1
|
Kumar A, Shahvej SK, Yadav P, Modi U, Yadav AK, Solanki R, Bhatia D. Clinical Applications of Targeted Nanomaterials. Pharmaceutics 2025; 17:379. [PMID: 40143042 PMCID: PMC11944548 DOI: 10.3390/pharmaceutics17030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Targeted nanomaterials are at the forefront of advancements in nanomedicine due to their unique and versatile properties. These include nanoscale size, shape, surface chemistry, mechanical flexibility, fluorescence, optical behavior, magnetic and electronic characteristics, as well as biocompatibility and biodegradability. These attributes enable their application across diverse fields, including drug delivery. This review explores the fundamental characteristics of nanomaterials and emphasizes their importance in clinical applications. It further delves into methodologies for nanoparticle programming alongside discussions on clinical trials and case studies. We discussed some of the promising nanomaterials, such as polymeric nanoparticles, carbon-based nanoparticles, and metallic nanoparticles, and their role in biomedical applications. This review underscores significant advancements in translating nanomaterials into clinical applications and highlights the potential of these innovative approaches in revolutionizing the medical field.
Collapse
Affiliation(s)
- Ankesh Kumar
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - SK Shahvej
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Pankaj Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit K. Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
2
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wang W, Zhao Z, Zhang Z, Wu Z, Zhang Y, Wang K, Dai M, Mao C, Wan M. Delivery of small interfering RNA by hydrogen sulfide-releasing nanomotor for the treatment of Parkinson's disease. J Control Release 2025; 377:648-660. [PMID: 39613107 DOI: 10.1016/j.jconrel.2024.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Small interfering RNA (siRNA) that inhibit the formation of α-synuclein (α-syn) aggregates is considered very promising therapeutic agents for the treatment of Parkinson's disease (PD). However, the low stability and the difficulty in crossing the blood-brain barrier (BBB) of free siRNA has severely limited their therapeutic effects. Here, we developed an H2S donor nanomotor that can encapsulate siRNA, which can both protect the activity of siRNA and help siRNA to be effectively targeted to the mitochondria of damaged neuronal cells, in order to promote the effective therapeutic effect of siRNA for PD. Specifically, the cysteine monomer-modified polyethylene glycol (PEG-Cys) and the amphiphilic ionic monomer 2-methacryloyloxyethylphosphorylcholine (MPC) that can effectively penetrate the BBB, were selected to form a polymer protective layer on the surface of siRNA in a free-radical polymerization reaction, to construct the H2S donor nanomotor encapsulating siRNA (PCM@siRNA). Among them, MPC can help PCM@siRNA to break through the BBB by interacting with nicotinic acetylcholine receptor or choline transporter on the surface of cerebrovascular endothelial cells, while PEG-Cys can undergo chemotactic effect by specifically recognizing 3-thiopyruvate thioltransferase and thus achieve effective targeting of damaged mitochondria in neuronal cells. PCM@siRNA that reached neuronal cells can not only be utilized to play the role of silencing the α-syn gene to inhibit the formation of α-syn aggregates by siRNA, but also to degrade the formed α-syn aggregates by using the H2S produced by its chemotaxis process to achieve an effective treatment for PD. This therapeutic modality, which can simultaneously inhibit the formation of α-syn aggregates and promote their degradation, has the therapeutic potential to reverse the pathological state of α-syn, which is important for the treatment of PD.
Collapse
Affiliation(s)
- Wenjing Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Institute for Life and Health, Nanjing Drum Tower Hospital, Nanjing Normal University, Nanjing 210023, China
| | - Zinan Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhuolin Wu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yao Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Keheng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Institute for Life and Health, Nanjing Drum Tower Hospital, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Institute for Life and Health, Nanjing Drum Tower Hospital, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Ye J, Cui H, Liu E, Pei X, Chai M, Sun L, Wang D, Yang VC, Yu F. Temperature switchable linkers suitable for triggered drug release in cancer thermo-chemotherapy. Int J Pharm 2024; 666:124757. [PMID: 39332459 DOI: 10.1016/j.ijpharm.2024.124757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
In drug delivery systems, a stimuli-responsive linker that attaches a targeting carrier and a cytotoxic payload can be dissociated to release the payload on the target over the action of a stimuli, thereby it would harden the selectivity, specificity and potency of the cytotoxic agent against targeted tissues whilst sparing the drug-induced toxicity on normal cells. Oligonucleotide duplexes can unwind and be separated into single-stranded random coils under a defined temperature, and this property makes the oligonucleotide an appealing thermo-responsive linker. In this work, we studied the melting temperatures of different DNA linkers with various lengths and mismatches inserted in the double helix with either different numbers or positions. We further chose the DNA linkers that can unwind at the hyperthermia temperature and used them in the construction of four different drug delivery systems both in vitro and in vivo. Results showed that the chosen DNA linkers in all of the constructed delivery systems can successfully unwind and release cargos or drugs after application of heat compared to control groups. This research demonstrated the potential applications of DNA duplexes as temperature-sensitive linkers of drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Junxiao Ye
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; School of Pharmaceutical Sciences , Tsinghua University, Beijing 100084, China
| | - Hui Cui
- YUGEN MEDCH (Tianjin) Co., Ltd, Tianjin 300450, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xing Pei
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Meihong Chai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Dongmei Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Fei Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Xu J, Li R, Yan D, Zhu L. Biomimetic Modification of siRNA/Chemo Drug Nanoassemblies for Targeted Combination Therapy in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59765-59776. [PMID: 39447113 DOI: 10.1021/acsami.4c11064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The development and progression of tumors are characterized by intricate biological processes. Monotherapy not only struggles to achieve effective treatment but also tends to precipitate a series of issues, including multidrug resistance and limited antitumor effect. Consequently, it is imperative to adopt a synergistic multitherapy approach to enhance the efficacy of tumor treatment. The integration of chemotherapy drug with oligonucleotide drug for combinational treatment has shown significant promise in improving tumor therapeutic efficiency. However, the effective in vivo codelivery of oligonucleotide drugs and chemotherapy drugs faces substantial challenges such as poor stability of oligonucleotide drugs during the circulation time, limited tumor accumulation, and uncertain delivery ratios of different payloads. To overcome these obstacles, we have engineered cyclic Arg-Gly-Asp (cRGD)-modified red blood cell membrane (RBCm)-coated multidrug nanocomplexes, which were self-assembled from the Polo-like kinase 1 siRNA (siPlk1) and an irreversible tyrosine kinase inhibitor neratinib targeted to human epidermal growth factor receptor 2 (HER2) overexpressed in breast cancer. Through electrostatic and amphiphilic interactions between the positively charged neratinib and negatively charged siPlk1, we have successfully fabricated uniform multidrug nanoparticles. The cRGD-modified red blood cell membranes coated on the surface of the multidrug nanoparticles could enhance drug stability in circulation and tumor accumulation. This targeted combinational therapy significantly enhanced the antitumor efficiency in HER2-positive breast cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Jie Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruichao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| |
Collapse
|
6
|
Jogdeo CM, Siddhanta K, Das A, Ding L, Panja S, Kumari N, Oupický D. Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404608. [PMID: 38842816 PMCID: PMC11384239 DOI: 10.1002/adma.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The recent success of gene therapy during the COVID-19 pandemic has underscored the importance of effective and safe delivery systems. Complementing lipid-based delivery systems, polymers present a promising alternative for gene delivery. Significant advances have been made in the recent past, with multiple clinical trials progressing beyond phase I and several companies actively working on polymeric delivery systems which provides assurance that polymeric carriers can soon achieve clinical translation. The massive advantage of structural tunability and vast chemical space of polymers is being actively leveraged to mitigate shortcomings of traditional polycationic polymers and improve the translatability of delivery systems. Tailored polymeric approaches for diverse nucleic acids and for specific subcellular targets are now being designed to improve therapeutic efficacy. This review describes the recent advances in polymer design for improved gene delivery by polyplexes and covalent polymer-nucleic acid conjugates. The review also offers a brief note on novel computational techniques for improved polymer design. The review concludes with an overview of the current state of polymeric gene therapies in the clinic as well as future directions on their translation to the clinic.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ashish Das
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
7
|
Fan G, Hou S, Zhang W, Jiang H, Xiao F, Yu J, Tian L. Polymer-DNA Carriers Co-Deliver Photosensitizer and siRNA for Light-Promoted Gene Transfection and Hypoxia-Relieved Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202405600. [PMID: 38757208 DOI: 10.1002/anie.202405600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Photochemical internalization is an efficient strategy relying on photodynamic reactions to promote siRNA endosomal escape for the success of RNA-interference gene regulation, which makes gene-photodynamic combined therapy highly synergistic and efficient. However, it is still desired to explore capable carriers to improve the delivery efficiency of the immiscible siRNA and organic photosensitizers simultaneously. Herein, we employ a micellar nanostructure (PSNA) self-assembled from polymer-DNA molecular chimeras to fulfill this task. PSNA can plentifully load photosensitizers in its hydrophobic core simply by the nanoprecipitation method. Moreover, it can organize siRNA self-assembly by the densely packed DNA shell, which leads to a higher loading capacity than the typical electrostatic condensation method. The experimental results prove that this PSNA carrier can greatly facilitate siRNA escape from the endosome/lysosome and enhance transfection. Accordingly, the PSNA-administrated therapy exhibits a significantly improved anti-tumor efficacy owing to the highly efficient co-delivery capability.
Collapse
Affiliation(s)
- Guiling Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Shengxin Hou
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Hengfeng Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Fan Xiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
8
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Yang C, Lin ZI, Zhang X, Xu Z, Xu G, Wang YM, Tsai TH, Cheng PW, Law WC, Yong KT, Chen CK. Recent Advances in Engineering Carriers for siRNA Delivery. Macromol Biosci 2024; 24:e2300362. [PMID: 38150293 DOI: 10.1002/mabi.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Indexed: 12/28/2023]
Abstract
RNA interference (RNAi) technology has been a promising treatment strategy for combating intractable diseases. However, the applications of RNAi in clinical are hampered by extracellular and intracellular barriers. To overcome these barriers, various siRNA delivery systems have been developed in the past two decades. The first approved RNAi therapeutic, Patisiran (ONPATTRO) using lipids as the carrier, for the treatment of amyloidosis is one of the most important milestones. This has greatly encouraged researchers to work on creating new functional siRNA carriers. In this review, the recent advances in siRNA carriers consisting of lipids, polymers, and polymer-modified inorganic particles for cancer therapy are summarized. Representative examples are presented to show the structural design of the carriers in order to overcome the delivery hurdles associated with RNAi therapies. Finally, the existing challenges and future perspective for developing RNAi as a clinical modality will be discussed and proposed. It is believed that the addressed contributions in this review will promote the development of siRNA delivery systems for future clinical applications.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Min Wang
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
10
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Jiang T, Su W, Li Y, Jiang M, Zhang Y, Xian CJ, Zhai Y. Research Progress on Nanomaterials for Tissue Engineering in Oral Diseases. J Funct Biomater 2023; 14:404. [PMID: 37623649 PMCID: PMC10455101 DOI: 10.3390/jfb14080404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- Tong Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Wen Su
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yan Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mingyuan Jiang
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| | - Yonghong Zhang
- Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Cory J. Xian
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Yuankun Zhai
- School of Stomatology, Henan University, Kaifeng 475000, China; (T.J.)
- Kaifeng Key Laboratory of Periodontal Tissue Engineering, Kaifeng 475000, China
| |
Collapse
|
13
|
Chua AJ, Francesco VD, Huang D, D'Souza A, Bleier BS, Amiji MM. Nanotechnology-enabled topical delivery of therapeutics in chronic rhinosinusitis. Nanomedicine (Lond) 2023; 18:1399-1415. [PMID: 37800470 DOI: 10.2217/nnm-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the paranasal sinuses which represents a significant health burden due to its widespread prevalence and impact on patients' quality of life. As the molecular pathways driving and sustaining inflammation in CRS become better elucidated, the diversity of treatment options is likely to widen significantly. Nanotechnology offers several tools to enhance the effectiveness of topical therapies, which has been limited by factors such as poor drug retention, mucosal permeation and adhesion, removal by epithelial efflux pumps and the inability to effectively penetrate biofilms. In this review, we highlight the successful application of nanomedicine in the field of CRS therapeutics, discuss current limitations and propose opportunities for future work.
Collapse
Affiliation(s)
- Andy J Chua
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
- Department of Otorhinolaryngology - Head & Neck Surgery, Sengkang General Hospital, 110 Sengkang E Way, 544886, Singapore
| | - Valentina Di Francesco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Benjamin S Bleier
- Department of Otolaryngology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, 140 The Fenway Building, MA 02115, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, 140 The Fenway Building, Boston, MA 02115, USA
| |
Collapse
|
14
|
Jiang T, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opin Drug Deliv 2023; 20:523-540. [PMID: 37017558 PMCID: PMC10164135 DOI: 10.1080/17425247.2023.2200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Despite gene therapy is ideal for genetic abnormality-related diseases, the easy degradation, poor targeting, and inefficiency in entering targeted cells are plaguing the effective delivery of gene therapy. Viral and non-viral vectors have been used for delivering gene therapeutics in vivo by safeguarding nucleic acid agents to target cells and to reach the specific intracellular location. A variety of nanotechnology-enabled safe and efficient systems have been successfully developed to improve the targeting ability for effective therapeutic delivery of genetic drugs. AREAS COVERED In this review, we outline the multiple biological barriers associated with gene delivery process, and highlight recent advances to gene therapy strategy in vivo, including gene correction, gene silencing, gene activation and genome editing. We point out current developments and challenges exist of non-viral and viral vector systems in association with chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION This review focuses on the opportunities and challenges to various gene therapy strategy, with specific emphasis on overcoming the challenges through the development of biocompatibility and smart gene vectors for potential clinical application.
Collapse
Affiliation(s)
- Tong Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
15
|
Zhu C, Wang W, Wang Y, Zhang Y, Li J. Dendronized DNA Chimeras Harness Scavenger Receptors To Degrade Cell Membrane Proteins. Angew Chem Int Ed Engl 2023; 62:e202300694. [PMID: 36734217 DOI: 10.1002/anie.202300694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
Bispecific chimeras bridging cell membrane proteins with lysosome-trafficking receptors (LTRs) provide an effective therapeutic approach through lysosomal degradation of disease-relevant targets. Here, we report a novel dendronized DNA chimera (DENTAC) strategy that uses a dendritic DNA to engage cell surface scavenger receptors (SRs) as LTR. Using bioorthogonal strain-promoted alkyne-azide cycloaddition to conjugate the dendritic DNA with protein binder, the resulting DENTAC is able to traffic the protein target into the lysosome for elimination. We demonstrated the utility of DENTAC by degrading oncogenic membrane nucleolin (NCL) and epidermal growth factor receptor (EGFR). The anti-cancer application of NCL-targeting DENTAC was validated in a mouse xenograft model of lung cancer. This work thus presents a new avenue for rapid development of potent degraders against membrane proteins, with also broad research and therapeutic prospects.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Weishan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Huang X, Li J, Li G, Ni B, Liang Z, Chen H, Xu C, Zhou J, Huang J, Deng S. Cation-free siRNA-cored nanocapsules for tumor-targeted RNAi therapy. Acta Biomater 2023; 161:226-237. [PMID: 36898473 DOI: 10.1016/j.actbio.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023]
Abstract
Cation-associated cytotoxicity limits the systemic administration of RNA delivery in vivo, demanding the development of non-cationic nanosystems. In this study, cation-free polymer-siRNA nanocapsules with disulfide-crosslinked interlayer, namely T-SS(-), were prepared via the following steps: 1) complexation of siRNA with a cationic block polymer cRGD-poly(ethylene glycol)-b-poly[(2-aminoethanethiol)aspartamide]-b-poly{N'-[N-(2-aminoethyl)-2-ethylimino-1-aminomethyl]aspartamide}, abbreviated as cRGD-PEG-PAsp(MEA)-PAsp(C=N-DETA), 2) interlayer crosslinking via disulfide bond in pH 7.4 solution, and 3) removal of cationic DETA pendant at pH 5.0 via breakage of imide bond. The cationic-free nanocapsules with siRNA cores not only showed great performance (such as efficient siRNA encapsulation, high stability in serum, cancer cell targeting via cRGD modification, and GSH-triggered siRNA release), but also achieved tumor-targeted gene silencing in vivo. Moreover, the nanocapsules loaded with siRNA against polo-like kinase 1 (siRNA-PLK1) significantly inhibited tumor growth without showing cation-associated toxicity side effects and remarkably improved the survival rate of PC-3 tumor-bearing mice. The cation-free nanocapsules could potentially serve as a safe and effective platform for siRNA delivery. STATEMENT OF SIGNIFICANCE: Cation-associated toxicity limits the clinical translation of cationic carriers for siRNA delivery. Recently, several non-cationic carriers, such as siRNA micelles, DNA-based nanogels, and bottlebrush-architectured poly(ethylene glycol), have been developed to deliver siRNA. However, in these designs, siRNA as a hydrophilic macromolecule was attached to the nanoparticle surface instead of being encapsulated. Thus, it was easily degraded by serum nuclease and often induced immunogenicity. Herein, we demonstrate a new type of cation-free siRNA-cored polymeric nanocapsules. The developed nanocapsules not only showed capacities including efficient siRNA encapsulation, high stability in serum, and cancer cell targeting via cRGD modification, but also achieved an efficient tumor-targeted gene silencing in vivo. Importantly, unlike cationic carriers, the nanocapsules exhibited no cation-associated side effects.
Collapse
Affiliation(s)
- Xinghua Huang
- Department of Urology, Longgang District People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Jianwei Li
- Department of Urology, Longgang District People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Guanyi Li
- Department of Urology, Shenzhen Samii Medical Center, Shenzhen 518000, China
| | - Binyu Ni
- Department of Paediatrics, Longgang District People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Ziji Liang
- Department of Urology, Longgang District People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Haodong Chen
- Department of Urology, Longgang District People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Chaozhang Xu
- Department of Urology, Longgang District People's Hospital of Shenzhen, Shenzhen 518000, China
| | - Jianhua Zhou
- Department of Urology, Longgang District People's Hospital of Shenzhen, Shenzhen 518000, China.
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shaohui Deng
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China.
| |
Collapse
|
17
|
Shahidi S, Rostamizadeh K, Fathi M, Nedaei K, Ramazani A. Combination of Quercetin or/and siRNA-loaded DDAB-mPEG-PCL hybrid nanoparticles reverse resistance to Regorafenib in colon cancer cells. BMC Complement Med Ther 2022; 22:340. [PMID: 36575448 PMCID: PMC9793538 DOI: 10.1186/s12906-022-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer death. Although Regorafenib showed survival benefits in patients with CRC, reports imply the recurrence of malignant phenotype resulting from chemotherapy. Evidence demonstrated that a5β1 integrin plays an important role in the Regorafenib treatment, which, may be led to resistance. In this study, the effects of /siRNA or/ and Quercetin loaded DDAB-mPEG-PCLnanoparticles could reverse this resistance phenotype in colon cancer cells in vitro. METHODS Regorafenib-resistant Ls-180 colon cancer cell line was developed by long-term exposure to Regorafenib. Quercetin and Regorafenib were separately encapsulated into mPEG-PCL micelles through the nano-precipitation method and characterized by DLS. Optimized doses of Quercetin and Regorafenib were used for combination therapy of resistant cells followed cytotoxicity study using MTT. Gene expression levels of the β1 subunit of integrin were determined by the real-time method of RT-PCR. RESULTS Developed Regorafenib resistant LS-180 showed to have Regorafenib IC50 of 38.96 ± 1.72 µM whereas IC50 in non-resistant cells were 8.51 ± 0.29 µM, which meaningful was lower statistically compared to that of a resistant one. The β1 mRNA level of whole α5β1 integrin was significantly higher in the resistant cells compared to those of non-resistant ones. Gene expression levels in each siRNA-loaded nanoparticle and Quercetin-loaded one were lower than that in mock experiments. Finally, when these two types of nanoparticles were used to treat resistant cells, gene expression decrease of integrin indicated a greater effect that could be capable of reverse resistancy. CONCLUSION Results of this study demonstrated another confirmation of involving integrins in cancer resistance following chemotherapy using Regorafenib. Also, it indicated how using siRNA targeting integrin could enhance the plant derivatives like Quercetin effects to reverse resistance in vitro.
Collapse
Affiliation(s)
- Shabnam Shahidi
- grid.469309.10000 0004 0612 8427Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- grid.469309.10000 0004 0612 8427Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.469309.10000 0004 0612 8427Zanjan Pharmaceutical Nanotechnology Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mojtaba Fathi
- grid.469309.10000 0004 0612 8427Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.412606.70000 0004 0405 433XDepartment of Biochemistry and Genetics, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Keivan Nedaei
- grid.469309.10000 0004 0612 8427Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- grid.469309.10000 0004 0612 8427Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran ,grid.469309.10000 0004 0612 8427Department of Pharmaceutical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
18
|
Singh M, Sharma D, Garg M, Kumar A, Baliyan A, Rani R, Kumar V. Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnol Adv 2022; 61:108052. [DOI: 10.1016/j.biotechadv.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
19
|
Lee JW, Choi J, Choi Y, Kim K, Yang Y, Kim SH, Yoon HY, Kwon IC. Molecularly engineered siRNA conjugates for tumor-targeted RNAi therapy. J Control Release 2022; 351:713-726. [DOI: 10.1016/j.jconrel.2022.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
|
20
|
Abosalha AK, Boyajian J, Ahmad W, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. Clinical pharmacology of siRNA therapeutics: current status and future prospects. Expert Rev Clin Pharmacol 2022; 15:1327-1341. [PMID: 36251525 DOI: 10.1080/17512433.2022.2136166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately twenty years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.,Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
21
|
Noncoding RNAs Emerging as Drugs or Drug Targets: Their Chemical Modification, Bio-Conjugation and Intracellular Regulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196717. [PMID: 36235253 PMCID: PMC9573214 DOI: 10.3390/molecules27196717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
With the increasing understanding of various disease-related noncoding RNAs, ncRNAs are emerging as novel drugs and drug targets. Nucleic acid drugs based on different types of noncoding RNAs have been designed and tested. Chemical modification has been applied to noncoding RNAs such as siRNA or miRNA to increase the resistance to degradation with minimum influence on their biological function. Chemical biological methods have also been developed to regulate relevant noncoding RNAs in the occurrence of various diseases. New strategies such as designing ribonuclease targeting chimeras to degrade endogenous noncoding RNAs are emerging as promising approaches to regulate gene expressions, serving as next-generation drugs. This review summarized the current state of noncoding RNA-based theranostics, major chemical modifications of noncoding RNAs to develop nucleic acid drugs, conjugation of RNA with different functional biomolecules as well as design and screening of potential molecules to regulate the expression or activity of endogenous noncoding RNAs for drug development. Finally, strategies of improving the delivery of noncoding RNAs are discussed.
Collapse
|
22
|
Luo C, Xie Y, He M, Xia Y, Li Y, He L, Li J, Wang L, Han X, Zhang L, Yuan X, Wang Z, Liu Y, Tan W. Artificial Nucleobase-Directed Programmable Synthesis and Assembly of Amphiphilic Nucleic Acids as an All-in-One Platform for Cation-Free siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44019-44028. [PMID: 36149091 DOI: 10.1021/acsami.2c09406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient transport of nucleic acid therapeutics into targeted cells is the key step of genetic modulation in disease treatment. Nowadays, delivery systems strongly rely on cationic materials, but how to balance the trade-off between effectiveness and toxicity of these exogenous materials remains incredibly challenging. Here, we take inspiration from nucleic acid chemistry and introduce a new concept of amphiphilic nucleic acids (ANAs), as an all-in-one platform for cation-free nucleic acid delivery, by programmatically conjugating two different artifical nucleobases with sequence-independent activities. Specifically, the hydrophilic artificial nucleobases in ANAs act as both delivery vectors and therapeutic cargos for integrated benefits, while the hydrophobic nucleobases enable molecular self-assembly for improved stability and endosomal membrane oxidation for enhanced endosomal escape. By virtue of these merits, this platform is successfully used for short interference RNA (siRNA) delivery, which demonstrates a high siRNA loading capacity, rapid cellular uptake, and efficient endosomal escape, eliciting remarkable gene silencing and synergistic inhibitory effects on cancer cell proliferation and migration. This work is a case study in exploiting the basis of nucleic acid chemistry to afford new paradigms for advanced cancer theranostics.
Collapse
Affiliation(s)
- Can Luo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Yazhou Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Lei He
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Jili Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Xiaoyan Han
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Xi Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Zhiqiang Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hu-nan University, Changsha 410082, Hunan, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai JiaoTong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
24
|
Morales-Becerril A, Aranda-Lara L, Isaac-Olivé K, Ocampo-García BE, Morales-Ávila E. Nanocarriers for delivery of siRNA as gene silencing mediator. EXCLI JOURNAL 2022; 21:1028-1052. [PMID: 36110562 PMCID: PMC9441682 DOI: 10.17179/excli2022-4975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
The term nanocarrier refers to sub-micrometric particles of less than 100 nm, designed to transport, distribute, and release nanotechnology-based drug delivery systems. siRNA therapy is a novel strategy that has great utility for a variety of treatments, however naked siRNA delivery has not been an effective strategy, resulting in the necessary use of nanocarriers for delivery. This review aims to highlight the versatility of carriers based on smart drug delivery systems. The nanocarriers based on nanoparticles as siRNA DDS have provided a set of very attractive advantages related to improved physicochemical properties, such as high surface-to-volume ratio, versatility to package siRNA, provide a dual function to both protect extracellular barriers that lead to elimination and overcome intracellular barriers limiting cytosolic delivery, and possible chemical modifications on the nanoparticle surface to improve stability and targeting. Lipid and polymeric nanocarriers have proven to be stable, biocompatible, and effective in vitro, further exploration of the development of new nanocarriers is needed to obtain safe and biocompatible tools for effective therapy.
Collapse
Affiliation(s)
- Aideé Morales-Becerril
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, México
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, México
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México 50180, México
| | - Blanca E. Ocampo-García
- Laboratorio Nacional de Investigación y Desarrollo de Radiofarmacos-CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México 52750, México
| | - Enrique Morales-Ávila
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México 50120, México,*To whom correspondence should be addressed: Enrique Morales-Ávila, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan esq Paseo Colón S/N., Toluca, Estado de México, C.P. 50120, México; Tel. + (52) (722) 2 17 41 20, Fax. + (52) (722) 2 17 38 90, E-mail: or
| |
Collapse
|
25
|
Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022; 14:pharmaceutics14081586. [PMID: 36015212 PMCID: PMC9415718 DOI: 10.3390/pharmaceutics14081586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 02/07/2023] Open
Abstract
Small interfering RNA (siRNA) can selectively suppress the expression of disease-causing genes, holding great promise in the treatment of human diseases, including malignant cancers. In recent years, with the development of chemical modification and delivery technology, several siRNA-based therapeutic drugs have been approved for the treatment of non-cancerous liver diseases. Nevertheless, the clinical development of siRNA-based cancer therapeutics remains a major translational challenge. The main obstacles of siRNA therapeutics in oncology include both extracellular and intracellular barriers, such as instability under physiological conditions, insufficient tumor targeting and permeability (particularly for extrahepatic tumors), off-target effects, poor cellular uptake, and inefficient endosomal escape. The development of clinically suitable and effective siRNA delivery systems is expected to overcome these challenges. Herein, we mainly discuss recent strategies to improve the delivery and efficacy of therapeutic siRNA in cancer, including the application of non-viral nanoparticle-based carriers, the selection of target genes for therapeutic silencing, and the combination with other therapeutic modalities. In addition, we also provide an outlook on the ongoing challenges and possible future developments of siRNA-based cancer therapeutics during clinical translation.
Collapse
|
26
|
Guo Y, Zhang Q, Zhu Q, Gao J, Zhu X, Yu H, Li Y, Zhang C. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. SCIENCE ADVANCES 2022; 8:eabn2941. [PMID: 35442728 PMCID: PMC9020667 DOI: 10.1126/sciadv.abn2941] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/03/2022] [Indexed: 05/27/2023]
Abstract
Packaging multiple drugs into a nanocarrier with rational design to achieve synergistic cancer therapy remains a challenge due to the intrinsically varied pharmacodynamics of therapeutic agents. Especially difficult is combining small-molecule drugs and macromolecular biologics. Here, we successfully graft pheophorbide A (PPA) photosensitizers on DNA backbone at predesigned phosphorothioate modification sites. The synthesized four PPA-grafted DNAs are assembled into a tetrahedron framework, which further associates with a programmed death ligand-1 (PD-L1) small interfering RNA (siRNA) linker through supramolecular self-assembly to form an siRNA and PPA copackaged nanogel. With dual therapeutic agents inside, the nanogel can photodynamically kill tumor cells and induce remarkable immunogenic cell death. Also, it simultaneously silences the PD-L1 expression of the tumor cells, which substantially promotes the antitumor immune response and leads to an enhanced antitumor efficacy in a synergistic fashion.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiushuang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiwen Zhu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
27
|
Wang J, Chen G, Liu N, Han X, Zhao F, Zhang L, Chen P. Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Adv Colloid Interface Sci 2022; 302:102638. [PMID: 35299136 DOI: 10.1016/j.cis.2022.102638] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
In the past decades, the striking development of cationic polypeptides and cell-penetrating peptides (CPPs) tailored for small interfering RNA (siRNA) delivery has been fuelled by the conception of nuclear acid therapy and precision medicine. Owing to their amino acid compositions, inherent secondary structures as well as diverse geometrical shapes, peptides or peptide-containing polymers exhibit good biodegradability, high flexibility, and bio-functional diversity as nonviral siRNA vectors. Also, a variety of noncovalent nanocomplexes could be built via self-assembling and electrostatic interactions between cationic peptides and siRNAs. Although the peptide/siRNA nanocomplex-based RNAi therapies, STP705 and MIR-19, are under clinical trials, a guideline addressing the current bottlenecks of peptide/siRNA nanocomplex delivery is in high demand for future research and development. In this review, we present strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes in the treatment of genetic disorders. Through thorough analysis of those RNAi formulations using different delivery strategies, we seek to shed light on the rationale of peptide design and modification in constructing robust siRNA delivery systems, including targeted and co-delivery systems. Based on this, we provide a timely and comprehensive understanding of how to engineer biocompatible and efficient peptide-based siRNA vectors.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Guang Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Nan Liu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Xiaoxia Han
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China.
| |
Collapse
|
28
|
Liu Y, Zhang J, Guo Y, Wang P, Su Y, Jin X, Zhu X, Zhang C. Drug-grafted DNA as a novel chemogene for targeted combinatorial cancer therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210172. [PMID: 37323880 PMCID: PMC10190944 DOI: 10.1002/exp.20210172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Combinatorial therapy based on chemotherapeutic drugs and gene agents to achieve synergistic antitumor effects has emerged as a new direction for cancer treatment. However, simple and efficient co-delivery of those two drug categories remains a key challenge in this hot area owing to their substantially different pharmacodynamics, impeding the translational potentials of combinatorial approaches. To address this issue, herein we propose a simple strategy to site-specifically graft camptothecins (CPTs, a representative chemodrug) onto a DNA with dual functional segments, including an AS1411 aptamer sequence to target the cancer cell and a BCL-2 antisense sequence to down-regulate the anti-apoptotic gene. The obtained DNA-drug conjugate possesses precise chemical composition, controllable drug loading ratio, and responsive disulfide linkage, which can serve as a novel type of chemogene for combinatorial cancer therapy. In both in vitro and in vivo evaluations, our CPT-bearing chemogene exhibit the targeted co-delivery of chemo and gene agents to tumor site, efficient BCL-2 gene knockdown, and strong induced apoptosis of cancer cells, together leading into an enhanced antitumor efficacy. With simple and precise structure as well as facile synthetic procedure, the new chemogene may turn into a promising drug formulation for combinatorial antitumor treatment.
Collapse
Affiliation(s)
- Yuhe Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Molecular Medicine, Sixth people's Hospital, School of Medicine, Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghaiChina
| | - Jiao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Molecular Medicine, Sixth people's Hospital, School of Medicine, Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghaiChina
| | - Yuanyuan Guo
- Department of RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | | | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Molecular Medicine, Sixth people's Hospital, School of Medicine, Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Molecular Medicine, Sixth people's Hospital, School of Medicine, Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghaiChina
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Molecular Medicine, Sixth people's Hospital, School of Medicine, Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghaiChina
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Molecular Medicine, Sixth people's Hospital, School of Medicine, Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
29
|
Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci 2022; 298:120463. [DOI: 10.1016/j.lfs.2022.120463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
30
|
Jia X, Lv M, Fei Y, Dong Q, Wang H, Liu Q, Li D, Wang J, Wang E. Facile one-step synthesis of NIR-Responsive siRNA-Inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy. Biomaterials 2022; 282:121404. [DOI: 10.1016/j.biomaterials.2022.121404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/30/2023]
|
31
|
Liu Y, Yang H, Liu Q, Pan M, Wang D, Pan S, Zhang W, Wei J, Zhao X, Ji J. Selenocystine-Derived Label-Free Fluorescent Schiff Base Nanocomplex for siRNA Delivery Synergistically Kills Cancer Cells. Molecules 2022; 27:1302. [PMID: 35209090 PMCID: PMC8878402 DOI: 10.3390/molecules27041302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemo and siRNA synergic treatments for tumors is a promising new therapeutic trend. Selenocystine, a selenium analog of cysteine, has been considered a potential antitumor agent due to its redox perturbing role. In this study, we developed a nanocarrier for siRNA based on a selenocystine analog engineered polyetherimide and achieved traceable siRNA delivery and the synergic killing of tumor cells. Notably, we applied the label-free Schiff base fluorescence mechanism, which enabled us to trace the siRNA delivery and to monitor the selenocystine analogs' local performance. A novel selenocystine-derived fluorescent Schiff base linker was used to crosslink the polyetherimide, thereby generating a traceable siRNA delivery vehicle with green fluorescence. Moreover, we found that this compound induced tumor cells to undergo senescence. Together with the delivery of a siRNA targeting the anti-apoptotic BCL-xl/w genes in senescent cells, it achieved a synergistic inhibition function by inducing both senescence and apoptosis of tumor cells. Therefore, this study provides insights into the development of label-free probes, prodrugs, and materials towards the synergic strategies for cancer therapy.
Collapse
Affiliation(s)
- Yang Liu
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Haoying Yang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Qian Liu
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Mingming Pan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Danli Wang
- Zhoushan Hospital of Zhejiang Province, Zhoushan 316004, China;
| | - Shiyuan Pan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Weiran Zhang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Jinfeng Wei
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Xiaowei Zhao
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng 475004, China; (H.Y.); (Q.L.); (M.P.); (S.P.); (W.Z.)
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
32
|
Zhang C, Zhou X, Zhang H, Han X, Li B, Yang R, Zhou X. Recent Progress of Novel Nanotechnology Challenging the Multidrug Resistance of Cancer. Front Pharmacol 2022; 13:776895. [PMID: 35237155 PMCID: PMC8883114 DOI: 10.3389/fphar.2022.776895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the clinical direct reasons for chemotherapy failure. MDR directly leads to tumor recurrence and metastasis, with extremely grievous mortality. Engineering a novel nano-delivery system for the treatment of MDR tumors has become an important part of nanotechnology. Herein, this review will take those different mechanisms of MDR as the classification standards and systematically summarize the advances in nanotechnology targeting different mechanisms of MDR in recent years. However, it still needs to be seriously considered that there are still some thorny problems in the application of the nano-delivery system against MDR tumors, including the excessive utilization of carrier materials, low drug-loading capacity, relatively narrow targeting mechanism, and so on. It is hoped that through the continuous development of nanotechnology, nano-delivery systems with more universal uses and a simpler preparation process can be obtained, for achieving the goal of defeating cancer MDR and accelerating clinical transformation.
Collapse
Affiliation(s)
- Chengyuan Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xuemei Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Hanyi Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xuanliang Han
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Baijun Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Ran Yang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
33
|
Xu J, Chen T, Sun T, Yu C, Yan D, Zhu L. Erythrocyte membrane camouflaged siRNA/chemodrug nanoassemblies for cancer combination therapy. Biomater Sci 2022; 10:6601-6613. [DOI: 10.1039/d2bm01478e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erythrocyte membrane camouflaged nanoassemblies of siRNA/chemodrugs were constructed, in which cationic amphiphilic chemodrugs interact with negatively charged siRNA and self-assemble into siRNA/chemodrug nanoparticles for combination cancer therapy.
Collapse
Affiliation(s)
- Jie Xu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200217, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianbao Chen
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200217, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Deyue Yan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200217, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200217, China
| |
Collapse
|
34
|
Jiang T, Qiao Y, Ruan W, Zhang D, Yang Q, Wang G, Chen Q, Zhu F, Yin J, Zou Y, Qian R, Zheng M, Shi B. Cation-Free siRNA Micelles as Effective Drug Delivery Platform and Potent RNAi Nanomedicines for Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104779. [PMID: 34751990 DOI: 10.1002/adma.202104779] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Indexed: 05/27/2023]
Abstract
Nanoparticle-based small interfering RNA (siRNA) therapy shows great promise for glioblastoma (GBM). However, charge associated toxicity and limited blood-brain-barrier (BBB) penetration remain significant challenges for siRNA delivery for GBM therapy. Herein, novel cation-free siRNA micelles, prepared by the self-assembly of siRNA-disulfide-poly(N-isopropylacrylamide) (siRNA-SS-PNIPAM) diblock copolymers, are prepared. The siRNA micelles not only display enhanced blood circulation time, superior cell take-up, and effective at-site siRNA release, but also achieve potent BBB penetration. Moreover, due to being non-cationic, these siRNA micelles exert no charge-associated toxicity. Notably, these desirable properties of this novel RNA interfering (RNAi) nanomedicine result in outstanding growth inhibition of orthotopic U87MG xenografts without causing adverse effects, achieving remarkably improved survival benefits. Moreover, as a novel type of polymeric micelle, the siRNA micelle displays effective drug loading ability. When utilizing temozolomide (TMZ) as a model loading drug, the siRNA micelle realizes effective synergistic therapy effect via targeting the key gene (signal transducers and activators of transcription 3, STAT3) in TMZ drug resistant pathways. The authors' results show that this siRNA micelle nanoparticle can serve as a robust and versatile drug codelivery platform, and RNAi nanomedicine and for effective GBM treatment.
Collapse
Affiliation(s)
- Tong Jiang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yonghan Qiao
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Weimin Ruan
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qingshan Yang
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Guoying Wang
- Huaihe Hosiptal, Henan University, Kaifeng, Henan, 475004, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Qunzhi Chen
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jinlong Yin
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Zou
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Meng Zheng
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
35
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation‐Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zuojie Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zifen Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hang Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jing Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chuan Peng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Qiang Fu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Mingming Ding
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
36
|
Zheng M, Du Q, Wang X, Zhou Y, Li J, Xia X, Lu Y, Yin J, Zou Y, Park JB, Shi B. Tuning the Elasticity of Polymersomes for Brain Tumor Targeting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102001. [PMID: 34423581 PMCID: PMC8529491 DOI: 10.1002/advs.202102001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Indexed: 05/27/2023]
Abstract
Nanoformulations show great potential for delivering drugs to treat brain tumors. However, how the mechanical properties of nanoformulations affect their ultimate brain destination is still unknown. Here, a library of membrane-crosslinked polymersomes with different elasticity are synthesized to investigate their ability to effectively target brain tumors. Crosslinked polymersomes with identical particle size, zeta potential and shape are assessed, but their elasticity is varied depending on the rigidity of incorporated crosslinkers. Benzyl and oxyethylene containing crosslinkers demonstrate higher and lower Young's modulus, respectively. Interestingly, stiff polymersomes exert superior brain tumor cell uptake, excellent in vitro blood brain barrier (BBB) and tumor penetration but relatively shorter blood circulation time than their soft counterparts. These results together affect the in vivo performance for which rigid polymersomes exerting higher brain tumor accumulation in an orthotopic glioblastoma (GBM) tumor model. The results demonstrate the crucial role of nanoformulation elasticity for brain-tumor targeting and will be useful for the design of future brain targeting drug delivery systems for the treatment of brain disease.
Collapse
Affiliation(s)
- Meng Zheng
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Qiuli Du
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Xin Wang
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Yuan Zhou
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Jia Li
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Xue Xia
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Yiqing Lu
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
- School of EngineeringFaculty of Science and EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Jinlong Yin
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
| | - Yan Zou
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNSW2109Australia
| | - Jong Bae Park
- Department of Cancer Biomedical ScienceGraduate School of Cancer Science and PolicyNational Cancer CenterGoyang10408South Korea
| | - Bingyang Shi
- Henan and Macquarie University Joint Centre for Biomedical InnovationSchool of Life SciencesHenan UniversityKaifeng475004China
- Henan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life Sciences & School of PharmacyHenan UniversityKaifeng475004China
- Department of Biomedical SciencesFaculty of Medicine & Health SciencesMacquarie UniversitySydneyNSW2109Australia
| |
Collapse
|
37
|
Wang H, Xiao H, Zhu X, Liu Y, Fu Z, Li C, Lu C, Yang H. A Cyanine‐Mediated Self‐Assembly System for the Construction of a Two‐in‐One Nanodrug. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haihui Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety College of Chemistry Fuzhou University Fuzhou Fujian 350116 P. R. China
| | - Han Xiao
- State Key Laboratory of Structure of Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohui Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety College of Chemistry Fuzhou University Fuzhou Fujian 350116 P. R. China
| | - Yongfei Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety College of Chemistry Fuzhou University Fuzhou Fujian 350116 P. R. China
| | - Zhangcheng Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety College of Chemistry Fuzhou University Fuzhou Fujian 350116 P. R. China
| | - Chunsen Li
- State Key Laboratory of Structure of Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety College of Chemistry Fuzhou University Fuzhou Fujian 350116 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety College of Chemistry Fuzhou University Fuzhou Fujian 350116 P. R. China
| |
Collapse
|
38
|
Zheng Y, Wang Z, Li Z, Liu H, Wei J, Peng C, Zhou Y, Li J, Fu Q, Tan H, Ding M. Ordered Conformation-Regulated Vesicular Membrane Permeability. Angew Chem Int Ed Engl 2021; 60:22529-22536. [PMID: 34390299 DOI: 10.1002/anie.202109637] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/07/2022]
Abstract
In nature, the folding and conformation of proteins can control the cell or organelle membrane permeability and regulate the life activities. Here we report the first example of synthetic polypeptide vesicles that regulate their permeability via ordered transition of secondary conformations, in a manner similar to biological systems. The polymersomes undergo a β-sheet to α-helix transition in response to reactive oxygen species (ROS), leading to wall thinning without loss of vesicular integrity. The change of membrane structure increases the vesicular permeability and enables specific transport of payloads with different molecular weights.The change of membrane structure increases the vesicular permeability. As a proof-of-concept, the polymersomes encapsulating enzymes could serve as nanoreactors and carries for glucose-stimulated insulin secretion in vivo inspired by human glucokinase, resulting in safe and effective treatment of type 1 diabetes mellitus in mouse models. This study will help understand the biology of biomembranes and facilitate the engineering of nanoplatforms for biomimicry, biosensing, and controlled delivery applications.
Collapse
Affiliation(s)
- Yi Zheng
- Sichuan University, College of Polymer Science and Engineering, 5805, CHINA
| | - Zuojie Wang
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Zifen Li
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Hang Liu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Jing Wei
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Chuan Peng
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Yeqiang Zhou
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Jianshu Li
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Qiang Fu
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Hong Tan
- Sichuan University, College of Polymer Science and Engineering, CHINA
| | - Mingming Ding
- Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, 610065, Chengdu, CHINA
| |
Collapse
|
39
|
Sun J, Ogunnaike EA, Jiang X, Chen Z. Nanotechnology lights up the antitumor potency by combining chemotherapy with siRNA. J Mater Chem B 2021; 9:7302-7317. [PMID: 34382987 DOI: 10.1039/d1tb01379c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology-based combination anticancer therapy offers novel approaches to overcome the limitations of single-agent administration. The emerging siRNA technology combined with chemotherapy has shown considerable promise in anticancer therapy. There are three main challenges in the fabrication of siRNA/chemotherapeutic drug co-loaded nanovectors: adequate cargo protection, precise targeted delivery, and site-specific cargo release. This review presents a summary of the nanosystems that have recently been developed for co-delivering siRNA and chemotherapeutic drugs. Their combined therapeutic effects are also discussed.
Collapse
Affiliation(s)
- Jian Sun
- College of Nursing, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| | - Edikan Archibong Ogunnaike
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xing Jiang
- College of Nursing, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou, P. R. China. and College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P. R. China.
| |
Collapse
|
40
|
Chen L, Li G, Wang X, Li J, Zhang Y. Spherical Nucleic Acids for Near-Infrared Light-Responsive Self-Delivery of Small-Interfering RNA and Antisense Oligonucleotide. ACS NANO 2021; 15:11929-11939. [PMID: 34170121 DOI: 10.1021/acsnano.1c03072] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we developed a photolabile spherical nucleic acid (PSNA) for carrier-free and near-infrared (NIR) photocontrolled self-delivery of small-interfering RNA (siRNA) and antisense oligonucleotide (ASO). PSNA comprised a hydrophilic siRNA shell with a hydrophobic core containing a peptide nucleic acid-based ASO (pASO) and NIR photosensitizer (PS). The incorporation of a singlet oxygen (1O2)-cleavable linker between the siRNA and pASO allowed on-demand disassembly of PSNA in tumor cells once 1O2 was produced by the inner PS upon NIR light irradiation. The generated 1O2 could also concurrently promote lysosomal escape of the released siRNA and pASO to reach cytosolic targets. Both in vitro and in vivo results demonstrated that, under NIR light irradiation, PSNA could suppress hypoxia inducible factor-1α (HIF-1α) and B-cell lymphoma 2 (Bcl-2) for gene therapy (GT), which further combined photodynamic therapy (PDT) favored by the released PS to inhibit tumor cell growth. Given its carrier-free, NIR-sensitive, designable, and biocompatible merits, PSNA represents a promising self-delivery nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Gaigai Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xingxing Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Wang H, Xiao H, Zhu X, Liu Y, Fu Z, Li C, Lu C, Yang H. A Cyanine-Mediated Self-Assembly System for the Construction of a Two-in-One Nanodrug. Angew Chem Int Ed Engl 2021; 60:21226-21230. [PMID: 34296814 DOI: 10.1002/anie.202108393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 01/06/2023]
Abstract
The combination of gene therapy and chemotherapy provides a We developed a simple and versatile approach to prepare a series of two-in-one nanodrugs through direct self-assembly of cyanine-labeled single-stranded DNA (Cys-DNA) and different types of drug molecules. Molecular dynamics simulation showed that the Cys introduced into the DNA could enhance the noncovalent interaction between Cys-DNA and drug molecules. More drug molecules were incorporated into Cys-DNA, tending to spontaneously form hybrid Cys-DNA/drug nanosphere. Such nanospheres serve as both carriers and cargoes, excluding the extra use of nontherapeutic excipients and showing ultrahigh drug loading capacity. Following this approach, an antisense oligonucleotides/doxorubicin nanodrug model was constructed, demonstrating the significant synergistic anti-tumor therapeutic effect. As a proof of the concept, our study establishes a simple and reproducible two-in-one nucleic acid-based drug formulation.
Collapse
Affiliation(s)
- Haihui Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Han Xiao
- State Key Laboratory of Structure of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohui Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Yongfei Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Zhangcheng Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Chunsen Li
- State Key Laboratory of Structure of Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P. R. China
| |
Collapse
|
42
|
Han J, Cui Y, Gu Z, Yang D. Controllable assembly/disassembly of polyphenol-DNA nanocomplex for cascade-responsive drug release in cancer cells. Biomaterials 2021; 273:120846. [PMID: 33930736 DOI: 10.1016/j.biomaterials.2021.120846] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Developing nanocarrier systems with sufficient drug loading ability and efficient drug release behavior in cells is a powerful strategy to maximize therapeutic efficacies and minimize side effects of administered drugs. However, the two aspects are usually contradictory in a single nanocarrier. Herein, polyphenol-DNA nanocomplex with controllable assembly/disassembly behaviors is developed for responsive and sequential drug release in cancer cells. Programmable assembly of branched-DNA achieves multiple-gene loading, afterwards tannic acid (TA), plant-derived polyphenols as drugs mediate assembly of branched-DNA to form nanocomplex. Intracellularly, two-step disassembly process of nanocomplex enables efficient gene/drug release. Lysosomal acidic microenvironment induces the disassembly of nanocomplex to release TA and branched-DNA. Glutathione and DNase I in cytoplasm trigger the precise release of genes from branched-DNA. The efficacy of multiple-gene/chemo-therapy is demonstrated using in vitro and in vivo models. This work provides a controllable assembly/disassembly route to resolve the conflict between sufficient drug loading and efficient drug release in cells for therapeutics.
Collapse
Affiliation(s)
- Jinpeng Han
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Yuchen Cui
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
43
|
Chaudhary S, Singh A, Kumar P, Kaushik M. Strategic targeting of non-small-cell lung cancer utilizing genetic material-based delivery platforms of nanotechnology. J Biochem Mol Toxicol 2021; 35:e22784. [PMID: 33826765 DOI: 10.1002/jbt.22784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Several limitations of conventional cancer treatment such as non-specific targeting, solubility problems, and ineffective entry of chemotherapeutics into cancer cells can be overcome by using nanotechnology targeted drug delivery systems. Some combinations of biomolecules and nanoparticles have proven to be excellent therapeutics for Non-small cell lung cancer (NSCLC) in the last decades. Targeted gene delivery has shown in vivo as well as in vitro promising results with therapeutic efficacy. Gene therapy has shown enhanced transfection efficiency and better targeting potential on several NSCLC cell lines. Still, there are several challenges in nanoparticle-mediated gene therapy, which include stability of biomolecules and nanoparticles during delivery, managing their biodistribution, and reducing the possible cytotoxic effects of the nanoparticles, which need to be solved before clinical trials. Evaluation of therapeutic efficacy of biomolecules and nanoparticle combination in gene therapy must be established to expand the application of nano-gene therapy in cancer treatment.
Collapse
Affiliation(s)
- Swati Chaudhary
- Department of Applied Sciences, Maharaja Surajmal Institute of Technology, GGSIP University, New Delhi, India
| | - Amit Singh
- Department of Chemistry, University of Delhi, Delhi, India.,Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Department of Chemistry, University of Delhi, Delhi, India.,Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
44
|
Dutta K, Das R, Medeiros J, Thayumanavan S. Disulfide Bridging Strategies in Viral and Nonviral Platforms for Nucleic Acid Delivery. Biochemistry 2021; 60:966-990. [PMID: 33428850 PMCID: PMC8753971 DOI: 10.1021/acs.biochem.0c00860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self-assembled nanostructures that are sensitive to environmental stimuli are promising nanomaterials for drug delivery. In this class, disulfide-containing redox-sensitive strategies have gained enormous attention because of their wide applicability and simplicity of nanoparticle design. In the context of nucleic acid delivery, numerous disulfide-based materials have been designed by relying on covalent or noncovalent interactions. In this review, we highlight major advances in the design of disulfide-containing materials for nucleic acid encapsulation, including covalent nucleic acid conjugates, viral vectors or virus-like particles, dendrimers, peptides, polymers, lipids, hydrogels, inorganic nanoparticles, and nucleic acid nanostructures. Our discussion will focus on the context of the design of materials and their impact on addressing the current shortcomings in the intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
45
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
46
|
Araste F, Aliabadi A, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J Control Release 2021; 330:502-528. [DOI: 10.1016/j.jconrel.2020.12.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
|
47
|
Wu J, Wang Q, Dong X, Xu M, Yang J, Yi X, Chen B, Dong X, Wang Y, Lou X, Xia F, Wang S, Dai J. Biocompatible AIEgen/p-glycoprotein siRNA@reduction-sensitive paclitaxel polymeric prodrug nanoparticles for overcoming chemotherapy resistance in ovarian cancer. Theranostics 2021; 11:3710-3724. [PMID: 33664857 PMCID: PMC7914360 DOI: 10.7150/thno.53828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nanoparticle drug delivery system (NDDS) is quite different from the widely studied traditional chemotherapy which suffers from drug resistance and side effect. NDDS offers the straightforward solution to the chemotherapy problem and provides an opportunity to monitor the drug delivery process in real time. In this vein, we developed one NDDS, namely Py-TPE/siRNA@PMP, to relieve resistance and side effects during chemotherapy against ovarian cancer. The Py-TPE/siRNA@PMP is a multifunctional polymeric nanoparticle contained several parts as follows: (1) a nanoparticle (NP) self-assembled by reduction-sensitive paclitaxel polymeric prodrug (PMP); (2) the glutathione (GSH)-responsive release of paclitaxel (PTX) for the suppression of ovarian cancer cells; (3) the P-glycoprotein (P-gp) siRNA for restoring the sensitivity of chemo-resistant tumor cells to chemotherapy; (4) the positively charged aggregation-induced emission fluorogen (AIEgen) Py-TPE for tumor imaging and promoting encapsulation of siRNA into the nanoparticle. Methods: The Py-TPE/siRNA@PMP nanoparticles were prepared by self-assembly method and characterized by the UV-Vis absorption spectra, zeta potentials, TEM image, stability assay and hydrodynamic size distributions. The combinational therapeutic effects of Py-TPE/siRNA@PMP on overcoming chemotherapy resistance were explored both in vitro and in vivo.Result: The Py-TPE/siRNA@PMP exhibited an average hydrodynamic size with a good stability. Meanwhile they gave rise to the remarkable chemotoxicity performances in vitro and suppressed the tumors growth in both SKOV-3/PTX (PTX resistance) subcutaneous and intraperitoneal metastasis tumor models. The investigations on ovarian cancer patient-derived xenografts (PDX) model revealed that Py-TPE/siRNA@PMP was able to effectively overcome their chemo-resistance with minimal side effects. Conclusion: Our findings demonstrated the Py-TPE/siRNA@PMP as a promising agent for the highly efficient treatment of PTX-resistant cells and overcoming the shortage of chemotherapy in ovarian cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Biocompatible Materials/administration & dosage
- Biocompatible Materials/chemical synthesis
- Cell Line, Tumor
- Drug Delivery Systems
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Humans
- Materials Testing
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Multifunctional Nanoparticles/administration & dosage
- Multifunctional Nanoparticles/chemistry
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/therapy
- Paclitaxel/administration & dosage
- Paclitaxel/pharmacokinetics
- Precision Medicine
- Prodrugs/administration & dosage
- Prodrugs/pharmacokinetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jun Wu
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Quan Wang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoqi Dong
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Min Xu
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Juliang Yang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoqing Yi
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
48
|
Gao J, Dutta K, Zhuang J, Thayumanavan S. Cellular- and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. Angew Chem Int Ed Engl 2020; 59:23466-23470. [PMID: 32803834 PMCID: PMC11141572 DOI: 10.1002/anie.202008272] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/21/2022]
Abstract
Nanocarrier-mediated drug delivery is a promising strategy to maximize the power of chemotherapy and minimize side effects. However, current approaches show insufficient drug-loading capacity and inefficient drug release, and require complex modification processes. Attempts to enhance one of these features often compromise other merits. We describe here a block copolymer assembly system that combines desirable characteristics. The design of self-immolative and crosslinkable hydrophobic moieties offer stable and high encapsulation. Redox-triggerable polymer self-immolation promotes drug release by switching the hydrophobic core into completely hydrophilic chains. The reactive amine handles, presented on their surface, allow "plug to direct" modification with targeting ligands. Functionalized nanoassemblies have been programmed to target specific subcellular compartments. The simplicity, versatility, and efficacy of the system open up possibilities for an all-in-one delivery system.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kingshuk Dutta
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, USA
- Center for Bioactive Delivery, University of, Massachusetts Amherst, USA
| |
Collapse
|
49
|
Yang X, Wang Y, Du X, Xu J, Zhao MX. Carbon dots-based nanocarrier system with intrinsic tumor targeting ability for cancer treatment. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abbf3c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Doxorubicin (DOX) is a traditional broad-spectrum antitumor drug, which has a wide range of clinical applications, but has no tumor non-specificity. Nanoparticles have been explored as drug delivery agents to enhance the therapeutic efficacy and reduce toxic and side effects. Carbon dots (CDs), a carbon-based nanomaterial, has many unique advantages such as easy synthesis, good biocompatibility, and low toxicity. In this study, folic acid was used as raw material to prepare new CDs, and DOX was loaded on the surface of CDs through electrostatic interaction. The prepared nano-drugs CDs/DOX could effectively release DOX under mild acidic pH stimulation. Cell imaging showed that CDs/DOX could transport doxorubicin (DOX) to cancer cells and make them accumulated in nucleus freely. Flow cytometry tests and cellular toxicity assay together confirmed that CDs/DOX could target tumor cells with high expression of folate receptor and increase anti-tumor activity. The therapeutic effect on 4T1 tumor-bearing mice model indicated that CDs/DOX could alleviate DOX-induced toxicity, effectively inhibit tumor growth, and prolong the survival time. Hence, such a targeting nanocarrier is likely to be a candidate for cancer treatment.
Collapse
|
50
|
Huang L, Zhao S, Fang F, Xu T, Lan M, Zhang J. Advances and perspectives in carrier-free nanodrugs for cancer chemo-monotherapy and combination therapy. Biomaterials 2020; 268:120557. [PMID: 33260095 DOI: 10.1016/j.biomaterials.2020.120557] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Nanocarrier-based drug delivery systems hold impressive promise for biomedical application because of their excellent water dispersibility, prolonged blood circulation time, increased drug accumulation in tumors, and potential in combination therapeutics. However, most nanocarriers suffer from low drug-loading efficiency, poor therapeutic effectiveness, potential systematic toxicity, and unstable metabolism. As an alternative, carrier-free nanodrugs, completely formulated with one or more drugs, have attracted increasing attention in cancer therapy due to their advantage of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug-loading. In recent years, carrier-free nanodrugs have contributed to progress in a variety of therapeutic modalities. In this review, different common strategies for carrier-free nanodrugs preparation are first summarized, mainly including nanoprecipitation, template-assisted nanoprecipitation, thin-film hydration, spray-drying technique, supercritical fluid (SCF) technique, and wet media milling. Then we describe the recently reported carrier-free nanodrugs for cancer chemo-monotherapy or combination therapy. The advantages of anti-cancer drugs combined with other chemotherapeutic, photosensitizers, photothermal, immunotherapeutic or gene drugs have been demonstrated. Finally, a future perspective is introduced to highlight the existing challenges and possible solutions toward clinical application of currently developed carrier-free nanodrugs, which may be instructive to the design of effective carrier-free regimens in the future.
Collapse
Affiliation(s)
- Li Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shaojing Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Ting Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|