1
|
Zhu CN, Chen X, Xu YQ, Wang F, Zheng DY, Liu C, Zhang XH, Yi Y, Cheng DB. Advanced Preparation Methods and Biomedical Applications of Single-Atom Nanozymes. ACS Biomater Sci Eng 2024; 10:7352-7371. [PMID: 39535074 DOI: 10.1021/acsbiomaterials.4c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Metal nanoparticles with inherent defects can harness biomolecules to catalyze reactions within living organisms, thereby accelerating the advancement of multifunctional diagnostic and therapeutic technologies. In the quest for superior catalytic efficiency and selectivity, atomically dispersed single-atom nanozymes (SANzymes) have garnered significant interest recently. This review concentrates on the development of SANzymes, addressing potential challenges such as fabrication strategies, surface engineering, and structural characteristics. Notably, we elucidate the catalytic mechanisms behind some key reactions to facilitate the biomedical application of SANzymes. The diverse biomedical uses of SANzymes including in cancer therapy, wound disinfection, biosensing, and oxidative stress cytoprotection are comprehensively summarized, revealing the link between material structure and catalytic performance. Lastly, we explore the future prospects of SANzymes in biomedical fields.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xin Chen
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Yong-Qiang Xu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Fei Wang
- Department of Biology and the School of Natural Sciences, Wentworth College, University of York, Wentworth Way, Heslington, York YO10 5DD, England
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| | - Xue-Hao Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
2
|
Xu Y, Li W, Wang J, Wu D, Li N, Li Y, Fan X, Peng W. Activation potential decreasing of iron oxide/graphite felt cathode by introducing Mn in electrochemical Fenton-like reactions. CHEMOSPHERE 2024; 369:143885. [PMID: 39638127 DOI: 10.1016/j.chemosphere.2024.143885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In electrochemical advanced oxidation processes (EAOPs), energy consumption cannot be ignored. In this work, Mn-Fe oxide/graphite felt (GF) cathodes were synthesized by in situ reduction and low temperature calcination. The obtained Mn-Fe oxide/GF was used as cathodes to activate peroxymonosulfate (PMS) for atrazine (ATZ) degradation in the EAOPs system. The minimal activation potential (ηmin) of PMS was used to evaluate the activity of the cathodes, and it was found that the introduction of Mn element can effectively reduce the ηmin of PMS on the Fe oxide/GF cathode. The energy consumption by optimized Mn-Fe oxide/GF can be decreased to ∼85.1% in the EAOPs system compared to that without Mn. In addition, the introducing of Mn can also enhance the activity and stability of the catalyst with decreased Fe leaching. Quenching experiments and electron paramagnetic resonance (EPR) test indicated that the EAOPs system could generate several reactive oxygen species (ROSs), including •OH, SO4•-, O2•- and 1O2. This work decreases the potential by introducing Mn and provides a method to reduce the energy consumption in EAOPs.
Collapse
Affiliation(s)
- Yalong Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Weijian Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Institute of Shaoxing, Tianjin University, Zhejiang, 312300, China.
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin, 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Yang Y, Xiao Y, Jiang L, Li J, Li J, Jia J, Yavuz CT, Cui F, Jing X, Zhu G. Ultrahigh Single Au Atoms Loaded Porous Aromatic Frameworks for Enhanced Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404791. [PMID: 39148169 DOI: 10.1002/adma.202404791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Supported single-atom catalysts (SACs) are promising in heterogeneous catalysis because of their atom economy, unusual transformations, and mechanistic clarity. The metal SAs loading, however, limits the catalytic efficiency. Herein, an in situ pre-metallated monomer-based preparation strategy is shown to achieve ultrahigh Au SAs loading in catalyst formations. The polymerization of single-atom loaded monomers yield a new porous aromatic framework (PAF-164) with Au SAs loading up to a record high 45.3 wt.%. SACs of Au-PAFs exhibit excellent photocatalytic activity in hydrogen (H2) evolution, and the H2 evolution rate of Au100%-SAs-PAF-164 can reach 4.82 mmol g-1 h-1 with great recyclability.
Collapse
Affiliation(s)
- Yuting Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yang Xiao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Li Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jiahui Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jialu Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jiangtao Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Cafer T Yavuz
- Physical Science & Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaofei Jing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
4
|
Miao J, Jiang Y, Wang X, Li X, Zhu Y, Shao Z, Long M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem Sci 2024; 15:11699-11718. [PMID: 39092108 PMCID: PMC11290428 DOI: 10.1039/d4sc02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yunyao Jiang
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- Department of Chemical Engineering, Curtin University Perth 6845 Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
5
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Wang Q, Zhao J, Yang X, Li J, Wu C, Shen D, Cheng C, Xu LH. Tuning the electronic metal-carbon interactions in Lignin-based carbon-supported ruthenium-based electrocatalysts for enhanced hydrogen evolution reactions. J Colloid Interface Sci 2024; 664:251-262. [PMID: 38467090 DOI: 10.1016/j.jcis.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm-2. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.
Collapse
Affiliation(s)
- Qichang Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jing Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Xiaoxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jianfei Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Dekui Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Chongbo Cheng
- Engineering Laboratory of Energy System Process Conversion and Emission Reduction Technology of Jiangsu Province, School of Energy & Mechanical Engineering, Nanjing Normal University, Nanjing 210046, PR China.
| | - Lian-Hua Xu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
7
|
Dai C, Mao Z, Xu Y, Jia J, Tang H, Zhao Y, Zhou Y. Bis-tridentate Iridium(III) Complex with the N-Heterocyclic Carbene Ligand as a Novel Efficient Electrochemiluminescence Emitter for the Sandwich Immunoassay of the HHV-6A Virus. Anal Chem 2024; 96:7311-7320. [PMID: 38656817 DOI: 10.1021/acs.analchem.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Human herpesvirus type 6A (HHV-6A) can cause a series of immune and neurological diseases, and the establishment of a sensitive biosensor for the rapid detection of HHV-6A is of great significance for public health and safety. Herein, a bis-tridentate iridium complex (BisLT-Ir-NHC) comprising the N-heterocyclic carbene (NHC) ligand as a novel kind of efficient ECL luminophore has been unprecedently reported. Based on its excellent ECL properties, a new sensitive ECL-based sandwich immunosensor to detect the HHV-6A virus was successfully constructed by encapsulating BisLT-Ir-NHC into silica nanoparticles and embellishing ECL sensing interface with MXene@Au-CS. Notably, the immunosensor illustrated in this work not only had a wide linear range of 102 to 107 cps/μL but also showed outstanding recoveries (98.33-105.11%) in real human serum with an RSD of 0.85-3.56%. Undoubtedly, these results demonstrated the significant potential of the bis-tridentate iridium(III) complex containing an NHC ligand in developing ECL-based sensitive analytical methods for virus detection and exploring novel kinds of efficient iridium-based ECL luminophores in the future.
Collapse
Affiliation(s)
- Chenji Dai
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Ziwang Mao
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huamin Tang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
8
|
Yang H, Li G, Liu Q, Cheng H, Wang X, Cheng J, Jiang G, Zhang F, Zhang Z, Hao Z. Tailoring the Electronic Metal-Support Interactions in Supported Silver Catalysts through Al modification for Efficient Ethylene Epoxidation. Angew Chem Int Ed Engl 2024; 63:e202400627. [PMID: 38390644 DOI: 10.1002/anie.202400627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Metal-modified catalysts have attracted extraordinary research attention in heterogeneous catalysis due to their enhanced geometric and electronic structures and outstanding catalytic performances. Silver (Ag) possesses necessary active sites for ethylene epoxidation, but the catalyst activity is usually sacrificed to obtain high selectivity towards ethylene oxide (EO). Herein, we report that using Al can help in tailoring the unoccupied 3d state of Ag on the MnO2 support through strong electronic metal-support interactions (EMSIs), overcoming the activity-selectivity trade-off for ethylene epoxidation and resulting in a very high ethylene conversion rate (~100 %) with 90 % selectivity for EO under mild conditions (170 °C and atmospheric pressure). Structural characterization and theoretical calculations revealed that the EMSIs obtained by the Al modification tailor the unoccupied 3d state of Ag, modulating the adsorption of ethylene (C2H4) and oxygen (O2) and facilitating EO desorption, resulting in high C2H4 conversion. Meanwhile, the increased number of positively charge Ag+ lowers the energy barrier for C2H4(ads) oxidation to produce oxametallacycle (OMC), inducing the unexpectedly high EO selectivity. Such an extraordinary electronic promotion provides new promising pathways for designing advanced metal catalysts with high activity and selectivity in selective oxidation reactions.
Collapse
Affiliation(s)
- Hongling Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
- Beijing Key Laboratory for VOCs Pollution Prevention and Treatment Technology and Application of Urban Air, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Qinggang Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Haixia Cheng
- Material Digital R&D Center, China Iron & Steel Research Institute Group, Beijing, 100081, China
| | | | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Guoxia Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Fenglian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of the Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
9
|
Dai H, Zhao Z, Wang K, Meng F, Lin D, Zhou W, Chen D, Zhang M, Yang D. Regulating electronic structure of Fe single-atom site by S/N dual-coordination for efficient Fenton-like catalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133399. [PMID: 38163411 DOI: 10.1016/j.jhazmat.2023.133399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The activity of single-atom catalysts in peroxymonosulfate activation process is bound up with the local electronic state of metal center. However, the large electronegativity of N atoms in Metal-N4 restricts the electron transfer between center metal atom and peroxymonosulfate. Herein, we constructed Fe-SN-C catalyst by incorporating S atom in the first coordination sphere of Fe single-atom site (Fe-S1N3) for Fenton-like catalysis. The Fe-SN-C with a low valent Fe is found to exhibit excellent catalytic activity for bisphenol A degradation, and the corresponding rate constant reaches 0.405 min-1, 11.9-fold higher than the original Fe-N-C. Besides, the Fe-SN-C/PMS system exhibits ideal catalytic stability under the effect of wide pH range and background substrates by the fast generation of high-valent Fe species. Experimental results and theoretical calculations reveal that the dual coordination of S and N atoms notably increases the local electron density of Fe atoms and electron filling in eg orbital, causing a d band center shifting close to the fermi level and thereby optimizes the activation energy for peroxymonosulfate decomposition via Fe 3d-O 2p orbital interaction. This work provides further development of promising SACs for the efficient activation of peroxymonosulfate based on direct regulation of the coordination environment of active center metal atoms.
Collapse
Affiliation(s)
- Huiwang Dai
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China
| | - Zhendong Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fanxu Meng
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China
| | - Wenjun Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China.
| | - Dingjiang Chen
- Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China; Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming Zhang
- Department of Environment Engineering, China Jiliang University, Hangzhou 310018, China
| | - Dongye Yang
- Zhejiang Huanneng Environmental Technology Co. Ltd., Hangzhou, Zhejiang 310012, China
| |
Collapse
|
10
|
Gao N, Ren G, Zhang M, Mao L. Electroless Deposition of Palladium Nanoparticles on Graphdiyne Boosts Electrochemiluminescence. J Am Chem Soc 2024; 146:3836-3843. [PMID: 38306697 DOI: 10.1021/jacs.3c11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Modulating the electronic structure of metal nanoparticles via metal-support interaction has attracted intense interest in the field of catalytic science. However, the roles of supporting substrates in regulating the catalytic properties of electrochemiluminescence (ECL) remain elusive. Here, we find that the use of graphdiyne (GDY) as the substrate for electroless deposition of Pd nanoparticles (Pd/GDY) produces the most pronounced anodic signal enhancement in luminol-dissolved oxygen (O2) ECL system as co-reactant accelerator over other carbon-based Pd composite nanomaterials. Pd/GDY exhibits electrocatalytic activity for the reduction of O2 through a four-electron pathway at approximately -0.059 V (vs Ag/AgCl) in neutral solution forming reactive oxygen species (ROS) as intermediates. The study shows that the interaction of Pd and GDY increases the amount and stability of ROS on the Pd/GDY electrode surface and promotes the reaction of ROS and luminol anion radical to generate excited luminol, which significantly boosts the luminol anodic ECL emission. Based on quenching of luminol ECL through the consumption of ROS by antioxidants, we develop a platform for the detection of intracellular antioxidants. This study provides an avenue for the development of efficient luminol ECL systems in neutral media and expands the biological application of ECL systems.
Collapse
Affiliation(s)
- Nan Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Guoyuan Ren
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Li F, Wang P, Zhang T, Li M, Yue S, Zhan S, Li Y. Efficient Removal of Antibiotic Resistance Genes through 4f-2p-3d Gradient Orbital Coupling Mediated Fenton-Like Redox Processes. Angew Chem Int Ed Engl 2023; 62:e202313298. [PMID: 37795962 DOI: 10.1002/anie.202313298] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
Peroxymonosulfate (PMS) mediated radical and nonradical active substances can synergistically achieve the efficient elimination of antibiotic resistance genes (ARGs). However, enhancing interface electron cycling and optimizing the coupling of the oxygen-containing intermediates to improve PMS activation kinetics remains a major challenge. Here, Co doped CeVO4 catalyst (Co-CVO) with asymmetric sites was constructed based on Ce 4f-O 2p-Co 3d gradient orbital coupling. The catalyst achieved approximately 2.51×105 copies/mL of extracellular ARGs (eARGs) removal within 15 minutes, exhibited ultrahigh degradation rate (k=1.24 min-1 ). The effective gradient 4f-2p-3d orbital coupling precisely regulates the electron distribution of Ce-O-Co active center microenvironment, while optimizing the electronic structure of Co 3d states (especially the occupancy of eg ), promoting the adsorption of oxygen-containing intermediates. The generated radical and nonradical generated by interfacial electron cycling enhanced by the reduction reaction of PMS at the Ce site and the oxidation reaction at the Co site achieved a significant mineralization rate of ARGs (83.4 %). The efficient removal of ARGs by a continuous flow reactor for 10 hours significantly reduces the ecological risk of ARGs in actual wastewater treatment.
Collapse
Affiliation(s)
- Fei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Mingmei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 300072, Tianjin, P. R. China
| |
Collapse
|
12
|
Wang C, Liu H, Sun P, Cai J, Sun M, Xie H, Shen G. A novel peroxymonosulfate activation process by single-atom iron catalyst from waste biomass for efficient singlet oxygen-mediated degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131333. [PMID: 37060750 DOI: 10.1016/j.jhazmat.2023.131333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Single-atom dispersed catalysts (SACs) have gained considerable attention in organic contaminants remediation due to their superior reactivity and stability. However, the complex and costly synthesis processes limit their practical applications in environmental protection. Herein, a facile and cost-effective single-atom iron catalyst (Fe-SA/NC) anchored on nitrogen-doped porous carbon was first fabricated by using waste biomass as a carbon source. The Fe-SA/NC catalyst exhibited outstanding performance with a high turnover frequency of 1.72 min-1 toward antibiotics degradation via peroxymonosulfate activation. ECOSAR program and algae growth experiments demonstrated that the byproducts produced during the sulfamethoxazole degradation process were not detrimental to the aquatic environment. Radical quenching and electron paramagnetic resonance experiments revealed that Fe-SA/NC remarkably promoted 1O2 production in PMS-assisted reaction, and thus 1O2 contributed as much as 78.77% to sulfamethoxazole degradation. As indicated by experiment and density functional theory (DFT) calculations, FeN2O2 configuration serves as the active site. DFT calculations further presented the most rational generation route of 1O2 as PMS→OH* →O* →1O2. We also designed Fe-SA/NC embedded spherical pellets for contaminants elimination at the device level. This study offers new insights into the synthesis of SACs from waste biomass and their practical application in environmental remediation.
Collapse
Affiliation(s)
- Chen Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Huanran Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Peng Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jingjing Cai
- Technical Center for industrial Products and Raw Materials Inspection and Testing, Shanghai Customs District, Shanghai 200135, PR China
| | - Mingxing Sun
- Technical Center for industrial Products and Raw Materials Inspection and Testing, Shanghai Customs District, Shanghai 200135, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, PR China
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
13
|
Cheng C, Ren W, Miao F, Chen X, Chen X, Zhang H. Generation of Fe IV =O and its Contribution to Fenton-Like Reactions on a Single-Atom Iron-N-C Catalyst. Angew Chem Int Ed Engl 2023; 62:e202218510. [PMID: 36625681 DOI: 10.1002/anie.202218510] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Generating FeIV =O on single-atom catalysts by Fenton-like reaction has been established for water treatment; however, the FeIV =O generation pathway and oxidation behavior remain obscure. Employing an Fe-N-C catalyst with a typical Fe-N4 moiety to activate peroxymonosulfate (PMS), we demonstrate that generating FeIV =O is mediated by an Fe-N-C-PMS* complex-a well-recognized nonradical species for induction of electron-transfer oxidation-and we determined that adjacent Fe sites with a specific Fe1 -Fe1 distance are required. After the Fe atoms with an Fe1 -Fe1 distance <4 Å are PMS-saturated, Fe-N-C-PMS* formed on Fe sites with an Fe1 -Fe1 distance of 4-5 Å can coordinate with the adjacent FeII -N4 , forming an inter-complex with enhanced charge transfer to produce FeIV =O. FeIV =O enables the Fenton-like system to efficiently oxidize various pollutants in a substrate-specific, pH-tolerant, and sustainable manner, where its prominent contribution manifests for pollutants with higher one-electron oxidation potential.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resource Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Fei Miao
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xuantong Chen
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xiaoxiao Chen
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
14
|
Yang J, Yan X, Xu X, Chen Y, Han W, Chai X, Liu X, Liu J, Liu C, Zhang H, Li X, Zhang Z, Wang T. Progress in the Foaming of Polymer-based Electromagnetic Interference Shielding Composites by Supercritical CO 2. Chem Asian J 2023; 18:e202201000. [PMID: 36411242 DOI: 10.1002/asia.202201000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Indexed: 11/23/2022]
Abstract
As a critical action plan formulated for peaking carbon dioxide emissions, polymeric electromagnetic interference (EMI) shielding materials based on CO2 foaming technology have recently been attracting widespread attention in both research and industry, attributable to their efficient use of CO2 , high specific strength, corrosion resistance and low-cost characteristics. In the past decade, the emergence of novel design concepts and preparation techniques for CO2 foaming technology has led to the development of new high-performance EMI shielding materials in this field. This review summarizes the research progress made to date on the fabrication of EMI shielding composite foams by supercritical carbon dioxide (scCO2 ) foaming. We also explore the structure-activity relationships between the component/distribution and EMI shielding properties. Additionally, the application prospects and development challenges of new EMI shielding composite foams are described.
Collapse
Affiliation(s)
- Jianming Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China.,School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yujian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Wei Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Xianzhi Chai
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China
| | - Xiang Liu
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Jiaxing Liu
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Chen Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Hexin Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Xiao Li
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
15
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
16
|
Hao L, Guo C, Hu Z, Guo R, Liu X, Liu C, Tian Y. Single-atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. NANOSCALE 2022; 14:13861-13889. [PMID: 35994044 DOI: 10.1039/d2nr02989h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Novel single-atom catalysts (SACs) have become the frontier materials in the field of environmental remediation, especially wastewater purification because of their nearly 100% ultra-high atomic utilization and excellent properties. SACs can be used in Fenton-like catalytic reactions to activate various peroxides (such as hydrogen peroxide (H2O2), ozone (O3), and persulfate (PSs)) to release active radicals and non-radicals, acting on target pollutants, and realize their decomposition and mineralization. Among them, peroxymonosulfate (PMS) in PS systems has gradually become an important oxidant in Fenton-like processes due to its asymmetric molecular structure and characteristics of easy storage and transportation. Focusing on the numerous proposed strategies for the synthesis and performance regulation of Fenton-like SACs, it has been confirmed that the coordination of isolated metal atoms and the support/carrier enhances the structural robustness and chemical stability of these catalysts and optimizes their catalytic activity and kinetics. Moreover, the tunability of the coordination environment and electronic properties of SACs can improve their other catalytic properties, such as cycle stability and selectivity. Thus, to systematically explain the relationship between the active center, catalyst performance and the corresponding potential catalytic mechanism, herein, we focus on the representative scientific work on the preparation strategy, catalytic application and performance regulation of Fenton-like SACs. Specifically, we review the typical Fenton-like SAC reaction processes and catalytic mechanisms for the degradation of refractory organic compounds in advanced oxidation processes (AOPs). Finally, the future development and challenges of Fenton-like SACs are presented.
Collapse
Affiliation(s)
- Liping Hao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Chunming Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Ye Tian
- The First Hospital of Qinhuangdao 066099, China
| |
Collapse
|
17
|
Wang B, Cheng C, Jin M, He J, Zhang H, Ren W, Li J, Wang D, Li Y. A Site Distance Effect Induced by Reactant Molecule Matchup in Single-Atom Catalysts for Fenton-Like Reactions. Angew Chem Int Ed Engl 2022; 61:e202207268. [PMID: 35719008 DOI: 10.1002/anie.202207268] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/13/2022]
Abstract
Understanding the site interaction nature of single-atom catalysts (SACs), especially densely populated SACs, is vital for their application to various catalytic reactions. Herein, we report a site distance effect, which emphasizes how well the distance of the adjacent copper atoms (denoted as dCu1-Cu1 ) matches with the reactant peroxydisulfate (PDS) molecular size to determine the Fenton-like reaction reactivity on the carbon-supported SACs. The optimized dCu1-Cu1 in the range of 5-6 Å, which matches the molecular size of PDS, endows the catalyst with a nearly two times higher turnover frequency than that of dCu1-Cu1 beyond this range, accordingly achieving record-breaking kinetics for the oxidation of emerging organic contaminants. Further studies suggest that this site distance effect originates from the alteration of PDS adsorption to a dual-site structure on Cu1 -Cu1 sites when dCu1-Cu1 falls within 5-6 Å, significantly enhancing the interfacial charge transfer and consequently resulting in the most efficient catalyst for PDS activation so far.
Collapse
Affiliation(s)
- Bingqing Wang
- Department of Chemistry, Tsinghua University, Beijing, 100029, China
| | - Cheng Cheng
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Mengmeng Jin
- School of Materials Science and Engineering, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Jia He
- School of Materials Science and Engineering, Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resource Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100029, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100029, China
| |
Collapse
|
18
|
Di S, Wang J, Zhai Y, Chen P, Ning T, Shi C, Yang H, Bao Y, Gao Q, Zhu S. Efficient activation of peroxymonosulfate mediated by Co(II)-CeO 2 as a novel heterogeneous catalyst for the degradation of refractory organic contaminants: Degradation pathway, mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129013. [PMID: 35523092 DOI: 10.1016/j.jhazmat.2022.129013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
A series of Co(II)-CeO2 mixed metal oxides were synthesized by a facile hydrothermal-calcination procedure for activating peroxymonosulfate (PMS) and degrading toxic and difficult biodegradable organics. Co(II)-CeO2 showed excellent degradation performance toward rhodamine B (RhB), toluidine blue, methylene blue and diclofenac. RhB is a refractory organic contaminant, and ecotoxicological evaluation unraveled its harmfulness to the biosphere. RhB was selected as the model pollutant to investigate catalytic mechanisms. Parameters affecting degradation performance were profoundly investigated, including Co:Ce feed ratio, initial pH, PMS dosage, catalyst dosage, RhB concentration, coexisting ions and reaction temperature. Reaction mechanisms were proposed based on density functional theory calculations and identifications of reactive oxygen species. Improvements have been achieved in seven aspects compared to previous studies, including 100% degradation ratio in both real water samples and each reuse of the catalyst, ultrafast degradation rate, cost-effectiveness of the catalyst, toxicity-attenuation provided by the developed degradation method, high degree of mineralization for the model pollutant, negligible leaching of active sites, and the enhancement of catalytic performance by utilizing trace leached cobalt, endowing the technique with broad applicability and prospect.
Collapse
Affiliation(s)
- Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunxiang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Qiang Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
19
|
Zhang X, Pan R, Hou T, Zhang S, Wan X, Li Y, Liu S, Liu J, Zhang J. Doping transition metal in PdSeO3 atomic layers by aqueous cation exchange: A new doping protocol for a new 2D photocatalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Xie M, Dai F, Wang Y, Lv W, Zhang Z, Lu X. Electronic Metal-Support Interaction Directing the Design of Fe(III)-Based Catalysts for Efficient Advanced Oxidation Processes by Dual Reaction Paths. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203269. [PMID: 35871553 DOI: 10.1002/smll.202203269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants (POPs) have a huge impact on human health due to their high toxicity and non-degradability. It is still of great difficulty to develop highly efficient catalysts toward the degradation of POPs. Herein, it is reported that regulating electronic structure of quasi-single atomic ferric iron (Fe(III)) in the VO2 support through the electronic metal-support interaction (EMSI) is a versatile strategy to enhance the catalytic activity. Activated Fe(III) can react with peroxydisulfate (PDS) to produce both radicals and high-valent iron (HVFe) simultaneously for the efficient and fast degradation of POPs. Density functional theory (DFT) calculations prove that the influence of EMSI promotes the electrons on Fe(III) 3d-bond center moving close to the Fermi level, facilitating the charge transfer from Fe(III) to the adsorbate. Through the control experiments, both the radical path by PDS and the HVFe path aroused by the EMSI are confirmed in the POP degradation process. Consequently, the Fe/VO2 catalyst exhibits record-breaking catalytic activity with the k-value as high as 56.7, 43.3 µmol s-1 g-1 for p-chlorophenol and 2,4-dichlorophenol degradation, respectively.
Collapse
Affiliation(s)
- Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Fangfang Dai
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ying Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Weiqiang Lv
- Yangtze Delta Region Institute (Huzhou), School of Physics, University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
21
|
Nie Y, Wang P, Ma Q, Su X. Confined Gold Single Atoms-MXene Heterostructure-Based Electrochemiluminescence Functional Material and Its Sensing Application. Anal Chem 2022; 94:11016-11022. [PMID: 35899589 DOI: 10.1021/acs.analchem.2c01480] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, based on electronic metal-support interaction (EMSI), a gold single atom confined MXene (AuSA/MXene) heterostructure was developed as the highly efficient electrochemiluminescence (ECL) functional material, which greatly improved the electrochemical properties and broadened the sensing application of MXenes. Gold single atoms were confined into the vacancy defects of Ti3C2Tx MXene, which could effectively avoid the masking of catalytic active sites. Meanwhile, electron transport could be accelerated with the assistance of titanium dioxide on the MXene nanosheets. Therefore, the AuSA/MXene heterostructure had high catalytic activity and electrical activity to promote hydrogen peroxide to generate free radicals, which achieved high-efficiency ECL. Eventually, the AuSA/MXene heterostructure was used to construct a Faraday cage-type ECL sensor with fluid nanoislands to detect miRNA-187 in triple-negative breast cancer tumor tissues.
Collapse
Affiliation(s)
- Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
22
|
Dai F, Xie M, Wang Y, Zhang L, Zhang Z, Lu X. Synergistic Effect Improves the Response of Active Sites to Target Variations for Picomolar Detection of Silver Ions. Anal Chem 2022; 94:10462-10469. [PMID: 35834409 DOI: 10.1021/acs.analchem.2c01665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heavy metal ions seriously threaten human health; even a trace of them can damage the renal, nervous, and immune systems irreversibly. Although established nanozyme-based colorimetric assays have been designed for the rapid detection of heavy metal ions, the general contained surface organic ligands of nanocatalysts and low absorptivity of metal ions on solid substrates might result in a weak effect on active sites and prevent the realization of their full detection potential. Here, we developed a nanozyme-based colorimetric sensor (CPM-Pt) made by pyrolysis of peat moss with preabsorbed traces of Pt ions to ultrasensitively detect Ag+. The calcination removes organic components and produces bare nanozymes that expose rich active sites. The strong protective effect from the porous carbon support enables the embedded Pt nanoparticles (Pt NPs) with a partially stable positive charge after pyrolysis (∼28% Pt2+ species). By the d8-d10 metal-metal interactions between Pt2+ (4f145d8) and Ag+ (4d10), the high proportion of Pt2+ species on the surface of Pt NPs can readily capture/absorb Ag+. Subsequently, Ag+ accepts electrons from the support to form Ag atoms, which rapidly cover the peroxidase-like active sites of bare Pt NPs, weakening the activation of H2O2 to realize the response of Ag+. The colorimetric detection limit of Ag+ reached an unprecedented 1.1 pM, and the corresponding naked-eye color recognition is ultrasensitive to extremely low levels (100 pM).
Collapse
Affiliation(s)
- Fangfang Dai
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ying Wang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
23
|
Wang B, Cheng C, Jin M, He J, Zhang H, Ren W, Li J, Wang D, Li Y. A Site Distance Effect Induced by Reactant Molecule Matchup in Single‐Atom Catalysts for Fenton‐like Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bingqing Wang
- Tsinghua University Department of Chemistry Tsinghua University CHINA
| | - Cheng Cheng
- Wuhan University Department of Environmental Science and Engineering CHINA
| | - Mengmeng Jin
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Jia He
- Tianjin University of Technology School of Materials Science and Engineering CHINA
| | - Hui Zhang
- Wuhan University Department of materials science and engineering CHINA
| | - Wei Ren
- Nanchang Hangkong University School of Materials Science and Engineering CHINA
| | - Jiong Li
- SINAP: Shanghai Institute of Applied Physics Chinese Academy of Sciences Physics CHINA
| | - Dingsheng Wang
- Tsinghua University Department of Chemistry Haidian 100084 Beijing CHINA
| | - Yadong Li
- Tsinghua University Department of Chemistry CHINA
| |
Collapse
|
24
|
Gold nanoparticles supported on poly (aniline-co-pyrrole) as the efficient catalysts for the reduction of 4-nitrophenol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Qi J, Yang X, Pan PY, Huang T, Yang X, Wang CC, Liu W. Interface Engineering of Co(OH) 2 Nanosheets Growing on the KNbO 3 Perovskite Based on Electronic Structure Modulation for Enhanced Peroxymonosulfate Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5200-5212. [PMID: 35394751 DOI: 10.1021/acs.est.1c08806] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Material-enhanced heterogonous peroxymonosulfate (PMS) activation on emerging organic pollutant degradation has attracted intensive attention, and a challenge is the electron transfer efficiency from material to PMS for radical production. Herein, an interface architecture of Co(OH)2 nanosheets growing on the KNbO3 perovskite [Co(OH)2/KNbO3] was developed, which showed high catalytic activity in PMS activation. A high reaction rate constant (k1) of 0.631 min-1 and complete removal of pazufloxacin within 5 min were achieved. X-ray photoelectron spectroscopy, X-ray absorption near edge structure spectra, and density functional theory (DFT) calculations revealed the successful construction of the material interface and modulated electronic structure for Co(OH)2/KNbO3, resulting in the hole accumulation on Co(OH)2 and electron accumulation on KNbO3. Bader topological analysis on charge density distribution further indicates that the occupations of Co-3d and O-2p orbitals in Co(OH)2/KNbO3 are pushed above the Fermi level to form antibonding states (σ*), leading to high chemisorption affinity to PMS. In addition, more reactive Co(II) with the closer d-band center to the Fermi level results in higher electron transfer efficiency and lower decomposition energy of PMS to SO4•-. Moreover, the reactive sites of pazufloxacin for SO4•- attack were precisely identified based on DFT calculation on the Fukui index. The pazufloxacin pathways proceeded as decarboxylation, nitroheterocyclic ring opening reaction, defluorination, and hydroxylation. This work can provide a potential route in developing advanced catalysts based on manipulation of the interface and electronic structure for enhanced Fenton-like reaction such as PMS activation.
Collapse
Affiliation(s)
- Juanjuan Qi
- Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, P.R. China
| | - Xiaoyong Yang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Po-Yueh Pan
- Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
| | - Taobo Huang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
| | - Xudong Yang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Wen Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
26
|
Song C, Zhan Q, Liu F, Wang C, Li H, Wang X, Guo X, Cheng Y, Sun W, Wang L, Qian J, Pan B. Overturned Loading of Inert CeO 2 to Active Co 3 O 4 for Unusually Improved Catalytic Activity in Fenton-Like Reactions. Angew Chem Int Ed Engl 2022; 61:e202200406. [PMID: 35128779 DOI: 10.1002/anie.202200406] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 11/09/2022]
Abstract
In the past decades, numerous efforts have been devoted to improving the catalytic activity of nanocomposites by either exposing more active sites or regulating the interaction between the support and nanoparticles while keeping the structure of the active sites unchanged. Here, we report the fabrication of a Co3 O4 -CeO2 nanocomposite via overturning the loading direction, i.e., loading an inert CeO2 support onto active Co3 O4 nanoparticles. The resultant catalyst exhibits unexpectedly higher activity and stability in peroxymonosulfate-based Fenton-like reactions than its analog prepared by the traditional impregnation method. Abundant oxygen vacancies (Ov with a Co⋅⋅⋅Ov ⋅⋅⋅Ce structure instead of Co⋅⋅⋅Ov ) are generated as new active sites to facilitate the cleavage of the peroxide bond to produce SO4 .- and accelerate the rate-limiting step, i.e., the desorption of SO4 .- , affording improved activity. This strategy is a new direction for boosting the catalytic activity of nanocomposite catalysts in various scenarios, including environmental remediation and energy applications.
Collapse
Affiliation(s)
- Chunli Song
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Qing Zhan
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Fei Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Chuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China
| | - Xuan Wang
- Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xuefeng Guo
- Key Lab of Mesoscopic Chemistry MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing, 210094, China.,Research Center for Environmental Nanotechnology (ReCENT), School of Environment, State Key Laboratory of Environmental Pollution and Resources Reuse, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, State Key Laboratory of Environmental Pollution and Resources Reuse, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
27
|
Zhou C, Almatrafi E, Tang X, Shao B, Xia W, Song B, Xiong W, Wang W, Guo H, Chen S, Zeng G. Investigation on the structure-performance of phthalic acid carboxyl position and carbon nitride towards efficient photocatalytic degradation of organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120464] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Overturned Loading of Inert CeO
2
to Active Co
3
O
4
for Unusually Improved Catalytic Activity in Fenton‐Like Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Liao Q, Shi M, Zhang Q, Cheng W, Ji P, Fu X, Lai H, Fan R, Sheng J, Li H. Gold Catalyst Anchored to Pre-Reduced Co 3O 4 Nanorods for the Hydrodeoxygenation of Vanillin Using Alcohols as Hydrogen Donors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3939-3948. [PMID: 35014782 DOI: 10.1021/acsami.1c18197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The preparation of highly dispersed metal catalysts with strong electronic metal-support interactions (EMSIs) is of great significance. In this study, oxygen vacancies (OVs) were generated on the surfaces of Co3O4 nanorods (NRs) through NaBH4 treatment, and then the generated surface OVs were used to anchor gold clusters. The resulting catalyst was used for the hydrodeoxygenation (HDO) of vanillin based on transfer hydrogenation with alcohol donors. The conversion of vanillin and the selectivity to 2-methoxy-4-methylphenol (MMP) both reached 99% under the optimized reaction conditions, and these values were significantly higher than those obtained for the gold catalyst supported on the untreated Co3O4 NRs. The obtained results were verified by theoretical calculations and experimental data and confirmed the existence of strong EMSIs between the OV-enriched Co3O4 NRs (Co3O4 NRs-OVs) and the gold clusters, which allows electron transfer from the Co3O4 NRs to gold. Increasing the number of electrons on the gold surface can promote the catalytic hydrogen transfer of alcohol, in addition to selectively adsorbing the C═O group in vanillin to improve the selectivity toward MMP. This strategy based on the OV-anchoring of metals onto the surface of a support can be extended to other metals, thereby providing a promising method for the design of advanced and highly efficient metal catalysts.
Collapse
Affiliation(s)
- Qingliang Liao
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Meng Shi
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qingxiao Zhang
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Weihua Cheng
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Peiyi Ji
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Xueli Fu
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Huirong Lai
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Runze Fan
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jie Sheng
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Hui Li
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
30
|
Wan G, Congyi H, Shujun Z, Chengzhi H, Yuanfang L. Iron-based Metal-organic gel-derived Ferric oxide Nanosheets for Photo-Fenton Degradation of Rhodamine B. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Huang Y, Zou R, Lin Y, Lu C. Electronic Metal-Support Interactions for Electrochemiluminescence Signal Amplification. Anal Chem 2021; 93:11291-11297. [PMID: 34346688 DOI: 10.1021/acs.analchem.1c02423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Au nanoparticle-amplified electrochemiluminescence (ECL) signals are generally realized by nanoparticle morphology modification, functionalization, and nanoalloys formation. It remains a great challenge to utilize the intrinsic catalytic activity of spherical Au nanoparticles for ECL performance improvement. In this work, we prepared the oxygen vacancy-rich CoAl-layered double hydroxide (LDH-Ov)-supported spherical Au nanoparticles via alkali etching of LDH and electrodeposition of Au nanoparticles on the surface of LDH. It was found that the luminol ECL signals of the as-prepared system were significantly enhanced by forming the strong electronic metal-support interaction (EMSI) between Au nanoparticles and LDH-Ov. The further mechanism study demonstrated that EMSI can increase the electron density of interfacial Au atom (Auδ-) due to a redistribution of charge and promote electron transfer between Au species and LDH-Ov. This study not only introduces EMSI to the ECL field but also paves a new way to the applications of the intrinsic activity of spherical Au nanoparticles in ECL signal amplification. We anticipate that EMSI would be applied to other metal nanocatalysts for the development of highly efficient ECL systems.
Collapse
Affiliation(s)
- Yuhui Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Zou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
32
|
Guo J, Xie M, Du P, Liu Y, Lu X. Signal Amplification Strategy Using Atomically Gold-Supported VO 2 Nanobelts as a Co-reaction Accelerator for Ultrasensitive Electrochemiluminescent Sensor Construction Based on the Resonance Energy Transfer Platform. Anal Chem 2021; 93:10619-10626. [PMID: 34283563 DOI: 10.1021/acs.analchem.1c01891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Luminol, as a classical luminophore, plays a crucial role in electrochemiluminescence (ECL). However, the traditional luminol-H2O2 ECL system suffers from the self-decomposition of H2O2 at ambient temperature, which hinders its further application in quantitative analysis. In this work, for the first time, we developed atomically gold-supported two-dimensional VO2 nanobelts (Au/VO2) as an advanced co-reaction promoter to speed up the reduction of dissolved oxygen to superoxide radicals (O2•-), which react with the luminol anion radical and greatly promote the ECL emission. The ECL resonance energy transfer (ECL-RET) between the hollow manganese dioxide nanospheres and luminol results in a conspicuously decreased ECL signal response, and in the presence of glutathione (GSH), effective redox reaction between manganese dioxide and GSH restores the ECL signal. As a consequence, the designed sensor based on ECL-RET-assisted Au/VO2 signal amplification showed outstanding performance for "signal-on" detection of GSH in the concentration range of 10-3 to 10-10 M, and the detection limit was as low as 0.03 nM. The ECL sensor displayed excellent specificity and was successfully utilized to target GSH in real human serum samples. Importantly, this work not only highlights a powerful avenue for constructing an ultrasensitive ECL sensor for GSH but also provides some inspiration for the further design of high-performance co-reaction accelerators using the ECL technique.
Collapse
Affiliation(s)
- Jinna Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yu Liu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|