1
|
Jockusch S, Kräutler B. H/D-Isotope sensitive dual fluorescence of the corrin-ligand of vitamin B 12. Chem Commun (Camb) 2025; 61:3904-3907. [PMID: 39936483 PMCID: PMC11816046 DOI: 10.1039/d4cc06373b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
The photoexcited state of the corrin-ligand of vitamin B12 is an old puzzle. We show here that the metal-free corrin-ligand emits dual fluorescence in its singlet excited state. As a specific consequence of the asymmetry of the natural corrin-ligand, its strongly emitting singlet excited state exists as a pair of isomers that interconvert rapidly in an unprecedented H/D-Isotope sensitive way in competition with their fluorescent decay.
Collapse
Affiliation(s)
- Steffen Jockusch
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Bernhard Kräutler
- Institute of Organic Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Amini S, Oppelt K, Blacque O, Agrachev M, Jeschke G, Zelder F. Biomimetic thiyl radical formation from diphenyl disulfide with the low valent Ni(i) state of a cofactor F430 model. Chem Sci 2025:d4sc08416k. [PMID: 39911329 PMCID: PMC11791513 DOI: 10.1039/d4sc08416k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025] Open
Abstract
Cofactor F430 is a nickel-containing hydrocorphinato complex that plays important roles in the enzymatic formation and oxidation of methane. In methanotrophic bacteria, F430-dependent methyl-coenzyme M reductase (MCR) catalyses the endergonic conversion of the heterodisulfide adduct of coenzymes M and B with methane to methyl-coenzyme M and coenzyme B. In a radical mechanism, the Ni(i)-induced formation of a transient thiyl radical of coenzyme B from the heterodisulfide has been proposed. Herein, we introduce a new semi-artificial Ni-complex derived from vitamin B12 as functional model of F430. We demonstrate with electrochemical studies that the low valent Ni(i) complex cleaves the biomimetic model compound diphenyl disulfide into approx. 0.5 equivalents of thiophenol and a transient thiophenyl radical at a potential of -1.65 V vs. Fc/Fc+. Thiyl radicals are trapped in solution with phenylacetylene as thiophenyl-substituted olefins, but also lead to degradation of the Ni-complex.
Collapse
Affiliation(s)
- Samira Amini
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland +41 44 635 6803
| | - Kerstin Oppelt
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland +41 44 635 6803
| | - Olivier Blacque
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland +41 44 635 6803
| | - Mikhail Agrachev
- Institute of Molecular Physical Science, ETH Zurich Vladimir-Prelog-Weg 2 CH-8093 Zurich Switzerland
| | - Gunnar Jeschke
- Institute of Molecular Physical Science, ETH Zurich Vladimir-Prelog-Weg 2 CH-8093 Zurich Switzerland
| | - Felix Zelder
- Department of Chemistry, University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland +41 44 635 6803
| |
Collapse
|
3
|
Ruetz M, Mascarenhas R, Widner F, Kieninger C, Koutmos M, Kräutler B, Banerjee R. A Noble Metal Substitution Leads to B 12 Cofactor Mimicry by a Rhodibalamin. Biochemistry 2024; 63:1955-1962. [PMID: 39012171 PMCID: PMC11540531 DOI: 10.1021/acs.biochem.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In mammals, cobalamin is an essential cofactor that is delivered by a multitude of chaperones in an elaborate trafficking pathway to two client enzymes, methionine synthase and methylmalonyl-CoA mutase (MMUT). Rhodibalamins, the rhodium analogs of cobalamins, have been described as antimetabolites due to their ability to inhibit bacterial growth. In this study, we have examined the reactivity of adenosylrhodibalamin (AdoRhbl) with two key human chaperones, MMACHC (also known as CblC) and adenosyltransferase (MMAB, also known as ATR), and with the human and Mycobacterium tuberculosis MMUT. We demonstrate that while AdoRhbl binds tightly to all four proteins, the Rh-carbon bond is resistant to homolytic (on MMAB and MMUT) as well as heterolytic (on MMACHC) rupture. On the other hand, MMAB catalyzes Rh-carbon bond formation, converting rhodi(I)balamin in the presence of ATP to AdoRhbl. We report the first crystal structure of a rhodibalamin (AdoRhbl) bound to a B12 protein, i.e., MMAB, in the presence of triphosphate, which shows a weakened but intact Rh-carbon bond. The structure provides insights into how MMAB cleaves the corresponding Co-carbon bond in a sacrificial homolytic reaction that purportedly functions as a cofactor sequestration strategy. Collectively, the study demonstrates that while the noble metal substitution of cobalt by rhodium sets up structural mimicry, it compromises chemistry, which could be exploited for targeting human and bacterial B12 chaperones and enzymes.
Collapse
|
4
|
Park J, Wu Y, Suk Kim J, Byun J, Lee J, Oh YK. Cytoskeleton-modulating nanomaterials and their therapeutic potentials. Adv Drug Deliv Rev 2024; 211:115362. [PMID: 38906478 DOI: 10.1016/j.addr.2024.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The cytoskeleton, an intricate network of protein fibers within cells, plays a pivotal role in maintaining cell shape, enabling movement, and facilitating intracellular transport. Its involvement in various pathological states, ranging from cancer proliferation and metastasis to the progression of neurodegenerative disorders, underscores its potential as a target for therapeutic intervention. The exploration of nanotechnology in this realm, particularly the use of nanomaterials for cytoskeletal modulation, represents a cutting-edge approach with the promise of novel treatments. Inorganic nanomaterials, including those derived from gold, metal oxides, carbon, and black phosphorus, alongside organic variants such as peptides and proteins, are at the forefront of this research. These materials offer diverse mechanisms of action, either by directly interacting with cytoskeletal components or by influencing cellular signaling pathways that, in turn, modulate the cytoskeleton. Recent advancements have introduced magnetic field-responsive and light-responsive nanomaterials, which allow for targeted and controlled manipulation of the cytoskeleton. Such precision is crucial in minimizing off-target effects and enhancing therapeutic efficacy. This review explores the importance of research into cytoskeleton-targeting nanomaterials for developing therapeutic interventions for a range of diseases. It also addresses the progress made in this field, the challenges encountered, and future directions for using nanomaterials to modulate the cytoskeleton. The continued exploration of nanomaterials for cytoskeleton modulation holds great promise for advancing therapeutic strategies against a broad spectrum of diseases, marking a significant step forward in the intersection of nanotechnology and medicine.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Pérez-Castaño R, Aranda J, Widner FJ, Kieninger C, Deery E, Warren MJ, Orozco M, Elías-Arnanz M, Padmanabhan S, Kräutler B. The Rhodium Analogue of Coenzyme B 12 as an Anti-Photoregulatory Ligand Inhibiting Bacterial CarH Photoreceptors. Angew Chem Int Ed Engl 2024; 63:e202401626. [PMID: 38416546 DOI: 10.1002/anie.202401626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Coenzyme B12 (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression. Here, we have examined AdoRhbl, the non-natural rhodium analogue of AdoCbl, as a photostable isostructural surrogate for AdoCbl. We show that AdoRhbl closely emulates AdoCbl in its uptake by bacterial cells and structural functionality as a regulatory ligand for CarH tetramerization, DNA binding, and repressor activity. Remarkably, we find AdoRhbl is photostable even when bound "base-off/His-on" to CarH in vitro and in vivo. Thus, AdoRhbl, an antivitamin B12, also represents an unprecedented anti-photoregulatory ligand, opening a pathway to precisely target biomimetic inhibition of AdoCbl-based photoregulation, with new possibilities for selective antibacterial applications. Computational biomolecular analysis of AdoRhbl binding to CarH yields detailed structural insights into this complex, which suggest that the adenosyl group of photoexcited AdoCbl bound to CarH may specifically undergo a concerted non-radical syn-1,2-elimination mechanism, an aspect not previously considered for this photoreceptor.
Collapse
Affiliation(s)
- Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Juan Aranda
- Institute for Research in Biomedicine, IRB Barcelona), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Florian J Widner
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Modesto Orozco
- Institute for Research in Biomedicine, IRB Barcelona), Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona (Spain); the Joint BSC-IRB Research Program in Computational Biology, and Department of Biochemistry and Biomedicine, University of Barcelona, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física Blas Cabrera (IQF-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 119 c/Serrano, 28006, Madrid, Spain
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| |
Collapse
|
6
|
Talmazan RA, Podewitz M. PyConSolv: A Python Package for Conformer Generation of (Metal-Containing) Systems in Explicit Solvent. J Chem Inf Model 2023; 63:5400-5407. [PMID: 37606893 PMCID: PMC10498442 DOI: 10.1021/acs.jcim.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/23/2023]
Abstract
We introduce PyConSolv, a freely available Python package that automates the generation of conformers of metal- and nonmetal-containing complexes in explicit solvent, through classical molecular dynamics simulations. Using a streamlined workflow and interfacing with widely used computational chemistry software, PyConSolv is an all-in-one tool for the generation of conformers in any solvent. Input requirements are minimal; only the geometry of the structure and the desired solvent in xyz (XMOL) format are needed. The package can also account for charged systems, by including arbitrary counterions in the simulation. A bonded model parametrization is performed automatically, utilizing AmberTools, ORCA, and Multiwfn software packages. PyConSolv provides a selection of preparametrized solvents and counterions for use in classical molecular dynamics simulations. We show the applicability of our package on a number of (transition-metal-containing) systems. The software is provided open source and free of charge.
Collapse
Affiliation(s)
- R. A. Talmazan
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, A-1060 Wien, Austria
| | - M. Podewitz
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, A-1060 Wien, Austria
| |
Collapse
|
7
|
Spear A, Orativskyi O, Tran S, Zubieta JA, Doyle RP. Rapid, green disulphide bond formation in water using the corrin dicyanocobinamide. Chem Commun (Camb) 2023; 59:9836-9839. [PMID: 37525990 PMCID: PMC10445360 DOI: 10.1039/d3cc02646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Peptide chemists seek rapid methods combined with facile purification when producing disulphide bonds post solid-phase synthesis. Current methods typically require long reaction times of up to two days, can result in side-products from over-oxidation and/or degradation, require organic solvents, and/or require challenging purification. Herein, we describe a rapid, green, and facile oxidation of a series of peptides with up to three disulphide bonds. The method was conducted in aqueous solution, in air, utilizing the biocompatible corrin ring-containing compound dicyanocobinamide, and offers reaction times under 1 hour with simple one step removal of the catalyst.
Collapse
Affiliation(s)
- Alyssa Spear
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA.
| | | | - Samantha Tran
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA.
| | - Jon A Zubieta
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA.
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA.
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
8
|
Ghosh A, Conradie J. B12 and F430 models: Metal- versus ligand-centered redox in cobalt and nickel tetradehydrocorrin derivatives. J Inorg Biochem 2023; 243:112199. [PMID: 36996695 DOI: 10.1016/j.jinorgbio.2023.112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
DFT calculations with the well-tested OLYP and B3LYP* exchange-correlation functionals (along with D3 dispersion corrections and all-electron ZORA STO-TZ2P basis sets) and careful use of group theory have led to significant insights into the question of metal- versus ligand-centered redox in Co and Ni B,C-tetradehydrocorrin complexes. For the cationic complexes, both metals occur in their low-spin M(II) forms. In contrast, the charge-neutral states vary for the two metals: while the Co(I) and CoII-TDC•2- state are comparable in energy for cobalt, a low-spin NiII-TDC•2- state is clearly preferred for nickel. The latter behavior stands in sharp contrast to other corrinoids that reportedly stabilize a Ni(I) center.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa.
| |
Collapse
|
9
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
10
|
Biosynthesis of cobamides: Methods for the detection, analysis and production of cobamides and biosynthetic intermediates. Methods Enzymol 2022; 668:3-23. [PMID: 35589198 DOI: 10.1016/bs.mie.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin B12, cobalamin, belongs to the broader cobamide family whose members are characterized by the presence of a cobalt-containing corrinoid ring. The ability to detect, isolate and characterize cobamides and their biosynthetic intermediates is an important prerequisite when attempting to study the synthesis of this remarkable group of compounds that play diverse roles across the three kingdoms of life. The synthesis of cobamides is restricted to only certain prokaryotes and their structural complexity entails an equally complex synthesis orchestrated through a multi-step biochemical pathway. In this chapter, we have outlined methods that we have found extremely helpful in the characterization of the biochemical pathway, including a plate microbiological assay, a corrinoid affinity extraction method, LCMS characterization and a multigene cloning strategy.
Collapse
|
11
|
Affiliation(s)
- Bernhard Kräutler
- Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Miyazaki Y, Oohora K, Hayashi T. Focusing on a nickel hydrocorphinoid in a protein matrix: methane generation by methyl-coenzyme M reductase with F430 cofactor and its models. Chem Soc Rev 2022; 51:1629-1639. [PMID: 35148362 DOI: 10.1039/d1cs00840d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methyl-coenzyme M reductase (MCR) containing a nickel hydrocorphinoid cofactor, F430, is an essential enzyme that catalyzes anaerobic methane generation and oxidation. The active Ni(I) species in MCR converts methyl-coenzyme M (CH3S-CoM) and coenzyme B (HS-CoB) to methane and heterodisulfide (CoM-S-S-CoB). Extensive experimental and theoretical studies focusing on the substrate-binding cavity including the F430 cofactor in MCR have suggested two principally different reaction mechanisms involving an organonickel CH3-Ni(III) species or a transient methyl radical species. In parallel with research on native MCR itself, the functionality of MCR has been investigated in the context of model complexes of F430 and recent protein-based functional models, which include a nickel complex. In the latter case, hemoproteins reconstituted with tetradehydro- and didehydrocorrinoid nickel complexes have been found to represent useful model systems that are responsible for methane generation. These efforts support the proposed mechanism of the enzymatic reaction and provide important insight into replicating the MCR-like methane-generation process. Furthermore, the modeling of MCR described here is expected to lead to understanding of protein-supported nickel porphyrinoid chemistry as well as the creation of MCR-inspired catalysis.
Collapse
Affiliation(s)
- Yuta Miyazaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|
13
|
Ruetz M, Koutmos M, Kräutler B. Antivitamins B 12: Synthesis and application as inhibitory ligand of the B 12-tailoring enzyme CblC. Methods Enzymol 2022; 668:157-178. [PMID: 35589193 DOI: 10.1016/bs.mie.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Antivitamins B12 are non-natural corrinoids that have been designed to counteract the metabolic effects of vitamin B12 and related cobalamins (Cbls) in humans and other mammals. A basic structure- and reactivity-based concept typifies antivitamins B12 as close structural mimics of vitamin B12 that are not transformed by the cellular metabolism into organometallic B12-cofactors. Antivitamins B12 have the correct structure for efficient take-up and transport via the natural mammalian pathway for cobalamin assimilation. Thus they can be delivered to every cell in the body, where they are proposed to target and inhibit the Cbl tailoring enzyme CblC. Antivitamins B12 may be specifically inert Cbls or isostructural Cbl-analogues that carry a metal centre other than a cobalt-ion. The syntheses of two antivitamins B12 are detailed here, as are biochemical and crystallographic studies that provide insights into the crucial binding interactions of Cbl-based antivitamins B12 with the human B12-tailoring enzyme CblC. This key enzyme binds genuine antivitamins B12 as inert substrate mimics and enzyme inhibitors, effectively repressing the metabolic generation of the B12-cofactors. Hence, antivitamins B12 induce the diagnostic symptoms of (functional) B12-deficiency, as observed in healthy laboratory mice.
Collapse
Affiliation(s)
- Markus Ruetz
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Markos Koutmos
- Department of Chemistry, Program in Biophysics, Program in Chemical Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
14
|
Krumsieck J, Bröring M. PorphyStruct: A Digital Tool for the Quantitative Assignment of Non-Planar Distortion Modes in Four-Membered Porphyrinoids. Chemistry 2021; 27:11580-11588. [PMID: 34061410 PMCID: PMC8453524 DOI: 10.1002/chem.202101243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 11/20/2022]
Abstract
PorphyStruct, a new digital tool for the analysis of non‐planar distortion modes of different porphyrinoids, and its application to corrole structures is reported. The program makes use of the normal‐coordinate structure decomposition technique (NSD) and employs sets of normal modes equivalent to those established for porphyrins in order to describe the out‐of‐plane dislocation pattern of perimeter atoms from corroles, norcorroles, porphycenes and other porphyrinoids quantitatively and in analogy to the established terminology. A comparative study of 17 porphyrin structures shows very similar results to the original NSD analysis and no systematic error. Application to corroles is successful and reveals the necessity to implement an extended basis of normal modes for a large share of experimental structures. The results frequently show the concomitant occurence of several modes but remain interpretable. For group XI metal corroles the phenomenon of supersaddling was unravelled, allowing for more in‐depths discussions of structure‐function correlations.
Collapse
Affiliation(s)
- Jens Krumsieck
- Institute for Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38102, Braunschweig, Germany
| | - Martin Bröring
- Institute for Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38102, Braunschweig, Germany
| |
Collapse
|
15
|
Brenig C, Mosberger L, Blacque O, Kissner R, Zelder F. Reversible metal-centered reduction empowers a Ni-Corrin to mimic F430. Chem Commun (Camb) 2021; 57:7260-7263. [PMID: 34195716 DOI: 10.1039/d1cc02945b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication presents a novel truncated NiII-containing metbalamin and describes its reversible one electron reduction to a catalytically active NiI species, that features cofactor F430 model character. Our results strikingly demonstrate that stabilization of NiI is not restricted to the related hydroporhyrinoid ligands and is of relevance to the application of metallocorrins in (biomimetic) catalysis.
Collapse
Affiliation(s)
- Christopher Brenig
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
16
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
17
|
Abstract
The recently delineated structure- and reactivity-based concept of antivitamins B12 has begun to bear fruit by the generation, and study, of a range of such B12 -dummies, either vitamin B12 -derived, or transition metal analogues that also represent potential antivitamins B12 or specific B12 -antimetabolites. As reviewed here, this has opened up new research avenues in organometallic B12 -chemistry and bioinorganic coordination chemistry. Exploratory studies with antivitamins B12 have, furthermore, revealed some of their potential, as pharmacologically interesting compounds, for inducing B12 -deficiency in a range of organisms, from hospital resistant bacteria to laboratory mice. The derived capacity of antivitamins B12 to induce functional B12 -deficiency in mammalian cells and organs also suggest their valuable potential as growth inhibitors of cancerous human and animal cells.
Collapse
Affiliation(s)
- Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
18
|
Kieninger C, Wurst K, Podewitz M, Stanley M, Deery E, Lawrence AD, Liedl KR, Warren MJ, Kräutler B. Replacement of the Cobalt Center of Vitamin B 12 by Nickel: Nibalamin and Nibyric Acid Prepared from Metal-Free B 12 Ligands Hydrogenobalamin and Hydrogenobyric Acid. Angew Chem Int Ed Engl 2020; 59:20129-20136. [PMID: 32686888 PMCID: PMC7693184 DOI: 10.1002/anie.202008407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/18/2022]
Abstract
The (formal) replacement of Co in cobalamin (Cbl) by NiII generates nibalamin (Nibl), a new transition-metal analogue of vitamin B12 . Described here is Nibl, synthesized by incorporation of a NiII ion into the metal-free B12 ligand hydrogenobalamin (Hbl), itself prepared from hydrogenobyric acid (Hby). The related NiII corrin nibyric acid (Niby) was similarly synthesized from Hby, the metal-free cobyric acid ligand. The solution structures of Hbl, and Niby and Nibl, were characterized by spectroscopic studies. Hbl features two inner protons bound at N2 and N4 of the corrin ligand, as discovered in Hby. X-ray analysis of Niby shows the structural adaptation of the corrin ligand to NiII ions and the coordination behavior of NiII . The diamagnetic Niby and Nibl, and corresponding isoelectronic CoI corrins, were deduced to be isostructural. Nibl is a structural mimic of four-coordinate base-off Cbls, as verified by its ability to act as a strong inhibitor of bacterial adenosyltransferase.
Collapse
Affiliation(s)
- Christoph Kieninger
- Institute of Organic ChemistryUniversity of Innsbruck6020InnsbruckAustria
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| | - Klaus Wurst
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Maren Podewitz
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Maria Stanley
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
| | - Evelyne Deery
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
| | | | - Klaus R. Liedl
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
- Institute of GeneralInorganic and Theoretical ChemistryUniversity of Innsbruck6020InnsbruckAustria
| | - Martin J. Warren
- School of BiosciencesUniversity of KentCanterburyCT2 7NJUK
- Quadram Institute BioscienceNorwich Science ParkNorwichNR4 7UQUK
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of Innsbruck6020InnsbruckAustria
- Center for Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|