1
|
Zeng Y, Zhao Q, Jiang Z, Huang Z, Xuan W. Linker Engineering of High-Nuclearity {V 12@P 8W 48}-Based Metal-Organic Frameworks for Green-Light-Driven Oxidative Coupling of Amines. Inorg Chem 2025; 64:10012-10021. [PMID: 40344681 DOI: 10.1021/acs.inorgchem.5c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The development of long-wavelength visible-light-responsive and reusable photocatalysts for organic transformation is of significant interest. Herein, we report the design and synthesis of high-nuclearity {V12@P8W48}-based metal-organic frameworks, POMOF1 and POMOF2, as heterogeneous photocatalysts for long-wavelength light-triggered oxidation. Linker engineering, by tuning from visible-light-inactive triazole (L1) to a photosensitive anthraquinone-derived ligand (L2), not only leads to the generation of porous 1D open channels within POMOF2 but also imparts a strong peak absorption centered at 500 nm. Moreover, the integration of {V12@P8W48} and Cu2+ ions together with L2 into POMOF2 enables the continued and broad absorption ranging from the ultraviolet to near-infrared region. Consequently, POMOF2 exhibited excellent activity in the green-light-driven oxidative coupling of benzylamines, affording a series of imines with high conversions of up to 99% under mild conditions. In contrast, POMOF1 could barely promote the reaction under the same conditions, further confirming the advantage of linker modulation. POMOF2 is stable and can be reused for three cycles with little loss of catalytic activity and structural integrity. This work highlights the potential of linker engineering as an efficient approach for designing long-wavelength photocatalysts, which can further push forward photoredox catalysis.
Collapse
Affiliation(s)
- Yang Zeng
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| | - Qixin Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| | - Zhiqiang Jiang
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| | - Zhenxuan Huang
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| | - Weimin Xuan
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China
| |
Collapse
|
2
|
Zhao H, Zhang C, Han BL, Mahato P, Yang CZ, Yu PX, Wang Z, Tung CH, Sun D. Gram-Scale Synthesis of an Ultrastable 38-Nuclei Copper(I) Alkynide Nanocluster for Unraveling Bifunctional Photocatalysis. NANO LETTERS 2025. [PMID: 40402653 DOI: 10.1021/acs.nanolett.5c01986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Developing earth-abundant single catalysts capable of simultaneously driving redox reactions is highly desirable, yet it remains elusive due to band gap engineering complexity and rapid charge recombination. Herein, gram-scale synthesis of an ultrastable copper(I) alkynyl nanocluster (Cu38) was realized, and its bifunctionalization was comprehensively studied. Cu38 features a sandwiched structure comprising two Cu10 units and a peanut-like Cu18 unit at the waist. Two types of in-situ reactions involving the oxidization of phenylphosphinic acid and the release of C22- ions from alkynol, occur in this assembly system. The stepwise assembly process of Cu38 was revealed through mass spectrometry. Catalysis studies reveal that Cu38 realizes synchronous photocatalysis disposal in the binary CrVI/dye system due to its appropriate band gap and efficient carrier separation, which are further corroborated by density functional theory (DFT) calculations. This work provides strategic guidance for constructing ultrastable high-nuclearity CuI nanoclusters and new insights into achieving multiple catalytic half-reactions using redox-type nanoclusters.
Collapse
Affiliation(s)
- Hui Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| | - Paritosh Mahato
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| | - Cheng-Zhe Yang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| | - Pei-Xuan Yu
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
3
|
Liu JW, Yu Qi M, Huang ZS, Tang ZR, Xu YJ. Hierarchical Co 9S 8/CdS Hollow Nanocages for Efficient and Robust Cooperative Coupling Photoredox Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502968. [PMID: 40377373 DOI: 10.1002/smll.202502968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/01/2025] [Indexed: 05/18/2025]
Abstract
The elaborate development of photocatalysts that can maximize the utility of solar energy with simultaneous photocatalytic H2 evolution and high-quality chemicals production holds great promise in the field of selective photoredox synthesis. Herein, the in situ growth of CdS nanowires on the outside surface of Co9S8 hollow nanocages is reported to create a hierarchical CdS/Co9S8 hollow photocatalyst for efficient photochemical coupling of amines to produce imines and H2. This ingenious hierarchical photocatalyst has a unique hollow structure and dense interfacial contact with a type-I band orientation, which facilitates the interfacial transfer of charge carriers. The photocatalytic activity of this hierarchical hollow catalyst is significantly enhanced in comparison to CdS and Co9S8, and distinctively exhibits excellent recycling stability. Mechanistic studies have shown that the carbon-centered radical Ph(•CH)NH2 is essential for the reaction. Additionally, the CdS/Co9S8 hollow hybrid also exhibits outstanding performance in coupling various primary amines to the corresponding imines, highlighting the broad applicability of this photocatalyst for C-N coupling reactions. This work offers a new strategy for the efficient design of heterostructured hollow semiconductor-based photocatalysts for the cooperative coupling of clean fuel production and fine chemical synthesis.
Collapse
Affiliation(s)
- Jia-Wei Liu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Ming Yu Qi
- School of Materials and Energy & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Zhi-Sang Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
- School of Materials and Energy & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
- School of Materials and Energy & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
4
|
Yan X, Lin Z, Shen H, Chen Y, Chen L. Photo-responsive antibacterial metal organic frameworks. J Mater Chem B 2025. [PMID: 40370037 DOI: 10.1039/d5tb00105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The misuse and overuse of antibiotics have caused the emergence of antibiotic-resistant bacteria, making bacterial infections more challenging. The increasing prevalence of multidrug-resistant pathogens has driven researchers to explore novel therapeutic strategies. Phototherapy strategies that utilize photo-responsive biomaterials for their antibacterial properties have gained widespread attention due to their capability of precisely controlling bacterial inactivation with minimal side effects. Despite their potential, photodynamic therapies suffer from phototoxicity and low efficiency of photosensitizers, while photothermal therapy risks overheating, which may harm healthy tissues, thus restricting its broader application. Metal organic frameworks (MOFs) have unique physicochemical properties, which provide a promising way to deal with these challenges. MOFs can function as reservoirs, loading and releasing antibacterial agents, such as antibiotics or metal ions, upon light illumination by virtue of their metastable coordination bonds. Their porous structures enable controlled drug release and encapsulation of photosensitizers. Furthermore, MOFs' tunable composition and pore structure allow for the light-triggered generation of heat and reactive oxygen species, enhancing their antibacterial effectiveness. By doping MOFs with functional materials, it is possible to achieve multi-mode antibacterial effects. In this review, we will outline recent advancements of photo-responsive antibacterial MOFs, categorize their underlying mechanisms of action and highlight their prospects in addressing bacterial resistance.
Collapse
Affiliation(s)
- Xiaojie Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Zhengzheng Lin
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - He Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Liang Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
5
|
Yang N, Yin Z, Chen Z, Gao C, Cao Z, Zheng Y, Pan Z, Cao H, Ye S, Xiong Y. Solar-Driven Massive Production of Dimerized Imine in Aqueous Phase via an Atomically Engineered Photocatalyst. Angew Chem Int Ed Engl 2025:e202502202. [PMID: 40232634 DOI: 10.1002/anie.202502202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/16/2025]
Abstract
Photocatalytic selective oxidation of organics coupled with green H2 evolution represents a promising avenue for the sustainable production of value-added chemicals, but suffers from sluggish charge separation and difficult selectivity manipulation. In particular, the Schottky barrier-induced adsorption of expected organic products at reduction sites tends to trigger the hydrogenation side reaction, which is more pronounced in the ideal aqueous environment due to distinct polarity. Here, we report a precise cocatalyst strategy on ZnIn2S4 (ZIS) photocatalyst at the atomic level to eliminate the Schottky barrier between ZIS and cocatalyst, thus achieving exceptional activity (565 µmol h-1) and selectivity (99%) for photocatalytic dimerized imine production in aqueous media, which is five times more effective than ZIS loaded with Pt nanoparticles. The excellent performance is achieved by effectively attenuating the accumulation of photogenerated holes near the Pt sites and then suppressing the unwanted hydrogenation side reaction. We further demonstrate that our system can be directly scaled up to 0.5 m2 for scalable outdoor experiment and achieve solar-driven production of benzylimine with 125 mL yield and 97 wt% purity for two weeks under solar irradiation. This study presents an interfacial atomical design strategy for photocatalysts to efficiently produce high-value imine coupled with H2 under mild and green conditions.
Collapse
Affiliation(s)
- Nengcong Yang
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zixi Yin
- School of Physics and Electronic Engineering, Hubei University of Arts and Sciences, Xiangyang, 441100, China
| | - Zhian Chen
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Chao Gao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zhuwei Cao
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Zheng
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenhua Pan
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, 671-2280, Japan
| | - Haiqun Cao
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Sheng Ye
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Huang H, Yang Q, Yao K, Geng W, Jing X. Visible-light harvesting 2D copper-cluster-based MOFs as efficient ROS generators for selective oxidation of amines. Dalton Trans 2025; 54:6015-6019. [PMID: 40126519 DOI: 10.1039/d5dt00120j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
We have designed and synthesized an aesthetically appealing two-dimensional copper-cluster-based organic framework material named Cu-BPYC. This material exhibits superior charge separation and transfer efficiency, as well as reactive oxygen species (ROS) generation capability under visible-light irradiation. Through the synergistic mechanisms of photo-induced energy and charge transfer, it effectively promotes the oxidation of amines to imines. Additionally, Cu-BPYC demonstrates excellent structural stability and reusability in heterogeneous catalytic systems.
Collapse
Affiliation(s)
- Huilin Huang
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Qiong Yang
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Kun Yao
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Wenchao Geng
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China.
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
7
|
Zhang Z, Zhang X, Zhang B, Hu X, Wu J, Hou H. Highly Efficient Yolk-Shell Photocatalyst Constructed by Integration of Ni 2P and Cu 2O Nanoparticles to Defective Metal-Organic Frameworks for Visible-Light-Driven Amine Oxidation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19722-19733. [PMID: 40106671 DOI: 10.1021/acsami.5c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Realizing the directional migration of photogenerated carriers plays an important role in improving the photocatalytic performance. Meanwhile, light-driven oxidative coupling of benzylamine under ambient conditions with an inexpensive catalyst is highly desirable for the industrial field. Herein, via in situ synthesis, defect engineering, and photodeposition, a yolk-shell nanostructured photocatalyst, Ni2P@OH-NH2-UiO-66@Cu2O, featuring nickel phosphide (Ni2P) nanoparticles (NPs) trapped inside a defect engineered metal-organic framework (MOF, namely OH-NH2-UiO-66) and Cu2O NPs adhering on the surface of MOFs, has been rationally fabricated for the achievement of spatial separation of oxidation/reduction cocatalyst in photocatalytic reaction systems. The yolk-shell structure can effectively avoid the aggregation of the Ni2P and Cu2O NPs. Remarkably, the separation of electron collector Ni2P and hole collector Cu2O regulates the directional movement of the photogenerated carriers and effectively improves the electron-hole separation efficiency to generate abundant reactive superoxide radicals (•O2-) and hydroxyl radicals (•OH). Ni2P@OH-NH2-UiO-66@Cu2O achieves a conversion of 99% for the oxidative coupling of benzylamine into imine within 1 h at ambient temperature under visible-light irradiation. The present study provides an economical method to construct a MOF-based yolk-shell photocatalyst for the oxidative coupling of amines.
Collapse
Affiliation(s)
- Zhaozhen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiying Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaomeng Hu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jie Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
8
|
Fang Z, Ding Y, Yuan S, Wang L, Wang M, Li F, Wu X, Sun L, Zhang P. Electrocatalytic Hydrogenation and Deuteration of Unsaturated C-N Bonds to Amines with Vacancy-Rich Cu 3P Nanowires as Catalysts in Aqueous Solution. CHEMSUSCHEM 2025; 18:e202401601. [PMID: 39473356 DOI: 10.1002/cssc.202401601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024]
Abstract
Renewable energy driven electrochemically hydrogenation of unsaturated C-N bonds with water as a hydrogen source provides an eco-friendly route for amine production. However, the potential commercial applications of this strategy were limited by the lack of relevant extended research. Here we demonstrate an efficient electrochemical hydrogenation system for the formation of amines from nitriles by a vacancy-rich copper phosphide catalyst. The catalytic system achieves a yield of 99 % and a Faraday efficiency of 99 % for the hydrogenation of benzonitrile. Mechanism study shows that benzonitrile is spontaneously adsorbed on the electrode surface and the electrogenerated active adsorbed hydrogen is the key reactive intermediate for hydrogenation. Theoretical calculation results show that vacancy-induced active sites chemisorb the N atom, thus accelerating C≡N bond activation for hydrogenation. Encouragingly, good yields of amines (≥99 %) are obtained when benzonitrile is replaced by a series of aromatic nitriles, heterocyclic nitriles, aliphatic nitriles, and imines. These results show the general applicability of this method for the synthesis of various amines.
Collapse
Affiliation(s)
- Zhiyong Fang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Song Yuan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
Liu XH, Guo XX, Zheng SY, Zhou XT. Efficient Photocatalytic Oxidative Coupling of Amines under Visible Light Using a Trioporphyrins-Based Covalent Triazine Framework. Chempluschem 2025; 90:e202400460. [PMID: 39245643 DOI: 10.1002/cplu.202400460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
Porphyrins-based porous organic polymers (POP) were widely used in photocatalytic oxidation under visible light owing to their superiority in the activation of oxygen. In contrast, the efficiency is usually limited due to the fast recombination and slow electron transfer. Herein, we report the use of a trioporphyrins-based covalent triazine framework (Por-CTF) as visible-light-active photocatalyst for the coupling oxidative of amines to imines at room temperature. By incorporating the π-conjugated porphyrin building block led to the enhanced electron transport between molecules, and the extended recombination time of excited electrons. The photocatalytic efficiency of Por-CTF is superior to that of polymer in absence of triazine framework (POP-TSP), which was prepared by radical polymerization using tetra-(4-vinylphenyl) porphyrin (TSP) as monomer. Por-CTF catalyst presented excellent efficiency for various primary amines and stability. This work provides a reasonable guidance of catalyst molecular structure design for enhancing efficiency in the photocatalytic oxidation.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xiao-Xuan Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Shuo-Yun Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xian-Tai Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
- Huizhou Research Institute, Sun Yat-sen University, Huizhou, 516081, P.R. China
| |
Collapse
|
10
|
Xu Z, Chandresh A, Mauri A, Esmaeilpour M, Monnier V, Odobel F, Heinke L, Wenzel W, Kozlowska M, Diring S, Haldar R, Wöll C. Regulated Charge Transfer in Donor-Acceptor Metal-Organic Frameworks for Highly-Sensitive Photodetectors. Angew Chem Int Ed Engl 2024; 63:e202414526. [PMID: 39531348 DOI: 10.1002/anie.202414526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
In photo-induced charge separation, organic thin films with donor and acceptor chromophores are vital for uses such as artificial photosynthesis and photodetection. The main challenges include optimizing charge separation efficiency and identifying the ideal acceptor/donor ratio. Achieving this is difficult due to the variability in molecular configurations within these typically amorphous organic aggregates. Metal-organic frameworks (MOFs) provide a structured solution by enabling systematic design of donor/acceptor blends with adjustable ratios within a crystalline lattice. We demonstrate this approach by incorporating donor and acceptor naphthalenediimide (NDI) chromophores as linkers in a highly oriented, monolithic MOF thin film. By adjusting the NDI acceptor linker concentration during the layer-by-layer assembly of surface-anchored MOF thin films (SURMOFs), we significantly enhanced charge separation efficiency. Surprisingly, the optimum acceptor concentration was only 3 %, achieving a forty-fold increase in photodetection efficiency compared to baseline NDI donor-based SURMOFs. This unexpected behaviour was clarified through theoretical analysis enabled by the well-defined crystalline structure of the SURMOFs. Using density functional theory and kinetic Monte Carlo simulations, we identified two opposing effects from acceptors: the positive effect of suppressing undesirable charge carrier recombination is offset at high concentrations by a reduction in charge-carrier mobility.
Collapse
Affiliation(s)
- Zhiyun Xu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Abhinav Chandresh
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna Mauri
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Meysam Esmaeilpour
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Vincent Monnier
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Fabrice Odobel
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stéphane Diring
- Nantes Université, CNRS CEISAM, UMR 6230, F-44000, Nantes, France
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Sun K, Qian Y, Li D, Jiang HL. Reticular Materials for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411118. [PMID: 39601158 DOI: 10.1002/adma.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Photocatalysis leverages solar energy to overcome the thermodynamic barrier, enabling efficient chemical reactions under mild conditions. It can greatly reduce reliance on traditional energy sources and has attracted significant research interest. Reticular materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), represent a class of crystalline materials constructed from molecular building blocks linked by coordination and covalent bonds, respectively. Reticular materials function as heterogeneous catalysts, combining well-defined structures and high tailorability akin to homogeneous catalysts. In this review, the regulation of light absorption, charge separation, and surface reactions in the photocatalytic process through precise molecular-level design based on the features of reticular materials is elaborated. Notably, for MOFsmicroenvironment modulation around catalytic sites affects photocatalytic performance is delved, with emphasis on their unique dynamic and flexible microenvironments. For COFs, the inherent excitonic effects due to their fully organic nature is discussed and highlight the strategies to regulate excitonic effects for charge- and/or energy-transfer-mediated photocatalysis. Finally, the current challenges and future directions in this field, aiming to provide a comprehensive understanding of how reticular materials can be optimized for enhanced photocatalysis is discussed.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
12
|
Xue M, Zhang L, Li XX, Chen Z, Kang F, Wang X, Dong Q, Wang X, Lee CS, Lan YQ, Zhang Q. Growing large single crystals of two- or three-dimensional covalent organic polymers through unconventional Te-O-P linkages. Nat Commun 2024; 15:10026. [PMID: 39567482 PMCID: PMC11579501 DOI: 10.1038/s41467-024-54235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Understanding precise structures of two-/three- dimensional (2D/3D) covalent organic polymers (COPs) through single-crystal X-ray diffraction (SCXRD) analysis is important. However, how to grow high-quality single crystals for 2D/3D COPs is of challenge due to poor reversibility and difficult self-correction of covalent bonds. In addition, the success of introducing tellurium into the backbone to construct 2D/3D COPs and obtaining their single crystals is rare. Here, utilizing the strategy that a heavy element (e.g., tellurium) can form dynamic linkages with a self-correction function, we develop a fast and universal method for growing large-sized single crystals (up to 500 µm) for 2D/3D COPs, especially for 2D COPs. Three 2D COPs and one 3D COP are harvested through dynamic -Te-O-P- bonds in two days, with structures clearly uncovered via the SCXRD analysis. These 2D/3D COPs also show promising photocatalytic activities (nearly 100% selectivity and 100% yield) in superoxide anion radical-mediated coupling of (arylmethyl)amines.
Collapse
Affiliation(s)
- Miaomiao Xue
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao-Xin Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, P. R. China
| | - Qiang Dong
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, P. R. China
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, P. R. China.
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
13
|
Tian X, Qiu M, An W, Ren Y. Photocatalytic Hydrogenation of Alkenes Using Water as Both the Reductant and the Proton Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406046. [PMID: 39383057 PMCID: PMC11600260 DOI: 10.1002/advs.202406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Indexed: 10/11/2024]
Abstract
Utilization of clean and low-cost water as the reductant to enable hydrogenation of alkenes is highly attractive in green chemistry. However, this research subject is considerably challenging due to the sluggish kinetics of the water oxidation half-reaction. It is also very difficult to avoid the undesired oxidation of alkenes because that this oxidation is far easier to occur than the desired oxidation of water from thermodynamic standpoint. Herein, this challenge is overcome by applying a cooperative catalysis where HCl is used as the cocatalyst to accelerate Pt/g-C3N4-catalyzed water oxidation and suppress the undesired oxidation of the alkene. This provides an example for using water as the reductant and the proton source to enable the photocatalytic hydrogenation of alkenes. The present method exhibits broad substrate applicability, and allows various arylethenes and aliphatic alkenes to undergo the hydrogenation smoothly.
Collapse
Affiliation(s)
- Xinzhe Tian
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Ming Qiu
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Wankai An
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| | - Yun‐Lai Ren
- College of ScienceHenan Agricultural UniversityZhengzhouHenan450002P. R. China
| |
Collapse
|
14
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
15
|
Han C, Zeng Z, Zhang X, Liang Y, Kundu BK, Yuan L, Tan CL, Zhang Y, Xu YJ. All-in-One: Plasmonic Janus Heterostructures for Efficient Cooperative Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408527. [PMID: 38958191 DOI: 10.1002/anie.202408527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Janus heterostructures consisting of multiple jointed components with distinct properties have gained growing interest in the photoredox catalytic field. Herein, we have developed a facile low-temperature method to gain anisotropic one-dimensional Au-tipped CdS (Au-CdS) nanorods (NRs), followed by assembling Ru molecular co-catalyst (RuN5) onto the surface of the NRs. The CdS NRs decorated with plasmonic Au nanoparticles and RuN5 complex harness the virtues of metal-semiconductor and inorganic-organic interface, giving directional charge transfer channels, spatially separated reaction sites, and enhanced local electric field distribution. As a result, the Au-CdS-RuN5 can act as an efficient dual-function photocatalyst for simultaneous H2 evolution and valorization of biomass-derived alcohols. Benefiting from the interfacial charge decoupling and selective chemical bond activation, the optimal all-in-one Au-CdS-RuN5 heterostructure shows greatly enhanced photoactivity and selectivity as compared to bare CdS NRs, along with a remarkable apparent quantum yield of 40.2 % at 400 nm. The structural evolution and working mechanism of the heterostructures are systematically analyzed based on experimental and computational results.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zikang Zeng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaorui Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Lan Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chang-Long Tan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yi Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
16
|
Zhang JB, Tian YB, Gu ZG, Zhang J. Metal-Organic Framework-Based Photodetectors. NANO-MICRO LETTERS 2024; 16:253. [PMID: 39048856 PMCID: PMC11269560 DOI: 10.1007/s40820-024-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
The unique and interesting physical and chemical properties of metal-organic framework (MOF) materials have recently attracted extensive attention in a new generation of photoelectric applications. In this review, we summarized and discussed the research progress on MOF-based photodetectors. The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details. Additionally, the photodetectors applications for X-ray, ultraviolet and infrared light, biological detectors, and circularly polarized light photodetectors are discussed. Furthermore, summaries and challenges are provided for this important research field.
Collapse
Affiliation(s)
- Jin-Biao Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
| | - Yi-Bo Tian
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China
| |
Collapse
|
17
|
Huang SY, Lin X, Yang HY, Dou XR, Shi WJ, Deng JH, Zhong DC, Gong YN, Lu TB. Covalent Bonding of Salen Metal Complexes with Pyrene Chromophores to Porous Polymers for Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:13594-13601. [PMID: 38973091 DOI: 10.1021/acs.inorgchem.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The development of low-cost and efficient photocatalysts to achieve water splitting to hydrogen (H2) is highly desirable but remains challenging. Herein, we design and synthesize two porous polymers (Co-Salen-P and Fe-Salen-P) by covalent bonding of salen metal complexes and pyrene chromophores for photocatalytic H2 evolution. The catalytic results demonstrate that the two polymers exhibit excellent catalytic performance for H2 generation in the absence of additional noble-metal photosensitizers and cocatalysts. Particularly, the H2 generation rate of Co-Salen-P reaches as high as 542.5 μmol g-1 h-1, which is not only 6 times higher than that of Fe-Salen-P but also higher than a large amount of reported Pt-assisted photocatalytic systems. Systematic studies show that Co-Salen-P displays faster charge separation and transfer efficiencies, thereby accounting for the significantly improved photocatalytic activity. This study provides a facile and efficient way to fabricate high-performance photocatalysts for H2 production.
Collapse
Affiliation(s)
- Shu-Ying Huang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiao Lin
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao-Yu Yang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xue-Rong Dou
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wen-Jie Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ji-Hua Deng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yun-Nan Gong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
18
|
Guo Z, Liu X, Che Y, Xing H. Crystal-Defect-Induced Longer Lifetime of Excited States in a Metal-Organic Framework Photocatalyst to Enhance Visible-Light-Mediated CO 2 Reduction. Inorg Chem 2024; 63:13005-13013. [PMID: 38954791 DOI: 10.1021/acs.inorgchem.4c01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We report the structural defects in Zr-metal-organic framework (MOFs) for achieving highly efficient CO2 reduction under visible light irradiation. A series of defective Zr-MOF-X (X = 160, 240, 320, or 400) are synthesized by acid-regulated defect engineering. Compared to pristine defect-free Zr-MOF (NNU-28), N2 uptake increases for Zr-MOF-X synthesized with the HAc modulator, producing a larger pore space and Brunauer-Emmett-Teller surface area. The pore size distribution demonstrates that defective Zr-MOF-X exhibits mesoporous structures. Electrochemistry tests show that defective Zr-MOF-X possesses a more negative reduction potential and a higher photocurrent responsive signal than that of pristine NNU-28. Consequently, the defective samples exhibit a significantly higher efficiency in the photoreduction of CO2 to formate. Transient absorption spectroscopies manifest that structural defects modulate the excited-state behivior of Zr-MOF-X and improve the photogenerated charge separation of Zr-MOF-X. Furthermore, electron paramagnetic resonance and in-suit X-ray photoelectron spectroscopy provide additional evidence of the high photocatalytic performance exhibited by defective Zr-MOF-X. Results demonstrate that structural defects in Zr-MOF-X also improve the charge transfer, producing abundant Zr(III) catalytically active sites, exhibiting a slower decay process than defect-free Zr-MOF. The long-lifetime Zr(III) species in defective Zr-MOF-X are fully exposed to a high-concentration CO2 atmosphere, thereby enhancing the photocatalytic efficiency of CO2 reduction.
Collapse
Affiliation(s)
- Zhifen Guo
- Key Laboratory of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xin Liu
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yan Che
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
19
|
Liu B, Li Y, Guo Y, Tang Y, Wang C, Sun Y, Tan X, Hu Z, Yu T. Regulating the Transfer of Photogenerated Carriers for Photocatalytic Hydrogen Evolution Coupled with Furfural Synthesis. ACS NANO 2024; 18:17939-17949. [PMID: 38918079 DOI: 10.1021/acsnano.4c04562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
How to simultaneously utilize photogenerated electrons and holes still remains a critical challenge in the field of artificial photosynthesis, especially in the process of photocatalytic hydrogen (H2) evolution coupled with biomass oxidation to value-added chemicals. Herein, a series-parallel photocatalyst (Cu NPs/CdS/In2O3) that can intrinsically regulate the transfer of photogenerated carriers is ingeniously designed for photocatalytic H2 evolution synergized with furfural alcohol (FFA) selective oxidation to furfural (FF). Accordingly, the desired H2 and FF evolution rates with near 100% selectivity toward FF are achieved on Cu NPs/CdS/In2O3 in a sealed atmospheric system. Experimental and theoretical analyses confirm that the localized surface plasmon resonance (LSPR) effect induced by Cu NPs accelerates the reduction of protons (H+) to H2 efficiently, while the photogenerated holes from In2O3 preferentially activate the α-C-H bond of FFA adsorbed on Lewis acid sites to generate FF. This work provides a reference for regulating the transfer of photogenerated carriers for H2 evolution coupled with FF synthesis.
Collapse
Affiliation(s)
- Boxin Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Yanfang Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Yuchen Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Yuan Tang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Chunyang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yan Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Xin Tan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Tao Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
20
|
Guo GC, Zhao JP, Guo S, Shi WX, Liu FC, Lu TB, Zhang ZM. Building Co 16-N 3-Based UiO-MOF to Expand Design Parameters for MOF Photosensitization. Angew Chem Int Ed Engl 2024; 63:e202402374. [PMID: 38655601 DOI: 10.1002/anie.202402374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
The construction of secondary building units (SBUs) in versatile metal-organic frameworks (MOFs) represents a promising method for developing multi-functional materials, especially for improving their sensitizing ability. Herein, we developed a dual small molecules auxiliary strategy to construct a high-nuclear transition-metal-based UiO-architecture Co16-MOF-BDC with visible-light-absorbing capacity. Remarkably, the N3 - molecule in hexadecameric cobalt azide SBU offers novel modification sites to precise bonding of strong visible-light-absorbing chromophores via click reaction. The resulting Bodipy@Co16-MOF-BDC exhibits extremely high performance for oxidative coupling benzylamine (~100 % yield) via both energy and electron transfer processes, which is much superior to that of Co16-MOF-BDC (31.5 %) and Carboxyl @Co16-MOF-BDC (37.5 %). Systematic investigations reveal that the advantages of Bodipy@Co16-MOF-BDC in dual light-absorbing channels, robust bonding between Bodipy/Co16 clusters and efficient electron-hole separation can greatly boost photosynthesis. This work provides an ideal molecular platform for synergy between photosensitizing MOFs and chromophores by constructing high-nuclear transition-metal-based SBUs with surface-modifiable small molecules.
Collapse
Affiliation(s)
- Guang-Chen Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiong-Peng Zhao
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wen-Xiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Fu-Chen Liu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
21
|
Fang Y, Liu Y, Huang H, Sun J, Hong J, Zhang F, Wei X, Gao W, Shao M, Guo Y, Tang Q, Liu Y. Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling. Nat Commun 2024; 15:4856. [PMID: 38849337 PMCID: PMC11161580 DOI: 10.1038/s41467-024-49036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Developing highly active materials that efficiently utilize solar spectra is crucial for photocatalysis, but still remains a challenge. Here, we report a new donor-acceptor (D-A) covalent organic framework (COF) with a wide absorption range from 200 nm to 900 nm (ultraviolet-visible-near infrared light). We find that the thiophene functional group is accurately introduced into the electron acceptor units of TpDPP-Py (TpDPP: 5,5'-(2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo [3,4-c]pyrrole-1,4-diyl)bis(thiophene-2-carbaldehyde), Py: 1,3,6,8-tetrakis(4-aminophenyl)pyrene) COFs not only significantly extends its spectral absorption capacity but also endows them with two-photon and three-photon absorption effects, greatly enhancing the utilization rate of sunlight. The selective coupling of benzylamine as the target reactant is used to assess the photocatalytic activity of TpDPP-Py COFs, showing high photocatalytic conversion of 99% and selectivity of 98% in 20 min. Additionally, the TpDPP-Py COFs also exhibit the universality of photocatalytic selective coupling of other imine derivatives with ~100% conversion efficiency. Overall, this work brings a significant strategy for developing COFs with a wide absorption range to enhance photocatalytic activity.
Collapse
Affiliation(s)
- Yuanding Fang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiaxing Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Mingchao Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China.
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
22
|
Lei L, Luan TX, Li PZ, Qiu Y, Su J, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B, Liu Y. Strong Second-Harmonic Generation Induced by a Triphenylamine-Based Bismuth-Organic Framework for Photocatalytic Activity Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603468 DOI: 10.1021/acsami.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Taking advantage of the well-defined geometry of metal centers and highly directional metal-ligand coordination bonds, metal-organic frameworks (MOFs) have emerged as promising candidates for nonlinear optical (NLO) materials. In this work, taking a photoresponsive carboxylate triphenylamine derivative as an organic ligand, a bismuth-based MOF, Bi-NBC, NBC = 4',4‴,4‴″-nitrilotris(([1,1'-biphenyl]-4-carboxylic acid)) is obtained. Structure determination reveals that it is a potential NLO material derived from its noncentrosymmetric structure, which is finally confirmed by its rarely strong second harmonic generation (SHG) effect. Theoretical calculations reveal that the potential difference around Bi atoms is large; therefore, it leads to a strong local built-in electric field, which greatly facilitates the charge separation and transfer and finally improves the photocatalytic performance. Our results provide a reference for the exploration of MOFs with NLO properties.
Collapse
Affiliation(s)
- Longfei Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Ying Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
23
|
Bao T, Tang C, Li S, Qi Y, Zhang J, She P, Rao H, Qin JS. Hollow structured CdS@ZnIn 2S 4 Z-scheme heterojunction for bifunctional photocatalytic hydrogen evolution and selective benzylamine oxidation. J Colloid Interface Sci 2024; 659:788-798. [PMID: 38215615 DOI: 10.1016/j.jcis.2023.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Photocatalytic hydrogen evolution (PHE) is frequently constrained by inadequate light utilization and the rapid combination rate of the photogenerated electron-hole pairs. Additionally, conventional PHE processes are often facilitated by the addition of sacrificial reagents to consume photo-induced holes, which makes this approach economically unfavorable. Herein, we designed a spatially separated bifunctional cocatalyst decorated Z-scheme heterojunction of hollow structured CdS (HCdS) @ZnIn2S4 (ZIS), which was prepared by a sacrificial hard template method followed by photo-deposition. Consequently, PdOx@HCdS@ZIS@Pt exhibited efficient PHE (86.38 mmol·g-1·h-1) and benzylamine (BA) oxidation coupling (164.75 mmol·g-1·h-1) with high selectivity (97.34 %). The unique hollow core-shelled morphology and bifunctional cocatalyst loading in this work hold great potential for the design and synthesis of bifunctional Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Tengfei Bao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
24
|
Yang MY, Zhang SB, Zhang M, Li ZH, Liu YF, Liao X, Lu M, Li SL, Lan YQ. Three-Motif Molecular Junction Type Covalent Organic Frameworks for Efficient Photocatalytic Aerobic Oxidation. J Am Chem Soc 2024; 146:3396-3404. [PMID: 38266485 DOI: 10.1021/jacs.3c12724] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Covalent organic frameworks (COFs), with the features of flexible structure regulation and easy introduction of functional groups, have aroused broad interest in the field of photocatalysis. However, due to the low light absorption intensity, low photoelectron conversion efficiency, and lack of suitable active sites, it remains a great challenge to achieve efficient photocatalytic aerobic oxidation reactions. Herein, based on reticular chemistry, we rationally designed a series of three-motif molecular junction type COFs, which formed dual photosensitizer coupled redox molecular junctions containing multifunctional COF photocatalysts. Significantly, due to the strong light adsorption ability of dual photosensitizer units and integrated oxidation and reduction features, the PY-BT COF exhibited the highest activity for photocatalytic aerobic oxidation. Especially, it achieved a photocatalytic benzylamine conversion efficiency of 99.9% in 2.5 h, which is much higher than that of the two-motif molecular junctions with only one photosensitizer or redox unit lacking COFs. The mechanism of selective aerobic oxidation was studied through comprehensive experiments and density functional theory calculations. The results showed that the photoinduced electron transfer occurred from PY and then through triphenylamine to BT. Furthermore, the thermodynamics energy for benzylamine oxidation on PY-BT COF was much lower than that for others, which confirmed the synergistic effect of dual photosensitizer coupled redox molecular junction COFs. This work provided a new strategy for the design of functional COFs with three-motif molecular junctions and also represented a new insight into the multifunctional COFs for organic catalytic reactions.
Collapse
Affiliation(s)
- Ming-Yi Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shuai-Bing Zhang
- School of Chemistry and Environment Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| | - Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ze-Hui Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Yu-Fei Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xing Liao
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Meng Lu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
25
|
Shi S, Liu W, Li Y, Lu S, Zhu H, Du M, Chen X, Duan F. Rational design of bimetallic sites in covalent organic frameworks for efficient photocatalytic oxidative coupling of amines. J Colloid Interface Sci 2024; 655:611-621. [PMID: 37956548 DOI: 10.1016/j.jcis.2023.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
The conversion of organic compounds by photocatalysis under mild conditions is an environment-friendly alternative for organic transformations. In this work, the bimetallic covalent organic framework coordinated by Sr2+ and Fe2+ in the porphyrin centers with molar ratio of 2:1 (COF-Sr2Fe1) was synthesized through a two-step reaction. Under the synergistic regulation of Sr2+ and Fe2+, the separation of photogenerated charges and visible light absorption for COF-Sr2Fe1 were significantly promoted, and thus COF-Sr2Fe1 exhibited efficient photocatalytic performance towards benzylamine oxidative coupling reaction with a yield of 97 %, much higher than that of the nonmetallic covalent organic framework COF-366. Moreover, it was found that the Fe site displayed higher dehydrogenation ability and the Sr site displayed higher CN coupling ability through the density functional theory (DFT) calculations, thereby making the dehydrogenation and CN coupling steps more controllable for benzylamine oxidative coupling reaction by COF-Sr2Fe1. This work provides a strategy for designing efficient covalent organic frameworks photocatalysts, and helps to understand the oxidative coupling of amines more deeply.
Collapse
Affiliation(s)
- Songhu Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenhao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yujie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
26
|
Hao DB, Li JL, Zhou XC, Li YY, Zhao ZX, Zhou R. Visible-Light-Driven NO Release from Postmodified MOFs via Photoinduced Electron Transfer for Antibacterial Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305943. [PMID: 37681501 DOI: 10.1002/smll.202305943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Photoresponsive nitric oxide (NO)-releasing materials (NORMs) enable the spatiotemporal delivery of NO to facilitate their potential applications in physiological conditions. Here two novel metal-organic frameworks (MOFs)-based photoactive NORMs achieved by the incorporation of prefunctionalized NO donors into the photosensitive Fe-MOFs via a postmodification strategy is reported. The modified Fe-MOFs display superior photoactivity of NO release when exposed to visible light (up to 720 nm). Significantly, the visible-light-driven NO release properties are further corroborated by their efficient antibacterial performance.
Collapse
Affiliation(s)
- De-Bo Hao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Jia-Li Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhen-Xin Zhao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
| | - Rui Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
27
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
28
|
Li Z, Yao B, Cheng C, Song M, Qin Y, Wan Y, Du J, Zheng C, Xiao L, Li S, Yin PF, Guo J, Liu Z, Zhao M, Huang W. Versatile Structural Engineering of Metal-Organic Frameworks Enabling Switchable Catalytic Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308427. [PMID: 38109695 DOI: 10.1002/adma.202308427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/26/2023] [Indexed: 12/20/2023]
Abstract
The structure engineering of metal-organic frameworks (MOFs) forms the cornerstone of their applications. Nonetheless, realizing the simultaneous versatile structure engineering of MOFs remains a significant challenge. Herein, a dynamically mediated synthesis strategy to simultaneously engineer the crystal structure, defect structure, and nanostructure of MOFs is proposed. These include amorphous Zr-ODB nanoparticles, crystalline Zr-ODB-hz (ODB = 4,4'-oxalyldibenzoate, hz = hydrazine) nanosheets, and defective d-Zr-ODB-hz nanosheets. Aberration-corrected scanning transmission electron microscopy combined with low-dose high-angle annular dark-field imaging technique vividly portrays these engineered structures. Concurrently, the introduced hydrazine moieties confer self-reduction properties to the respective MOF structures, allowing the in situ installation of catalytic Pd nanoparticles. Remarkably, in the hydrogenation of vanillin-like biomass derivatives, Pd/Zr-ODB-hz yields partially hydrogenated alcohols as the primary products, whereas Pd/d-Zr-ODB-hz exclusively produces fully hydrogenated alkanes. Density functional theory calculations, coupled with experimental evidence, uncover the catalytic selectivity switch triggered by the change in structure type. The proposed strategy of versatile structure engineering of MOFs introduces an innovative pathway for the development of high-performance MOF-based catalysts for various reactions.
Collapse
Affiliation(s)
- Zhixi Li
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Chuanqi Cheng
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Meina Song
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Yutian Qin
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Yue Wan
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Chaoyang Zheng
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Liyun Xiao
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Shaopeng Li
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Peng-Fei Yin
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Meiting Zhao
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 30007, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
29
|
Wu Y, Deng X, Cui R, Song M, Guo X, Gong X, He J, Chen P. Electronic configuration inversion in CdIn 2S 4 for efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation. J Colloid Interface Sci 2023; 656:528-537. [PMID: 38007944 DOI: 10.1016/j.jcis.2023.11.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Vacancies engineering has sparked a huge interest in enhancing photocatalytic activity, but monovacancy simultaneously conducts as either electron or hole acceptor and redox reaction, worsening charge transfer and catalytic performance. Here, the concept of electronic inversion has been proposed through the simultaneous introduction of surface oxygen and S vacancies in CdIn2S4 (OSv-CIS). Consequently, under mild conditions, the well-designed OSv-CIS-200 demonstrated a strong rate of N-benzylidenebenzylamine production (2972.07 µmol g-1 h-1) coupled with Hydrogen peroxide (H2O2) synthesis (2362.33 µmol g-1 h-1) (PIH), which is 12.4 times higher than that of CdIn2S4. Density functional theory (DFT) simulation and characterization studies demonstrate that oxygen is introduced into the lattice on the surface of the material, reversing the charge distribution of the S vacancy and enhancing the polarity of the total charge distribution. It not only provides a huge built-in electric field (BEF) for guiding the orientation of the charge transfer, but also acts as a long-distance active site to accelerate reaction and prevent H2O2 decomposition. Our work offers a straightforward connection between the atomic defect and intrinsic properties for designing high-efficiency materials.
Collapse
Affiliation(s)
- Yubo Wu
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China; Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, State Key Laboratory of Public Big Data, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiaoxu Deng
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ruirui Cui
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Meiyang Song
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, State Key Laboratory of Public Big Data, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiang Guo
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Xingyong Gong
- College of Big Data and Information Engineering, State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jie He
- Key Laboratory of Catalysis and Energy Materials, Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Peng Chen
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, State Key Laboratory of Public Big Data, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
30
|
Shanmugam M, Agamendran N, Sekar K, Natarajan TS. Metal-organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Phys Chem Chem Phys 2023; 25:30116-30144. [PMID: 37909363 DOI: 10.1039/d3cp04297a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The increasing energy demands in society and industrial sectors have inspired the search for alternative energy sources that are renewable and sustainable, also driving the development of clean energy storage and delivery systems. Various solid-state materials (e.g., oxides, sulphides, polymer and conductive nanomaterials, activated carbon and their composites) have been developed for energy production (water splitting-H2 production), gaseous fuel (H2 and CH4) storage and electrochemical energy storage (batteries and supercapacitors) applications. Nevertheless, the low surface area, pore volume and conductivity, and poor physical and chemical stability of the reported materials have resulted in higher requirements and challenges in the development of energy production and energy storage technologies. Thus, to overcome these issues, the development of metal-organic frameworks (MOFs) has attracted significant attention. MOFs are a class of porous materials with extremely high porosity and surface area, structural diversity, multifunctionality, and chemical and structural stability, and thus they can be used in a wide range of applications. In the present review, we precisely discuss the interesting properties of MOFs and the various methodologies for their synthesis, and also the future dependence on the valorization of solid waste for the recovery of metals and organic ligands for the synthesis of new classes of MOFs. Subsequently, the utilization of these interesting characteristics for energy production (water splitting), storage of gaseous fuels (H2 and CH4), and electrochemical storage (batteries and supercapacitors) applications are described. However, although MOFs are efficient materials with versatile uses, they still have many challenges, limiting their practical applications. Therefore, finally, we highlight the challenges associated with MOFs and show the way forward in overcoming them for the development of these highly porous materials with large-scale practical utility.
Collapse
Affiliation(s)
- Mariyappan Shanmugam
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Nithish Agamendran
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| | - Karthikeyan Sekar
- Sustainable Energy and Environmental Research Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Thillai Sivakumar Natarajan
- Environmental Science Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, Tamil Nadu 600 020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
31
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
32
|
Bai J, Wang J, Zheng H, Zhao X, Wu P, Pei L, Wang J. Modulating Photoinduced Electron Transfer between Photosensitive MOF and Co(II) Proton Reduction Sites for Boosting Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305024. [PMID: 37533371 DOI: 10.1002/smll.202305024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Photocatalytic hydrogen production via water splitting is the subject of intense research. Photoinduced electron transfer (PET) between a photosensitizer (PS) and a proton reduction catalyst is a prerequisite step and crucial to affecting hydrogen production efficiency. Herein, three photoactive metal-organic framework (MOF) systems having two different PET processes where PS and Co(II) centers are either covalently bonded or coexisting to drive photocatalytic H2 production are built. Compared to these two intramolecular PET systems including CoII -Zn-PDTP prepared from the post-synthetic metalation toward uncoordinated pyridine N sites of Zn-PDTP and sole cobalt-based MOF Co-PDTP, the CoII (bpy)3 @Zn-PDTP system impregnated by molecular cocatalyst possessing intermolecular PET process achieves the highest H2 evolution rate of 116.8 mmol g-1 h-1 over a period of 10 h, about 7.5 and 9.3 times compared to CoII -Zn-PDTP and Co-PDTP in visible-light-driven H2 evolution, respectively. Further studies reveal that the enhanced photoactivity in CoII (bpy)3 @Zn-PDTP can be ascribed to the high charge-separation efficiency of Zn-PDTP and the synergistic intermolecular interaction between Zn-PDTP and cobalt complexes. The present work demonstrates that the rational design of PET process between MOFs and catalytic metal sites can be a viable strategy for the development of highly efficient photocatalysts with enhanced photocatalytic activities.
Collapse
Affiliation(s)
- Jianguo Bai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Jun Wang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, P. R. China
| | - Hao Zheng
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Xiaoli Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Pengyan Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Li Pei
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Jian Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| |
Collapse
|
33
|
Li QQ, Pan PH, Liu H, Zhou L, Zhao SY, Deng B, He YJ, Song JX, Liu P, Wang YY, Li JL. Incorporating a D-A-D-Type Benzothiadiazole Photosensitizer into MOFs for Photocatalytic Oxidation of Phenylsulfides and Benzylamines. Inorg Chem 2023; 62:17182-17190. [PMID: 37815498 DOI: 10.1021/acs.inorgchem.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Oxidation and removal of highly toxic sulfides and amines are particularly important for environmental and human security but remain challenging. Here, incorporating an excellent photosensitizer, donor-acceptor-donor (D-A-D)-type 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic (H2L), into metal-organic frameworks (MOFs) has been manifested to promote the charge separation, affording four three-dimensional (3D) MOFs (isostructural 1-Co/1-Zn with Co2/Zn2 units, and 2-Gd/2-Tb with Gd/Tb-cluster chains) as photocatalysts in the visible light-driven air-O2-mediated catalytic oxidation and removal of hazardous phenylsulfides and benzylamines. Impressively, structure-property correlation illustrated that the transition metal centers assembled in MOFs play an important role in the photocatalytic activity, and we can conclude that 1-Zn can be a robust heterogeneous catalyst possessing good light adsorption and fast charge separation in oxidation removal reactions of both benzylamines and phenylsulfides under visible light irradiation and room temperature with excellent activity/selectivity, stability, and reusability.
Collapse
Affiliation(s)
- Quan-Quan Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Peng-Hui Pan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Hua Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Li Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Shu-Ya Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Bing Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yu-Jie He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jin-Xi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
34
|
Gao Y, Fan X, Zhang X, Guan Q, Xing Y, Song W. HCR/DNAzyme-triggered cascaded feedback cycle amplification for self-powered dual-photoelectrode detection of femtomolar HPV16. Biosens Bioelectron 2023; 237:115483. [PMID: 37390640 DOI: 10.1016/j.bios.2023.115483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
For high-performance dual-photoelectrode assay, developing a pair of photoactive materials with well-matched band structure and the design of a powerful sensing strategy are highly desirable. Herein, the Zn-TBAPy pyrene-based MOF and BiVO4/Ti3C2 Schottky junction were employed as photocathode and photoanode to form an efficient dual-photoelectrode system. The integration of the cascaded hybridization chain reaction (HCR)/DNAzyme-assisted feedback amplification with DNA walker-mediated cycle amplification strategy realizes femtomolar HPV16 dual-photoelectrode bioassay. Through the activation of the HCR cascaded with the DNAzyme system in the presence of HPV16, plentiful HPV16 analogs are generated that leads to exponential positive feedback signal amplification. Meanwhile on the Zn-TBAPy photocathode, the NDNA hybridizes with the bipedal DNA walker followed by circular cleavage by Nb.BbvCI NEase, producing a dramatically enhanced PEC readout. The achieved ultralow detection limit of 0.57 fM and a wide linear range of 10-6 nM-103 nM showcase the excellent performance of the developed dual-photoelectrode system.
Collapse
Affiliation(s)
- Yao Gao
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xue Fan
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xuechen Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qinglin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, PR China
| | - Yongheng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, PR China
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
35
|
Xu D, Zhai L, Mu Z, Tao CL, Ge F, Zhang H, Ding M, Cheng F, Wu XJ. Versatile synthesis of nano-icosapods via cation exchange for effective photocatalytic conversion of biomass-relevant alcohols. Chem Sci 2023; 14:10167-10175. [PMID: 37772115 PMCID: PMC10530866 DOI: 10.1039/d3sc02493h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Branched metal chalcogenide nanostructures with well-defined composition and configuration are appealing photocatalysts for solar-driven organic transformations. However, precise design and controlled synthesis of such nanostructures still remain a great challenge. Herein, we report the construction of a variety of highly symmetrical metal sulfides and heterostructured icosapods based on them, in which twenty branches were radially grown in spatially ordered arrangement, with a high degree of structure homogeneity. Impressively, the as-obtained CdS-PdxS icosapods manifest a significantly improved photocatalytic activity for the selective oxidation of biomass-relevant alcohols into corresponding aldehydes coupled with H2 evolution under visible-light irradiation (>420 nm), and the apparent quantum yield of the benzyl alcohol reforming can be achieved as high as 31.4% at 420 nm. The photoreforming process over the CdS-PdxS icosapods is found to be directly triggered by the photogenerated electrons and holes without participation of radicals. The enhanced photocatalytic performance is attributed to the fast charge separation and abundant active sites originating from the well-defined configuration and spatial organization of the components in the branched heterostructures.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Li Zhai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Zhangyan Mu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Han Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications Nanjing 210023 China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
36
|
Zhang M, Mao Y, Bao X, Zhai G, Xiao D, Liu D, Wang P, Cheng H, Liu Y, Zheng Z, Dai Y, Fan Y, Wang Z, Huang B. Coupling Benzylamine Oxidation with CO 2 Photoconversion to Ethanol over a Black Phosphorus and Bismuth Tungstate S-Scheme Heterojunction. Angew Chem Int Ed Engl 2023; 62:e202302919. [PMID: 37389483 DOI: 10.1002/anie.202302919] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Photoconversion of CO2 and H2 O into ethanol is an ideal strategy to achieve carbon neutrality. However, the production of ethanol with high activity and selectivity is challenging owing to the less efficient reduction half-reaction involving multi-step proton-coupled electron transfer (PCET), a slow C-C coupling process, and sluggish water oxidation half-reaction. Herein, a two-dimensional/two-dimensional (2D/2D) S-scheme heterojunction consisting of black phosphorus and Bi2 WO6 (BP/BWO) was constructed for photocatalytic CO2 reduction coupling with benzylamine (BA) oxidation. The as-prepared BP/BWO catalyst exhibits a superior photocatalytic performance toward CO2 reduction, with a yield of 61.3 μmol g-1 h-1 for ethanol (selectivity of 91 %).In situ spectroscopic studies and theoretical calculations reveal that S-scheme heterojunction can effectively promote photogenerated carrier separation via the Bi-O-P bridge to accelerate the PCET process. Meanwhile, electron-rich BP acts as the active site and plays a vital role in the process of C-C coupling. In addition, the substitution of BA oxidation for H2 O oxidation can further enhance the photocatalytic performance of CO2 reduction to C2 H5 OH. This work opens a new horizon for exploring novel heterogeneous photocatalysts in CO2 photoconversion to C2 H5 OH based on cooperative photoredox systems.
Collapse
Affiliation(s)
- Minghui Zhang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuyin Mao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaolei Bao
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Guangyao Zhai
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Dong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
37
|
Wu K, Liu XY, Cheng PW, Huang YL, Zheng J, Xie M, Lu W, Li D. Linker Engineering for Reactive Oxygen Species Generation Efficiency in Ultra-Stable Nickel-Based Metal-Organic Frameworks. J Am Chem Soc 2023; 145:18931-18938. [PMID: 37590883 DOI: 10.1021/jacs.3c05585] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Interfacial charge transfer on the surface of heterogeneous photocatalysts dictates the efficiency of reactive oxygen species (ROS) generation and therefore the efficiency of aerobic oxidation reactions. Reticular chemistry in metal-organic frameworks (MOFs) allows for the rational design of donor-acceptor pairs to optimize interfacial charge-transfer kinetics. Herein, we report a series of isostructural fcu-topology Ni8-MOFs (termed JNU-212, JNU-213, JNU-214, and JNU-215) with linearly bridged bipyrazoles as organic linkers. These crystalline Ni8-MOFs can maintain their structural integrity in 7 M NaOH at 100 °C for 24 h. Experimental studies reveal that linker engineering by tuning the electron-accepting capacity of the pyrazole-bridging units renders these Ni8-MOFs with significantly improved charge separation and transfer efficiency under visible-light irradiation. Among them, the one containing a benzoselenadiazole unit (JNU-214) exhibits the best photocatalytic performance in the aerobic oxidation of benzylamines with a conversion rate of 99% in 24 h. Recycling experiments were carried out to confirm the stability and reusability of JNU-214 as a robust heterogeneous catalyst. Significantly, the systematic modulation of the electron-accepting capacity of the bridging units in donor-acceptor-donor MOFs provides a new pathway to develop viable noble-metal-free heterogeneous photocatalysts for aerobic oxidation reactions.
Collapse
Affiliation(s)
- Kun Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xin-Yi Liu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Pei-Wen Cheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ji Zheng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
38
|
Bai D, Qiu J, Li J, Zhou S, Cui X, Tang X, Tang Y, Liu W, Chen B. Mesoporous Mixed-Metal-Organic Framework Incorporating a [Ru(Phen) 3] 2+ Photosensitizer for Highly Efficient Aerobic Photocatalytic Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37312235 DOI: 10.1021/acsami.3c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
[Ru(Phen)3]2+ (phen = phenanthroline) as a very classical photosensitizer possesses strong absorption in the visible range and facilitates photoinduced electron transfer, which plays a vital role in regulating photochemical reactions. However, it remains a significant challenge to utilize more adequately and exploit more efficiently the ruthenium-based materials due to the uniqueness, scarcity, and nonrenewal of the noble metal. Here, we integrate the intrinsic advantages of the ruthenium-based photosensitizer and mesoporous metal-organic frameworks (meso-MOFs) into a [Ru(Phen)3]2+ photosensitizer-embedded heterometallic Ni(II)/Ru(II) meso-MOF (LTG-NiRu) via the metalloligand approach. LTG-NiRu, with an extremely robust framework and a large one-dimensional (1D) channel, not only makes ruthenium photosensitizer units anchored in the inner wall of meso-MOF tubes to circumvent the problem of product/catalyst separation and recycling of catalysts in heterogeneous systems but also exhibits exceptional activities for the aerobic photocatalytic oxidative coupling of amine derivatives as a general photocatalyst. The conversion of the light-induced oxidative coupling reaction for various benzylamines is ∼100% in 1 h, and more than 20 chemical products generated by photocatalytic oxidative cycloaddition of N-substituted maleimides and N,N-dimethylaniline can be synthesized easily in the presence of LTG-NiRu upon visible light irradiation. Moreover, recycling experiments demonstrate that LTG-NiRu is an excellent heterogeneous photocatalyst with high stability and excellent reusability. LTG-NiRu represents a great potential photosensitizer-based meso-MOF platform with an efficient aerobic photocatalytic oxidation function that is convenient for gram-scale synthesis.
Collapse
Affiliation(s)
- Dongjie Bai
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinlin Qiu
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jingzhe Li
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shengbin Zhou
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Cui
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Xiaoliang Tang
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Yu Tang
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
39
|
Guo Y, Li H, Li B, Su S, Zhong X, Kong D, Chen Y, Song Y. Enhanced Photocatalytic Coupling of Benzylamine to N-Benzylidene Benzylamine over the Organic-Inorganic Composites F70-TiO 2 Based on Fullerenes Derivatives and TiO 2. Molecules 2023; 28:molecules28114301. [PMID: 37298775 DOI: 10.3390/molecules28114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The organic-inorganic composites F70-TiO2, based on fullerene with carboxyl group derivatives and TiO2 semiconductor, have been designed and constructed to become an optical-functional photocatalyst via the facile sol-gel method. The composite photocatalyst obtained shows excellent photocatalytic activity for the high-efficiency conversion of benzylamine (BA) to N-benzylidene benzylamine (NBBA) with air pressure at a normal temperature under visible light irradiation. By optimizing the composition, the composites with the 1:15 mass ratio of F70 and TiO2, denoted as F70-TiO2(1:15), demonstrated the highest reaction efficiency for benzylamine (>98% conversion) to N-benzylidene benzylamine (>93% selectivity) in this study. However, pure TiO2 and fullerene derivatives (F70) exhibit decreased conversion (56.3% and 89.7%, respectively) and selectivity (83.8% and 86.0%, respectively). The UV-vis diffuse reflectance spectra (DRS) and Mott-Schottky experiment's results indicate that the introduction of fullerene derivatives into anatase TiO2 would greatly broaden the visible light response range and adjust the energy band positions of the composites, enhancing the sunlight utilization and promoting the photogenerated charge (e--h+) separation and transfer. Specifically, a series of results on the in situ EPR tests and the photo-electrophysical experiment indicate that the separated charges from the hybrid could effectively activate benzylamine and O2 to accelerate the formation of active intermediates, and then couple with free BA molecules to form the desired production of N-BBA. The effective combination, on a molecular scale, between fullerene and titanium dioxide has provided a profound understanding of the photocatalysis mechanism. This work elaborates and makes clear the relationship between the structure and the performance of functional photocatalysts.
Collapse
Affiliation(s)
- Yanmeng Guo
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Hang Li
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Bo Li
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Shizhuo Su
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xin Zhong
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Derui Kong
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yifan Chen
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yujie Song
- Hainan Provincial Key Laboratory of Fine Chemicals, College of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
40
|
Chen H, Ma R, Zhang Y, Zhang T, Jing B, Xia Z, Yang Q, Xie G, Chen S. A Stable Triphenylamine-Based Zn(II)-MOF for Photocatalytic H 2 Evolution and Photooxidative Carbon-Carbon Coupling Reaction. Inorg Chem 2023; 62:7954-7963. [PMID: 37154624 DOI: 10.1021/acs.inorgchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Efficient charge transfer has always been a challenge in heterogeneous MOF-based photoredox catalysis due to the poor electrical conductivity of the MOF photocatalyst, the toilless electron-hole recombination, and the uncontrollable host-guest interactions. Herein, a propeller-like tris(3'-carboxybiphenyl)amine (H3TCBA) ligand was synthesized to fabricate a 3D Zn3O cluster-based Zn(II)-MOF photocatalyst, Zn3(TCBA)2(μ3-H2O)H2O (Zn-TCBA), which was applied to efficient photoreductive H2 evolution and photooxidative aerobic cross-dehydrogenation coupling reactions of N-aryl-tetrahydroisoquinolines and nitromethane. In Zn-TCBA, the ingenious introduction of the meta-position benzene carboxylates on the triphenylamine motif not only promotes Zn-TCBA to exhibit a broad visible-light absorption with a maximum absorption edge of 480 nm but also causes special phenyl plane twists with dihedral angles of 27.8-45.8° through the coordination to Zn nodes. The semiconductor-like Zn clusters and the twisted TCBA3- antenna with multidimensional π interaction sites facilitate photoinduced electron transfer to render Zn-TCBA a good photocatalytic H2 evolution efficiency of 27.104 mmol·g-1·h-1 in the presence of [Co(bpy)3]Cl2 under visible-light illumination, surpassing many non-noble-metal MOF systems. Moreover, the positive enough excited-state potential of 2.03 V and the semiconductor-like characteristics of Zn-TCBA endow Zn-TCBA with double oxygen activation ability for photocatalytic oxidation of N-aryl-tetrahydroisoquinoline substrates with a yield up to 98.7% over 6 h. The durability of Zn-TCBA and the possible catalytic mechanisms were also investigated by a series of experiments including PXRD, IR, EPR, and fluorescence analyses.
Collapse
Affiliation(s)
- Hanhua Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Ren Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yifan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Tingting Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Biyun Jing
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|
41
|
Fu SS, Yuan QQ, Ma L, Zhang ZM, Lu TB, Guo S. Oxidation of N-Alkyl(iso)quinolinium Salts Over TEMPO@Metal-Organic Framework Heterogeneous Photocatalyst †. CHEMSUSCHEM 2023; 16:e202202163. [PMID: 36545816 DOI: 10.1002/cssc.202202163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Quinolones and isoquinolones are of particular importance to pharmaceutical industry due to their diverse biological activities. However, their synthetic protocols were limited by high toxicity, high energy consumption, poor functional group tolerance and noble metal catalyst. This study concerns the development of a series of TEMPO@PCN-222 (TEMPO: 2,2,6,6-tetramethylpiperidinyl-1-oxy; PCN: porous coordination network) composite photocatalysts by coordinating different amount of 4-carboxy-TEMPO with the secondary building units of PCN-222. Upon visible-light irradiation, photogenerated holes in the highest occupied molecular orbital of PCN-222 can smoothly transfer to TEMPO, which can significantly boost the photosynthesis of bioactive (iso)quinolones from readily available N-alkyl(iso)quinolinium salts. TEMPO@PCN-222 exhibits an outstanding catalytic stability and substrate tolerance with a 1-methyl-2-quinolinone yield of 86.7 %, over four times that with PCN-222 (21.4 %). This work provides a new route to construct composite photocatalysts from abundant starting materials for efficient photosynthesis of high value-added chemicals.
Collapse
Affiliation(s)
- Shan-Shan Fu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Qiang-Qiang Yuan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Lihua Ma
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhi-Ming Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Song Guo
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
42
|
Nie X, Zhao Y, Gao W, Liu W, Cheng X, Gao Y, Shang N, Gao S, Wang C. Enhanced Photocatalytic Activity of Hyper-Cross-Linked Polymers Toward Amines Oxidation Coupled with H 2 O 2 Generation through Extending Monomer's Conjugation Degree. Chemistry 2023; 29:e202203607. [PMID: 36482168 DOI: 10.1002/chem.202203607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Visible-light-driven amines oxidation coupled with hydrogen peroxide (H2 O2 ) generation is a promising way to convert solar energy to chemical energy. Herein, a series of hyper-cross-linked polymers (HCPs) photocatalysts with different arenes monomers, including benzene (BE), diphenyl (DP), p-terphenyl (TP), or p-quaterphenyl (QP), were synthesized by simple Friedel-Crafts alkylation reaction. Owing to the maximum monomer's conjunction degree and excellent oxygen (O2 ) adsorption capacity, QP-HCPs exhibited highest photocatalytic activity for benzylamine oxidation coupled with H2 O2 generation under the irradiation of 455 nm Blue LED lamp. More than 99 % of benzylamine could be converted to N-benzylidenebenzylamine within 60 min. In addition, nearly stoichiometric H2 O2 was synchronously obtained with a high production rate of 9.3 mmol gcat -1 h-1 . Our work not only demonstrated that the photocatalytic activity of HCPs photocatalysts significantly depends on monomer's conjunction degree, but also provided a new strategy for converting solar energy to chemical energy.
Collapse
Affiliation(s)
- Xinhao Nie
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Ying Zhao
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Wei Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Xiang Cheng
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Yongjun Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P.R. China
| | - Ningzhao Shang
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, P.R. China
| |
Collapse
|
43
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
44
|
Huang H, Jing X, Deng J, Meng C, Duan C. Enzyme-Inspired Coordination Polymers for Selective Oxidization of C(sp 3)-H Bonds via Multiphoton Excitation. J Am Chem Soc 2023; 145:2170-2182. [PMID: 36657380 DOI: 10.1021/jacs.2c09348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nature's blueprint provides the fundamental principles for expanding the use of abundant metals in catalysis; however, mimicking both the structure and function of copper enzymes simultaneously in one artificial system for selective C-H bond oxidation faces marked challenges. Herein, we report a new approach to the assembly of artificial monooxygenases utilizing a binuclear Cu2S2Cl2 cluster to duplicate the identical structure and catalysis of the CuA enzyme. The designed monooxygenase Cu-Cl-bpyc facilitates well-defined redox potential that initially activated O2via photoinduced electron transfer, and generated an active chlorine radical via a ligand-to-metal charge transfer (LMCT) process from the consecutive excitation of the in situ formed copper(II) center. The chlorine radical abstracts a hydrogen atom selectively from C(sp3)-H bonds to generate the radical intermediate; meanwhile, the O2•- species interacted with the mimic to form mixed-valence species, giving the desired oxidization products with inherent product selectivity of copper monooxygenases and recovering the catalyst directly. This enzymatic protocol exhibits excellent recyclability, good functional group tolerance, and broad substrate scope, including some biological and pharmacologically relevant targets. Mechanistic studies indicate that the C-H bond cleavage was the rate-determining step and the cuprous interactions were essential to stabilize the active oxygen species. The well-defined structural characters and the fine-modified catalytic properties open a new avenue to develop robust artificial enzymes with uniform and precise active sites and high catalytic performances.
Collapse
Affiliation(s)
- Huilin Huang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Jiangtao Deng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
45
|
Dual-functional photocatalysis boosted by electrostatic assembly of porphyrinic metal-organic framework heterojunction composites with CdS quantum dots. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
46
|
Covalent organic frameworks with imine proton acceptors for efficient photocatalytic H2 production. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Gong YN, Guan X, Jiang HL. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Wang Y, Yang C, Guo L, Yang Z, Jin B, Du R, Fu F, Wang D. Plate-on-plate structured MoS2/Cd0.6Zn0.4S Z-scheme heterostructure with enhanced photocatalytic hydrogen production activity via hole sacrificial agent synchronously strengthen half-reactions. J Colloid Interface Sci 2023; 630:341-351. [DOI: 10.1016/j.jcis.2022.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
49
|
He G, Lai Y, Guo Y, Yin H, Chang B, Liu M, Zhang S, Yang B, Wang J. Tipping Gold Nanobipyramids with Titania for the Use of Plasmonic Hotspots to Drive Amine Coupling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53724-53735. [PMID: 36399021 DOI: 10.1021/acsami.2c14554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing plasmonic photocatalysts with spatially controlled catalytic sites is an effective strategy to boost the sunlight-driven chemical transformation efficiency through plasmonic enhancement. Herein, we describe a facile method for the synthesis of TiO2-tipped Au nanobipyramids (NBPs) to give (Au NBP)/t-TiO2 nanodumbbells. The surfactant cetyltrimethylammonium bromide concentration is the key factor in the construction of this type of unique nanostructure. The photocatalytic aerobic oxidative coupling of amines using the plasmonic photocatalysts with the dumbbell-like and core@shell structures indicates that the TiO2-tipped ends for the photo-reduction and the exposed adjacent Au surface for the photo-oxidation on (Au NBP)/t-TiO2 can significantly improve the photocatalytic activity. The underlying mechanism of the photocatalytic oxidative coupling of benzylamine over (Au NBP)/t-TiO2 has been thoroughly investigated. Both experimental and simulation results for (Au NBP)/t-TiO2 and (Au nanorod)/t-TiO2 confirm the important effect of the plasmonic hotspots on the enhancement of the photocatalytic activity.
Collapse
Affiliation(s)
- Guangli He
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Yunhe Lai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Hang Yin
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Binbin Chang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Man Liu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
50
|
Li J, Lu Z, Jin C, Shen J, Jiang H, Yu X, Sun L, Wang W, Wang L, Liu Q. Plasmonic Ni 3N Cocatalyst Boosting Directional Charge Transfer and Separation toward Synergistic Photocatalytic–Photothermal Performance of Hydrogen and Benzaldehyde Production as Well as Bacterial Inactivation. Inorg Chem 2022; 61:18979-18989. [DOI: 10.1021/acs.inorgchem.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jinhe Li
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Zhongxi Lu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Cheng Jin
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Jun Shen
- School of Pharmacy, Suzhou Vocational Health College, Suzhou215009, P. R. China
| | - Haopeng Jiang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Xiaohui Yu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Lijuan Sun
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Weikang Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Lele Wang
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| | - Qinqin Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang212013, China
| |
Collapse
|