1
|
Guo Y, Huang H, Zhang Q, Wang H, Liu M, Lin W. A novel dual-channel fluorescent probe for the detection of peroxynitrite anions and lipid droplets in epileptic disease. Anal Chim Acta 2025; 1350:343863. [PMID: 40155169 DOI: 10.1016/j.aca.2025.343863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 04/01/2025]
Abstract
Peroxynitrite (ONOO-) and lipid droplets (LDs) are crucial substances essential for maintaining normal physiological functions in biological systems. They play pivotal roles as biomarkers in the initiation and progression of various diseases, such as epilepsy. Therefore, the simultaneous detection of ONOO- and LDs in epilepsy disorders is of great importance. Here, we discovered that the fluorescence probe composed of trifluoromesulfonate and fluorophore can not only be used as the recognition site of ONOO-, but also has the property of LDs targeting. Therefore, we reasonable designed and synthesized a dual-channel fluorescent probe CBT, capable of simultaneously monitoring ONOO- and LDs. CBT exhibited exceptional dual-response properties: firstly, upon specific reaction with ONOO-, the resulting product BHD emitted a robust red fluorescent signal in the near-infrared region (749 nm); secondly, CBT selectively targeted and labeled LDs, emitting green fluorescence at 482 nm for effective LDs tracking. The signals from these two detection channels did not overlap, which significantly enhanced the accuracy and reliability of detection. Based on these characteristics, CBT has been successfully utilized in real-time imaging of ONOO- and LDs in epilepsy models of cells induced by various drugs. Notably, in a pentylenetetrazole (PTZ)-induced chronic epileptic mice model, CBT exhibited excellent efficacy in ONOO- imaging, further confirming its considerable potential for practical applications. In summary, this study validated CBT as an efficient tool capable of simultaneous detection and differentiation of ONOO- and LDs, presenting a novel and promising strategy for the early diagnosis and treatment of diseases such as epilepsy.
Collapse
Affiliation(s)
- Yingxin Guo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Huawei Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Qian Zhang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Hongjian Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Miaomiao Liu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
2
|
Wang T, Liu J, Wei H, Jiang Q, Yang T, Zhang X, Xing P. Developing a polarity-specialized TICT fluorescent probe for wash-free and long-term monitoring lipid droplets dynamics. Talanta 2025; 294:128191. [PMID: 40262345 DOI: 10.1016/j.talanta.2025.128191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Lipid droplets (LDs) are dynamic and multifunctional organelles that play a crucial role in energy storage, metabolism and lipid signaling. Monitoring the dynamics of LDs is essential for understanding their functions. Twisted intramolecular charge transfer (TICT)-based fluorescent molecules have been widely utilized for LD imaging. However, conventional TICT dyes exhibit sensitivity to both polarity and viscosity, which results in unclear sensing mechanisms for LDs. Additionally, current LD imaging techniques face challenges such as complex washing procedures and limited long-term imaging capabilities. This study presented a far-red coumarin framework designed to modulate the TICT-ICT equilibrium, resulting in the development of two fluorophores that exhibit specialized sensitivity to either polarity or viscosity. The findings suggested that sensitivity to polarity is a crucial factor for LD imaging, as high signal-to-noise ratios (SNR) enable wash-free imaging, while suitable lipophilicity supports long-term imaging. This polarity-specialized TICT probe had the potential to revolutionize LD imaging, facilitating wash-free and extended studies of LD dynamic behaviors and functions during lipolysis.
Collapse
Affiliation(s)
- Tenghui Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Junhui Liu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Huihui Wei
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Qinhong Jiang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Tianxin Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Xinyu Zhang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China
| | - Panfei Xing
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Zheng H, Sha H, Zhou R, Wu Y, Wang C, Hou S, Lu G. Rational development of Nile red derivatives with significantly improved specificity and photostability for advanced fluorescence imaging of lipid droplets. Biosens Bioelectron 2025; 282:117494. [PMID: 40267544 DOI: 10.1016/j.bios.2025.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Since the first report of Nile Red as a fluorescent probe for lipid droplets (LDs) imaging was published in 1985, this fluorescent probe has been widely used for nearly 40 years, and so far, it is still one of the most commonly used probes for LDs imaging. Although Nile Red has achieved continuous success, it has gradually emerged two major limitations (poor LDs specificity and low photostability) which directly limit the study of LDs via advanced fluorescence imaging techniques. In this context, we have developed a new synthetic route to conveniently prepare a series of Nile Red derivatives (NR-1 to NR-15). With these 15 derivatives in hand, the relationships between molecular structures and their properties (LDs specificity, photostability) have been comprehensively investigated. Consequently, we have rationally designed a new Nile Red derivative, NR-11, which exhibits significantly improved LDs specificity and photostability. Utilizing this new LDs probe, we have successfully conducted various advanced fluorescence imaging, e.g. time-lapse three-dimensional (3D) confocal imaging of cells, time-lapse 3D dynamic tracking of a single LD, and two-photon 3D imaging of tissues. These advanced imaging results not only demonstrate the utility of this new fluorescent probe but also provide novel insights into the cell biology study of LDs.
Collapse
Affiliation(s)
- Huanlong Zheng
- State Key Laboratory of Integrated Optoelectronics (JLU Region), Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China
| | - Hao Sha
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518006, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics (JLU Region), Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China
| | - Yu Wu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics (JLU Region), Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China.
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics (JLU Region), Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Zhang R, Zhou H, Wang C, Weng X, Liu L, Xi P, Qu J. Dual-Bessel-Beam Stimulated Emission Depletion Microscopy for Super-resolution Volumetric Projection Imaging of Lipid Droplet Dynamics. NANO LETTERS 2025; 25:5557-5564. [PMID: 40094473 DOI: 10.1021/acs.nanolett.4c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Volumetric imaging efficiently captures comprehensive spatial structures and dynamic function information on organisms in biomedical research. However, optical diffraction limit restricts the visualization of fine structure details at nanoscale. To address this limitation, we developed dual-Bessel-beam stimulated emission depletion (DB-STED) microscopy to enhance the information throughput and lateral resolution. This technique combines a zeroth-order Bessel beam for excitation with a first-order hollow Bessel beam for depletion, aligned both spatially and temporally to achieve super-resolution volumetric projection imaging. We validated this approach using fluorescent beads embedded in agarose, achieving a resolution of 69 nm over a depth of 10 μm with a numerical aperture of 1.4. The high-throughput and super-resolution capability enables detailed observation of lipid droplet motion within entire cells, providing valuable insights into lipid dynamics.
Collapse
Affiliation(s)
- Renlong Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration and Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haoxian Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration and Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration and Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration and Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration and Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Yan C, Zhu W, Li R, Xu Q, Li D, Zhang W, Leng L, Shao A, Guo Z. Mapping Dynamic Protein Clustering with AIEgen-Active Chemigenetic Probe. Angew Chem Int Ed Engl 2025; 64:e202422996. [PMID: 39831846 DOI: 10.1002/anie.202422996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/22/2025]
Abstract
Protein clustering/disassembling is a fundamental process in biomolecular condensates, playing a crucial role in cell fate decision and cellular homeostasis. However, the inherent features of protein clustering, especially for its reversible behavior and subtle microenvironment variation, present significant hurdles in probe chemistry for tracking protein clustering dynamics. Herein, we report a bilateral-tailored chemigenetic probe, in which an "amphiphilic" aggregate-induced emission luminogen (AIEgen) QMSO3Cl is covalently conjugated to a protein tag that is genetically fused to protein-of-interest (POI). Prior to target POI, the "amphiphilic" AIE-active QMSO3Cl achieves a completely dark state in both aqueous biological environment and lipophilic organelles, thereby ensuring an ultra-low intrinsic background interference. Upon reaching POI, the combination of synthetic molecule and genetically encoded protein allows for protein clustering-dependent ultra-sensitive response, with a substantial lighting-up fluorescence (67.5-fold) as protein transitions from disassembling to clustering state. Such ultra-high signal-to-noise ratio enables to monitor the dynamic and fate of inositol requiring enzyme 1 (IRE1) clustering/disassembling under both acute and chronic endoplasmic reticulum (ER) stress in living cells. For the first time, we have demonstrated the use of chemigenetic probe to reveal therapy-induced ER stress and screen drugs in a three-dimensional scenario: microviscosity change, clustering dynamic, and cluster morphology. This chemigenetic probe design strategy would greatly facilitate the advancement of mapping protein dynamics in cell homeostasis and medicine research.
Collapse
Affiliation(s)
- Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wendi Zhu
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Runqi Li
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qin Xu
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weixu Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Andong Shao
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Streit M, Budiarta M, Jungblut M, Beliu G. Fluorescent labeling strategies for molecular bioimaging. BIOPHYSICAL REPORTS 2025; 5:100200. [PMID: 39947326 PMCID: PMC11914189 DOI: 10.1016/j.bpr.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.
Collapse
Affiliation(s)
- Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marvin Jungblut
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
7
|
Wang Y, Guo H, Wan W, Jing B, Bai Y, Sun J, Zhang X, Gao Z, Liu Y, Dong X. A Solvatochromic and Photosensitized Lipid Droplet Probe Detects Local Polarity Heterogeneity and Labels Interacting Proteins in Human Liver Disease Tissue. Adv Healthc Mater 2025; 14:e2404713. [PMID: 39871671 DOI: 10.1002/adhm.202404713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Indexed: 01/29/2025]
Abstract
The intricate morphology, physicochemical properties, and interacting proteins of lipid droplets (LDs) are associated with cell metabolism and related diseases. To uncover these layers of information, a solvatochromic and photosensitized LDs-targeted probe based on the furan-based D-D-π-A scaffold is developed to offer the following integrated functions. First, the turn-on fluorescence of the probe upon selectively binding to LDs allows for direct visualization of their location and morphology. Second, its solvatochromic fluorescence with linear correlation to polarity quantifies micro-environmental heterogeneity among LDs. Third, the unique photosensitized properties enable photocatalytic proximity labeling and enrichment of LDs-interacting proteins, ready for potential downstream proteomic analysis. These functions are exemplified using artificial LDs in buffer, stressed liver cell line, and diseased liver tissues biopsied from patients. While most LD sensors only offer fluorescence imaging functions, the multi-functional LD probe reported herein integrates both singlet fluorescence and triplet photosensitization properties for LDs studies.
Collapse
Affiliation(s)
- Yuhui Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Hengke Guo
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wang Wan
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Biao Jing
- Division of Vascular Surgery Department of General Surgery, West China Hospital, Sichuan University, 37 Guo Xue Alley, Chengdu, Sichuan, 610041, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, China
| | - Jialu Sun
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, China
| | - Zhenming Gao
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuepeng Dong
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
8
|
Park H, Niu G, Wong AYH, Yu EY, Kwok RTK, Tang BZ. Reaction-free mitochondrial membrane potential independent luminogens with aggregation-induced emission characteristics for live neuron imaging. Chem Commun (Camb) 2025; 61:3536-3539. [PMID: 39911052 DOI: 10.1039/d4cc06022a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
We developed novel photostable mitochondria targeting probes based on aggregation-induced emission (AIE) luminogens with a cyanostilbene core. The introduction of an alkyl chain onto the pyridinium moiety enhanced their interaction with the mitochondrial membrane. This design effectively prevents probe leakage following mitochondrial membrane depolarization while significantly reducing cytotoxicity.
Collapse
Affiliation(s)
- Hojeong Park
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guangle Niu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Alex Y H Wong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China
| | - Eric Y Yu
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T K Kwok
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Institute for Advanced Study, State Key Laboratory of Neuroscience and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
9
|
Huang R, Qiao Q, Seah D, Shen T, Wu X, de Moliner F, Wang C, Ding N, Chi W, Sun H, Vendrell M, Xu Z, Fang Y, Liu X. Precision Molecular Engineering of Compact Near-Infrared Fluorophores. J Am Chem Soc 2025; 147:5258-5268. [PMID: 39901830 DOI: 10.1021/jacs.4c16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Organic fluorophores with near-infrared (NIR) emission and reduced molecular size are crucial for advancing bioimaging and biosensing technologies. Traditional methods, such as conjugation expansion and heteroatom engineering, often fail to reduce fluorophore size without sacrificing NIR emission properties. Addressing this challenge, our study utilized quantum chemical calculations and structure-property relationship analysis to establish an iterative design approach and enable precision engineering for compact, single-benzene-based NIR fluorophores. These newly developed fluorophores exhibit emissions up to 759 nm and maintain molecular weights as low as 192 g/mol, approximately 50% of that of Cy7. Additionally, they display unique environmental sensitivity─nonemissive in aqueous solutions but highly emissive in lipid environments. This property significantly enhances their utility in wash-free imaging of live cells. Our findings mark a substantial breakthrough in fluorophore engineering, paving the way for more efficient and adaptable imaging methodologies.
Collapse
Affiliation(s)
- Rongrong Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Deborah Seah
- Centre for Inflammation Research and IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Tianruo Shen
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Xia Wu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Fabio de Moliner
- Centre for Inflammation Research and IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Chao Wang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Nannan Ding
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Weijie Chi
- Collaborative Innovation Center of One Health, School of Chemistry and Chemical Engineering, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Marc Vendrell
- Centre for Inflammation Research and IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
10
|
Chen J, Qiao Q, Wang H, Jiang W, Liu W, An K, Xu Z. Clog P-Guided Development of Multi-Colored Buffering Fluorescent Probes for Super-Resolution Imaging of Lipid Droplet Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408030. [PMID: 39475001 DOI: 10.1002/advs.202408030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Indexed: 12/28/2024]
Abstract
Super-resolution fluorescence imaging of live cells increasingly demands fluorescent probes capable of multi-color and long-term dynamic imaging. Understanding the mechanisms of probe-target recognition is essential for the engineered development of such probes. In this study, it is discovered that the molecular lipid solubility parameter, Clog P, determines the staining performance of fluorescent dyes on lipid droplets (LDs). Fluorescent dyes with Clog P values between 2.5 and 4 can form buffering pools outside LDs, replacing photobleached dyes within LDs to maintain constant fluorescence intensity in LDs, thereby enabling dynamic super-resolution imaging of LDs. Guided by Clog P, four different colored buffering LD probes spanning the visible light spectrum have been developed. Using Structured Illumination Microscopy (SIM), the role of LD dynamics have been tracked during cellular ferroptosis with the secretion, storage, and degradation of overexpressed ACSL3 proteins. It is found that LDs serve as storage sites for these proteins through membrane fusion, and further degrade overexpressed proteins via interactions with organelles like lysosomes or through lipophagy, thereby maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Jie Chen
- Institution Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinglong Qiao
- Institution Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Hanlixin Wang
- Institution Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenchao Jiang
- Institution Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjuan Liu
- Institution Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai An
- Institution Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaochao Xu
- Institution Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
11
|
Ceballos-Ávila D, Vázquez-Sandoval I, Ferrusca-Martínez F, Jiménez-Sánchez A. Conceptually innovative fluorophores for functional bioimaging. Biosens Bioelectron 2024; 264:116638. [PMID: 39153261 DOI: 10.1016/j.bios.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fluorophore chemistry is at the forefront of bioimaging, revolutionizing the visualization of biological processes with unparalleled precision. From the serendipitous discovery of mauveine in 1856 to cutting-edge fluorophore engineering, this field has undergone transformative evolution. Today, the synergy of chemistry, biology, and imaging technologies has produced diverse, specialized fluorophores that enhance brightness, photostability, and targeting capabilities. This review delves into the history and innovation of fluorescent probes, showcasing their pivotal role in advancing our understanding of cellular dynamics and disease mechanisms. We highlight groundbreaking molecules and their applications, envisioning future breakthroughs that promise to redefine biomedical research and diagnostics.
Collapse
Affiliation(s)
- Daniela Ceballos-Ávila
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Ixsoyen Vázquez-Sandoval
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Fernanda Ferrusca-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Liu Y, Luo X, Cheng W, Zhou L, Zhou Y, Zhu HL, James TD, Qian Y. Mapping of β3-Adrenergic Receptor in Living Cells with a Ligand-Guided Fluorescent Probe. Anal Chem 2024; 96:18020-18028. [PMID: 39475499 DOI: 10.1021/acs.analchem.4c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Tracking the dynamic distribution of native proteins in living cells or tissues in real time is essential for understanding the functional mechanisms involved in their physiological or pathological processes. The β3-adrenergic receptor (β3-AR) has important biological functions. It is expected to be a diagnostic indicator for aging, yet current probes for β-ARs are unable to dynamically monitor β3-AR in real time, which impedes the progress of β3-AR research. Here, we developed a ligand-directed anchoring probe, β3-ARP, that precisely covalently anchors with native β3-AR in living cells, for the diagnosis of senescence. The ligand-directed anchoring probe selectively recognizes and traces β3-AR and can achieve dynamic observation and monitoring of β3-AR in living cells, including the interaction between lipid droplets and mitochondria. Moreover, we were able to directly probe the distribution of β3-AR in various organs of aging mice in situ and track the location of native β3-AR in different types of primary neuronal cells using β3-ARP and two-photon imaging, which revealed the aberrant accumulation of lipid droplets and the distribution of β3-AR in neurological diseases. This research has resulted in a new covalently anchoring fluorescent probe, β3-ARP, which could serve as a powerful tool to explore the link between β3-AR and age-related diseases.
Collapse
Affiliation(s)
- Yani Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
| | - Wei Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
| | - Ling Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
| | - Yang Zhou
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300 P. R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing 210023, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY United Kingdom
- School of Chemistry and Chemical Engineering. Henan Normal University, Xinxiang 453007 P. R. China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road 1, Nanjing 210046, China
| |
Collapse
|
13
|
Kong L, Bai Q, Li C, Wang Q, Wang Y, Shao X, Wei Y, Sun J, Yu Z, Yin J, Shi B, Fang H, Chen X, Chen Q. Molecular probes for tracking lipid droplet membrane dynamics. Nat Commun 2024; 15:9413. [PMID: 39482302 PMCID: PMC11528070 DOI: 10.1038/s41467-024-53667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
Lipid droplets (LDs) feature a unique monolayer lipid membrane that has not been extensively studied due to the lack of suitable molecular probes that are able to distinguish this membrane from the LD lipid core. In this work, we present a three-pronged molecular probe design strategy that combines lipophilicity-based organelle targeting with microenvironment-dependent activation and design an LD membrane labeling pro-probe called LDM. Upon activation by the HClO/ClO- microenvironment that surrounds LDs, LDM pro-probe releases LDM-OH probe that binds to LD membrane proteins thus enabling visualization of the ring-like LD membrane. By utilizing LDM, we identify the dynamic mechanism of LD membrane contacts and their protein accumulation parameters. Taken together, LDM represents the first molecular probe for imaging LD membranes in live cells to the best of our knowledge, and represents an attractive tool for further investigations into the specific regulatory mechanisms with LD-related metabolism diseases and drug screening.
Collapse
Affiliation(s)
- Lingxiu Kong
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Qingjie Bai
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Cuicui Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| | - Qiqin Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yanfeng Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Xintian Shao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Neck-Shoulder and Lumbocrural Pain Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Yongchun Wei
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Jiarao Sun
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Zhenjie Yu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Junling Yin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Bin Shi
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Neck-Shoulder and Lumbocrural Pain Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Hongbao Fang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Qixin Chen
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
14
|
Liu D, Fang G, Wang Y, Meng C, Liu Z, Chen Q, Shao X. Facile construction of dual-response super-resolution probes for tracking organelles dynamics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230145. [PMID: 39439499 PMCID: PMC11491301 DOI: 10.1002/exp.20230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 10/25/2024]
Abstract
Super-resolution imaging techniques, such as structured illumination microscopy (SIM), have enabled researchers to obtain nanoscale organelle-level outputs in living systems, but they impose additional stringent requirements on fluorescence probes. However, high-performance, custom-designed SIM probes that can explain underlying biological processes remain unavailable. Herein, a customizable engineering toolkit is developed for the facile assembly of SIM probes suitable for subcellular component detection. This toolkit is used to customize a fluorescent molecule, CPC (coumarin-phenylhydrazine-carboxyl), capable of simultaneously monitoring peroxynitrite (ONOO-) and polarity distribution in mitochondria and lipid droplets (LDs), respectively, through functional ON-OFF mechanisms. The customized CPC molecule demonstrated excellent imaging capabilities under SIM, enabled the successful localization of multiple organelles, and reliably tracked the distribution of different components, thus facilitating the study of the interplay between organelles. Using CPC, the physical transition of intracellular LDs is demonstrated from heterogeneity to homogeneity. This was specifically observed during ferroptosis where the polarity of the LDs increased and their morphology became more contracted. Furthermore, the loss of LDs functionality could not counteract the accumulation of ONOO- within the mitochondria, leading to the decoupling of mitochondrial LDs during ferroptosis. These results confirmed the potential mechanism of LDs dysfunction and decoupling triggered via cumulative mitochondrial oxidative stress during ferroptosis. To summarize, this toolkit will be a powerful tool for examining subtle variations among components during the interplay between different organelles, thus offering novel avenues for understanding and treating related diseases.
Collapse
Affiliation(s)
- Daili Liu
- School of Chinese Materia MedicaTianjin University of Traditional Chinese MedicineTianjinChina
- Institute of Materia MedicaScience and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Guiqian Fang
- Institute of Materia MedicaScience and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Yanfeng Wang
- Institute of Materia MedicaScience and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Caicai Meng
- School of Life SciencesScience and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Zhidong Liu
- School of Chinese Materia MedicaTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qixin Chen
- Institute of Materia MedicaScience and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Departments of Diagnostic RadiologyChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingaporeSingapore
| | - Xintian Shao
- School of Life SciencesScience and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
15
|
Li Z, Liu Z, Yu D, Yao Q, Ma W, Zhang C, Fan J, Peng X. Next-generation red ultra-bright fluorescent dyes for nuclear imaging and peripheral blood leukocytes sorting. Chem Sci 2024:d4sc04848b. [PMID: 39371456 PMCID: PMC11451967 DOI: 10.1039/d4sc04848b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024] Open
Abstract
The nucleus is a membrane-bound organelle in eukaryotic cells and plays a crucial role in cellular processes. Visualizing nuclear morphology is essential for investigating nuclear functions and understanding the relationship between nuclear morphological alterations and multiple diseases. Fluorescent dyes have been developed to visualize nuclear morphology, but the selection of red nuclear-labeling fluorescent dyes remains limited (high price, unknown structure, or high toxicity). Herein, we have developed a red ultra-bright nuclear-targeted dye, BPC1, through the engineering of unsymmetrical cyanine dyes derived from D-π-A systems. BPC1 exhibits ultrahigh fluorescence brightness and exceptional cell permeability, and selectively stains nuclear DNA rather than mitochondrial DNA, enabling the visualization of the nucleus in diverse cells at extremely low doses (100 nM) and laser power (0.8 μW). Furthermore, BPC1 is utilized for nuclear staining in blood cells, aiding in the distinct visualization of the white blood cell nucleus and facilitating the identification and enumeration of various leukocyte types. Our study implies considerable commercial potential for BPC1 and underscores its capacity to serve as a powerful tool in life sciences and cell biology research.
Collapse
Affiliation(s)
- Zipeng Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Zheng Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Ding Yu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Wanying Ma
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Changyu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
- Liaoning Binhai Laboratory Dalian 116023 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Liaoning Binhai Laboratory Dalian 116023 China
| |
Collapse
|
16
|
Liu M, Peng W, Zheng H, Chen K, Lin Q, Zhang S, Yang L. Assessing Atherosclerosis by Super-Resolution Imaging of HClO in Foam Cells Using a Ratiometric Fluorescent Probe. Anal Chem 2024; 96:14215-14221. [PMID: 39162214 DOI: 10.1021/acs.analchem.4c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Atherosclerosis (AS) is the leading cause of cardiovascular disease. Foam cells, with elevated lipid droplets (LDs) and HClO levels, are the main components of the atherosclerotic plaques that are characteristic of AS. Super-resolution imaging can be used to visualize the distribution of LDs in foam cells at the nanometer level, facilitating the identification of LDs and HClO. In the present study, we report the development of a ratiometric fluorescent probe, SFL-HClO, for super-resolution imaging of LDs and HClO. Super-resolution imaging with this probe revealed the precise structure of LDs at the suborganelle level. Moreover, the fluorescence behavior of SFL-HClO on the surface of LDs verified its excellent performance in detecting HClO in the foam cells. SFL-HClO can sequentially and specifically respond to LDs and HClO via "turn-on" and ratiometric signal output, respectively, thus contributing to precise imaging of foam cells. Importantly, we demonstrate that SFL-HClO can be used to report on upregulated HClO in atherosclerotic plaques in the aorta of AS mice, providing a suitable fluorescent tool for early atherosclerotic disease assessment.
Collapse
Affiliation(s)
- Miaomiao Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Weikang Peng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Hongyong Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Kangfei Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Qifu Lin
- College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
17
|
Zhuang W, Li J, Qu T, Shao R, Chen J, Li S, Chen M, Wang Y. A lipid activated color switchable probe for the imaging of diseased aortic valves. Talanta 2024; 275:126069. [PMID: 38692042 DOI: 10.1016/j.talanta.2024.126069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Lipid deposition has been considered one of the key factors in the occurrence of valvular heart disease (VHD) and a great potential target for the diagnosis of VHD. However, the development of lipid imaging technologies and efficient lipid specific probes is in urgent demand. In this work, we have prepared a lipid droplets (LDs) targeted fluorescence probe CPTM based on a push-pull electronic structure for the imaging of diseased aortic valves. CPTM showed obvious twisted intramolecular charge transfer (TICT) effect and its emission changed from 600 nm in water to 508 nm in oil. CPTM not only exhibited good biocompatibility and high photostability, but also impressive LDs specific imaging performance in human primary valvular interstitial cells and human diseased aortic valves. Moreover, the dynamic changes of intracellular LDs could be monitor in real-time after staining with CPTM. These results were expected to offer new ideals for the designing of novel LDs specific probes for further bioimaging applications.
Collapse
Affiliation(s)
- Weihua Zhuang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China; National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610065, PR China
| | - Junli Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China
| | - Tianyi Qu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China
| | - Ruochen Shao
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China
| | - Jingruo Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China
| | - Shufen Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China.
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China; Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, PR China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610065, PR China.
| |
Collapse
|
18
|
Liu Y, Gong XT, Wang KN, He S, Wang Y, Lin Q, Liu Z, Yu X, Liu B. Dual-targeted fluorescent probe for tracking polarity and phase transition processes during lipophagy. MATERIALS HORIZONS 2024; 11:3287-3297. [PMID: 38842407 DOI: 10.1039/d4mh00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Eukaryotic cells regulate various cellular processes through membrane-bound and membrane-less organelles, enabling active signal communication and material exchange. Lysosomes and lipid droplets are representative organelles, contributing to cell lipophagy when their interaction and metabolism are disrupted. Our limited understanding of the interacting behaviours and physicochemical properties of different organelles during lipophagy hinders accurate diagnosis and treatment of related diseases. In this contribution, we report a fluorescent probe, PTZ, engineered for dual-targeting of lipid droplets and lysosomes. PTZ can track liquid-liquid phase separation and respond to polarity shifts through ratiometric fluorescence emission, elucidating the lipophagy process from the perspective of organelle behavior and physicochemical properties. Leveraging on the multifunctionality of PTZ, we have successfully tracked the polarity and dynamic changes of lysosomes and lipid droplets during lipophagy. Furthermore, an unknown homogeneous transition of lipid droplets and lysosomes was discovered, which provided a new perspective for understanding lipophagy processes. And this work is expected to serve as a reference for diagnosis and treatment of lipophagy-related diseases.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xiao-Ting Gong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Simeng He
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yumeng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Qiaowen Lin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
19
|
Cao M, Wang C, Wang F, Zou W, Yu B, Cong H, Shen Y. Synthesis on NIR-II Multifunctional Imaging and Photothermal Therapy of a Novel Water-Soluble Molecule. Adv Healthc Mater 2024; 13:e2304564. [PMID: 38552668 DOI: 10.1002/adhm.202304564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The synthesis of water-soluble symmetric molecules with donor-acceptor-donor (D-A-D) structure is reported. The compound is connected by π bridge with 2-bromofluorene external polyethylene glycol 2000 as the shielding unit, and donor component and pyrrolopyrrole (DPP) as the acceptor unit. The D-A-D double donor fluorescent molecule P2-DPP is obtained by coupling reaction. The absorption peak and emission peak of the fluorescent molecule P2-DPP are 600 and 1020 nm, respectively. It has potential excellent imaging characteristics. It does not need to use nanoparticles formed by the DSPE-MPEG amphiphilic block to form micelles. The quantum yield reaches 0.6% and the penetration depth can reach 10 mm. The chemical is capable of achieving liver and renal metabolism. It has a good application prospect in the photothermal therapy of mouse tumors and realizes the integration of biological diagnosis and treatment.
Collapse
Affiliation(s)
- Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wentao Zou
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
20
|
Zhou W, Tao Y, Qiao Q, Xu N, Li J, Wang G, Fang X, Chen J, Liu W, Xu Z. Cell-Impermeable Buffering Fluorogenic Probes for Live-Cell Super-Resolution Imaging of Plasma Membrane Morphology Dynamics. ACS Sens 2024; 9:3170-3177. [PMID: 38859630 DOI: 10.1021/acssensors.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Super-resolution fluorescence imaging has emerged as a potent tool for investigating the nanoscale structure and function of the plasma membrane (PM). Nevertheless, the challenge persists in achieving super-resolution imaging of PM dynamics due to limitations in probe photostability and issues with cell internalization staining. Herein, we report assembly-mediated buffering fluorogenic probes BMP-14 and BMP-16 exhibiting fast PM labeling and extended retention time (over 2 h) on PM. The incorporation of alkyl chains proves effective in promoting the aggregation of BMP-14 and BMP-16 into nonfluorescent nanoparticles to realize fluorogenicity and regulate the buffering capacity to rapidly replace photobleached probes ensuring stable long-term super-resolution imaging of PM. Utilizing these PM-buffering probes, we observed dynamic movements of PM filopodia and continuous shrinkage, leading to the formation of extracellular vesicles (EVs) using structured illumination microscopy (SIM). Furthermore, we discovered two distinct modes of EV fusion: one involving fusion through adjacent lipids and the other through filamentous lipid traction. The entire process of EV fusion outside the PM was dynamically tracked. Additionally, BMP-16 exhibited a unique capability of inducing single-molecule fluorescence blinking when used for cell membrane staining. This property makes BMP-16 suitable for the PAINT imaging of cell membranes.
Collapse
Affiliation(s)
- Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangying Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangning Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Hou JT, Li C, Guo S, Ye X, Chi W, Ren Y, Wang Q, Shen J. Polarity-Driven Fluorescence Monitoring of Lipid Droplet Dynamics in Dry Eye Disease. Anal Chem 2024; 96:9975-9983. [PMID: 38830231 DOI: 10.1021/acs.analchem.4c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The emergence of lipid droplets (LDs) has been recognized as cellular markers of ocular surface hyperosmosis, which is recognized as a fundamental mechanism driving dry eye disease (DED), while their dynamics during DED progression and therapy remains unlocked. For this purpose, an LD-specific fluorescent probe P1 is presented in this work that exhibits highly selective and sensitive emission enhancement in response to a decreased ambient polarity (Δf) from 0.209 to 0.021. The hydrophobic nature of P1 enables specific staining of LDs, facilitating visualization of changes in polarity within these cellular structures. Utilizing P1, we observe a decrease in polarity accompanied by an increase in the size and number of LDs in hyperosmotic human corneal epithelial cells (HCECs). Furthermore, interplays between LDs and cellular organelles such as mitochondria and the Golgi apparatus are visualized, suggesting the underlying pathogenesis in DED. Notably, the variations of LDs are observed after the inhibition of ferroptosis or activation of autophagy in hyperosmotic HCECs, implying the great potential of LDs as indicators for the design and efficacy evaluation of DED drugs regarding ferroptosis or autophagy as targets. Finally, LDs are confirmed to be overproduced in corneal tissues from DED mice, and the application of clinical eye drops effectively impedes these changes. This detailed exploration underscores the significant roles of LDs as an indicator for the deep insight into DED advancement and therapy.
Collapse
Affiliation(s)
- Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuai Guo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xuanqiao Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Weijie Chi
- Collaborative Innovation Center of OneHealth, School of Chemistry and Chemical Engineering, Hainan University, Renmin Road 58, Haikou 570228, China
| | - Yueping Ren
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qiang Wang
- Department of Ophthalmology, Third Affiliated Hospital, Wenzhou Medical University, Ruian 325200, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
22
|
Fa Q, Gao X, Zhang W, Ren J, Song B, Yuan J. Tracking Plasma Membrane Damage Using a Ruthenium(II) Complex Phosphorescent Indicator Paired with Cholesterol. Inorg Chem 2024; 63:10443-10451. [PMID: 38774973 DOI: 10.1021/acs.inorgchem.4c01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Long-term in situ plasma membrane-targeted imaging is highly significant for investigating specific biological processes and functions, especially for the imaging and tracking of apoptosis processes of cells. However, currently developed membrane probes are rarely utilized to monitor the in situ damage of the plasma membrane. Herein, a transition-metal complex phosphorescent indicator, Ru-Chol, effectively paired with cholesterol, exhibits excellent properties on staining the plasma membrane, with excellent antipermeability, good photostability, large Stokes shift, and long luminescence lifetime. In addition, Ru-Chol not only has the potential to differentiate cancerous cells from normal cells but also tracks in real time the entire progression of cisplatin-induced plasma membrane damage and cell apoptosis. Therefore, Ru-Chol can serve as an efficient tool for the monitoring of morphological and physiological changes in the plasma membrane, providing assistance for drug screening and early diagnosis and treatment of diseases, such as immunodeficiency, diabetes, cirrhosis, and tumors.
Collapse
Affiliation(s)
- Qianqian Fa
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Junyu Ren
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian 116600, China
| |
Collapse
|
23
|
He Z, Chen Q, Duan X, Zhong Y, Zhu L, Mou N, Yang X, Cao Y, Han Z, He H, Wu S, Wang G, Qin X, Qu K, Zhang K, Liu J, Wu W. Reactive oxygen species-responsive nano-platform with dual-targeting and fluorescent lipid-specific imaging capabilities for the management of atherosclerotic plaques. Acta Biomater 2024; 181:375-390. [PMID: 38734284 DOI: 10.1016/j.actbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/04/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Atherosclerosis (AS), a pathological cause of cardiovascular disease, results from endothelial injury, local progressive inflammation, and excessive lipid accumulation. AS plaques rich in foam cells are prone to rupture and form thrombus, which can cause life-threatening complications. Therefore, the assessment of atherosclerotic plaque vulnerability and early intervention are crucial in reducing the mortality rates associated with cardiovascular disease. In this work, A fluorescent probe FC-TPA was synthesized, which switches the fluorescence state between protonated and non-protonated, reducing background fluorescence and enhancing imaging signal-to-noise ratio. On this basis, FC-TPA is loaded into cyclodextrin (CD) modified with phosphatidylserine targeting peptide (PTP) and coated with hyaluronic acid (HA) to construct the intelligent responsive diagnostic nanoplatform (HA@PCFT). HA@PCFT effectively targets atherosclerotic plaques, utilizing dual targeting mechanisms. HA binds strongly to CD44, while PTP binds to phosphatidylserine, enabling nanoparticle aggregation at the lesion site. ROS acts as a smart release switch for probes. Both in vitro and in vivo evaluations confirm impressive lipid-specific fluorescence imaging capabilities of HA@PCFT nanoparticles (NPs). The detection of lipid load in atherosclerotic plaque by fluorescence imaging will aid in assessing the vulnerability of atherosclerotic plaque. STATEMENT OF SIGNIFICANCE: Currently, numerous fluorescent probes have been developed for lipid imaging. However, some challenges including inadequate water solubility, nonspecific distribution patterns, and fluorescence background interference, have greatly limited their further applications in vivo. To overcome these limitations, a fluorescent molecule has been designed and synthesized, thoroughly investigating its photophysical properties through both theoretical and experimental approaches. Interestingly, this fluorescent molecule exhibits the reversible fluorescence switching capabilities, mediated by hydrogen bonds, which effectively mitigate background fluorescence interference. Additionally, the fluorescent molecules has been successfully loaded into nanocarriers functionalized with the active targeting abilities, which has significantly improved the solubility of the fluorescent molecules and reduced their nonspecific distribution in vivo for an efficient target imaging in atherosclerosis. This study provides a valuable reference for evaluating the performance of such fluorescent dyes, and offers a promising perspective on the design of the target delivery systems for atherosclerosis.
Collapse
Affiliation(s)
- Zhigui He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Qiao Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xinmei Duan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xu Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Zhiqiang Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Houhua He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; JinFeng Laboratory, Chongqing 401329, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China.
| | - Jie Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China; JinFeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
24
|
Wang BL, Zeng P, Jiang C, Chen Y, Qu J, Song J. Aromatic Alcohol-Based pH-Sensitive Chromophore with a Unique Near-Infrared Dual-Band Solvatochromic Property and Its Application as a Ratiometric Fluorescent Sensor for G-Quadruplexes. Anal Chem 2024; 96:6186-6194. [PMID: 38594223 DOI: 10.1021/acs.analchem.3c05104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Solvatochromes have gained great attention because of their unique roles in monitoring biomolecular location, interaction, and dynamics. Particularly, solvatochromes presenting both red-shifting excitation and dual-band switchable emission are in great demand yet significantly difficult to come true. In this article, we disclose an aromatic alcohol-based pH-sensitive chromophore NIR-HBT that not only presents red-shifting excitation and solvent-dependent dual-band emission but also shows high photostability and excellent brightness. To the best of our knowledge, this is the first solvatochrome to simultaneously display these optical properties. Especially, in contrast to the reported dual-band solvatochromes whose solvatochromism is achieved by affecting their excited state behaviors, the solvatochromism of NIR-HBT is realized by modulating its ground state proton dissociation, which is a new solvatochromic mechanism that has not been reported. Furthermore, based on the dual-band solvatochromism of NIR-HBT and its intrinsic binding ability to GQs, near-infrared ratiometric detection of GQs is achieved. These results indicate that NIR-HBT is an attractive solvatochrome that can be used to develop near-infrared ratiometric biosensors for biological research. More broadly, the discovered solvatochromic mechanism can also open new horizons for exploring the solvatochrome.
Collapse
Affiliation(s)
- Bo-Lin Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Pengju Zeng
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chuang Jiang
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, P. R. China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, P. R. China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
- Medical Engineering and Technology College, Xinjiang Medical University, Urumqi 830011, P. R. China
| |
Collapse
|
25
|
An K, Qiao Q, Zhou W, Jiang W, Li J, Xu Z. Stable Super-Resolution Imaging of Cell Membrane Nanoscale Subcompartment Dynamics with a Buffering Cyanine Dye. Anal Chem 2024; 96:5985-5991. [PMID: 38557031 DOI: 10.1021/acs.analchem.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Super-resolution fluorescence imaging is a crucial method for visualizing the dynamics of the cell membrane involved in various physiological and pathological processes. This requires bright fluorescent dyes with excellent photostability and labeling stability to enable long-term imaging. In this context, we introduce a buffering-strategy-based cyanine dye, SA-Cy5, designed to identify and label carbonic anhydrase IX (CA IX) located in the cell membrane. The unique feature of SA-Cy5 lies in its ability to overcome photobleaching. When the dye on the cell membrane undergoes photobleaching, it is rapidly replaced by an intact probe from the buffer pool outside the cell membrane. This dynamic replacement ensures that the fluorescence intensity on the cell membrane remains stable over time. Under the super-resolution structured illumination microscopy (SIM), the cell membrane can be continuously imaged for 60 min with a time resolution of 20 s. This extended imaging period allows for the observation of substructural dynamics of the cell membrane, including the growth and fusion of filamentous pseudopodia and the fusion of vesicles. Additionally, this buffering strategy introduces a novel approach to address the issue of poor photostability associated with the cyanine dyes.
Collapse
Affiliation(s)
- Kai An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Wu Z, Zhang C, Sha J, Jing Z, He J, Bai Y, Wu J, Zhang S, Shi P. Ultrabright Xanthene Fluorescence Probe for Mitochondrial Super-Resolution Imaging. Anal Chem 2024; 96:5134-5142. [PMID: 38507805 DOI: 10.1021/acs.analchem.3c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Mitochondria are important organelles that provide energy for cellular physiological activities. Changes in their structures may indicate the occurrence of diseases, and the super-resolution imaging of mitochondria is of great significance. However, developing fluorescent probes for mitochondrial super-resolution visualization still remains challenging due to insufficient fluorescence brightness and poor stability. Herein, we rationally synthesized an ultrabright xanthene fluorescence probe Me-hNR for mitochondria-specific super-resolution imaging using structured illumination microscopy (SIM). The rigid structure of Me-hNR provided its ultrahigh fluorescence quantum yield of up to 0.92 and ultrahigh brightness of up to 16,000. Occupying the para-position of the O atom in the xanthene skeleton by utilizing the smallest methyl group ensured its excellent stability. The study of the photophysical process indicated that Me-hNR mainly emitted fluorescence via radiative decay, and nonradiative decay and inter-system crossing were rare due to the slow nonradiative decay rate and large energy gap (ΔEst = 0.55 eV). Owing to these excellent merits, Me-hNR can specifically light up mitochondria at ultralow concentrations down to 5 nM. The unprecedented spatial resolution for mitochondria with an fwhm of 174 nm was also achieved. Therefore, this ultrabright xanthene fluorescence probe has great potential in visualizing the structural changes of mitochondria and revealing the pathogenesis of related diseases using SIM.
Collapse
Affiliation(s)
- Ziyong Wu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Chuangli Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Ziyang Jing
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Jing He
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Yang Bai
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, College of Medicine, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
27
|
Jiang W, Qiao Q, Chen J, Bao P, Tao Y, Zhang Y, Xu Z. Rna Buffering Fluorogenic Probe for Nucleolar Morphology Stable Imaging And Nucleolar Stress-Generating Agents Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309743. [PMID: 38326089 PMCID: PMC11022735 DOI: 10.1002/advs.202309743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Indexed: 02/09/2024]
Abstract
In the realm of cell research, membraneless organelles have become a subject of increasing interest. However, their ever-changing and amorphous morphological characteristics have long presented a formidable challenge when it comes to studying their structure and function. In this paper, a fluorescent probe Nu-AN is reported, which exhibits the remarkable capability to selectively bind to and visualize the nucleolus morphology, the largest membraneless organelle within the nucleus. Nu-AN demonstrates a significant enhancement in fluorescence upon its selective binding to nucleolar RNA, due to the inhibited twisted intramolecular charge-transfer (TICT) and reduced hydrogen bonding with water. What sets Nu-AN apart is its neutral charge and weak interaction with nucleolus RNA, enabling it to label the nucleolus selectively and reversibly. This not only reduces interference but also permits the replacement of photobleached probes with fresh ones outside the nucleolus, thereby preserving imaging photostability. By closely monitoring morphology-specific changes in the nucleolus with this buffering fluorogenic probe, screenings for agents are conducted that induce nucleolar stress within living cells.
Collapse
Affiliation(s)
- Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Pengjun Bao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yinchan Zhang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
28
|
Xu N, Qiao Q, Fang X, Wang G, An K, Jiang W, Li J, Xu Z. Solvatochromic Buffering Fluorescent Probe Resolves the Lipid Transport and Morphological Changes during Lipid Droplet Fusion by Super-Resolution Imaging. Anal Chem 2024; 96:4709-4715. [PMID: 38457637 DOI: 10.1021/acs.analchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The varied functions of lipid droplets, which encompass the regulation of lipid and energy homeostasis, as well as their association with the occurrence of various metabolic diseases, are intricately linked to their dynamic properties. Super-resolution imaging techniques have emerged to decipher physiological processes and molecular mechanisms on the nanoscale. However, achieving long-term dynamic super-resolution imaging faces challenges due to the need for fluorescent probes with high photostability. This paper introduces LD-CF, a "buffering probe" for imaging lipid droplet dynamics using structured illumination microscopy (SIM). The polarity-sensitive LD-CF eliminates background fluorescence with a "cyan filter" strategy, enabling wash-free imaging of lipid droplets. In the fluorescent "off" state outside droplets, the probes act as a "buffering pool", replacing photobleached probes inside droplets and enabling photostable long-term SIM imaging. With this probe, three modes of lipid droplet fusion were observed, including the discovery of fusion from large to small lipid droplets. Fluorescence intensity tracking also revealed the direction of lipid transport during the lipid droplet fusion.
Collapse
Affiliation(s)
- Ning Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Qinglong Qiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangning Fang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangying Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kai An
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenchao Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
29
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
30
|
Ruiz-Arias A, Fueyo-González F, Izquierdo-García C, Navarro A, Gutiérrez-Rodríguez M, Herranz R, Burgio C, Reinoso A, Cuerva JM, Orte A, González-Vera JA. Exchangeable Self-Assembled Lanthanide Antennas for PLIM Microscopy. Angew Chem Int Ed Engl 2024; 63:e202314595. [PMID: 37991081 DOI: 10.1002/anie.202314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023]
Abstract
Lanthanides have unique photoluminescence (PL) emission properties, including very long PL lifetimes. This makes them ideal for biological imaging applications, especially using PL lifetime imaging microscopy (PLIM). PLIM is an inherently multidimensional technique with exceptional advantages for quantitative biological imaging. Unfortunately, due to the required prolonged acquisitions times, photobleaching of lanthanide PL emission currently constitutes one of the main drawbacks of PLIM. In this study, we report a small aqueous-soluble, lanthanide antenna, 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid, PAnt, specifically designed to dynamically interact with lanthanide ions, serving as exchangeable dye aimed at mitigating photobleaching in PLIM microscopy in cellulo. Thus, self-assembled lanthanide complexes that may be photobleached during image acquisition are continuously replenished by intact lanthanide antennas from a large reservoir. Remarkably, our self-assembled lanthanide complex clearly demonstrated a significant reduction of PL photobleaching when compared to well-established lanthanide cryptates, used for bioimaging. This concept of exchangeable lanthanide antennas opens new possibilities for quantitative PLIM bioimaging.
Collapse
Affiliation(s)
- Alvaro Ruiz-Arias
- Nanoscopy-UGR Laboratory. Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
| | - Francisco Fueyo-González
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
- Current address: Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Amparo Navarro
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071, Jaén, Spain
| | - Marta Gutiérrez-Rodríguez
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
- PTI-Global Health CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Herranz
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Chiara Burgio
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
| | - Antonio Reinoso
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071, Granada, Spain
| | - Angel Orte
- Nanoscopy-UGR Laboratory. Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
| | - Juan A González-Vera
- Nanoscopy-UGR Laboratory. Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
31
|
Liu G, Zheng H, Zhou R, Li H, Dai J, Wei J, Li D, Meng X, Wang C, Lu G. Ultrabright organic fluorescent probe for quantifying the dynamics of cytosolic/nuclear lipid droplets. Biosens Bioelectron 2023; 241:115707. [PMID: 37783066 DOI: 10.1016/j.bios.2023.115707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Lipid droplets (LDs) are extremely active organelles that play a crucial role in energy metabolism, membrane formation, and the production of lipid-derived signaling molecules by regulating lipid storage and release. Nevertheless, directly limited by the lack of superior fluorescent probes, studies of LDs dynamic motion velocity have been rarely reported, especially for nuclear LDs. Herein, a novel organic fluorescent probe Lipi-Bright has been rationally developed based on bridged cyclization of distyrylbenzene. The fully ring-fused molecule structure endows the probe with high photostability. Moreover, this new fluorescent probe displays the features of excellent LDs staining specificity as well as ultrahigh fluorescence brightness. Lipi-Bright labeled LDs was dozens of times brighter than representative probes BODIPY 493/503 or Nile Red. Consequently, by in-situ time-lapse fluorescence imaging, the dynamics of LDs have been quantitatively studied. For instance, the velocities of cytosolic LDs (37 ± 15 nm/s) are found to be obviously faster than those of nuclear LDs (24 ± 4 nm/s), and both the cytosolic LDs and the nuclear LDs would be moved faster or slower depend on the various stimulations. Overall, this work providing plentiful information on LDs dynamics will greatly facilitate the in-depth investigation of lipid metabolism.
Collapse
Affiliation(s)
- Guannan Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Huanlong Zheng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Huaiyu Li
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Jinbei Wei
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Li
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xing Meng
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
32
|
Hong J, Liu Y, Tan X, Feng G. Engineering of a NIR fluorescent probe for high-fidelity tracking of lipid droplets in living cells and nonalcoholic fatty liver tissues. Biosens Bioelectron 2023; 240:115646. [PMID: 37657311 DOI: 10.1016/j.bios.2023.115646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
LDs (Lipid droplets) are key organelles for lipid metabolism and storage, which are closely related to ferroptosis and fatty liver. Due to its small size and highly dynamic nature, developing high-fidelity fluorescent probes for imaging of LDs is crucial for observing the dynamic physiological processes of LDs and investigating LDs-associated diseases. Herein, we synthesized three dicyanoisophorone-based fluorescent probes (DCIMe, DCIJ, and DCIQ) with different electron-donating groups and studied their imaging performance for LDs. The results show that DCIQ is highly polarity sensitive and can perform high-fidelity imaging for LDs, with significantly better performance than DCIMe, DCIJ, and commercial LD probe BODIPY 493/503. Based on this, DCIQ was successfully applied to real-time observe the interplays between LDs and other organelles (mitochondria, lysosomes, and endoplasmic reticulum), and to image the dynamics of LDs with fast scanning mode (0.44 s/frame) and the generation of oleic acid-induced LDs with high-fidelity. Finally, DCIQ was used to study the changes of LDs in the ferroptosis process and nonalcoholic fatty liver disease tissues. Overall, this study provided a powerful tool for high-fidelity imaging of LDs in cells and tissues.
Collapse
Affiliation(s)
- Jiaxin Hong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, China
| | - Yijia Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, China
| | - Xiaodong Tan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, China
| | - Guoqiang Feng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, 430079, China.
| |
Collapse
|
33
|
Zhang Y, Zhao H, Tang J, Nan S, Lu L, Zhang P, Wei C. Lipid droplet-specific near-infrared fluorescent probe for discriminating cancer and normal cells and diagnosing fatty liver. Bioorg Chem 2023; 140:106800. [PMID: 37643567 DOI: 10.1016/j.bioorg.2023.106800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Lipid droplets (LDs) is a newly essential organelle, which participates in carious physiological and pathological processes. LDs are considered as potential markers for disease diagnosis. Specific imaging of LDs is useful to understand their basic biological function and to diagnose diseases. Here we designed and synthesized two fluorescent probes based on the low polarity and high viscosity in LDs. The terminal probe ZH-2 exhibits lipophilicity, NIR emission, viscosity sensitivity, and LDs specificity. The probe has been successfully used for visualizing LDs metabolism, discriminating between normal and cancerous cells, and diagnosing fatty liver disease.
Collapse
Affiliation(s)
- Yuehua Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding 071002, PR China
| | - Han Zhao
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding 071002, PR China
| | - Junshuai Tang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding 071002, PR China
| | - Shiyu Nan
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding 071002, PR China
| | - Liqing Lu
- Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Pingzhu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding 071002, PR China
| | - Chao Wei
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding 071002, PR China.
| |
Collapse
|
34
|
Guo S, Li C, Lian L, Le Z, Ren Y, Liao YX, Shen J, Hou JT. Fluorescence Imaging of Diabetic Cataract-Associated Lipid Droplets in Living Cells and Patient-Derived Tissues. ACS Sens 2023; 8:3882-3891. [PMID: 37737091 DOI: 10.1021/acssensors.3c01439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Diabetic cataract (DC) surgery carries risks such as slow wound healing, macular edema, and progression of retinopathy and is faced with a deficiency of effective drugs. In this context, we proposed a protocol to evaluate the drug's efficacy using lipid droplets (LDs) as the marker. For this purpose, a fluorescent probe PTZ-LD for LDs detection is developed based on the phenothiazine unit. The probe displays polarity-dependent emission variations, i.e., lower polarity leading to stronger intensity. Especially, the probe exhibits photostability superior to that of Nile Red, a commercial LDs staining dye. Using the probe, the formation of LDs in DC-modeled human lens epithelial (HLE) cells is validated, and the interplay of LDs-LDs and LDs-others are investigated. Unexpectedly, lipid transfer between LDs is visualized. Moreover, the therapeutic efficacy of various drugs in DC-modeled HLE cells is assessed. Ultimately, more LDs were found in lens epithelial tissues from DC patients than in cataract tissues for the first time. We anticipate that this work can attract more attention to the important roles of LDs during DC progression.
Collapse
Affiliation(s)
- Shuai Guo
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Lili Lian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Zhenmin Le
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Yueping Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Ye-Xin Liao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning 530008, China
- Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, Nanning 530008, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
35
|
Samanta S, Lai K, Wu F, Liu Y, Cai S, Yang X, Qu J, Yang Z. Xanthene, cyanine, oxazine and BODIPY: the four pillars of the fluorophore empire for super-resolution bioimaging. Chem Soc Rev 2023; 52:7197-7261. [PMID: 37743716 DOI: 10.1039/d2cs00905f] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In the realm of biological research, the invention of super-resolution microscopy (SRM) has enabled the visualization of ultrafine sub-cellular structures and their functions in live cells at the nano-scale level, beyond the diffraction limit, which has opened up a new window for advanced biomedical studies to unravel the complex unknown details of physiological disorders at the sub-cellular level with unprecedented resolution and clarity. However, most of the SRM techniques are highly reliant on the personalized special photophysical features of the fluorophores. In recent times, there has been an unprecedented surge in the development of robust new fluorophore systems with personalized features for various super-resolution imaging techniques. To date, xanthene, cyanine, oxazine and BODIPY cores have been authoritatively utilized as the basic fluorophore units in most of the small-molecule-based organic fluorescent probe designing strategies for SRM owing to their excellent photophysical characteristics and easy synthetic acquiescence. Since the future of next-generation SRM studies will be decided by the availability of advanced fluorescent probes and these four fluorescent building blocks will play an important role in progressive new fluorophore design, there is an urgent need to review the recent advancements in designing fluorophores for different SRM methods based on these fluorescent dye cores. This review article not only includes a comprehensive discussion about the recent developments in designing fluorescent probes for various SRM techniques based on these four important fluorophore building blocks with special emphasis on their effective integration into live cell super-resolution bio-imaging applications but also critically evaluates the background of each of the fluorescent dye cores to highlight their merits and demerits towards developing newer fluorescent probes for SRM.
Collapse
Affiliation(s)
- Soham Samanta
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Kaitao Lai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Feihu Wu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yingchao Liu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Songtao Cai
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xusan Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhigang Yang
- Center for Biomedical Optics and Photonics & Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
36
|
Yang W, Luo D, Li G, Luo Q, Banwell MG, Chen L. Synthesis of Pyridin-1(2 H)-ylacrylates and the Effects of Different Functional Groups on Their Fluorescence. Molecules 2023; 28:6511. [PMID: 37764287 PMCID: PMC10536652 DOI: 10.3390/molecules28186511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
While fluorescent organic materials have many potential as well as proven applications and so have attracted significant attention, pyridine-olefin conjugates remain a less studied subset of such systems. Herein, therefore, we report on the development of the straightforward syntheses of pyridin-1(2H)-ylacrylates and the outcomes of a study of the effects of substituents on their fluorescent properties. Such compounds were prepared using a simple, metal-free and three-component coupling reaction involving 2-aminopyridines, sulfonyl azides and propiolates. The fluorescent properties of the ensuing products are significantly affected by the positions of substituents on the cyclic framework, with those located in central positions having the greatest impact. Electron-withdrawing groups tend to induce blue shifts while electron-donating ones cause red shifts. This work highlights the capacity that the micro-modification of fluorescent materials provides for fine-tuning their properties such that they may be usefully applied to, for example, the study of luminescent materials.
Collapse
Affiliation(s)
- Weiguang Yang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Danyang Luo
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Guanrong Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| | - Qiaoli Luo
- School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China;
| | - Martin G. Banwell
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
- Institute for Advanced and Applied Chemical Synthesis (IAACS), Jinan University, Guangzhou 510632, China
| | - Lanmei Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; (D.L.); (G.L.)
| |
Collapse
|
37
|
Hernández-Juárez C, Morales-Villafaña G, López-Casillas F, Jiménez-Sánchez A. Fluorescent Probe for in Vivo Partitioning into Dynamic Lipid Droplets Enables Monitoring of Water Permeability-Induced Edema. ACS Sens 2023; 8:3076-3085. [PMID: 37477354 DOI: 10.1021/acssensors.3c00725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Lipid droplets (LDs) are intracellular organelles found in most cell types from adipocytes to cancer cells. Although recent investigations have implicated LDs in numerous diseases, the current available methods to monitor them in vertebrate models rely on static imaging using fluorescent dyes, limiting the investigation of their rapid in vivo dynamics. Here, we report a fluorophore chemistry approach to enable in vivo LD dynamic monitoring using a Nernstian partitioning mechanism. Interestingly, the effect of atorvastatin and osmotic treatments toward LDs revealed an unprecedented dynamic enhancement. Then, using a designed molecular probe with an optimized response to hydration and LD dynamics applied to Zebrafish developing pericardial and yolk-sac edema, which represents a tractable model of a human cardiovascular disease, we also provide a unique dual method to detect disease evolution and recovery.
Collapse
Affiliation(s)
- Cinthia Hernández-Juárez
- Bioorganic Chemistry Laboratory (BioChela) at Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria. Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico
| | - Gilberto Morales-Villafaña
- Laboratory of Developmental Biology at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico
| | - Fernando López-Casillas
- Laboratory of Developmental Biology at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico
| | - Arturo Jiménez-Sánchez
- Bioorganic Chemistry Laboratory (BioChela) at Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria. Circuito Exterior s/n, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
38
|
Dai J, Wu Z, Li D, Peng G, Liu G, Zhou R, Wang C, Yan X, Liu F, Sun P, Zhou J, Lu G. Super-resolution dynamic tracking of cellular lipid droplets employing with a photostable deep red fluorogenic probe. Biosens Bioelectron 2023; 229:115243. [PMID: 36989580 DOI: 10.1016/j.bios.2023.115243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Lipid droplets (LDs) are critical organelles involved in many physiological processes in eukaryotic cells. To visualize and study LDs, particular the small/nascent LDs, the emerging super-resolution fluorescence imaging techniques with nanoscale resolution would be much more powerful in comparison to the conventional confocal/wide-field imaging techniques. However, directly limited by the availability of advanced LDs probes, super-resolution fluorescence imaging of LDs is a practically challenging task. In this context, a superior LDs fluorescent probe named Lipi-Deep Red is newly developed for structured illumination microscopy (SIM) super-resolution imaging. This fluorescent probe features with the advantages of strong deep red/NIR emission, fluorogenic character, high LDs specificity, and outstanding photostability. These advantages enable the fluorescent probe to be finely applied in SIM super-resolution imaging, e.g. time-lapse imaging (up to 1000 frames) to monitor the LDs dynamics at nanoscale (159 nm), two-color time-lapse imaging to discover the nearby contact/interaction between LDs and mitochondria. Consequently, the fusion processes of LDs are impressively visualized at a high spatial and temporal resolution. Two kinds of contact models between LDs and mitochondria (dynamic contact and stable contact) newly proposed in the recent literatures are successfully revealed.
Collapse
|
39
|
Huo Z, Cao X, Sun D, Xu W, Yang B, Xu S. Carbonized Polymer Dot Probe for Two-Photon Fluorescence Imaging of Lipid Droplets in Living Cells and Tissues. ACS Sens 2023; 8:1939-1949. [PMID: 37130122 DOI: 10.1021/acssensors.2c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a dynamic and multifunctional organelle, lipid droplets (LDs) are essential in maintaining lipid balance and transducing biological signals. LD accumulation and catabolism are closely associated with energy metabolism and cell signaling. In order to easily trace LDs in living cells, a novel carbonized polymer dot (CPD)-based fluorescent nanoprobe is reported to serve the needs of LD-targeting imaging. This probe exhibits the advantages of excellent biocompatibility, simple preparation, good lipophilicity, and high compatibility with commercial dyes. Transient absorption spectroscopy was employed to discuss the luminescence mechanism of CPDs, and the results indicate that the excellent fluorescence property and the environment-responsive feature of our CPDs are derived from the intramolecular charge transfer (ICT) characteristics and the D-π-A structure that possibly formed in CPD. This nanoprobe is available for one-photon fluorescence (OPF) and two-photon fluorescence (TPF) imaging and is also practicable for staining LDs in living/fixed cells and lipids in tissue sections. The staining process is completed within several seconds, with no washing step. The intracellular LDs involving the intranuclear LDs (nLDs) can be selectively lit up. This probe is feasible for visualizing dynamic interactions among LDs, which suggests its great potential in revealing the secret of LD metabolism. The in situ TPF spectra were analyzed to determine surrounding microenvironment according to the polarity-responsive feature of our CPDs. This work expands the applications of CPDs in biological imaging, helps design new LD-selective fluorescent probes, and has implications for studying LD-related metabolism and diseases.
Collapse
Affiliation(s)
- Zepeng Huo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiumian Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Dong Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
40
|
Liu MX, Chen XB, Liu WY, Zou GY, Yu YL, Chen S, Wang JH. Dual Functional Full-Color Carbon Dot-Based Organelle Biosensor Array for Visualization of Lipid Droplet Subgroups with Varying Lipid Composition in Living Cells. Anal Chem 2023; 95:5087-5094. [PMID: 36892999 DOI: 10.1021/acs.analchem.2c05789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In situ visualization of lipid composition diversity in lipid droplets (LDs) is essential for decoding lipid metabolism and function. However, effective probes for simultaneously localizing and reflecting the lipid composition of LDs are currently lacking. Here, we synthesized full-color bifunctional carbon dots (CDs) that can target LDs as well as respond to the nuance in internal lipid compositions with highly sensitive fluorescence signals, due to lipophilicity and surface state luminescence. Combined with microscopic imaging, uniform manifold approximation and projection, and sensor array concept, the capacity of cells to produce and maintain LD subgroups with varying lipid composition was clarified. Moreover, in oxidative stress cells, LDs with characteristic lipid compositions were deployed around mitochondria, and the proportion of LD subgroups changed, which gradually disappeared when treated with oxidative stress therapeutics. The CDs demonstrate great potential for in situ investigation of the LD subgroups and metabolic regulations.
Collapse
Affiliation(s)
- Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xiao-Bing Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wen-Ye Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Guang-Yue Zou
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
41
|
Cui WL, Wang MH, Yang YH, Wang JY. Effect of different substituents on the fluorescence properties of precursors of synthetic GFP analogues and a polarity-sensitive lipid droplet probe with AIE properties for imaging cells and zebrafish. Org Biomol Chem 2023; 21:2960-2967. [PMID: 36938592 DOI: 10.1039/d3ob00006k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The green fluorescent protein (GFP) is a purely natural specialty protein that has been widely used to design synthetic fluorescent probes. In the present work we designed and synthesized a series of fluorescent compounds akin to GFP precursors by a one-step method, and investigated the luminescence properties of the fluorescent compounds by varying the substituents. We presented the first systematic summary of the photophysical data including extinction coefficients and fluorescence quantum yields for this class of fluorescent dyes. We also carried out density functional theory (DFT) calculations for these dyes to investigate the effect of electronic effects due to different substituents. These studied optical properties may provide a reference for later probe design. More interestingly, we have developed a polarity-sensitive lipid droplet probe T-LD with AIE properties on this basis. The probe exhibited not only favorable pH stability and kinetic stability in terms of optical properties, but also solvent discolouration and polarity-sensitive properties, and was able to label intracellular lipid droplets. We successfully applied the probe for intracellular lipid droplet level monitoring and zebrafish imaging.
Collapse
Affiliation(s)
- Wei-Long Cui
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R., China. No. 3501, Daxue Road, Changqing District, Jinan, 250353, Shandong Province, PR China.
| | - Mao-Hua Wang
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R., China. No. 3501, Daxue Road, Changqing District, Jinan, 250353, Shandong Province, PR China.
| | - Yun-Hao Yang
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R., China. No. 3501, Daxue Road, Changqing District, Jinan, 250353, Shandong Province, PR China.
| | - Jian-Yong Wang
- Faculty of Light Industry, State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R., China. No. 3501, Daxue Road, Changqing District, Jinan, 250353, Shandong Province, PR China.
| |
Collapse
|
42
|
Miao L, Yan C, Chen Y, Zhou W, Zhou X, Qiao Q, Xu Z. SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells. Cell Chem Biol 2023; 30:248-260.e4. [PMID: 36889309 PMCID: PMC9990177 DOI: 10.1016/j.chembiol.2023.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
It is urgent to understand the infection mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for the prevention and treatment of COVID-19. The infection of SARS-CoV-2 starts when the receptor-binding domain (RBD) of viral spike protein binds to angiotensin-converting enzyme 2 (ACE2) of the host cell, but the endocytosis details after this binding are not clear. Here, RBD and ACE2 were genetically coded and labeled with organic dyes to track RBD endocytosis in living cells. The photostable dyes enable long-term structured illumination microscopy (SIM) imaging and to quantify RBD-ACE2 binding (RAB) by the intensity ratio of RBD/ACE2 fluorescence. We resolved RAB endocytosis in living cells, including RBD-ACE2 recognition, cofactor-regulated membrane internalization, RAB-bearing vesicle formation and transport, RAB degradation, and downregulation of ACE2. The RAB was found to activate the RBD internalization. After vesicles were transported and matured within cells, RAB was finally degraded after being taken up by lysosomes. This strategy is a promising tool to understand the infection mechanism of SARS-CoV-2.
Collapse
Affiliation(s)
- Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Chunyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116012, China
| | - Yingzhu Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116012, China
| | - Xuelian Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116012, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116012, China.
| |
Collapse
|
43
|
Li J, Qiao Q, Ruan Y, Xu N, Zhou W, Zhang G, Yuan J, Xu Z. A fluorogenic probe for SNAP-tag protein based on ESPT ratiometric signals. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
44
|
Fang H, Hu L, Chen Q, Geng S, Qiu K, Wang C, Hao M, Tian Z, Chen H, Liu L, Guan JL, Chen Y, Dong L, Guo Z, He W, Diao J. An ER-targeted "reserve-release" fluorogen for topological quantification of reticulophagy. Biomaterials 2023; 292:121929. [PMID: 36455487 DOI: 10.1016/j.biomaterials.2022.121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a "reserve-release" mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.
Collapse
Affiliation(s)
- Hongbao Fang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lianting Hu
- Medical Big Data Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangzhou, 510080, China; School of Information Management, Wuhan University, Wuhan 430072, China
| | - Qixin Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Shanshan Geng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chengjun Wang
- Sinopec Shengli Petroleum Engineering Limited Company, Dongying, 257000, China
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Huimin Chen
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Lei Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Lei Dong
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
45
|
Peng G, Dai J, Zhou R, Liu G, Liu X, Yan X, Liu F, Sun P, Wang C, Lu G. Highly Efficient Red/NIR-Emissive Fluorescent Probe with Polarity-Sensitive Character for Visualizing Cellular Lipid Droplets and Determining Their Polarity. Anal Chem 2022; 94:12095-12102. [PMID: 36006461 DOI: 10.1021/acs.analchem.2c02077] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid droplets (LDs), which are ubiquitous organelles existing in almost all eukaryotic cells, have attracted a lot of attention in the field of cell biology over the last decade. For the biological study of LDs via fluorescence imaging, the superior LD fluorescent probes with environmental polarity-sensitive character are highly desired and powerful but are very scarce. Herein, we have newly developed such a kind of fluorescent probe named LDs-Red which enables us to visualize LDs and to further reveal their polarity information. This fluorescent probe displays the advantages of intense red/near-infrared emission, high LD staining specificity, and good photostability; thus, it would be very useful for LD fluorescence imaging application. As a result, the three-dimensional confocal imaging to visualize spatial distribution of LDs and the multicolor confocal imaging to simultaneously observe LDs and other cellular organelles have been realized using this new LD fluorescent probe. Furthermore, the polarity-sensitive emission character of this probe enables us to quantitatively determine the LD polarity via spectral scan imaging. Consequently, the cancer cells (HepG2, HeLa, and Panc02) displaying lower polarity of LDs than the normal cells (L929, U251, and HT22) have been systematically demonstrated. In addition, this polarity-sensitive probe displaying shorter fluorescence wavelengths in cancer cells than in normal cells has an important and potential ability to distinguish them.
Collapse
Affiliation(s)
- Guishan Peng
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Jianan Dai
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Ri Zhou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Guannan Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science & Engineering, Jilin University, Changchun 130012, China.,International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
46
|
Hu L, Pan J, Zhang C, Yu K, Shen S, Wang Y, Shen X, Gu X, Han J, Wang H. Polarity-sensitive and lipid droplet-specific red emission fluorophore for identifying fatty liver of living mice through in vivo imaging. Biosens Bioelectron 2022; 216:114618. [DOI: 10.1016/j.bios.2022.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
|
47
|
Cao M, Zhu T, Zhao M, Meng F, Liu Z, Wang J, Niu G, Yu X. Structure Rigidification Promoted Ultrabright Solvatochromic Fluorescent Probes for Super-Resolution Imaging of Cytosolic and Nuclear Lipid Droplets. Anal Chem 2022; 94:10676-10684. [DOI: 10.1021/acs.analchem.2c00964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mingyue Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou 215123, P. R. China
| | - Ting Zhu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Mengying Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Fanda Meng
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Guangle Niu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, P. R. China
- Suzhou Research Institute, Shandong University, Suzhou 215123, P. R. China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
48
|
Kundu S, Das S, Jaiswal S, Patra A. Molecular to Supramolecular Self-Assembled Luminogens for Tracking the Intracellular Organelle Dynamics. ACS APPLIED BIO MATERIALS 2022; 5:3623-3648. [PMID: 35834795 DOI: 10.1021/acsabm.2c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the dynamics of intracellular organelles has gained immense attention due to their subtle control over diverse, complex biological processes such as cellular metabolism, energy homeostasis, and autophagy. In this context, molecular materials, including small-organic fluorescent probes and their supramolecular self-assembled nano-/microarchitectures, have been employed to explore the diverse intracellular biological events. However, only a handful of fluorescent probes and self-assembled emissive structures have been successfully used to track different organelle's movements, circumventing the issues related to water solubility and long-term photostability. Thus, the water-soluble molecular fluorescent probes and the water-dispersible supramolecular self-assemblies have emerged as promising candidates to explore the trafficking of the organelles under diverse physiological conditions. In this review, we have delineated the recent progress of fluorescent probes and their supramolecular self-assemblies for the elucidation of the dynamics of diverse cellular organelles with a special emphasis on lysosomes, lipid droplets, and mitochondria. Recent advancement in fluorescence lifetime and super-resolution microscopy imaging has also been discussed to investigate the dynamics of organelles. In addition, the fabrication of the next-generation molecular to supramolecular self-assembled luminogens for probing the variation of microenvironments during the trafficking process has been outlined.
Collapse
Affiliation(s)
- Subhankar Kundu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subhadeep Das
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shilpi Jaiswal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-Pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
49
|
Huang X, Cui W, Liu S, Liu G, Zhang Y, Zhang Z, Shen G, Li Z, Wang J, Chen Y. One-step assembly of Pd-Keggin polyoxometalates for catalytic benzothiadiazole Generation and derived cell-imaging probe application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Zhou J, Li K, Shi L, Zhang H, Wang H, Shan Y, Chen S, Yu XQ. Hydrogen-bond locked purine chromophores with high photostability for lipid droplets imaging in cells and tissues. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|