1
|
Zhang J, Liang J, Ji D, Shu B, Huang ZS, Li D. Development of a Fluorescent Probe for Specific Visualization of Intracellular DNA i-Motif Participating in Key Biological Function. ACS Sens 2025. [PMID: 40289913 DOI: 10.1021/acssensors.5c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The i-motif structure has received increasing interest due to its significant biological function discovered in recent years. However, the absence of a handy and efficient method for visualizing the i-motif limited its intracellular study. Herein, we report an innovative coumarin-carbazole-based fluorescent probe, IMCC-6, for intracellular detection of i-motif. IMCC-6 exhibited excellent i-motif recognition ability and selectivity. By using IMCC-6, we successfully visualized the ribosome DNA (rDNA) i-motif within the nucleoli. Our results revealed the colocalization of rDNA i-motif with RNA polymerase I, and their separation under drug-induced nucleolar stress, suggesting that rDNA i-motif could play a regulatory role in rDNA transcription. IMCC-6 was also well applied for the detection of the i-motif in live cells and zebrafish juveniles, which could become an important tool for studying its biological function. As we know, this is the first discovery and development of a small-molecule fluorescent probe for specific visualization of i-motif in cells and in vivo, providing its direct evidence of participating in key biological function.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| | - Jihai Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, 132 Wai Huan East Road, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Chen S, Shu W, Wang S, Yue L, Tan W. Bioinspired Nucleic Acid-Based Bandpass Filters and Their Concentration-Adaptive Functions. J Am Chem Soc 2025; 147:12786-12799. [PMID: 40178933 DOI: 10.1021/jacs.5c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Natural signaling networks can act as bandpass filters to interpret external stimuli within defined concentration ranges for differential cellular activities. Replicating such a bandpass filtering mechanism by synthetic networks poses a significant challenge. Herein, we introduce a modular design of nucleic acid-based multilayer threshold-gated incoherent feedforward networks as multiband bandpass filters to produce mutually exclusive responses within defined input concentration ranges. In these networks, nucleic acids demonstrate triple functionality by acting as threshold-gated entities to discern input concentration levels, serving as network nodes to assemble incoherent feedforward loops for nonlinear signal processing, and functioning as signal transduction units for coupling downstream functional modules. These modular networks enable the fine-tuning of filtering performance in terms of band position, bandwidth, cascades, and responses. A mathematical simulation model allows us to predict the filtering behaviors under various conditions. Also, the networks are integrated with upstream signal conversion modules to process concentration information on molecules beyond nucleic acids, such as adenosine and its derivatives. Furthermore, connections to downstream functional modules allow the system to regulate various processes in a concentration bandpass manner, realizing concentration-adaptive DNAzyme biocatalysis, tristate logic operations, RNA transcription, and DNA condensate formation. These findings underscore the potential of enzyme-free DNA reaction networks in complex signal processing and lay a solid foundation for developing chemical and material systems with highly adaptive and autonomous behaviors.
Collapse
Affiliation(s)
- Si Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Weijun Shu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Shan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liang Yue
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Furong Laboratory, Changsha, Hunan 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Garabet A, Prislan I, Poklar Ulrih N, Wells JW, Chalikian TV. Conformational Propensities of a DNA Hairpin with a Stem Sequence from the c-MYC Promoter. Biomolecules 2025; 15:483. [PMID: 40305258 PMCID: PMC12024889 DOI: 10.3390/biom15040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
G-quadruplexes and i-motifs are four-stranded non-canonical structures of DNA. They exist in the cell, where they are implicated in the conformational regulation of cellular events, such as transcription, translation, DNA replication, telomere homeostasis, and genomic instability. Formation of the G-quadruplex and i-motif conformations in the genome is controlled by their competition with the pre-existing duplex. The fate of that competition depends upon the relative stabilities of the competing conformations, leading ultimately to a distribution of double helical, tetrahelical, and coiled conformations that coexist in dynamic equilibrium with each other. We previously developed a CD spectroscopy-based procedure to characterize the distribution of conformations adopted by equimolar mixtures of complementary G- and C-rich DNA strands from the promoter regions of the c-MYC, VEGF, and Bcl-2 oncogenes. In those bimolecular systems, duplex-to-tetraplex and duplex-to-coil transitions are accompanied by strand separation and an associated entropic cost. This situation is distinct from the pseudo-monomolecular nature of conformational transformations within the genome, where strand separation does not occur. To mimic better the situation in the genome, we here extend our studies to a monomolecular DNA construct-a hairpin-in which complementary G- and C-rich strands featuring sequences from the promoter region of the c-MYC oncogene are linked by a dT11 loop. We used our CD-based procedure to quantify the distribution of conformational states sampled by the hairpin at pH 5.0 and 7.0 as a function of temperature and the concentration of KCl. The data were analyzed according to a thermodynamic model based on equilibria between the different conformational states to evaluate the thermodynamic properties of the duplex-to-coil, G-quadruplex-to-coil, and i-motif-to-coil transitions of the hairpin. The results have implications for the modulation of such transitions as a means of therapeutic intervention.
Collapse
Affiliation(s)
- Arees Garabet
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| | - Iztok Prislan
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (I.P.); (N.P.U.)
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (I.P.); (N.P.U.)
| | - James W. Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| |
Collapse
|
4
|
Bi S, Yang R, Ju H, Liu Y. Dynamic Nanostructure-Based DNA Logic Gates for Cancer Diagnosis and Therapy. Chembiochem 2025; 26:e202400754. [PMID: 39429047 DOI: 10.1002/cbic.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
DNA logic gates with dynamic nanostructures have made a profound impact on cancer diagnosis and treatment. Through programming the dynamic structure changes of DNA nanodevices, precise molecular recognition with signal amplification and smart therapeutic strategies have been reported. This enhances the specificity and sensitivity of cancer theranostics, and improves diagnosis precision and treatment outcomes. This review explores the basic components of dynamic DNA nanostructures and corresponding DNA logic gates, as well as their applications for cancer diagnosis and therapies. The dynamic DNA nanostructures would contribute to cancer early detection and personalized treatment.
Collapse
Affiliation(s)
- Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ruowen Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
6
|
Tao S, Run Y, Monchaud D, Zhang W. i-Motif DNA: identification, formation, and cellular functions. Trends Genet 2024; 40:853-867. [PMID: 38902139 DOI: 10.1016/j.tig.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
An i-motif (iM) is a four-stranded (quadruplex) DNA structure that folds from cytosine (C)-rich sequences. iMs can fold under many different conditions in vitro, which paves the way for their formation in living cells. iMs are thought to play key roles in various DNA transactions, notably in the regulation of genome stability, gene transcription, mRNA translation, DNA replication, telomere and centromere functions, and human diseases. We summarize the different techniques used to assess the folding of iMs in vitro and provide an overview of the internal and external factors that affect their formation and stability in vivo. We describe the possible biological relevance of iMs and propose directions towards their use as target in biology.
Collapse
Affiliation(s)
- Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yonghang Run
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6302, Université Bourgogne Franche Comté (UBFC), Dijon, France
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
7
|
Song N, Li H, Yao C, Yang D. Dynamic Chemistry of DNA-Based Nanoassemblies in Living Cells. Acc Chem Res 2024; 57:2763-2774. [PMID: 39213541 DOI: 10.1021/acs.accounts.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In recent years, the controlled assembly/disassembly of exogenous chemical components inside cells has become an emerging approach to regulating cell functions. However, the construction of dynamic material chemistry systems in living cells always remains highly challenging due to the complicated intracellular microenvironment. Nucleic acid is a category of biological components that can achieve efficient molecular assembly via specific base-pairing and perform biological functions in the intracellular microenvironment. Deoxyribonucleic acid (DNA) molecules exhibit the superior performance of intracellular assembly, including sequence programmability, molecule recognition ability, and nanostructure predictability, as well as the unique biological functions that traditional synthetic polymers do not carry, showing great superiority in the construction of dynamic material chemistry systems. Moreover, the technologies of DNA synthesis are relatively mature, and the conjugation of DNA with functional small molecules can be achieved through established chemical synthesis methods, facilitating the construction of DNA-based dynamic materials with more functions. In addition, a few specific DNA molecules have been proven to show responsiveness toward different stimuli, functioning as dynamic modules.In this Account, we summarize our recent work in dynamic chemistry of DNA-based nanoassemblies in living cells from the perspective of stimulus types including enzyme, H+, glutathione (GSH), adenosine triphosphate (ATP), and light. Upon the specific stimuli, DNA-based nanoassemblies undergo precise assembly in living cells, executing disassembly or aggregation, which consequently affects the functions and behaviors of living cells. In the first part, we describe the interactions between DNA-based nanoassemblies and intracellular enzymes, namely the enzymatic cleavage of intracellular enzymes on the DNA or RNA sequences. In the second part, we summarize the effects of H+ in lysosomes on DNA-based nanoassemblies, including the formation of a tetraplex i-motif structure and the decomposition of acid-degradable polymeric coating. In the third part, we discuss the mechanism of GSH responsiveness of DNA-based nanoassemblies, including the breaking of disulfide bonds and reduction-responsive nanoparticles. In the fourth part, we describe the ATP-mediated conformational transition for the specific release of functional RNA sequences. In the fifth part, we demonstrate the light-mediated spatiotemporally dynamic chemistry of DNA-based nanoassemblies. In summary, based on the achievements of our group in the study of dynamic chemistry of DNA-based nanoassemblies, the assembly, disassembly, and reassembly in living cells are well-controlled, the regulation of cellular functions are explored, and the new strategies for cancer therapeutics are demonstrated. We envision that our work on the dynamic chemistry of DNA-based nanoassembly is a new paradigm for constructing dynamic material chemistry systems inside living cells, and will facilitate the development of precision medicine.
Collapse
Affiliation(s)
- Nachuan Song
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P.R. China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Hongjin Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P.R. China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
8
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
9
|
Boissieras J, Bonnet H, Susanto MF, Gomez D, Defrancq E, Granzhan A, Dejeu J. iMab antibody binds single-stranded cytosine-rich sequences and unfolds DNA i-motifs. Nucleic Acids Res 2024; 52:8052-8062. [PMID: 38908025 PMCID: PMC11317162 DOI: 10.1093/nar/gkae531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
i-Motifs (iMs) are non-canonical, four-stranded secondary structures formed by stacking of hemi-protonated CH+·C base pairs in cytosine-rich DNA sequences, predominantly at pH < 7. The presence of iM structures in cells was a matter of debate until the recent development of iM-specific antibody, iMab, which was instrumental for several studies that suggested the existence of iMs in live cells and their putative biological roles. We assessed the interaction of iMab with cytosine-rich oligonucleotides by biolayer interferometry (BLI), pull-down assay and bulk-FRET experiments. Our results suggest that binding of iMab to DNA oligonucleotides is governed by the presence of runs of at least two consecutive cytosines and is generally increased in acidic conditions, irrespectively of the capacity of the sequence to adopt, or not, an iM structure. Moreover, the results of the bulk-FRET assay indicate that interaction with iMab results in unfolding of iM structures even in acidic conditions, similarly to what has been observed with hnRNP K, well-studied single-stranded DNA binding protein. Taken together, our results strongly suggest that iMab actually binds to blocks of 2-3 cytosines in single-stranded DNA, and call for more careful interpretation of results obtained with this antibody.
Collapse
Affiliation(s)
- Joseph Boissieras
- Chemistry and Modelling for Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405 Orsay, France
| | - Hugues Bonnet
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Maria Fidelia Susanto
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS UMR5089, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale (IPBS), CNRS UMR5089, Université Toulouse III – Paul Sabatier (UT3), Toulouse, France
| | - Eric Defrancq
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
| | - Anton Granzhan
- Chemistry and Modelling for Biology of Cancer (CMBC), CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris Saclay, 91405 Orsay, France
| | - Jérôme Dejeu
- Département de Chimie Moléculaire (DCM), CNRS UMR5250, Université Grenoble-Alpes, 38000 Grenoble, France
- SUPMICROTECH, Université Franche-Comté, Institut FEMTO-ST, 25000 Besançon, France
| |
Collapse
|
10
|
Sun H, Zhao D, He Y, Meng H, Li Z. Aptamer-Based DNA Allosteric Switch for Regulation of Protein Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402531. [PMID: 38864341 PMCID: PMC11321679 DOI: 10.1002/advs.202402531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Allostery is a fundamental way to regulate the function of biomolecules playing crucial roles in cell metabolism and proliferation and is deemed the second secret of life. Given the limited understanding of the structure of natural allosteric molecules, the development of artificial allosteric molecules brings a huge opportunity to transform the allosteric mechanism into practical applications. In this study, the concept of bionics is introduced into the design of artificial allosteric molecules and an allosteric DNA switch with an activity site and an allosteric site based on two aptamers for selective inhibition of thrombin activity. Compared with the single aptamer, the allosteric switch possesses a significantly enhanced inhibition ability, which can be precisely regulated by converting the switch states. Moreover, the dynamic allosteric switch is further subjected to the control of the DNA threshold circuit for realizing automatic concentration determination and activity inhibition of thrombin. These compelling results confirm that this allosteric switch equipped with self-sensing and information-processing modules puts a new slant on the research of allosteric mechanisms and further application of allosteric tactics in chemical and biomedical fields.
Collapse
Affiliation(s)
- Hongzhi Sun
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Di Zhao
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Yating He
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Hong‐Min Meng
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Zhaohui Li
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| |
Collapse
|
11
|
Wang J, Wang S, Zhang J, Ji D, Huang ZS, Li D. Regulation of VEGF gene expression by bisacridine derivative through promoter i-motif for cancer treatment. Biochim Biophys Acta Gen Subj 2024; 1868:130631. [PMID: 38685534 DOI: 10.1016/j.bbagen.2024.130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is overexpressed in most malignant tumors, which has important impact on tumor angiogenesis and development. Its gene promoter i-motif structure formed by C-rich sequence can regulate gene expression, which is a promising new target for anti-tumor therapy. METHODS We screened various compounds and studied their effects on VEGF through extensive experiments, including SPR, MST, TO displacement, FRET, CD, ESI-MS, NMR, MTT, clone formation, qPCR, Western blot, dual-luciferase reporter assay, immunofluorescence, cell scrape, apoptosis, transwell assay, and animal model. RESULTS After extensive screening, bisacridine derivative B09 was found to have selective binding and stabilization to VEGF promoter i-motif, which could down-regulate VEGF gene expression. B09 showed potent inhibition on MCF-7 and HGC-27 cell proliferation and metastasis. B09 significantly inhibited tumor growth in xenograft mice model with HGC-27 cells, showing decreased VEGF expression analyzed through immunohistochemistry. CONCLUSION B09 could specifically regulate VEGF gene expression, possibly through interacting with promoter i-motif structure. As a lead compound, B09 could be further developed for innovative anti-cancer agent targeting VEGF.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Siyi Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Jiahui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Dongsheng Ji
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou, PR China.
| |
Collapse
|
12
|
Martinez-Fernandez L, Improta R. The photophysics of protonated cytidine and hemiprotonated cytidine base pair: A computational study. Photochem Photobiol 2024; 100:314-322. [PMID: 37409732 DOI: 10.1111/php.13832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
We here study the effect that a lowering of the pH has on the excited state processes of cytidine and a cytidine/cytidine pair in solution, by integrating time-dependent density functional theory and CASSCF/CASPT2 calculations, and including solvent by a mixed discrete/continuum model. Our calculations reproduce the effect of protonation at N3 on the steady-state infrared and absorption spectra of a protonated cytidine (CH+ ), and predict that an easily accessible non-radiative deactivation route exists for the spectroscopic state, explaining its sub-ps lifetime. Indeed, an extremely small energy barrier separates the minimum of the lowest energy bright state from a crossing region with the ground electronic state, reached by out-of-plane motion of the hydrogen substituents of the CC double bond, the so-called ethylenic conical intersection typical of cytidine and other pyrimidine bases. This deactivation route is operative for the two bases forming an hemiprotonated cytidine base pair, [CH·C]+ , the building blocks of I-motif secondary structures, whereas interbase processes play a minor role. N3 protonation disfavors instead the nπ* transitions, associated with the long-living components of cytidine photoactivated dynamics.
Collapse
Affiliation(s)
- Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Sciences (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Madrid, Spain
| | - Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Naples, Italy
| |
Collapse
|
13
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
14
|
Ma W, Wu Y, Li J, Yang M, Zhang H, Liu C, He X. A hairpin-contained i-motif guided DNA nanoantenna for sensitive and specific sensing of tumor extracellular pH gradients. Analyst 2024; 149:435-441. [PMID: 38099462 DOI: 10.1039/d3an01849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Antenna, as a converter, could receive and convert signals from the outside world flexibly. Inspired by the behavior of antennas receiving external signals, we developed a pH-stimulated and aptamer-anchored Y-shaped DNA nanoantenna (termed pH-Apt-YNA) for sensitive and specific sensing of tumor extracellular pH gradients. The nanoantenna consisted of three functional nucleic acid sequences, an I-strand, Apt-Y-R and Y-L-G, where the I-strand endowed the DNA nanoantenna with the ability to receive and convert signals, the Apt-Y-R containing an aptamer fragment gave the DNA nanoantenna the ability to specifically anchor target tumor cells, and the complementarity of Y-L-G with the other two sequences ensured the stability of the DNA nanoantenna. Initially, the DNA nanoantenna was in a "silent" state, and rhodamine green was close to BHQ2, leading to suppressed signal emission. When the DNA nanoantenna anchored on the surface of target cancer cells through the aptamer recognition domain, the I-strand tended to fold into a hairpin-contained i-motif tetramer structure owing to the extracellular low pH stimuli, resulting in the DNA nanoantenna changing into an "active" state. In the meantime, rhodamine green moved far away from BHQ2, resulting in a strong signal output. The results demonstrate that the pH-Apt-YNA presents a sensitive pH sensing capacity within a narrow pH range of 6.2-7.4 and exhibits excellent specificity for the imaging of target cancer cell extracellular pH. Based on these advantages, we therefore anticipate that our facile design of the DNA nanoantenna with sensitive responsiveness provides a new way and great promise in the application of sensing pH-related physiological and pathological processes.
Collapse
Affiliation(s)
- Wenjie Ma
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
| | - Yuchen Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
| | - Jinyan Li
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Mei Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - He Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Chang Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China.
| |
Collapse
|
15
|
Improta R. Shedding Light on the Photophysics and Photochemistry of I-Motifs Using Quantum Mechanical Calculations. Int J Mol Sci 2023; 24:12614. [PMID: 37628797 PMCID: PMC10454157 DOI: 10.3390/ijms241612614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
I-motifs are non-canonical DNA structures formed by intercalated hemiprotonated (CH·C)+ pairs, i.e., formed by a cytosine (C) and a protonated cytosine (CH+), which are currently drawing great attention due to their biological relevance and promising nanotechnological properties. It is important to characterize the processes occurring in I-motifs following irradiation by UV light because they can lead to harmful consequences for genetic code and because optical spectroscopies are the most-used tools to characterize I-motifs. By using time-dependent DFT calculations, we here provide the first comprehensive picture of the photoactivated behavior of the (CH·C)+ core of I-motifs, from absorption to emission, while also considering the possible photochemical reactions. We reproduce and assign their spectral signatures, i.e., infrared, absorption, fluorescence and circular dichroism spectra, disentangling the underlying chemical-physical effects. We show that the main photophysical paths involve C and CH+ bases on adjacent steps and, using this basis, interpret the available time-resolved spectra. We propose that a photodimerization reaction can occur on an excited state with strong C→CH+ charge transfer character and examine some of the possible photoproducts. Based on the results reported, some future perspectives for the study of I-motifs are discussed.
Collapse
Affiliation(s)
- Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| |
Collapse
|
16
|
Liu X, Cao S, Gao Y, Luo S, Zhu Y, Wang L. Subcellular localization of DNA nanodevices and their applications. Chem Commun (Camb) 2023; 59:3957-3967. [PMID: 36883516 DOI: 10.1039/d2cc06017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The application of nanodevices based on DNA self-assembly in the field of cell biology has made significant progress in the past decade. In this study, the development of DNA nanotechnology is briefly reviewed. The subcellular localization of DNA nanodevices, and their new progress and applications in the fields of biological detection, subcellular and organ pathology, biological imaging, and other fields are reviewed. The future of subcellular localization and biological applications of DNA nanodevices is also discussed.
Collapse
Affiliation(s)
- Xia Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuting Cao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Gao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. .,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Deiana M, Chand K, Chorell E, Sabouri N. Parallel G-Quadruplex DNA Structures from Nuclear and Mitochondrial Genomes Trigger Emission Enhancement in a Nonfluorescent Nano-aggregated Fluorine-Boron-Based Dye. J Phys Chem Lett 2023; 14:1862-1869. [PMID: 36779779 PMCID: PMC9940295 DOI: 10.1021/acs.jpclett.2c03301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 05/28/2023]
Abstract
Molecular self-assembly is a powerful tool for the development of functional nanostructures with adaptive optical properties. However, in aqueous solution, the hydrophobic effects in the monomeric units often afford supramolecular architectures with typical side-by-side π-stacking arrangement with compromised emissive properties. Here, we report on the role of parallel DNA guanine quadruplexes (G4s) as supramolecular disaggregating-capture systems capable of coordinating a zwitterionic fluorine-boron-based dye and promoting activation of its fluorescence signal. The dye's high binding affinity for parallel G4s compared to nonparallel topologies leads to a selective disassembly of the dye's supramolecular state upon contact with parallel G4s. This results in a strong and selective disaggregation-induced emission that signals the presence of parallel G4s observable by the naked eye and inside cells. The molecular recognition strategy reported here will be useful for a multitude of affinity-based applications with potential in sensing and imaging systems.
Collapse
Affiliation(s)
- Marco Deiana
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Karam Chand
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Erik Chorell
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Nasim Sabouri
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
18
|
Smeller L. Pressure Tuning Studies of Four-Stranded Nucleic Acid Structures. Int J Mol Sci 2023; 24:ijms24021803. [PMID: 36675317 PMCID: PMC9866529 DOI: 10.3390/ijms24021803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four-stranded folded structures, such as G-quadruplexes and i-motifs in the genome, have attracted a growing interest nowadays since they have been discovered in the telomere and in several oncogene promoter regions. Their biological relevance is undeniable since their existence in living cells has been observed. In vivo they take part in the regulation of gene expression, in vitro they are used in the analytical biochemistry. They are attractive and promising targets for cancer therapy. Pressure studies can reveal specific aspects of the molecular processes. Pressure tuning experiments allow the determination of the volumetric parameters of the folded structures and of the folding-unfolding processes. Here, we review the thermodynamic parameters with a special focus on the volumetric ones, which were determined using pressure tuning spectroscopic experiments on the G-quadruplex and i-motif nucleic acid forms.
Collapse
Affiliation(s)
- László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| |
Collapse
|
19
|
Li L, Liu S, Zhang C, Guo Z, Shao S, Deng X, Liu Q. Recent Advances in DNA-Based Cell Surface Engineering for Biological Applications. Chemistry 2022; 28:e202202070. [PMID: 35977912 DOI: 10.1002/chem.202202070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/14/2022]
Abstract
Due to its excellent programmability and biocompatibility, DNA molecule has unique advantages in cell surface engineering. Recent progresses provide a reliable and feasible way to engineer cell surfaces with diverse DNA molecules and DNA nanostructures. The abundant form of DNA nanostructures has greatly expanded the toolbox of DNA-based cell surface engineering and gave rise to a variety of novel and fascinating applications. In this review, we summarize recent advances in DNA-based cell surface engineering and its biological applications. We first introduce some widely used methods of immobilizing DNA molecules on cell surfaces and their application features. Then we discuss the approaches of employing DNA nanostructures and dynamic DNA nanotechnology as elements for creating functional cell surfaces. Finally, we review the extensive biological applications of DNA-based cell surface engineering and discuss the challenges and prospects of DNA-based cell surface engineering.
Collapse
Affiliation(s)
- Lexun Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Shuang Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Shuxuan Shao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Xiaodan Deng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| |
Collapse
|
20
|
He L, Zheng N, Wang Q, Du J, Wang S, Cao Z, Wang Z, Chen G, Mu J, Liu S, Chen X. Responsive Accumulation of Nanohybrids to Boost NIR-Phototheranostics for Specific Tumor Imaging and Glutathione Depletion-Enhanced Synergistic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205208. [PMID: 36373690 PMCID: PMC9811476 DOI: 10.1002/advs.202205208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Dynamic regulation of nanoparticles in a controllable manner has great potential in various areas. Compared to the individual nanoparticles, the assembled nanoparticles exhibit superior properties and functions, which can be applied to achieve desirable performances. Here, a pH-responsive i-motif DNA-mediated strategy to tailor the programmable behaviors of erbium-based rare-earth nanoparticles (ErNPs) decorated copper doped metal-organic framework (CPM) nanohybrids (ECPM) under physiological conditions is reported. Within the acidic tumor microenvironment, the i-motif DNA strands are able to form quadruplex structures, resulting in the assembly of nanohybrids and selective tumor accumulation, which further amplify the ErNPs downconversion emission (1550 nm) signal for imaging. Meanwhile, the ECPM matrix acts as a near-infrared (NIR) photon-activated reactive oxygen species (ROS) amplifier through the singlet oxygen generation of the matrix in combination with its ability of intracellular glutathione depletion upon irradiation. In short, this work displays a classical example of engineering of nanoparticles, which will manifest the importance of developing nanohybrids with structural programmability in biomedical applications.
Collapse
Affiliation(s)
- Liangcan He
- School of Medicine and Health, Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education)Harbin Institute of TechnologyHarbin150001China
| | - Nannan Zheng
- School of Medicine and Health, Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education)Harbin Institute of TechnologyHarbin150001China
| | - Qinghui Wang
- School of Medicine and Health, Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education)Harbin Institute of TechnologyHarbin150001China
- Institute of Precision MedicinePeking University Shenzhen HospitalShenzhen518036China
| | - Jiarui Du
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150090China
| | - Shumin Wang
- Institute of Precision MedicinePeking University Shenzhen HospitalShenzhen518036China
| | - Zhiyue Cao
- School of Medicine and Health, Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education)Harbin Institute of TechnologyHarbin150001China
| | - Zhantong Wang
- Laboratory of Cellular Imaging and Macromolecular BiophysicsNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Guanying Chen
- School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150090China
| | - Jing Mu
- Institute of Precision MedicinePeking University Shenzhen HospitalShenzhen518036China
| | - Shaoqin Liu
- School of Medicine and Health, Key Laboratory of Micro‐systems and Micro‐structures Manufacturing (Ministry of Education)Harbin Institute of TechnologyHarbin150001China
| | - Xiaoyuan Chen
- Departments of Diagnostic RadiologySurgeryChemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore117597Singapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| |
Collapse
|
21
|
Yang T, Xu Q, Chen J, Jia PK, Xie BB, Wang D, Zhou X, Shao Y. Selectively Identifying Exposed-over-Unexposed C-C + Pairs in Human Telomeric i-Motif Structures with Length-Dependent Polymorphism. Anal Chem 2022; 94:14994-15001. [PMID: 36263663 DOI: 10.1021/acs.analchem.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The i-motif structure (iM) has attracted much attention, because of its in vivo bioactivity and wide in vitro applications such as DNA-based switches. Herein, the length-dependent folding of cytosine-rich repeats of the human telomeric 5'-(CCCTAA)n-1CCC-3' (iM-n, where n = 2-8) was fully explored. We found that iM-4, iM-5, and iM-8 mainly form the intramolecular monomer iM structures, while a tetramolecular structure populates only for iM-3. However, iM-6 and iM-7 have the potential to fold as well into the dimeric iM structures besides the monomer ones. The natural hypericin (Hyp) was used as the polymorphism-selective probe to recognize the iM structures. Interestingly, only iM-3, iM-6, and iM-7 can efficiently switch on the Hyp fluorescence by specifically binding with the outmost C-C+ base pairs that are exposed directly to solution. However, other iM structures that fold in a way with a coverage of the outmost C-C+ pairs by loop sequences are totally unavailable for the Hyp binding. Theoretical modeling indicates that adaptive π-π and cation-π interactions contribute to the Hyp recognition toward the exposed C-C+ pairs. This specific iM recognition can be boosted by a photocatalytic DNAzyme construct. Our work provides a reliable fluorescence method to selectively explore the polymorphism of iM structures.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiahui Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Pei-Ke Jia
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, People's Republic of China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, People's Republic of China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
22
|
Controllable DNA hybridization by host-guest complexation-mediated ligand invasion. Nat Commun 2022; 13:5936. [PMID: 36209265 PMCID: PMC9547909 DOI: 10.1038/s41467-022-33738-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
Dynamic regulation of nucleic acid hybridization is fundamental for switchable nanostructures and controllable functionalities of nucleic acids in both material developments and biological regulations. In this work, we report a ligand-invasion pathway to regulate DNA hybridization based on host-guest interactions. We propose a concept of recognition handle as the ligand binding site to disrupt Watson-Crick base pairs and induce the direct dissociation of DNA duplex structures. Taking cucurbit[7]uril as the invading ligand and its guest molecules that are integrated into the nucleobase as recognition handles, we successfully achieve orthogonal and reversible manipulation of DNA duplex dissociation and recovery. Moreover, we further apply this approach of ligand-controlled nucleic acid hybridization for functional regulations of both the RNA-cleaving DNAzyme in test tubes and the antisense oligonucleotide in living cells. This ligand-invasion strategy establishes a general pathway toward dynamic control of nucleic acid structures and functionalities by supramolecular interactions.
Collapse
|
23
|
Panczyk T, Nieszporek J, Nieszporek K. Molecular Dynamics Simulations of Interactions between Human Telomeric i-Motif Deoxyribonucleic Acid and Functionalized Graphene. J Phys Chem B 2022; 126:6671-6681. [PMID: 36036695 PMCID: PMC9465685 DOI: 10.1021/acs.jpcb.2c04327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Indexed: 11/30/2022]
Abstract
The work deals with molecular dynamics (MD) simulations of protonated, human telomeric i-motif deoxyribonucleic acid (DNA) with functionalized graphene. We studied three different graphene sheets: unmodified graphene with hydrogen atoms attached to their edges and two functionalized ones. The functionalization of graphene edge consists in attaching partially protonated or dissociated amine and carboxyl groups. We found that in all cases the protonated i-motif adsorbs strongly on the graphene surface. The biased MD simulations showed that the work necessary to drag the i-motif out from amine-doped graphene is about twice larger than that in other cases. In general, the system i-motif/amine-doped graphene stands out from the rest, e.g., in this case, the i-motif adsorbs its side with 3' and 5' ends oriented in the opposite to surface direction. In other cases, the DNA fragment is adsorbed to graphene by 3' and 5' ends. In all cases, the adsorption on graphene influences the i-motif internal structure by changing the distances between i-motif strands as well as stretching or shortening the DNA chain, but only in the case of amine-doped graphene the adsorption affects internal H-bonds formed between nucleotides inside the i-motif structure.
Collapse
Affiliation(s)
- Tomasz Panczyk
- Institute
of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, Cracow 30239, Poland
| | - Jolanta Nieszporek
- Department
of Analytical Chemistry, Institute of Chemical
Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowska 3, Lublin 20031, Poland
| | - Krzysztof Nieszporek
- Department
of Theoretical Chemistry, Institute of Chemical
Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowska 3, Lublin 20031, Poland
| |
Collapse
|
24
|
Dong Y, Li F, Lv Z, Li S, Yuan M, Song N, Liu J, Yang D. Lysosome Interference Enabled by Proton‐Driven Dynamic Assembly of DNA Nanoframeworks inside Cells. Angew Chem Int Ed Engl 2022; 61:e202207770. [DOI: 10.1002/anie.202207770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology (MOE) Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology (MOE) Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China
| | - Zhaoyue Lv
- Frontiers Science Center for Synthetic Biology (MOE) Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China
| | - Shuai Li
- Frontiers Science Center for Synthetic Biology (MOE) Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China
| | - Meihe Yuan
- Frontiers Science Center for Synthetic Biology (MOE) Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China
| | - Nachuan Song
- Frontiers Science Center for Synthetic Biology (MOE) Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China
| | - Jinqiao Liu
- Frontiers Science Center for Synthetic Biology (MOE) Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology (MOE) Key Laboratory of Systems Bioengineering (MOE) Institute of Biomolecular and Biomedical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P.R. China
- Zhejiang Institute of Tianjin University Ningbo Zhejiang, 315201 P.R. China
| |
Collapse
|
25
|
Yuan B, Xi Y, Qi C, Zhao M, Zhu X, Tang J. A sequentially triggered DNA nanocapsule for targeted drug delivery based on pH-responsive i-motif and tumor cell-specific aptamer. Front Bioeng Biotechnol 2022; 10:965337. [PMID: 36091462 PMCID: PMC9453301 DOI: 10.3389/fbioe.2022.965337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Targeted drug delivery with minor off-target effects is urgently needed for precise cancer treatments. Here, a sequentially triggered strategy based on double targeting elements is designed to meet this purpose. By using an acidic pH-responsive i-motif DNA and a tumor cell-specific aptamer as targeting elements, a smart dual-targeted DNA nanocapsule (ZBI5-DOX) was constructed. ZBI5-DOX can be firstly triggered by acidic pH, and then bind to target cells via aptamer recognition and thus targeted release of the carried DOX chemotherapeutics. With this smart DNA nanocapsule, the carried DOX could be precisely delivered to target SMMC-7721 tumor cells in acidic conditions. After drug treatments, selective cytotoxicity of the DNA nanocapsule was successfully achieved. Meanwhile, the DNA nanocapsule had a specific inhibition effect on target cell migration and invasion. Therefore, this sequentially triggered strategy may provide deep insight into the next generation of targeted drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinlu Tang
- *Correspondence: Xiaoyan Zhu, ; Jinlu Tang,
| |
Collapse
|
26
|
Liu L, Zhu L, Tong H, Su C, Wells JW, Chalikian TV. Distribution of Conformational States Adopted by DNA from the Promoter Regions of the VEGF and Bcl-2 Oncogenes. J Phys Chem B 2022; 126:6654-6670. [PMID: 36001297 DOI: 10.1021/acs.jpcb.2c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, i-motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Legeng Zhu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Haoyuan Tong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chongyu Su
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
27
|
dong Y, li F, lv Z, li S, yuan M, song N, liu J, Yang D. Lysosome Interference Enabled by Proton‐Driven Dynamic Assembly of DNA Nanoframework inside Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- yuhang dong
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - feng li
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - zhaoyue lv
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - shuai li
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - meihe yuan
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - nachuan song
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - jinqiao liu
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Dayong Yang
- Tianjin University Chemistry Department Room 328, Building 54 300350 Tianjin CHINA
| |
Collapse
|
28
|
Yang T, Peng S, Zeng R, Xu Q, Zheng X, Wang D, Zhou X, Shao Y. Visible light-driven i-motif-based DNAzymes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120845. [PMID: 35016065 DOI: 10.1016/j.saa.2021.120845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/04/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
DNA foldings provide variant possibilities to develop DNAzymes with remarkable catalytic performance. In spite of fruitful reports on G-quadruplex DNAzymes, four-stranded cytosine-rich i-motifs have not been explored as the potential skeletons of DNAzymes. In this work, we developed a visible light-driven DNAzyme based on human telomeric i-motifs using a natural photosensitizer of hypericin (Hyp) as the cofactor and dissolved oxygen as the oxidant source. The i-motif folding in acidic solution caused the distal thymine overhangs at the 3' and 5' ends to approach each other to provide a favorable binding site for Hyp via an interaction of fully complementary hydrogen bonding. However, the i-motifs without the distal overhangs or with the inappropriate overhang length and the base identity exhibited no binding with Hyp. The binding event converted Hyp from the fully dark state to the emissive state under visible light illumination. Subsequently, the excited Hyp had an opportunity to transfer energy to dissolved oxygen. Resultantly, singlet oxygen (1O2) was generated to initiate the substrate oxidation. The catalytic performance of the DNAzyme can be improved using a long-lived mediator. Our developed i-motif-based DNAzyme can be driven by almost the whole range of visible lights, suggesting broad applications in the photocatalytic fields, for example, as an alternative strategy in developing biodevices.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Ruidi Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| |
Collapse
|
29
|
Development of a Smart Fluorescent Probe Specifically Interacting with C-Myc I-Motif. Int J Mol Sci 2022; 23:ijms23073872. [PMID: 35409230 PMCID: PMC8998492 DOI: 10.3390/ijms23073872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
I-motifs play key regulatory roles in biological processes, holding great potential as attractive therapeutic targets. In the present study, we developed a novel fluorescent probe G59 with strong and selective binding to the c-myc gene promoter i-motif. G59 had an i-motif-binding carbazole moiety conjugated with naphthalimide fluorescent groups. G59 could differentiate the c-myc i-motif from other DNA structures through selective activation of its fluorescence, with its apparent visualization in solution. The smart probe G59 showed excellent sensitivity, with a low fluorescent detection limit of 154 nM and effective stabilization to the c-myc i-motif. G59 could serve as a rapid and sensitive probe for label-free screening of selective c-myc i-motif binding ligands under neutral crowding conditions. To the best of our knowledge, G59 is the first fluorescent probe with high sensitivity for recognizing the i-motif structure and screening for selective binding ligands.
Collapse
|
30
|
Amato J, Iaccarino N, D'Aria F, D'Amico F, Randazzo A, Giancola C, Cesàro A, Di Fonzo S, Pagano B. Conformational plasticity of DNA secondary structures: probing the conversion between i-motif and hairpin species by circular dichroism and ultraviolet resonance Raman spectroscopies. Phys Chem Chem Phys 2022; 24:7028-7044. [PMID: 35258065 DOI: 10.1039/d2cp00058j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The promoter regions of important oncogenes such as BCL2 and KRAS contain GC-rich sequences that can form distinctive noncanonical DNA structures involved in the regulation of transcription: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. Interestingly, BCL2 and KRAS promoter i-motifs are highly dynamic in nature and exist in a pH-dependent equilibrium with hairpin and even with hybrid i-motif/hairpin species. Herein, the effects of pH and presence of cell-mimicking molecular crowding conditions on conformational equilibria of the BCL2 and KRAS i-motif-forming sequences were investigated by ultraviolet resonance Raman (UVRR) and circular dichroism (CD) spectroscopies. Multivariate analysis of CD data was essential to model the presence and identity of the species involved. Analysis of UVRR spectra measured as a function of pH, performed also by the two-dimensional correlation spectroscopy (2D-COS) technique, showed the role of several functional groups in the DNA conformational transitions, and provided structural and dynamic information. Thus, the UVRR investigation of intramolecular interactions and of local and environmental dynamics in promoting the different species induced by the solution conditions provided valuable insights into i-motif conformational transitions. The combined use of the two spectroscopic tools is emphasized by the relevant possibility of working in the same DNA concentration range and by the heterospectral UVRR/CD 2D-COS analysis. The results of this study shed light on the factors that can influence at the molecular level the equilibrium between the different conformational species putatively involved in the oncogene expression.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Francesco D'Amico
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Attilio Cesàro
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Silvia Di Fonzo
- Elettra-Sincrotrone Trieste S. C. p. A., Science Park, Trieste, I-34149, Italy.
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| |
Collapse
|
31
|
Stability and context of intercalated motifs (i-motifs) for biological applications. Biochimie 2022; 198:33-47. [PMID: 35259471 DOI: 10.1016/j.biochi.2022.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
DNA is naturally dynamic and can self-assemble into alternative secondary structures including the intercalated motif (i-motif), a four-stranded structure formed in cytosine-rich DNA sequences. Until recently, i-motifs were thought to be unstable in physiological cellular environments. Studies demonstrating their existence in the human genome and role in gene regulation are now shining light on their biological relevance. Herein, we review the effects of epigenetic modifications on i-motif structure and stability, and biological factors that affect i-motif formation within cells. Furthermore, we highlight recent progress in targeting i-motifs with structure-specific ligands for biotechnology and therapeutic purposes.
Collapse
|
32
|
Ma W, Sun H, Chen B, Jia R, Huang J, Cheng H, He X, Huang M, Wang K. Engineering a Facile Aptamer "Molecule-Doctor" with Hairpin-Contained I-Motif Enables Accurate Imaging and Killing of Cancer Cells. Anal Chem 2021; 93:14552-14559. [PMID: 34677940 DOI: 10.1021/acs.analchem.1c03580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we subtly engineered a pH and membrane receptor dual-activatable aptamer therapeutic for bispecific tumor cell imaging and in situ drug release by utilizing a hairpin-contained i-motif as the acid-responsive element to be complementary with a tumor-targeted aptamer, named as an aptamer "molecule-doctor" (pH-Apt-MD). Specifically, the pH-Apt-MD consisted of two DNA strands, where the Apt-sgc8c was labeled with AF488 and Cy3 at its 5'- and 3'-end, respectively. The I-strand, a hairpin-contained i-motif, was complementary to the Apt-sgc8c strand partially, labeled with a BHQ2 in the middle, thus generating Cy3 with quenched fluorescence and only AF488-emitted fluorescence. The double-helix region of pH-Apt-MD was designed rich in GC bases, providing sites for doxorubicin (Dox) intercalation. Once target cells were encountered, the pH-Apt-MD disassembled due to the specific recognition of the aptamer and conformation change of the i-motif, with activated fluorescence resonance energy transfer (FRET) signals between AF488 and Cy3, accompanied by Dox release in situ. Benefiting from the design of the hairpin-contained i-motif, the pH-Apt-MD presented a narrow pH response range (pH 6.0-6.8) with a transition midpoint (pHT) of 6.50 ± 0.04. Furthermore, living cell studies revealed that the stimuli-responsive FRET signal activation of pH-Apt-MD was successfully achieved on the HCT116 cell surface with ultralow background and enhanced imaging contrast. Then, the cytotoxicity experiments proved that accurate drug release and cell killing were realized to target cells in an acidic microenvironment. As a facile double stimuli-responsive strategy, the pH-Apt-MD may hold great promise for application in precise diagnosis and therapy of cancer cells.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Huanhuan Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Biao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Mingmin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha 410082, China
| |
Collapse
|
33
|
Zhao P, Tang ZW, Lin HC, Djuanda D, Zhu Z, Niu Q, Zhao LM, Qian YN, Cao G, Shen JL, Fu B. VEGF aptamer/i-motif-based drug co-delivery system for combined chemotherapy and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102547. [PMID: 34562647 DOI: 10.1016/j.pdpdt.2021.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Nucleic acids used as drug delivery systems (DDS) have gained attention because of their biosafety and effortless synthesis. G-quadruplex (G4) structured aptamer such as AS1411 was frequently employed to deliver photosensitizers or chemotherapeutic agents while other aptamers were seldomly reported in this field. METHODS Herein, a chemical anticancer drug daunomycin (DNM), and a photosensitizer 5, 10, 15, 20-tetra (phenyl-4-N-methyl-4-pyridyl) porphyrin (TMPyP) were physically assembled with a novel DNA structure composed of an aptamer of vascular endothelial growth factor (VEGF) and a cytosine (C)-rich DNA fragment (gc-34). Spectral and molecular mimicking methods were employed to research the drug loading/releasing process. The in vitro cytotoxicity was studied by MTT, ROS, cell cycle, and cell apoptotic assays and the in vivo anticancer efficiency was evaluated by the inhibitive effect on the cancerous growth of MCF-7 tumor-bearing nude mice. RESULTS The G4-structured VEGF aptamer delivered TMPyP successfully for the first time. The designed DDS displayed sensitive VEGF/pH controlled drug release. The co-delivery of DNM and TMPyP exhibited high ROS production, significant cell cycle arresting and evident cell apoptosis, and displayed superior cytotoxicity against tumor cells compared with individual agents in vitro. In vivo studies showed that the dual-drug loaded system can greatly inhibit tumor growth with chemotherapeutic/photodynamic synergistic effects. CONCLUSION The co-delivery of DNM and TMPyP with aptamer/C-rich DNA successfully integrates the functions of VEGF/pH stimuli-responsive drug release and chemotherapeutic/phototherapeutic modalities into one single system, and may have great potential in cancer treatment.
Collapse
Affiliation(s)
- Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China.
| | - Zi-Wei Tang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Hui-Chao Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - David Djuanda
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhaowei Zhu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiang Niu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China; Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Li-Min Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Yu-Na Qian
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Gao Cao
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Jian-Liang Shen
- Department of plastic surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Bo Fu
- College of Health Industry, Zhongshan Torch Polytechnic, No. 7 Xingye Road, Zhongshan 528436, Guangdong, China.
| |
Collapse
|
34
|
Chen J, Gill AD, Hickey BL, Gao Z, Cui X, Hooley RJ, Zhong W. Machine Learning Aids Classification and Discrimination of Noncanonical DNA Folding Motifs by an Arrayed Host:Guest Sensing System. J Am Chem Soc 2021; 143:12791-12799. [PMID: 34346209 DOI: 10.1021/jacs.1c06031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An arrayed host:guest fluorescence sensor system can discriminate among and classify multiple different noncanonical DNA structures by exploiting selective molecular recognition. The sensor is highly selective and can discriminate between folds as similar as native G-quadruplexes and those with bulges or vacancies. The host and guest can form heteroternary complexes with DNA strands, with the host acting as mediator between the DNA and dye, modulating the emission. By applying machine learning algorithms to the sensing data, prediction of the folding state of unknown DNA strands is possible with high fidelity.
Collapse
|
35
|
Zheng LL, Li JZ, Li YX, Gao JB, Dong JX, Gao ZF. pH-Responsive DNA Motif: From Rational Design to Analytical Applications. Front Chem 2021; 9:732770. [PMID: 34458239 PMCID: PMC8385663 DOI: 10.3389/fchem.2021.732770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
pH-responsive DNA motifs have attracted substantial attention attributed to their high designability and versatility of DNA chemistry. Such DNA motifs typically exploit DNA secondary structures that exhibit pH response properties because of the presence of specific protonation sites. In this review, we briefly summarized second structure-based pH-responsive DNA motifs, including triplex DNA, i-motif, and A+-C mismatch base pair-based DNA devices. Finally, the challenges and prospects of pH-responsive DNA motifs are also discussed.
Collapse
Affiliation(s)
- Lin Lin Zheng
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| | - Jin Ze Li
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| | - Ying Xu Li
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| | - Jian Bang Gao
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| | - Jiang Xue Dong
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology, Hebei University, Baoding, China
| | - Zhong Feng Gao
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, School of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, China
| |
Collapse
|
36
|
Amato J, D'Aria F, Marzano S, Iaccarino N, Randazzo A, Giancola C, Pagano B. On the thermodynamics of folding of an i-motif DNA in solution under favorable conditions. Phys Chem Chem Phys 2021; 23:15030-15037. [PMID: 34151914 DOI: 10.1039/d1cp01779a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Under slightly acidic conditions, cytosine-rich DNA sequences can form non-canonical secondary structures called i-motifs, which occur as four stretches of cytosine repeats form hemi-protonated C·C+ base pairs. The growing interest in the i-motif structures as important components in functional DNA-based nanotechnology or as potential targets of anticancer drugs, increases the need for a deep understanding of the energetics of their structural transitions. Here, a combination of spectroscopic and calorimetric techniques is used to unravel the thermodynamics of folding of an i-motif DNA under favorable conditions. The results give new insights into the energetic aspects of i-motifs and show that thermodynamic and thermal stability are related but not identical properties of such DNA structures.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| |
Collapse
|
37
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
38
|
Cheng M, Chen J, Ju H, Zhou J, Mergny JL. Drivers of i-DNA Formation in a Variety of Environments Revealed by Four-Dimensional UV Melting and Annealing. J Am Chem Soc 2021; 143:7792-7807. [PMID: 33988990 DOI: 10.1021/jacs.1c02209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
i-DNA is a four-stranded, pH-sensitive structure formed by cytosine-rich DNA sequences. Previous reports have addressed the conditions for formation of this motif in DNA in vitro and validated its existence in human cells. Unfortunately, these in vitro studies have often been performed under different experimental conditions, making comparisons difficult. To overcome this, we developed a four-dimensional UV melting and annealing (4DUVMA) approach to analyze i-DNA formation under a variety of conditions (e.g., pH, temperature, salt, crowding). Analysis of 25 sequences provided a global understanding of i-DNA formation under disparate conditions, which should ultimately allow the design of accurate prediction tools. For example, we found reliable linear correlations between the midpoint of pH transition and temperature (-0.04 ± 0.003 pH unit per 1.0 °C temperature increment) and between the melting temperature and pH (-23.8 ± 1.1 °C per pH unit increment). In addition, by analyzing the hysteresis between denaturing and renaturing profiles in both pH and thermal transitions, we found that loop length, nature of the C-tracts, pH, temperature, and crowding agents all play roles in i-DNA folding kinetics. Interestingly, our data indicate which conformer is more favorable for the sequences with an odd number of cytosine base pairs. Then the thermal and pH stabilities of "native" i-DNAs from human promoter genes were measured under near physiological conditions (pH 7.0, 37 °C). The 4DUVMA method can become a universal resource to analyze the properties of any i-DNA-prone sequence.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau Cedex 91128, France
| |
Collapse
|
39
|
Mao S, Chang Z, Ying Zheng Y, Shekhtman A, Sheng J. DNA Functionality with Photoswitchable Hydrazone Cytidine*. Chemistry 2021; 27:8372-8379. [PMID: 33872432 DOI: 10.1002/chem.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/18/2022]
Abstract
A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Zhihua Chang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| |
Collapse
|
40
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny J. Thermal and pH Stabilities of i‐DNA: Confronting in vitro Experiments with Models and In‐Cell NMR Data. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Eva Ištvánková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Samir Amrane
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Aurore Guédin
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Laurent Lacroix
- IBENS Ecole Normale Supérieure CNRS INSERM PSL Research University 75005 Paris France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Lukáš Trantírek
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Aleksandr B. Sahakyan
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
41
|
He S, Liu M, Yin F, Liu J, Ge Z, Li F, Li M, Shi J, Wang L, Mao X, Zuo X, Li Q. Programming folding cooperativity of the dimeric i-motif with DNA frameworks for sensing small pH variations. Chem Commun (Camb) 2021; 57:3247-3250. [PMID: 33646233 DOI: 10.1039/d1cc00266j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response sensitivity of a molecular sensor is determined by the folding cooperativity of its responsive module. Using an H+-responsive dimeric DNA i-motif as a model, we demonstrate the enhancement of its folding cooperativity through preorganization by a DNA framework, and with it we fabricate robust intracellular pH sensors with high response sensitivity.
Collapse
Affiliation(s)
- Shiliang He
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li L, Xu S, Peng X, Ji Y, Yan H, Cui C, Li X, Pan X, Yang L, Qiu L, Jiang J, Tan W. Engineering G-quadruplex aptamer to modulate its binding specificity. Natl Sci Rev 2021; 8:nwaa202. [PMID: 33936748 PMCID: PMC8065617 DOI: 10.1093/nsr/nwaa202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/05/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
The use of aptamers in bioanalytical and biomedical applications exploits their ability to recognize cell surface protein receptors. Targeted therapeutics and theranostics come to mind in this regard. However, protein receptors occur on both cancer and normal cells; as such, aptamers are now taxed with identifying high vs. low levels of protein expression. Inspired by the flexible template mechanism and elegant control of natural nucleic acid-based structures, we report an allosteric regulation strategy for constructing a structure-switching aptamer for enhanced target cell recognition by engineering aptamers with DNA intercalated motifs (i-motifs) responsive to the microenvironment, such as pH. Structure-switching sensitivity can be readily tuned by manipulating i-motif sequences. However, structure-switching sensitivity is difficult to estimate, making it equally difficult to effectively screen modified aptamers with the desired sensitivity. To address this problem, we selected a fluorescent probe capable of detecting G-quadruplex in complicated biological media.
Collapse
Affiliation(s)
- Long Li
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Shujuan Xu
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xueyu Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuzhuo Ji
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - He Yan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Cheng Cui
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaowei Li
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Xiaoshu Pan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Lu Yang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
43
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny JL. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew Chem Int Ed Engl 2021; 60:10286-10294. [PMID: 33605024 DOI: 10.1002/anie.202016801] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Samir Amrane
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Laurent Lacroix
- IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
44
|
Gargallo R, Aviñó A, Eritja R, Jarosova P, Mazzini S, Scaglioni L, Taborsky P. Study of alkaloid berberine and its interaction with the human telomeric i-motif DNA structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119185. [PMID: 33234477 DOI: 10.1016/j.saa.2020.119185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The alkaloid berberine presents many biological activities related to its potential to bind DNA structures, such as duplex or G-quadruplex. Recently, it has been proposed that berberine may interact with i-motif structures formed from the folding of cytosine-rich sequences. In the present work, the interaction of this alkaloid with the i-motif formed by the human telomere cytosine-rich sequence, as well as with several positive and negative controls, has been studied. Molecular fluorescence and circular dichroism spectroscopies, as well as nuclear magnetic resonance spectrometry and competitive dialysis, have been used with this purpose. The results shown here reveal that the interaction of berberine with this i-motif is weak, mostly electrostatics in nature and takes place with bases not involved in C·C+ base pairs. Moreover, this ligand is not selective for i-motif structures, as binds equally to both, folded structure, and unfolded strand, without producing any stabilization of the i-motif. As a conclusion, the development of analytical methods based on the interaction of fluorescent ligands, such as berberine, with i-motif structures should consider the thermodynamic aspects related with the interaction, as well as the selectivity of the proposed ligands with different DNA structures, including unfolded strands.
Collapse
Affiliation(s)
- R Gargallo
- Dept. of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1, E-08028 Barcelona, Spain.
| | - A Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - R Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - P Jarosova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S Mazzini
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - L Scaglioni
- Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - P Taborsky
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
45
|
Zeng H, Kang S, Zhang Y, Liu K, Yu Q, Li D, An LK. Synthesis and Biological Evaluation of Oleanolic Acid Derivatives as Selective Vascular Endothelial Growth Factor Promoter i-Motif Ligands. Int J Mol Sci 2021; 22:1711. [PMID: 33567767 PMCID: PMC7915724 DOI: 10.3390/ijms22041711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/01/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic growth factor and plays a key role in tumor progression. The C-rich DNA sequence of VEGF promoter can form i-motif structure, which is a potential target for the development of novel anticancer agents. However, there is a limited number of chemotypes as the selective ligands of VEGF promoter i-motif, which leaves much room for development. Herein, we report the discovery of the natural oleanolic acid scaffold as a novel chemotype for the development of selective ligands of VEGF i-motif. A series of oleanolic acid derivatives as VEGF promoter i-motif ligands were synthesized. Subsequent evaluations showed that 3c could selectively bind to and stabilize VEGF promoter i-motif without significant binding to G-quadruplex, duplex DNA, and other oncogene i-motifs. Cell-based assays indicated that 3c could effectively downregulate VEGF gene transcription and expression in MCF-7 cells, inhibit tumor cells proliferation and migration, and induce cancer cells apoptosis. This work provides evidence of VEGF promoter i-motif as an anticancer target and will facilitate future efforts for the discovery of oleanolic acid-based selective ligands of VEGF promoter i-motif.
Collapse
Affiliation(s)
- Huang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (H.Z.); (S.K.); (Y.Z.); (K.L.); (Q.Y.)
| | - Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (H.Z.); (S.K.); (Y.Z.); (K.L.); (Q.Y.)
| | - Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (H.Z.); (S.K.); (Y.Z.); (K.L.); (Q.Y.)
| | - Ke Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (H.Z.); (S.K.); (Y.Z.); (K.L.); (Q.Y.)
| | - Qian Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (H.Z.); (S.K.); (Y.Z.); (K.L.); (Q.Y.)
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (H.Z.); (S.K.); (Y.Z.); (K.L.); (Q.Y.)
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (H.Z.); (S.K.); (Y.Z.); (K.L.); (Q.Y.)
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China
| |
Collapse
|
46
|
Sengupta P, Bose D, Chatterjee S. The Molecular Tête-à-Tête between G-Quadruplexes and the i-motif in the Human Genome. Chembiochem 2021; 22:1517-1537. [PMID: 33355980 DOI: 10.1002/cbic.202000703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/16/2020] [Indexed: 12/22/2022]
Abstract
G-Quadruplex (GQ) and i-motif structures are the paradigmatic examples of nonclassical tetrastranded nucleic acids having multifarious biological functions and widespread applications in therapeutics and material science. Recently, tetraplexes emerged as promising anticancer targets due to their structural robustness, gene-regulatory roles, and predominant distribution at specific loci of oncogenes. However, it is arguable whether the i-motif evolves in the complementary single-stranded region after GQ formation in its opposite strand and vice versa. In this review, we address the prerequisites and significance of the simultaneous and/or mutually exclusive formation of GQ and i-motif structures at complementary and sequential positions in duplexes in the cellular milieu. We discussed how their dynamic interplay Sets up cellular homeostasis and exacerbates carcinogenesis. The review gives insights into the spatiotemporal formation of GQ and i-motifs that could be harnessed to design different types of reporter systems and diagnostic platforms for potential bioanalytical and therapeutic intervention.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Centenary Campus, P-1/12, C.I.T. Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| |
Collapse
|
47
|
Saha P, Panda D, Paul R, Dash J. A DNA nanosensor for monitoring ligand-induced i-motif formation. Org Biomol Chem 2021; 19:1965-1969. [DOI: 10.1039/d1ob00248a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A GNP-based DNA nanosensor has been developed that identifies i-motif inducing ligands at physiological pH from a chemical library.
Collapse
Affiliation(s)
- Puja Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Deepanjan Panda
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Raj Paul
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Jyotirmayee Dash
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
48
|
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Construction of Organelle‐Like Architecture by Dynamic DNA Assembly in Living Cells. Angew Chem Int Ed Engl 2020; 59:20651-20658. [DOI: 10.1002/anie.202009387] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaocui Guo
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dan Luo
- Department of Biological &Environmental Engineering Cornell University Ithaca NY 14853 USA
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics College of Chemistry & Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
49
|
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Construction of Organelle‐Like Architecture by Dynamic DNA Assembly in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaocui Guo
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dan Luo
- Department of Biological &Environmental Engineering Cornell University Ithaca NY 14853 USA
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics College of Chemistry & Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
50
|
Baranowski MR, Warminski M, Jemielity J, Kowalska J. 5'-fluoro(di)phosphate-labeled oligonucleotides are versatile molecular probes for studying nucleic acid secondary structure and interactions by 19F NMR. Nucleic Acids Res 2020; 48:8209-8224. [PMID: 32514551 PMCID: PMC7470941 DOI: 10.1093/nar/gkaa470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/03/2023] Open
Abstract
The high sensitivity of 19F nucleus to changes in the chemical environment has promoted the use of fluorine-labeled molecular probes to study structure and interactions of nucleic acids by 19F NMR. So far, most efforts have focused on incorporating the fluorine atom into nucleobase and ribose moieties using either monomer building blocks for solid-phase synthesis, or nucleoside triphosphates for enzymatic synthesis. Here, we report a simple and efficient synthesis of 5'-fluoromonophosphorylated and 5'-fluorodiphosphorylated oligodeoxyribonucleotides, which combines solid-phase and in-solution synthesis methods and requires only commercially available nucleoside phosphoramidites, followed by their evaluation as 19F NMR probes. We confirmed that the fluorine atom at the oligonucleotide 5' end did not alter the secondary structure of DNA fragments. Moreover, at the same time, it enabled real-time 19F NMR monitoring of various DNA-related biophysical processes, such as oligonucleotide hybridization (including mismatch identification), G-quadruplex folding/unfolding and its interactions with thrombin, as well as formation of an i-motif structure and its interaction with small-molecule ligands.
Collapse
Affiliation(s)
- Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|