY, Zhang S, Zhang Y, Zhang X. Nickel-Catalyzed Four-Component Carbocarbonylation of Alkenes under 1 atm of CO. J Am Chem Soc 2020; 142:18191-18199. [PMID: 32985884 DOI: 10.1021/jacs.0c08708] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed carbonylation is one of the most straightforward strategies to prepare carbonyl compounds. However, compared to well-established noble-metal-catalyzed carbonylation reactions, analogue coupling via base-metal, nickel catalysis has received less attention because of the easy formation of highly toxic and unreactive Ni(CO)4 species between Ni(0) and CO. To date, the use of inexpensive and widely available carbon monoxide (CO) gas for nickel-catalyzed carbonylation reaction remains challenging, and nickel-catalyzed four-component carbonylative reaction has not been reported yet. Here, we report a highly selective nickel-catalyzed four-component carbocarbonylation of alkenes under 1 atm (1 atm) of CO gas to efficiently achieve an array of complex carbonyl compounds, including fluorinated amino acids and oligopeptides of great interest in medicinal chemistry and chemical biology. This reaction relies on a nickel-catalyzed one-pot cascade process to assemble CO, arylboronic acids, and difluoroalkyl electrophiles across the carbon-carbon double bond of alkenes, paving a new way for base-metal-catalyzed carbonylative cascade reaction.
Collapse
Affiliation(s)
- Minqi Zhou
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Yang Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shu Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu, Sichuan 611731, China
| | - Yanxia Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Wang C, Wu L, Xu W, He F, Qu J, Chen Y. Palladium-Catalyzed Secondary Benzylic Imidoylative Reactions. Org Lett 2020; 22:6954-6959. [PMID: 32808530 DOI: 10.1021/acs.orglett.0c02515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reported herein is a palladium-catalyzed secondary benzylic imidoylative Negishi reaction leveraging the sterically bulky aromatic isocyanides as the imine source. This method allows the facile access of alkyl-, (hetero)aryl-, and alkynylzinc reagents to afford various α-substituted phenylacetone products under mild acidic hydrolysis, which are ubiquitous motifs in many pharmaceuticals and biologically active compounds. The diastereoselective reduction of imine can be accomplished to provide the expedient conversion of secondary benzylic halide into α-substituted phenethylamine derivatives with high atom economy.
Collapse
Affiliation(s)
- Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Licheng Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wentao Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
43
|
Ravn AK, Johansen MB, Skrydstrup T. Controlled Release of Reactive Gases: A Tale of Taming Carbon Monoxide. Chempluschem 2020; 85:1529-1533. [PMID: 32510185 DOI: 10.1002/cplu.202000319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Indexed: 12/19/2022]
Abstract
This Personal Account describes the development of air-stable and solid precursors for on-demand release of carbon monoxide. In combination with the development of a two-chamber reactor, COware®, CO liberation can be achieved under safe working conditions, as well as allowing transition metal-mediated carbonylations with stoichiometric carbon monoxide. Particularly appealing is the adaptability of this chemical technology for the preparation of carbon isotope labeled bioactive compounds.
Collapse
Affiliation(s)
- Anne K Ravn
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Martin B Johansen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.,Department of Engineering, Aarhus University, Åbogade 40, 8200, Aarhus N, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
44
|
Wang Y, Huang W, Wang C, Qu J, Chen Y. Nickel-Catalyzed Formal Aminocarbonylation of Secondary Benzyl Chlorides with Isocyanides. Org Lett 2020; 22:4245-4249. [PMID: 32383891 DOI: 10.1021/acs.orglett.0c01284] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylacetamides represent versatile feedstocks in synthetic chemistry, widely existing in drug molecules and natural products. Herein, we disclose a nickel-catalyzed formal aminocarbonylation of secondary benzyl chlorides with isocyanides yielding α-substituted phenylacetamide with steric hindrance, which is synthetically challenging via palladium-catalyzed aminocarbonylation. The reaction features wide functional group tolerance under mild conditions, highlighted by the tolerance of various aromatic halide (-Cl, -Br, -I) and heteroaromatic rings (pyridine and pyrazine).
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
45
|
Zhu L, Liu LJ, Jiang YY, Liu P, Fan X, Zhang Q, Zhao Y, Bi S. Mechanism and Origin of Ligand-Controlled Chemo- and Regioselectivities in Palladium-Catalyzed Methoxycarbonylation of Alkynes. J Org Chem 2020; 85:7136-7151. [DOI: 10.1021/acs.joc.0c00533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ling Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Ling-Jun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Xia Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, People’s Republic of China
| | - Yulei Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| |
Collapse
|
46
|
Huang W, Wang Y, Weng Y, Shrestha M, Qu J, Chen Y. Nickel-Catalyzed Formal Aminocarbonylation of Unactivated Alkyl Iodides with Isocyanides. Org Lett 2020; 22:3245-3250. [PMID: 32242414 DOI: 10.1021/acs.orglett.0c01022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, we disclose a Ni-catalyzed formal aminocarbonylation of primary and secondary unactivated aliphatic iodides with isocyanides to afford alkyl amide, which proceeds via the selective monomigratory insertion of isocyanides with alkyl iodides, subsequent β-hydride elimination, and hydrolysis process. The reaction features wide functional group tolerance under mild conditions. Additionally, the selective, one-pot hydrolysis of reaction mixture under acid conditions allows for expedient synthesis of the corresponding alkyl carboxylic acid.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yangyang Weng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
47
|
Sabater S, Menche M, Ghosh T, Krieg S, Rück KSL, Paciello R, Schäfer A, Comba P, Hashmi ASK, Schaub T. Mechanistic Investigation of the Nickel-Catalyzed Carbonylation of Alcohols. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Sabater
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Maximilian Menche
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
- BASF SE, Quantum Chemistry, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Tamal Ghosh
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Saskia Krieg
- Anorganisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | | | - Rocco Paciello
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Ansgar Schäfer
- BASF SE, Quantum Chemistry, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
- BASF SE, Organic Synthesis, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
48
|
Donslund AS, Pedersen SS, Gaardbo C, Neumann KT, Kingston L, Elmore CS, Skrydstrup T. Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Aske S. Donslund
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Simon S. Pedersen
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Cecilie Gaardbo
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Karoline T. Neumann
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Lee Kingston
- Isotope ChemistryEarly Chemical DevelopmentPharmaceutical Sciences, R&DAstraZeneca Pharmaceuticals 43183 Gothenberg Sweden
| | - Charles S. Elmore
- Isotope ChemistryEarly Chemical DevelopmentPharmaceutical Sciences, R&DAstraZeneca Pharmaceuticals 43183 Gothenberg Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC)Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO)Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
49
|
Donslund AS, Pedersen SS, Gaardbo C, Neumann KT, Kingston L, Elmore CS, Skrydstrup T. Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angew Chem Int Ed Engl 2020; 59:8099-8103. [PMID: 32017346 DOI: 10.1002/anie.201916391] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Indexed: 12/14/2022]
Abstract
An extensive range of functionalized aliphatic ketones with good functional-group tolerance has been prepared by a NiI -promoted coupling of either primary or secondary alkyl iodides with NN2 pincer NiII -acyl complexes. The latter were easily accessed from the corresponding NiII -alkyl complexes with stoichiometric CO. This Ni-mediated carbonylative coupling is adaptable to late-stage carbon isotope labeling, as illustrated by the preparation of isotopically labelled pharmaceuticals. Preliminary investigations suggest the intermediacy of carbon-centered radicals.
Collapse
Affiliation(s)
- Aske S Donslund
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Simon S Pedersen
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Cecilie Gaardbo
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Karoline T Neumann
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Lee Kingston
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, 43183, Gothenberg, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Pharmaceuticals, 43183, Gothenberg, Sweden
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Department of Chemistry and the Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| |
Collapse
|
50
|
Saravana Kumar S, Selva Kumar R, Ashok Kumar S. An “Off-On-Off” type fluorescent chemosensor for the relay detection of Zn2+ and H2PO4− in aqueous environment. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|