1
|
Feng YH, Lin C, Qin H, Wei GX, Yang C, Tang Y, Zhu X, Sun S, Chen TL, Liu M, Zheng H, Ji X, You Y, Wang PF. Cation-Anion Regulation Engineering in a Flame-Retardant Electrolyte toward Safe Na-Ion Batteries with Appealing Stability. J Am Chem Soc 2025. [PMID: 40309952 DOI: 10.1021/jacs.4c18326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Great electrochemical stability and intrinsic safety are of critical significance in realizing large-scale applications of Na-ion batteries (NIBs). Unfortunately, the notorious decomposition of the electrolyte and undesirable side reactions on the cathode-electrolyte interphase (CEI) pose major obstacles to the practical implementation of NIBs. Besides, the flammability of traditional carbonate-based electrolytes raises increasing safety concerns about the batteries. Herein, a flame-retardant all-fluorinated electrolyte is proposed to achieve an anion-aggregated inner solvation shell by modulating cation-anion interactions through a low-coordination number cosolvent. The more electrochemically antioxidant fluorinated solvents and anion-dominated interfacial chemistry contribute to the construction of both mechanically and chemically stable F-rich CEI. Such thin, homogeneous interphase effectively inhibits the parasitic reaction, strengthens the interfacial stability, and enables fast Na+ diffusion kinetics on the interface. When employing this electrolyte, the Na0.95Ni0.4Fe0.15Mn0.3Ti0.15O2 (NFMT) cathode delivers remarkable discharge capacity up to 169.7 mAh g-1, with stable cycling at 1C for 500 cycles. Impressively, NFMT//hard carbon pouch cells with such electrolyte also achieve a steady operation for 100 cycles at 0.5C with 86.8% capacity remaining. This study offers a practical reference for developing high-performance and flame-retardant electrolytes.
Collapse
Affiliation(s)
- Yi-Hu Feng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Chengye Lin
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, Jiangsu, P. R. China
| | - Hanwen Qin
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Guang-Xu Wei
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Chao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Yongwei Tang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Xu Zhu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Shuai Sun
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Tian-Ling Chen
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Mengting Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Hong Zheng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
| | - Xiao Ji
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, P. R. China
| | - Peng-Fei Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China
- Jiangsu Jufeng New Energy Technology Co., Ltd., Changzhou 213166, Jiangsu, P. R. China
| |
Collapse
|
2
|
He X, Ling Y, Wu Y, Lei Y, Cao D, Zhang C. Research Progress of Electrolytes and Electrodes for Lithium- and Sodium-Ion Batteries at Extreme Temperatures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412817. [PMID: 40304177 DOI: 10.1002/smll.202412817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have recently received considerable attention in electrical energy storage (EES) systems due to their sustainability, high energy density, and superior energy conversion efficiency. However, with the expansion of energy storage application scenarios, the ability of batteries to operate under extreme conditions, especially low and high temperatures, is becoming increasingly important. Therefore, extending the operating temperature of electrochemically stable and safe LIBs and SIBs has become a critical research topic. In this review, the failure mechanism of batteries under extreme conditions and at the same time the problems faced by LIBs and SIBs in electrolyte and electrode materials are discussed, and various targeted optimization strategies are proposed. Additionally, the performance of LIBs and SIBs in such environments is compared, drawing an instructive understanding. Finally, a summary and perspective are presented for improving the battery electrochemical performance at low and high temperatures, respectively. Overall, this review aims to provide design guidelines for future LIBs and SIBs with high performance under extreme conditions.
Collapse
Affiliation(s)
- Xueyang He
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhang Ling
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhan Wu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Dawei Cao
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chenglin Zhang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Yang H, Liu F, Jiang Z, Pan Z, Wei A, Jing H, Zhang W, Zheng W. Constructing a 5.2 V High-Voltage Electrolyte via TMSB Additive Enables Ultrahigh Rate Performance Graphite-Based Dual-Ion Batteries. NANO LETTERS 2025. [PMID: 40294113 DOI: 10.1021/acs.nanolett.5c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The development of carbon-based dual-ion batteries (DIBs) is essentially limited by the oxidation decomposition of the electrolyte at high voltage and the unsatisfactory stability of the cathode-electrolyte interface (CEI). Herein, to address these notorious issues, we successfully achieved a high-performance DIB by introducing the Tris(trimethylsiloxy)boron (TMSB) additive. It effectively regulated the solvation structure of the original 2 M LiPF6-solved EMC electrolyte. As a result, it not only weakens the coordination between the PF6- anion and EMC solvent but also suppresses EMC decomposition at the cathode interface. Such regulation facilitates the formation of a stable CEI layer enriched with highly ion-conductive inorganic components. Benefitting from the optimized interfacial kinetics, the graphite cathode delivers exceptional stability and rate capability, achieving 87.86% capacity retention after 2000 cycles at 5.2 V and 84.21% capacity retention at 50 C.
Collapse
Affiliation(s)
- He Yang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China
| | - Fuxi Liu
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China
| | - Zhou Jiang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China
| | - Zhongyu Pan
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China
| | - Aofei Wei
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Changbaishan Laboratory, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
4
|
Yang Y, Yao N, Gao YC, Chen X, Huang YX, Zhang S, Zhu HB, Xu L, Yao YX, Yang SJ, Liao Z, Li Z, Wen XF, Wu P, Song TL, Yao JH, Hu JK, Yan C, Huang JQ, Zhang Q. Data-Knowledge-Dual-Driven Electrolyte Design for Fast-Charging Lithium Ion Batteries. Angew Chem Int Ed Engl 2025:e202505212. [PMID: 40192310 DOI: 10.1002/anie.202505212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Electric vehicles (EVs) starve for minutes-level fast-charging lithium-ion batteries (LIBs), while the heat gathering at high-rate charging and torridity conditions has detrimental effects on electrolytes, triggering rapid battery degradation and even safety hazards. However, the current research on high-temperature fast-charging (HTFC) electrolytes is very lacking. We revolutionized the conventional paradigm of developing HTFC electrolytes integrating with high-throughput calculation, machine-learning techniques, and experimental verifications to establish a data-knowledge-dual-driven approach. Ethyl trimethylacetate was efficiently screened out based on the approach and enabled batteries to work under high temperatures with distinctly restricted side reactions. A stable and highly safe fast-charging (15-min charging to 80% capacity) cycling without Li plating was achieved over 4100 cycles at 45 °C based on 181 Wh kg-1 pouch cells, demonstrating the state-of-the-art in this field.
Collapse
Affiliation(s)
- Yi Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Nan Yao
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yu-Chen Gao
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Xiang Chen
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Yu-Xin Huang
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Shuo Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Han-Bing Zhu
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Lei Xu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Yu-Xing Yao
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Shi-Jie Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Zheng Liao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Zeheng Li
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Xue-Fei Wen
- Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, 030032, P.R. China
| | - Peng Wu
- Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, 030032, P.R. China
| | - Ting-Lu Song
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jin-Hao Yao
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Jiang-Kui Hu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Chong Yan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, 030032, P.R. China
| | - Jia-Qi Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Complex Solid State Batteries, Tsinghua Center for Green Chemical Engineering Electrification, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
- Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan, 030032, P.R. China
- Institute for Carbon Neutrality, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
5
|
Liu X, Zhang J, Li J, Peng L, Xi Z, Yun X, Li K, Yu H, Li Y, Xie W, Chen J, Zhao Q. Steric Coordinated Electrolytes for Fast-Charging and Low-Temperature Energy-Dense Lithium-Ion Batteries. Angew Chem Int Ed Engl 2025:e202502978. [PMID: 40151943 DOI: 10.1002/anie.202502978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Electrolytes are known as the dominant factors for fast-charging affordability and low-temperature capability of lithium-ion batteries (LIBs). Unfortunately, the current electrolytes can hardly simultaneously satisfy all the required characteristics, including sufficient ion transport, high oxidation/reduction interfacial stability, and fast de-solvation process over a wide-temperature range. Here, we report a solution by designing electrolyte solvents that coordinate with Li+ in steric configuration. The steric coordinated electrolytes (SCEs) can overcome the dilemma of quasi-planer coordinated ether electrolytes that has to be weakly coordinated with Li+ to avoid solvent co-intercalation towards graphite (Gr) anode, therefore enabling the merits including sufficiently dissociation of Li-salt with high ionic conductivity, low de-solvation energy, and forming electrode-electrolyte interphase with low energy barrier. As results, the SCEs with only single-salt and single-solvent (trimethoxymethane) achieve fast kinetics towards Gr anode and high oxidation stability. The LiNi0.8Co0.1Mn0.1O2 (NCM811)||Gr LIBs can reach 80% state of the charge in 6 min, and the Ah-level energy-dense pouch cells (4.5 V) retain 82.96% (500 cycles) and 85.94% (200 cycles) of initial capacities at room temperature and -20 °C, respectively. Our work deepens the fundamental understanding of Li-ion solvation structures and affords an effective approach to design sustainable fluro-free electrolytes for battery systems.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jingwei Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jia Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lianqiang Peng
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zihang Xi
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuanyu Yun
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kun Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huaqing Yu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yawen Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weiwei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qing Zhao
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Xu T, Luo S, Wu M, Amzil S, Ru Z, Yue Y, Xiao Y, Peng M, Li Y, Zuo X, Gao J, Yu Y, Zheng T, Zhao H, Cheng YJ, Xia Y. Low-Concentration Flame-Retardant PC-Based Electrolytes for Wide-Temperature and High-Voltage Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409626. [PMID: 39895248 DOI: 10.1002/smll.202409626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Propylene carbonate (PC) is regarded as a promising solvent for replacing ethylene carbonate due to its high dielectric constant and wide working temperature range. However, the co-intercalation behavior between PC and Li+ on graphite poses limitations to its further application. In this study, a weakly solvating solvent of methyl trifluoromethyl carbonate (FEMC) and lithium bis(oxalato)difluorophosphate (LiDODFP) synergistically enable reversible cycling of low-concentration PC-based electrolytes on graphite. Nuclear magnetic resonance spectroscopy and theoretical calculations indicate that FEMC partially substitutes PC in the solvation structure and interacts with PC through intermolecular forces, facilitating desolvation of Li+. Moreover, the utilization of LiDODFP enhances the solvation structure of Li+, effectively resolving the compatibility issue between graphite and PC. This electrolyte exhibits exceptional oxidative stability and nonflammability properties. At a cut-off voltage of 4.5 V, the NCM811/graphite full cell exhibits 88.86% capacity retention after 300 cycles at 25 °C, and retains 76.23% capacity after 100 cycles at 60 °C; even at -40 °C, it still delivers a capacity of 67 mAh g-1. This work presents a novel strategy for developing low-concentration, wide-temperature-applicable, high-safety, and high-voltage PC-based electrolytes.
Collapse
Affiliation(s)
- Tonghui Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
- Department of Chemistry, College of Sciences. Shanghai University, Shanghai, 200444, P. R. China
| | - Shengyao Luo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Mengqi Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Said Amzil
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Zhengzheng Ru
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Ye Yue
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Yiyao Xiao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Meilan Peng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Yinghui Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Xiuxia Zuo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Jie Gao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Ying Yu
- College of Renewable Energy, Hohai University, 1915 Hohai Ave, Changzhou, Jiangsu Province, 213200, P. R. China
| | - Tianle Zheng
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, 85748, Garching, Germany
| | - Hongbin Zhao
- Department of Chemistry, College of Sciences. Shanghai University, Shanghai, 200444, P. R. China
| | - Ya-Jun Cheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
- College of Renewable Energy, Hohai University, 1915 Hohai Ave, Changzhou, Jiangsu Province, 213200, P. R. China
| | - Yonggao Xia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang Province, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Hou X, Wang S, Wang B, Qiu Y, Jiang M, Tang Y, Zheng Q, Li X. Electrolyte Reconfiguration by Cation/Anion Cross-coordination for Highly Reversible and Facile Sodium Storage. Angew Chem Int Ed Engl 2025; 64:e202416939. [PMID: 39420475 DOI: 10.1002/anie.202416939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Hard carbon (HC) materials are promising anodes for sodium-ion batteries (SIBs) owing to low cost, high specific capacity and low working potential. However, the poor compatibility of the electrolyte with HC leads to low initial coulombic efficiency (ICE) and sluggish Na+ transport kinetics. Here, we propose an electrolyte reconfiguration strategy based on the hard and soft acid and base (HSAB) theory by introducing methyltriphenylphosphonium bromide (MTPPB). MTPPB can realize a spontaneous cross-coordination solvation structure with NaPF6 by selective affinity, synchronously optimizing the interfacial chemistry and sodium storage process. The advantages of the chemical π-π bridging of MTPP+-HC and interaction of MTPP+-PF6 - contribute to preferential and oriented reduction of PF6 -, forming a low-resistance supramolecular SEI. Additionally, Na+-Br- coordination weakens the Na+-solvent interactions, facilitating Na+ de-solvation kinetics. Consequently, the HC||Na cell achieves a superior ICE of 96.6 %, desirable rate capability under 25 °C and invisible capacity decay after 500 cycles at 1 C under -20 °C. The Na4Fe3(PO4)2P2O7||HC pouch battery displays a high ICE of 90.3 % and a 15 % increment of energy density under 25 °C. This work provides a guidance through electrolyte reconfiguration engineering for designing practical HC-based SIBs with high energy/power density and long-life span in the extended operating-temperature range.
Collapse
Affiliation(s)
- Xin Hou
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Bo Wang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yanling Qiu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Mingqin Jiang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongfu Tang
- Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Qiong Zheng
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
8
|
Liang P, Li J, Dong Y, Wang Z, Ding G, Liu K, Xue L, Cheng F. Modulating Interfacial Solvation via Ion Dipole Interactions for Low-Temperature and High-Voltage Lithium Batteries. Angew Chem Int Ed Engl 2025; 64:e202415853. [PMID: 39491040 DOI: 10.1002/anie.202415853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 11/05/2024]
Abstract
Extending the stability of ether solvents is pivotal for developing low-temperature and high-voltage lithium batteries. Herein, we elucidate the oxidation behavior of tetrahydrofuran with ternary BF4 -, PF6 - and difluoro (oxalato) borate anions and the evolution of interfacial solvation environment. Combined in situ analyses and computations illustrate that the ion dipole interactions and the subsequent formation of ether-Li+-anion complexes in electrolyte rearrange the oxidation order of solvated species, which enhances the electrochemical stability of ether solvent. Furthermore, preferential absorption of anions on the surface of high-voltage cathode favors the formation of a solvent-deficient electric double layer and an anti-oxidation cathode electrolyte interphase, inhibiting the decomposition of tetrahydrofuran. Remarkably, the formulated electrolyte based on ternary anion and tetrahydrofuran solvent endows the LiNi0.8Co0.1Mn0.1O2 cathode with considerable rate capability of 5.0 C and high capacity retention of 93.12 % after 200 cycles. At a charging voltage of 4.5 V, the Li||LiNi0.8Co0.1Mn0.1O2 cells deliver Coulombic efficiency above 99 % at both 25 and -30 °C.
Collapse
Affiliation(s)
- Ping Liang
- State Key Laboratory of Advanced Chemical Power Sources, Engineering Center on High-efficiency Energy Storage (Ministry of Education), Key Laboratory of Advanced Energy Materials (Ministry of Education), Frontiers Science Center for New Organic Matter (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinhan Li
- State Key Laboratory of Advanced Chemical Power Sources, Engineering Center on High-efficiency Energy Storage (Ministry of Education), Key Laboratory of Advanced Energy Materials (Ministry of Education), Frontiers Science Center for New Organic Matter (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yang Dong
- State Key Laboratory of Advanced Chemical Power Sources, Engineering Center on High-efficiency Energy Storage (Ministry of Education), Key Laboratory of Advanced Energy Materials (Ministry of Education), Frontiers Science Center for New Organic Matter (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhaodong Wang
- State Key Laboratory of Advanced Chemical Power Sources, Engineering Center on High-efficiency Energy Storage (Ministry of Education), Key Laboratory of Advanced Energy Materials (Ministry of Education), Frontiers Science Center for New Organic Matter (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guoyu Ding
- State Key Laboratory of Advanced Chemical Power Sources, Engineering Center on High-efficiency Energy Storage (Ministry of Education), Key Laboratory of Advanced Energy Materials (Ministry of Education), Frontiers Science Center for New Organic Matter (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kuiming Liu
- State Key Laboratory of Advanced Chemical Power Sources, Engineering Center on High-efficiency Energy Storage (Ministry of Education), Key Laboratory of Advanced Energy Materials (Ministry of Education), Frontiers Science Center for New Organic Matter (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linlin Xue
- State Key Laboratory of Advanced Chemical Power Sources, Engineering Center on High-efficiency Energy Storage (Ministry of Education), Key Laboratory of Advanced Energy Materials (Ministry of Education), Frontiers Science Center for New Organic Matter (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fangyi Cheng
- State Key Laboratory of Advanced Chemical Power Sources, Engineering Center on High-efficiency Energy Storage (Ministry of Education), Key Laboratory of Advanced Energy Materials (Ministry of Education), Frontiers Science Center for New Organic Matter (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
9
|
Feng YH, Liu M, Qi W, Liu H, Liu Q, Yang C, Tang Y, Zhu X, Sun S, Li YM, Chen TL, Xiao B, Ji X, You Y, Wang PF. Dual-Anionic Coordination Manipulation Induces Phosphorus and Boron-Rich Gradient Interphase Towards Stable and Safe Sodium Metal Batteries. Angew Chem Int Ed Engl 2025; 64:e202415644. [PMID: 39363723 DOI: 10.1002/anie.202415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
High-voltage sodium metal batteries (SMBs) present a viable pathway towards high-energy-density sodium-based batteries due to the competitive cost advantage and abundant supply of sodium resources. However, they still suffer from severe capacity decay induced by the notorious decomposition of the electrolyte under high voltage and unstable cathode/electrolyte interphase (CEI). In addition, the high reactivity of Na metal and flammable electrolytes push SMBs to their safety limits. Herein, a special dual-anion aggregated Na+ solvation structure is designed in a nonflammable trimethyl phosphate-based localized high-concentration electrolyte, and a gradient CEI enriched with phosphorus and boron compounds is formed on the cathode. This thin and stable interphase effectively suppresses the parasitic reaction, improves the interfacial stability of the cathode, and facilitates Na+ transport through the interface by the synergistic effect of multi-components, thus optimizing the cycling stability and safety of SMBs. The Na0.95Ni0.4Fe0.15Mn0.3Ti0.15O2//Na batteries employing such electrolyte provide a discharge capacity of 167.5 mAh g-1 and high retention in the capacity of 85.2 % after 800 cycles at 1 C. This approach offers a general strategy for the design of flame-retardant high-voltage electrolytes and the practical application of SMBs.
Collapse
Affiliation(s)
- Yi-Hu Feng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Mengting Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Wenli Qi
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Haoliang Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qiang Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Chao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Yongwei Tang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xu Zhu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Shuai Sun
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuan-Meng Li
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tian-Ling Chen
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Bing Xiao
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiao Ji
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Peng-Fei Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Jiangsu Jufeng New Energy Technology Co. Ltd., Changzhou, Jiangsu, 213166, P. R. China
| |
Collapse
|
10
|
Li Z, Yao YX, Zheng M, Sun S, Yang Y, Xiao Y, Xu L, Jin CB, Yue XY, Song T, Wu P, Yan C, Zhang Q. Electrolyte Design Enables Rechargeable LiFePO 4/Graphite Batteries from -80 °C to 80 °C. Angew Chem Int Ed Engl 2025; 64:e202409409. [PMID: 39008227 DOI: 10.1002/anie.202409409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast-charging capability and low-temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)-ion transport. Here we report a wide-temperature-range ester-based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film-forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three-electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of -80 °C to 80 °C and outstanding fast-charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10-min charge to 89 % (5 C) at 25 °C and provide reliable power even at -80 °C.
Collapse
Affiliation(s)
- Zeheng Li
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Yu-Xing Yao
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Mengting Zheng
- College of Chemical and Biological Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Shuo Sun
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Yi Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Ye Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Lei Xu
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Cheng-Bin Jin
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Xin-Yang Yue
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| | - Tinglu Song
- School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Peng Wu
- Shanxi Research Institute for Clean Energy, Tsinghua University, 030032, Taiyuan, China
| | - Chong Yan
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 100081, Beijing, China
- Shanxi Research Institute for Clean Energy, Tsinghua University, 030032, Taiyuan, China
| | - Qiang Zhang
- Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
11
|
Xie J, Lu Y. Designing Nonflammable Liquid Electrolytes for Safe Li-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312451. [PMID: 38688700 PMCID: PMC11733716 DOI: 10.1002/adma.202312451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Li-ion batteries are essential technologies for electronic products in the daily life. However, serious fire safety concerns that are closely associated with the flammable liquid electrolyte remains a key challenge. Tremendous effort has been devoted to designing nonflammable liquid electrolytes. It is critical to gain comprehensive insights into nonflammability design and inspire more efficient approaches for building safer Li-ion batteries. This review presents current mechanistic understanding of safety issues and discusses state-of-the-art nonflammable liquid electrolytes design for Li-ion batteries based on molecule, solvation, and battery compatibility level. Various safety test methods are discussed for reliable safety risk evaluation. Finally, the challenges and perspectives of the nonflammability design for Li-ion electrolytes are summarized.
Collapse
Affiliation(s)
- Jing Xie
- Electrochemical Energy and Interfaces LaboratoryDepartment of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Yi‐Chun Lu
- Electrochemical Energy and Interfaces LaboratoryDepartment of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
12
|
Tian H, Hong Z, Fang Z, Luo Y, Wu H, Zhao F, Li Q, Fan S, Wang J. 1,8-Diazabicyclo[5.4.0]undec-7-ene as Cyclic Ether Electrolyte Polymerization Inhibition for Wide-Temperature-Range High-Rate Lithium-ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409259. [PMID: 39513687 PMCID: PMC11727236 DOI: 10.1002/advs.202409259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/16/2024] [Indexed: 11/15/2024]
Abstract
1,3-Dioxolane (DOL), with its broad liquid phase temperature window and low Li+-solvent binding energy, stands out as an ideal solvent candidate for the wide-temperature and high-rate electrolytes. Unfortunately, DOL is susceptible to undergo ring-opening polymerization under common lithium salts, which markedly retards the reaction kinetics. This work introduces the organic basic additive 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) to effectively suppress the polymerization, thus achieving compatibility between LiFSI, LiDFOB lithium salts, and DOL. Furthermore, density functional theory (DFT) calculations are utilized to elucidate the underlying mechanisms of DOL polymerization and to clarify how DBU inhibits its polymerization. The resulting electrolyte, devoid of polymer chain formation, forms a weak solvation structure rich in anions, which demonstrates rapid ion transport kinetics in the bulk electrolyte and excellent electrochemical stability at the electrolyte-electrode interfaces (EEIs) simultaneously. When applied to the LiFePO4||graphite full cell, it exhibits exceptional wide-temperature and high-rate performance, with specific capacities reaching 101.2 mAh g -1 at room temperature (20 C), 36.9 mAh g-1 at -40 °C (0.5 C), and 118.0 mAh g-1 at 60 °C (20 C). This study significantly guides the development of wide-temperature, high-rate electrolytes.
Collapse
Affiliation(s)
- Hui Tian
- Department of Physics and Tsinghua‐Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
| | - Zixin Hong
- Department of Physics and Tsinghua‐Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
| | - Zhenhan Fang
- Department of Physics and Tsinghua‐Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
| | - Yufeng Luo
- Institute of Textiles and ClothingHong Kong Polytechnic UniversityHong KongSAR 99077China
| | - Hengcai Wu
- Department of Physics and Tsinghua‐Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
| | - Fei Zhao
- Department of Physics and Tsinghua‐Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
| | - Qunqing Li
- Department of Physics and Tsinghua‐Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
- Frontier Science Center for Quantum InformationBeijing100084China
| | - Shoushan Fan
- Department of Physics and Tsinghua‐Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
| | - Jiaping Wang
- Department of Physics and Tsinghua‐Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
| |
Collapse
|
13
|
Wang Y, Zhao Y, Zhang S, Shang L, Ni Y, Lu Y, Li Y, Yan Z, Miao Z, Chen J. Monofluorinated Phosphate with Unique P-F Bond for Nonflammable and Long-Life Lithium-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202412108. [PMID: 39382622 DOI: 10.1002/anie.202412108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Lithium-ion batteries (LIBs) with conventional carbonate-based electrolytes suffer from safety concerns in large-scale applications. Phosphates feature high flame retardancy but are incompatible with graphite anode due to their inability to form a passivated solid electrolyte interphase (SEI). Herein, we report a monofluorinated co-solvent, diethyl fluoridophosphate (DEFP), featuring a unique P-F bond that allows a trade-off between safety and electrochemical performance in LIBs. The P-F bond in DEFP weakens ion-dipole interactions with Li+ ions, lowering the desolvation barrier, and simultaneously reduces the lowest unoccupied molecular orbital (LUMO) of DEFP, promoting the formation of a robust and inorganic-rich SEI. Additionally, DEFP exhibits improved thermal stability due to both robust SEI and the inherent flame-retardant properties of the P-F bond. Consequently, the optimized DEFP-based electrolyte exhibits improved cyclability and rate capacity in LiNi0.8Co0.1Mn0.1O2||graphite full cells compared with triethyl phosphate-based electrolytes and commercial carbonate electrolytes. Even at a low E/C ratio of 3.45 g Ah-1, the 1.16 Ah NCM811||Gr pouch cells achieve a high capacity retention of 94.2 % after 200 cycles. This work provides a promising approach to decouple phosphate safety and graphite compatibility, paving the way for safer and high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Yuankun Wang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yintong Zhao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shu Zhang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Long Shang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Youxuan Ni
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yong Lu
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yixin Li
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiwei Miao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Luo H, Ji X, Zhang B, Chen M, Wu X, Zhu Y, Yu X, Wang J, Zhang H, Hong Y, Zou Y, Feng G, Qiao Y, Zhou H, Sun SG. Revealing the Dynamic Evolution of Electrolyte Configuration on the Cathode-Electrolyte Interface by Visualizing (De) Solvation Processes. Angew Chem Int Ed Engl 2024; 63:e202412214. [PMID: 39141606 DOI: 10.1002/anie.202412214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Electrolyte engineering is crucial for improving cathode electrolyte interphase (CEI) to enhance the performance of lithium-ion batteries, especially at high charging cut-off voltages. However, typical electrolyte modification strategies always focus on the solvation structure in the bulk region, but consistently neglect the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which directly influences the CEI construction. Herein, we reveal an anti-synergy effect between Li+-solvation and interfacial electric field by visualizing the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which determines the concentration of interfacial solvated-Li+. The Li+ solvation in the charging process facilitates the construction of a concentrated (Li+-solvent/anion-rich) interface and anion-derived CEI, while the repulsive force derived from interfacial electric field induces the formation of a diluted (solvent-rich) interface and solvent-derived CEI. Modifying the electrochemical protocols and electrolyte formulation, we regulate the "inflection voltage" arising from the anti-synergy effect and prolong the lifetime of the concentrated interface, which further improves the functionality of CEI architecture.
Collapse
Affiliation(s)
- Haiyan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiangyu Ji
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiaohong Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Yuanlong Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoyu Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Junhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuhao Hong
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, P. R. China
| | - Yeguo Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, P. R. China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Fujian Science & Technology Innovation Laboratory for Energy Materials of China (Tan Kah Kee Innovation Laboratory), Xiamen, 361005, P. R. China
| | - Haoshen Zhou
- Center of Energy-storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
15
|
Yang Y, Ma S, Yin H, Li Y, Chen S, Zhang Y, Li D, Dong F, Zhang Y, Xie H, Cong L. Remodeling Highly Fluorinated Electrolyte via Shielding Agent Regulation toward Practical Lithium Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404248. [PMID: 39387250 PMCID: PMC11615804 DOI: 10.1002/advs.202404248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Highly fluorinated electrolytes have proved effective in improving electrochemical stability of lithium metal batteries. However, excessive fluorination not only detrimentally impacts the electrolyte ionic conductivity, but also inevitably forms the over-fluorinated interphases with sluggish ion diffusivity. Herein, a strategy on remodeling Li+ solvation structure in highly fluorinated electrolyte aided is proposed by fluorinated amide (FDMA), which denoted as "shielding agent". Benefitting from FDMA's high donor number (DN) value (22.1), the Li+-dipole (fluoroethylene carbonate (FEC) or trans-4,5-Difluoroethylenecarbonate (DFEC)) interaction is interrupted and the participation of FDMA in primary solvation sheath fructify the solid-electrolyte interphase without scarifying the privilege of fluorinated electrolyte on interphase chemistry. Eventually, the optimal high-fluorinated electrolyte (FDMA/DFEC + 1.0 mol L-1 LiTFSI) with this unique shielding effect displays high ionic conductivity and rapid Li+ desolvation behavior, enabling Li||LiNi0.6Co0.2Mn0.2O2 (Li||NCM622) to achieve an ultralong cycle-life of 2000 cycles at 1C with 84.7% capacity retention. Even under extreme conditions (NCM622: 10 mg cm-2; electrolyte: 20 µL; Li: 50 µm), the Li||NCM622 displays excellent electrochemical performance. Additionally, 447 Wh kg-1 Li||LiNi0.8Co0.1Mn0.1O2 (Li||NCM811) pouch cells have been successfully fabricated and demonstrate an exceptional cycle-life over 150 cycles. The proposed "shielding" strategy to modulate the solvation structure paves the way for developing practical LMBs with fluorinated electrolytes.
Collapse
Affiliation(s)
- Yutong Yang
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| | - Shunchao Ma
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied Chemistry Chinese Academy of SciencesChangchun130022China
| | - Hongxing Yin
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| | - Yanan Li
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| | - Silin Chen
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| | - Yu Zhang
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| | - Dan Li
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| | - Feilong Dong
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| | - Yue Zhang
- School of Engineering, Faculty of Applied ScienceUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| | - Lina Cong
- National & Local United Engineering Laboratory for Power BatteryDepartment of ChemistryNortheast Normal UniversityChangchun130022China
| |
Collapse
|
16
|
Zheng T, Xu T, Xiong J, Xie W, Wu M, Yu Y, Xu Z, Liang Y, Liao C, Dong X, Xia Y, Cheng YJ, Xia Y, Müller-Buschbaum P. Multipoint Anionic Bridge: Asymmetric Solvation Structure Improves the Stability of Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410329. [PMID: 39476846 DOI: 10.1002/advs.202410329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Indexed: 12/28/2024]
Abstract
In this study, a novel concept of multipoint anionic bridge (MAB) is proposed and proved, which utilizes anions with different sites to connect with the asymmetric solvation structure (ASS). Compared to usual solvation structures, this study utilizes the multifunctional groups of difluoro(oxalate)borate anion (ODFB-), which can connect with Li+. By tailoring the concentration, the anion serves as a bridge between different solvated structures. The electrolyte is investigated through in situ techniques and simulations to draw correlations between different solvation structures and reaction pathways. The proposed design demonstrates remarkable high-temperature performance on both the anode and cathode sides, enabling stable cycling of LCO||graphite (0.5 Ah, 1.0 C) pouch cell for over 200 cycles at 80 °C and facilitating Li||MCMB and Li||LFP cells to deliver stable performance for 200 cycles at 100 °C. This work paves the way for the development of high-performance electrolyte systems by designing and using new multipoint anions to construct ASSs.
Collapse
Affiliation(s)
- Tianle Zheng
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Tonghui Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang, 315201, P. R. China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianwei Xiong
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Weiping Xie
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang, 315201, P. R. China
| | - Mengqi Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang, 315201, P. R. China
| | - Ying Yu
- AIE Institute, Guangdong, 510530, P. R. China
| | - Zhuijun Xu
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Yuxin Liang
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Can Liao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Xiaoli Dong
- Department of Chemistry, Institute of New Energy, Fudan University, Shanghai, 200433, P. R. China
| | - Yongyao Xia
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
- Department of Chemistry, Institute of New Energy, Fudan University, Shanghai, 200433, P. R. China
| | - Ya-Jun Cheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang, 315201, P. R. China
- College of Renewable Energy, Hohai University, Jiangsu, 213220, P. R. China
| | - Yonggao Xia
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Rd, Ningbo, Zhejiang, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peter Müller-Buschbaum
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
17
|
He S, Xiong J, Yuan H, Zhu P, Peng W, Wang X, Xu B. Anion-Tuned Fluorinated Solvation Sheath Enables Stable Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39565882 DOI: 10.1021/acsami.4c13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Continuous side reactions between conventional carbonate-based electrolytes and electrodes lead to electrolyte consumption and the growth of lithium dendrites, which always lead to serious capacity fading or safety issues, hindering the development of lithium metal batteries. Here, a nonflammable all-fluorinated electrolyte with the anion-participating Li+ solvation sheath is developed and the corresponding electrochemical properties are studied. Combining theoretical calculations and X-ray photoelectron spectroscopy analysis, ethyl 2,2,2-trifluoroethyl carbonate (ETFEC) and methyl difluoroacetate (MDFA) as cosolvents in the all-fluorinated electrolyte, PF6- anions accumulate on the lithium metal anode and preferentially reduced to obtain a LiF-rich solid electrolyte layer, inducing uniform lithium metal deposition. Additionally, the anions located in the solvation structure improve the reduction stability of the solvent, which avoids the rapid decline in battery capacity caused by the continued decomposition of the solvent. Consequently, The Li||NCM811 battery achieved initial capacity retention of 71.48% after 430 cycles at a voltage of 4.3 V, and the capacity retention reached 64.52% after 225 cycles even at a high voltage of 4.5 V. This nonflammable electrolyte can alleviate the rapid decline in battery capacity caused by solvent decomposition.
Collapse
Affiliation(s)
- Siru He
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianwei Xiong
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Huimin Yuan
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peide Zhu
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenbo Peng
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingzhu Wang
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
- The Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province and School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Baomin Xu
- Department of Materials Science and Engineering, and SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Tan S, Borodin O, Wang N, Yen D, Weiland C, Hu E. Synergistic Anion and Solvent-Derived Interphases Enable Lithium-Ion Batteries under Extreme Conditions. J Am Chem Soc 2024; 146:30104-30116. [PMID: 39449647 DOI: 10.1021/jacs.4c07806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Lithium-ion batteries (LIBs) face increasingly stringent demands as their application expands into new areas, including extreme temperatures and fast charging. To meet these demands, the electrolyte should enable fast lithium-ion transport and form stable interphases on electrodes simultaneously. In practice, however, improving one aspect often compromises another. For instance, the trend toward electrolytes forming anion-derived interphases typically reduces transport efficiency due to weak-solvating solvents. We propose that instead of relying on anions to form the interphase, leveraging both solvents and anions to form interphases can potentially lead to a balancing point between robust interphase formation and effective ion transport. Guided by this design principle, 2,2-difluoroethyl ethyl carbonate (DFDEC) was identified as the promising solvent. With the new electrolyte using DFDEC as the major solvent and lithium bis(fluorosulfonyl) imide (LiFSI) as the salt, graphite||LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells are capable of fast charging and demonstrate long-term cycling stability with a cutoff voltage of 4.5 V. Notably, the battery shows a capacity retention of 84.3% after 500 cycles with an average Coulombic efficiency (CE) as high as 99.93%. This new electrolyte also enables stable battery cycling across a wide temperature range (-20 to 60 °C), with excellent capacity retention.
Collapse
Affiliation(s)
- Sha Tan
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Oleg Borodin
- Battery Science Branch, Army Research Directorate, DEVCOM Army Research Laboratory, Adelphi, Massachusetts 20783, United States
| | - Nan Wang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dean Yen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Conan Weiland
- Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
19
|
Zou Y, Zhang B, Luo H, Yu X, Yang M, Zheng Q, Wang J, Jiao C, Chen Y, Zhang H, Xue J, Kuai X, Liao HG, Ouyang C, Ning Z, Qiao Y, Sun SG. Electrolyte Solvation Engineering Stabilizing Anode-Free Sodium Metal Battery With 4.0 V-Class Layered Oxide Cathode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410261. [PMID: 39344860 DOI: 10.1002/adma.202410261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Anode-free sodium metal batteries (AFSMBs) are regarded as the "ceiling" for current sodium-based batteries. However, their practical application is hindered by the unstable electrolyte and interfacial chemistry at the high-voltage cathode and anode-free side, especially under extreme temperature conditions. Here, an advanced electrolyte design strategy based on electrolyte solvation engineering is presented, which shapes a weakly solvating anion-stabilized (WSAS) electrolyte by balancing the interaction between the Na+-solvent and Na+-anion. The special interaction constructs rich contact ion pairs (CIPs) /aggregates (AGGs) clusters at the electrode/electrolyte interface during the dynamic solvation process which facilitates the formation of a uniform and stable interfacial layer, enabling highly stable cycling of 4.0 V-class layered oxide cathode from -40 °C to 60 °C and excellent reversibility of Na plating/stripping with an ultrahigh average CE of 99.89%. Ultimately, industrial multi-layer anode-free pouch cells using the WSAS electrolyte achieve 80% capacity remaining after 50 cycles and even deliver 74.3% capacity at -30 °C. This work takes a pivotal step for the further development of high-energy-density Na batteries.
Collapse
Affiliation(s)
- Yeguo Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Baodan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haiyan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoyu Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Meiling Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qizheng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Junhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chenyang Jiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yilong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jiyuan Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoxiao Kuai
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Chuying Ouyang
- Prof. C. Ouyang, Dr. Z. Ning, Fujian Science & Technology Innovation Laboratory for Energy Devices (21C-Lab), Contemporary Amperex Technology Co., Limited (CATL), Ningde, 352100, P. R. China
- Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Ziyang Ning
- Prof. C. Ouyang, Dr. Z. Ning, Fujian Science & Technology Innovation Laboratory for Energy Devices (21C-Lab), Contemporary Amperex Technology Co., Limited (CATL), Ningde, 352100, P. R. China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| |
Collapse
|
20
|
Hong Z, Tian H, Fang Z, Luo Y, Wu H, Zhao F, Yu W, Liu C, Li Q, Fan S, Wang J. Breaking the Temperature Limit of Lithium-Ion Batteries With Carbon Nanotube-Based Electrodes and "Constructive Alliance" Electrolyte Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401735. [PMID: 39126177 DOI: 10.1002/smll.202401735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Indexed: 08/12/2024]
Abstract
Lithium-ion batteries (LIBs) are paramount in energy storage in consumer electronics and electric vehicles. However, a narrow operating temperature range severely constrains their evolution. In this study, a wide-temperature operating LIB system is constructed utilizing carbon nanotube (CNT)-based electrodes and a "constructive alliance" electrolyte. The unique microstructure of the CNT current collector, with high electrical and thermal conductivity, accelerates the reaction kinetics of active materials at subzero temperatures and optimizes the thermal management of the entire electrode at elevated temperatures. Furthermore, a strategy employing the "constructive alliance" electrolyte is proposed, demonstrating that a simple combination of commercially available electrolytes can enhance resilience to harsh thermal conditions. Molecular dynamics simulations and density functional theory calculations reveal that the hybrid electrolyte predominantly adopts aggregate solvation structures and possesses low Li+ desolvation barriers regardless of thermal variations. Consequently, the assembled Li4Ti5O12//LiCoO2 full cell, with a negative/positive electrode material ratio of 1.2, exhibits outstanding electrochemical performance in the wide temperature range of -40 and 60 °C. This innovative strategy overcomes challenges in wide-temperature electrolyte research and offers promise for next-generation wide-temperature LIBs.
Collapse
Affiliation(s)
- Zixin Hong
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Hui Tian
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Zhenhan Fang
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Yufeng Luo
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hengcai Wu
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Fei Zhao
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Wei Yu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Changhong Liu
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Qunqing Li
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| | - Shoushan Fan
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Jiaping Wang
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
- Frontier Science Center for Quantum Information, Beijing, 100084, China
| |
Collapse
|
21
|
Yang DY, Du JY, Yu Y, Fan YQ, Huang G, Zhang XB, Zhang HJ. Stable Lithium Oxygen Batteries Enabled by Solvent-diluent Interaction in N,N-dimethylacetamide-based Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202403432. [PMID: 39023052 DOI: 10.1002/anie.202403432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
In the pursuit of next-generation ultrahigh-energy-density Li-O2 batteries, it is imperative to develop an electrolyte with stability against the strong oxidation environments. N,N-dimethylacetamide (DMA) is a recognized solvent known for its robust resistance to the highly reactive reduced oxygen species, yet its application in Li-O2 batteries has been constrained due to its poor compatibility with the Li metal anode. In this study, a rationally selected hydrofluoroether diluent, methyl nonafluorobutyl ether (M3), has been introduced into the DMA-based electrolyte to construct a localized high concentration electrolyte. The stable -CH3 and C-F bonds within the M3 structure could not only augment the fundamental properties of the electrolyte but also fortify its resilience against attacks from O2 - and 1O2. Additionally, the strong electron-withdrawing groups (-F) presented in the M3 diluent could facilitate coordination with the electron-donating groups (-CH3) in the DMA solvent. This intermolecular interaction promotes more alignments of Li+-anions with a small amount of M3 addition, leading to the construction of an anion-derived inorganic-rich SEI that enhances the stability of the Li anode. As a result, the Li-O2 batteries with the DMA/M3 electrolyte exhibit superior cycling performance at both 30 °C (359th) and -10 °C (120th).
Collapse
Affiliation(s)
- Dong-Yue Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Yi Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Yu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, Ontario, N2 L 3G1, Canada
| | - Ying-Qi Fan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hong-Jie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Wang B, Wang J, Zhang L, Chu PK, Yu XF, He R, Bian S. Adsorptive Shield Derived Cathode Electrolyte Interphase Formation with Impregnation on LiNi 0.8Mn 0.1Co 0.1O 2 Cathode: A Mechanism-Guiding-Experiment Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50747-50756. [PMID: 39276333 DOI: 10.1021/acsami.4c10208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Lithium difluoro(oxalate) borate (LiDFOB) contributes actively to cathode-electrolyte interface (CEI) formation, particularly safeguarding high-voltage cathode materials. However, LiNixCozMnyO2-based batteries benefit from the LiDFOB and its derived CEI only with appropriate electrolyte design while a comprehensive understanding of the underlying interfacial mechanisms remains limited, which makes the rational design challenging. By performing ab initio calculations, the CEI evolution on the LiNi0.8Co0.1Mn0.1O2 has been investigated. The findings demonstrate that LiDFOB readily adheres to the cathode via semidissociative configuration, which elevates the Li deintercalation voltage and remains stable in solvent. Electrochemical processes are responsible for the subsequent cleavage of B-F and B-O bonds, while the B-F bond cleavage leading to LiF formation is dominant in the presence of adequate Li+ with a substantial Li intercalation energy. Thus, impregnation is established as an effective method to regulate the conversion channel for efficient CEI formation, which not only safeguards the cathode's structure but also counters electrolyte decomposition. Consequently, in comparison to utilizing LiDFOB as an electrolyte additive, employing LiDFOB impregnation in the NCM811/Li cell yields significantly improved cycling stability for over 2000 h.
Collapse
Affiliation(s)
- Binli Wang
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianping Wang
- Intelligent Automobile Industry-Education Integration Innovation Center, Dongguan Polytechnic, Dongguan 523808, China
| | - Lei Zhang
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rui He
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shi Bian
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
23
|
Hou W, Han B, Wang C, Tang D, Chen Y, Ouyang M, Liu J, Zhang C. Fluoridation of D-A Ambipolar Polymers to Accelerate Ion Migration toward High-Performance Symmetric Dual-Ion Energy Storage Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51504-51511. [PMID: 39257245 DOI: 10.1021/acsami.4c10390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dual-ion electrochemical energy storage devices have attracted much attention due to their cost effectiveness and high operating voltage. Electrochemical properties such as the specific capacity of dual-ion energy storage devices are closely related to ion migration. However, the ion migration of dual-ion energy storage devices is slow, especially the cation migration, resulting in limited discharge capacity and poor rate performance. In this study, fluorinated and nonfluorinated ambipolar conductive polymers were prepared as electrode materials. The effects of fluorination on aggregation and solvent were studied as well as its role in improving ion migration. The results show that fluorination can increase the force of fluorination on the solvent, reduce the level of binding of the solvent to the ion, and regulate the aggregation state. Compared with the unfluorinated polymer of PEPOPE, the ion migration and electrochemical kinetics of PEPFEP were significantly improved, and the PEPFPE (71 F/cm3) has a higher negative specific capacity than PEPOPE (24 F/cm3) at a current density of 5 A/cm3.
Collapse
Affiliation(s)
- Weiwei Hou
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bingbing Han
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chenze Wang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dianyu Tang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yusheng Chen
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mi Ouyang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Junlei Liu
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng Zhang
- International Science and Technology Cooperation Base on Energy Materials and Applications, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
24
|
Qin T, Yang H, Wang L, Xue W, Yao N, Li Q, Chen X, Yang X, Yu X, Zhang Q, Li H. Molecule Design for Non-Aqueous Wide-Temperature Electrolytes via the Intelligentized Screening Method. Angew Chem Int Ed Engl 2024; 63:e202408902. [PMID: 38934230 DOI: 10.1002/anie.202408902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Operating a lithium-ion battery (LIB) in a wide temperature range is essential for ensuring a stable electricity supply amidst fluctuating temperatures caused by climate or terrain changes. Electrolyte plays a pivotal role in determining the temperature durability of batteries. However, specialized electrolytes designed for either low or high temperatures typically possess distinct features. Therefore, wide-temperature electrolytes (WTEs) are necessary as they encompass a combination of diverse properties, which complicates the clear instruction of WTE design. Here we represent an artificial intelligence (Al)-assisted workflow of WTE design through stepwise parameterizations and calculations. Linear mono-nitriles are identified as ideal wide-liquidus-range solvents that can "softly" solvate lithium ions by weak interactions. In addition, the explainable modules revealed the halogenoid similarity of cyanide as fluorine on the electrolyte properties (e.g. boiling point and dielectric constant). With the further introduction of an ether bond, 3-methoxypropionitrile (MPN) has been eventually determined as a main electrolyte solvent, enabling the battery operation from -60 to 120 °C. Particularly, a LiCoO2/Li cell using the proposed WTE can realize stable cycling with capacity retention reaching 72.3 % after 50 cycles under a high temperature of 100 °C.
Collapse
Affiliation(s)
- Tian Qin
- Beijing Frontier Research Center on Clean Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoyi Yang
- Beijing Frontier Research Center on Clean Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Wang
- Beijing Frontier Research Center on Clean Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiran Xue
- Beijing Frontier Research Center on Clean Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Quan Li
- Beijing Frontier Research Center on Clean Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiukang Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, National Base for International Science & Technology Cooperation, Hunan Province Key Laboratory for Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Hunan, Xiangtan, 411105, China
| | - Xiqian Yu
- Beijing Frontier Research Center on Clean Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hong Li
- Beijing Frontier Research Center on Clean Energy, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Liu X, Zhang J, Yun X, Li J, Yu H, Peng L, Xi Z, Wang R, Yang L, Xie W, Chen J, Zhao Q. Anchored Weakly-Solvated Electrolytes for High-Voltage and Low-Temperature Lithium-ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202406596. [PMID: 38872354 DOI: 10.1002/anie.202406596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Electrolytes endowed with high oxidation/reduction interfacial stability, fast Li-ion desolvation process and decent ionic conductivity over wide temperature region are known critical for low temperature and fast-charging performance of energy-dense batteries, yet these characteristics are rarely satisfied simultaneously. Here, we report anchored weakly-solvated electrolytes (AWSEs), that are designed by extending the chain length of polyoxymethylene ether electrolyte solvent, can achieve the above merits at moderate salt concentrations. The -O-CH2-O- segment in solvent enables the weak four-membered ring Li+ coordination structure and the increased number of segments can anchor the solvent by Li+ without largely sacrificing the ionic dissociation ability. Therefore, the single salt/single solvent AWSEs enable solvent co-intercalation-free behavior towards graphite (Gr) anode and high oxidation stability towards high-nickel cathode (LiNi0.8Co0.1Mn0.1O2-NCM811), as well as the formation of inorganic rich electrode/electrolyte interphase on both of them due to the anion-rich solvation shells. The capacity retention of Gr||NCM811 Ah-class pouch cell can reach 70.85 % for 1000 cycles at room-temperature and 75.86 % for 400 cycles at -20 °C. This work points out a promising path toward the molecular design of electrolyte solvents for high-energy/power battery systems that are adaptive for extreme conditions.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jingwei Zhang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuanyu Yun
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jia Li
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huaqing Yu
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lianqiang Peng
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zihang Xi
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ruihan Wang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ling Yang
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jun Chen
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Qing Zhao
- State Key Laboratory of Advanced Chemical Power Sources, Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
26
|
Wang Z, He Z, Wang Z, Yang J, Long K, Wu Z, Zhou G, Mei L, Chen L. A nitrile solvent structure induced stable solid electrolyte interphase for wide-temperature lithium-ion batteries. Chem Sci 2024; 15:13768-13778. [PMID: 39211494 PMCID: PMC11352275 DOI: 10.1039/d4sc03890h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Lithium-ion batteries (LIBs) are extensively employed in various fields. Nonetheless, LIBs utilizing ethylene carbonate (EC)-based electrolytes incur capacity degradation in a wide-temperature range, which is attributable to the slow Li+ transfer kinetics at low temperatures and solvent decomposition during high-rate cycling at high temperatures. Here, we designed a novel electrolyte by substituting nitrile solvents for EC, characterized by low de-solvation energy and high ionic conductivity. The correlation between the carbon chain length of nitrile solvents with reduction stability and the Li+-solvated coordination was investigated. The results revealed that the valeronitrile (VN) solvent displayed an enhanced lowest unoccupied molecular orbital energy level and low de-solvation energy, which helped construct robust SEI interfacial layers and improved kinetics of interfacial ion transfer in wide-temperature LIBs. The VN-based electrolyte employed in graphite‖NCM523 pouch cells achieved a discharge capacity of 89.84% at a 20C rate at room temperature. Meanwhile, the cell exhibited 3C rate cycling stability even at a high temperature of 55 °C. Notably, the VN-based electrolyte exhibited a high ionic conductivity of 1.585 mS cm-1 at -50 °C. The discharge capacity of pouch cells retained 75.52% and 65.12% of their room temperature capacity at -40 °C and -50 °C, respectively. Wide-temperature-range batteries with VN-based electrolytes have the potential to be applied in various extreme environments.
Collapse
Affiliation(s)
- Zhongming Wang
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Zhiyuan He
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Zhongsheng Wang
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Jixu Yang
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Kecheng Long
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Zhibin Wu
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Gang Zhou
- School of Materials Science and Engineering, Dongguan University of Technology Dongguan 523000 P. R. China
| | - Lin Mei
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
- National Energy Metal Resources and New Materials Key Laboratory, Central South University Changsha 410083 P. R. China
| |
Collapse
|
27
|
Gu M, Zhou X, Yang Q, Chu S, Li L, Li J, Zhao Y, Hu X, Shi S, Chen Z, Zhang Y, Chou S, Lei K. Anion-Reinforced Solvation Structure Enables Stable Operation of Ether-Based Electrolyte in High-Voltage Potassium Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202402946. [PMID: 38696279 DOI: 10.1002/anie.202402946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Electrolytes with anion-dominated solvation are promising candidates to achieve dendrite-free and high-voltage potassium metal batteries. However, it's challenging to form anion-reinforced solvates at low salt concentrations. Herein, we construct an anion-reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic-rich and stable electrode-electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0 % after 150 cycles with a high cut-off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5 % after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether-based high-voltage electrolytes.
Collapse
Affiliation(s)
- Mengjia Gu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xunzhu Zhou
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Qian Yang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shenxu Chu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lin Li
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxin Li
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yuqing Zhao
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xing Hu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shuo Shi
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhuo Chen
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yu Zhang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shulei Chou
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Kaixiang Lei
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
28
|
Che C, Wu F, Li Y, Li Y, Li S, Wu C, Bai Y. Challenges and Breakthroughs in Enhancing Temperature Tolerance of Sodium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402291. [PMID: 38635166 DOI: 10.1002/adma.202402291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Lithium-based batteries (LBBs) have been highly researched and recognized as a mature electrochemical energy storage (EES) system in recent years. However, their stability and effectiveness are primarily confined to room temperature conditions. At temperatures significantly below 0 °C or above 60 °C, LBBs experience substantial performance degradation. Under such challenging extreme contexts, sodium-ion batteries (SIBs) emerge as a promising complementary technology, distinguished by their fast dynamics at low-temperature regions and superior safety under elevated temperatures. Notably, developing SIBs suitable for wide-temperature usage still presents significant challenges, particularly for specific applications such as electric vehicles, renewable energy storage, and deep-space/polar explorations, which requires a thorough understanding of how SIBs perform under different temperature conditions. By reviewing the development of wide-temperature SIBs, the influence of temperature on the parameters related to battery performance, such as reaction constant, charge transfer resistance, etc., is systematically and comprehensively analyzed. The review emphasizes challenges encountered by SIBs in both low and high temperatures while exploring recent advancements in SIB materials, specifically focusing on strategies to enhance battery performance across diverse temperature ranges. Overall, insights gained from these studies will drive the development of SIBs that can handle the challenges posed by diverse and harsh climates.
Collapse
Affiliation(s)
- Chang Che
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Yu Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Shuqiang Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| |
Collapse
|
29
|
Huang A, Ma Z, Kumar P, Liang H, Cai T, Zhao F, Cao Z, Cavallo L, Li Q, Ming J. Low-Temperature and Fast-Charging Lithium Metal Batteries Enabled by Solvent-Solvent Interaction Mediated Electrolyte. NANO LETTERS 2024. [PMID: 38856230 DOI: 10.1021/acs.nanolett.4c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Lithium metal batteries utilizing lithium metal as the anode can achieve a greater energy density. However, it remains challenging to improve low-temperature performance and fast-charging features. Herein, we introduce an electrolyte solvation chemistry strategy to regulate the properties of ethylene carbonate (EC)-based electrolytes through intermolecular interactions, utilizing weakly solvated fluoroethylene carbonate (FEC) to replace EC, and incorporating the low-melting-point solvent 1,2-difluorobenzene (2FB) as a diluent. We identified that the intermolecular interaction between 2FB and solvent can facilitate Li+ desolvation and lower the freezing point of the electrolyte effectively. The resulting electrolyte enables the LiNi0.8Co0.1Mn0.1O2||Li cell to operate at -30 °C for more than 100 cycles while delivering a high capacity of 154 mAh g-1 at 5.0C. We present a solvation structure and interfacial model to analyze the behavior of the formulated electrolyte composition, establishing a relationship with cell performance and also providing insights for the electrolyte design under extreme conditions.
Collapse
Affiliation(s)
- Akang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zheng Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Pushpendra Kumar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Honghong Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Cai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Cao
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qian Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Ming
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
30
|
Ouyang D, Yang L, Chen D, Yin J, Li Y, Zhu H, Yu F, Yin J. Ethylenediamine modulate bonding interaction of solvation structure for wide-temperature aqueous ammonium-ion capacitor. J Colloid Interface Sci 2024; 663:1028-1034. [PMID: 38452544 DOI: 10.1016/j.jcis.2024.02.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Aqueous ammonium-ion capacitors (AAICs) are promising for large-scale energy storage owing to low cost and inherent safety, while their practical applications are suffered from performance under extreme environment. Low ion conductivity and high viscosity, as well as freezing of the electrolyte, are the main issues for the electrochemical performance failure at low temperatures. In this work, the AAICs were assembled with commercial carbon electrodes and antifreeze electrolyte, where the electrolyte with a freezing point lower than -115 °C is developed by using Ethylenediamine (EDA) as an additive with a volume ratio of 50 % to an aqueous solution of 0.5 M NH4Cl. This antifreeze electrolyte displays a superior ionic conductivity of 8.58 mS cm-1 and a weaker viscosity of 8.16 mPa s at low temperatures. Furthermore, the spectroscopic investigations and molecular dynamics (MD) simulations demonstrate that the addition of EDA can break the hydrogen bonds of water molecules and modulate the solvation structure. Therefore, the assembled AAICs with electrolytes of 0.5 M NH4Cl (50 %-EDA) could be operated at wide-temperature conditions steadily, exhibiting excellent capacity, rate performance and good cycling stability. This work provides a simple and effective strategy for wide-temperature energy storage devices.
Collapse
Affiliation(s)
- Dandan Ouyang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Liuqian Yang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dongxu Chen
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jian Yin
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yongsheng Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Hui Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
31
|
Wu X, Piao Z, Zhang M, Lu G, Li C, Jia K, Zhuang Z, Gao R, Zhou G. In Situ Construction of a Multifunctional Interphase Enabling Continuous Capture of Unstable Lattice Oxygen Under Ultrahigh Voltages. J Am Chem Soc 2024; 146:14036-14047. [PMID: 38725301 DOI: 10.1021/jacs.4c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The use of nickel-rich layered materials as cathodes can boost the energy density of lithium batteries. However, developing a safe and long-term stable nickel-rich layered cathode is challenging primarily due to the release of lattice oxygen from the cathode during cycling, especially at high voltages, which will cause a series of adverse effects, leading to battery failure and thermal runaway. Surface coating is often considered effective in capturing active oxygen species; however, its process is rather complicated, and it is difficult to maintain intact on the cathode with large volume changes during cycling. Here, we propose an in situ construction of a multifunctional cathode/electrolyte interphase (CEI), which is easy to prepare, repairable, and, most importantly, capable of continuously capturing active oxygen species during the entire life span. This unique protective mechanism notably improves the cycling stability of Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) cells at rigorous working conditions, including ultrahigh voltage (4.8 V), high temperature (60 °C), and fast charging (10 C). An industrial 1 A h graphite||NCM811 pouch cell achieved stable operation of 600 cycles with a capacity retention of 79.6% at 4.4 V, exhibiting great potential for practical use. This work provides insightful guidance for constructing a multifunctional CEI to bypass limitations associated with high-voltage operations of nickel-rich layered cathodes.
Collapse
Affiliation(s)
- Xinru Wu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zhihong Piao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Mengtian Zhang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Gongxun Lu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Chuang Li
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Kai Jia
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Zhaofeng Zhuang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
32
|
Jiang M, Li T, Qiu Y, Hou X, Lin H, Zheng Q, Li X. Electrolyte Design with Dual -C≡N Groups Containing Additives to Enable High-Voltage Na 3V 2(PO 4) 2F 3-Based Sodium-Ion Batteries. J Am Chem Soc 2024; 146:12519-12529. [PMID: 38666300 DOI: 10.1021/jacs.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Na3V2(PO4)2F3 is recognized as a promising cathode for high energy density sodium-ion batteries due to its high average potential of ∼3.95 V (vs Na/Na+). A high-voltage-resistant electrolyte is of high importance due to the long duration of 4.2 V (vs Na/Na+) when improving cyclability. Herein, a targeted electrolyte containing additives with two -C≡N groups like succinonitrile has been designed. In this design, one -C≡N group is accessible to the solvation sheath and enables the other -C≡N in dinitrile being exposed and subsequently squeezed into the electric double layer. Then, the squeezed -C≡N group is prone to a preferential adsorption on the electrode surface prior to the exposed -CH2/-CH3 in Na+-solvent and oxidized to construct a stable and electrically insulating interface enriched CN-/NCO-/Na3N. The Na3V2(PO4)2F3-based sodium-ion batteries within a high-voltage of 2-4.3 V (vs Na/Na+) can accordingly achieve an excellent cycling stability (e.g., 95.07% reversible capacity at 1 C for 1,5-dicyanopentane and 98.4% at 2 C and 93.0% reversible capacity at 5 C for succinonitrile after 1000 cycles). This work proposes a new way to design high-voltage electrolytes for high energy density sodium-ion batteries.
Collapse
Affiliation(s)
- Mingqin Jiang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yanling Qiu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xin Hou
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongzhen Lin
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiong Zheng
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
33
|
Sui Y, Scida AM, Li B, Chen C, Fu Y, Fang Y, Greaney PA, Osborn Popp TM, Jiang DE, Fang C, Ji X. The Influence of Ions on the Electrochemical Stability of Aqueous Electrolytes. Angew Chem Int Ed Engl 2024; 63:e202401555. [PMID: 38494454 DOI: 10.1002/anie.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
The electrochemical stability window of water is known to vary with the type and concentration of dissolved salts. However, the underlying influence of ions on the thermodynamic stability of aqueous solutions has not been fully understood. Here, we investigated the electrolytic behaviors of aqueous electrolytes as a function of different ions. Our findings indicate that ions with high ionic potentials, i.e., charge density, promote the formation of their respective hydration structures, enhancing electrolytic reactions via an inductive effect, particularly for small cations. Conversely, ions with lower ionic potentials increase the proportion of free water molecules-those not engaged in hydration shells or hydrogen-bonding networks-leading to greater electrolytic stability. Furthermore, we observe that the chemical environment created by bulky ions with lower ionic potentials impedes electrolytic reactions by frustrating the solvation of protons and hydroxide ions, the products of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. We found that the solvation of protons plays a more substantial role than that of hydroxide, which explains a greater shift for OER than for HER, a puzzle that cannot be rationalized by the notion of varying O-H bond strengths of water. These insights will help the design of aqueous systems.
Collapse
Affiliation(s)
- Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - Alexis M Scida
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - Yanke Fu
- Materials Science and Engineering, University of California Riverside, Riverside, CA 92521, United States
| | - Yanzhao Fang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - P Alex Greaney
- Materials Science and Engineering, University of California Riverside, Riverside, CA 92521, United States
| | - Thomas M Osborn Popp
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, United States
| |
Collapse
|
34
|
Wang YF, Song LN, Zheng LJ, Wang Y, Wu JY, Xu JJ. Reversible Carbon Dioxide/Lithium Oxalate Regulation toward Advanced Aprotic Lithium Carbon Dioxide Battery. Angew Chem Int Ed Engl 2024; 63:e202400132. [PMID: 38409997 DOI: 10.1002/anie.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Li-CO2 batteries have received significant attention owing to their advantages of combining greenhouse gas utilization and energy storage. However, the high kinetic barrier between gaseous CO2 and the Li2CO3 product leads to a low operating voltage (<2.5 V) and poor energy efficiency. In addition, the reversibility of Li2CO3 has always been questioned owing to the introduction of more decomposition paths caused by its higher charging plateau. Here, a novel "trinity" Li-CO2 battery system was developed by synergizing CO2, soluble redox mediator (2,2,6,6-tetramethylpiperidoxyl, as TEM RM), and reduced graphene oxide electrode to enable selective conversion of CO2 to Li2C2O4. The designed Li-CO2 battery exhibited an output plateau reaching up to 2.97 V, higher than the equilibrium potential of 2.80 V for Li2CO3, and an ultrahigh round-trip efficiency of 97.1 %. The superior performance of Li-CO2 batteries is attributed to the TEM RM-mediated preferential growth mechanism of Li2C2O4, which enhances the reaction kinetics and rechargeability. Such a unique design enables batteries to cope with sudden CO2-deficient environments, which provides an avenue for the rationally design of CO2 conversion reactions and a feasible guide for next-generation Li-CO2 batteries.
Collapse
Affiliation(s)
- Yi-Feng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Li-Na Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jia-Yi Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
35
|
Wang J, Luo J, Wu H, Yu X, Wu X, Li Z, Luo H, Zhang H, Hong Y, Zou Y, Cao S, Qiao Y, Sun SG. Visualizing and Regulating Dynamic Evolution of Interfacial Electrolyte Configuration during De-solvation Process on Lithium-Metal Anode. Angew Chem Int Ed Engl 2024; 63:e202400254. [PMID: 38441399 DOI: 10.1002/anie.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 03/21/2024]
Abstract
Acting as a passive protective layer, solid-electrolyte interphase (SEI) plays a crucial role in maintaining the stability of the Li-metal anode. Derived from the reductive decomposition of electrolytes (e.g., anion and solvent), the SEI construction presents as an interfacial process accompanied by the dynamic de-solvation process during Li-metal plating. However, typical electrolyte engineering and related SEI modification strategies always ignore the dynamic evolution of electrolyte configuration at the Li/electrolyte interface, which essentially determines the SEI architecture. Herein, by employing advanced electrochemical in situ FT-IR and MRI technologies, we directly visualize the dynamic variations of solvation environments involving Li+-solvent/anion. Remarkably, a weakened Li+-solvent interaction and anion-lean interfacial electrolyte configuration have been synchronously revealed, which is difficult for the fabrication of anion-derived SEI layer. Moreover, as a simple electrochemical regulation strategy, pulse protocol was introduced to effectively restore the interfacial anion concentration, resulting in an enhanced LiF-rich SEI layer and improved Li-metal plating/stripping reversibility.
Collapse
Affiliation(s)
- Junhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Jing Luo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005, Xiamen, P. R. China
| | - Haichuan Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Xiaoyu Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Xiaohong Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, 361024, Xiamen, P. R. China
| | - Zhengang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Haiyan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Yuhao Hong
- Innovation Labratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361024, Xiamen, P. R. China
| | - Yeguo Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
- Innovation Labratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361024, Xiamen, P. R. China
| | - Shuohui Cao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, 361005, Xiamen, P. R. China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
- Innovation Labratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361024, Xiamen, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| |
Collapse
|
36
|
Liu Y, Lu J, Gong X, Liu J, Chen B, Wu C, Fang Z. Formulating compatible non-flammable electrolyte for lithium-ion batteries with ethoxy (pentafluoro) cyclotriphosphazene. RSC Adv 2024; 14:11533-11540. [PMID: 38601706 PMCID: PMC11004860 DOI: 10.1039/d4ra02095b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Lithium (Li) ion batteries have played a great role in modern society as being extensively used in commercial electronic products, electric vehicles, and energy storage systems. However, battery safety issues have gained growing concerns as there might be thermal runaway, fire or even explosion under external abuse. To tackle these safety issues, developing non-flammable electrolytes is a promising strategy. However, the balance between the flame-retarding effect and the electrochemical performance of electrolytes remains a great challenge. Herein, we evaluate the function of ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as an effective flame-retarding additive for lithium-ion batteries. The flammability of electrolytes is greatly suppressed with the introduction of a small amount of PFPN. Moreover, PFPN exhibited excellent compatibility with LiFePO4 (LFP) cathode and graphite (Gr) anode, the electrochemical performances of LFP|Li and Gr|Li half cells are virtually unaffected. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) reveal the stable interphase between PFPN-containing electrolyte and LFP and Gr electrodes. Fourier transform infrared spectroscopy (FT-IR), Raman and nuclear magnetic resonance (NMR) spectra demonstrate the introduction of PFPN only exhibits negligible influence on the solvation structure of electrolyte. Benefiting from these merits of PFPN, the LFP|Gr cell shows desirable long-term cycling performance, which demonstrates great potential for practical application.
Collapse
Affiliation(s)
- Yutao Liu
- State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment, State Grid Hunan Electric Company Limited Disaster Prevention and Reduction Center Changsha Hunan China
| | - Jiazheng Lu
- State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment, State Grid Hunan Electric Company Limited Disaster Prevention and Reduction Center Changsha Hunan China
| | - Xuanlin Gong
- State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment, State Grid Hunan Electric Company Limited Disaster Prevention and Reduction Center Changsha Hunan China
| | - Jingju Liu
- State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment, State Grid Hunan Electric Company Limited Disaster Prevention and Reduction Center Changsha Hunan China
| | - Baohui Chen
- State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment, State Grid Hunan Electric Company Limited Disaster Prevention and Reduction Center Changsha Hunan China
| | - Chuanping Wu
- State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment, State Grid Hunan Electric Company Limited Disaster Prevention and Reduction Center Changsha Hunan China
| | - Zhen Fang
- State Key Laboratory of Disaster Prevention and Reduction for Power Grid Transmission and Distribution Equipment, State Grid Hunan Electric Company Limited Disaster Prevention and Reduction Center Changsha Hunan China
| |
Collapse
|
37
|
Wang L, Ren N, Jiang W, Yang H, Ye S, Jiang Y, Ali G, Song L, Wu X, Rui X, Yao Y, Yu Y. Tailoring Na + Solvation Environment and Electrode-Electrolyte Interphases with Sn(OTf) 2 Additive in Non-flammable Phosphate Electrolytes towards Safe and Efficient Na-S Batteries. Angew Chem Int Ed Engl 2024; 63:e202320060. [PMID: 38285010 DOI: 10.1002/anie.202320060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries are promising for low-cost and large-scale energy storage applications. However, these batteries are plagued by safety concerns due to the highly flammable nature of conventional electrolytes. Although non-flammable electrolytes eliminate the risk of fire, they often result in compromised battery performance due to poor compatibility with sodium metal anode and sulfur cathode. Herein, we develop an additive of tin trifluoromethanesulfonate (Sn(OTf)2 ) in non-flammable phosphate electrolytes to improve the cycling stability of RT Na-S batteries via modulating the Na+ solvation environment and interface chemistry. The additive reduces the Na+ desolvation energy and enhances the electrolyte stability. Moreover, it facilitates the construction of Na-Sn alloy-based anode solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). These interphases help to suppress the growth of Na dendrites and the dissolution/shuttling of sodium polysulfides (NaPSs), resulting in improved reversible capacity. Specifically, the Na-S battery with the designed electrolyte boosts the capacity from 322 to 906 mAh g-1 at 0.5 A g-1 . This study provides valuable insights for the development of safe and high-performance electrolytes in RT Na-S batteries.
Collapse
Grants
- 51925207, 52394170, 52394171, 52372239, 52102322, 52102321, 52302323, U23A20121, and U23A20579 National Natural Science Foundation of China
- 2022021 Hefei Municipal Natural Science Foundation
- WK2400000004, WK2060000055, 20720220010 Fundamental Research Funds for the Central Universities
- Grant No. LBLF-2023-03 Liaoning Binhai Laboratory
- Grant YLU-DNL Fund 2021002 Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy
- 2023M733361 China Post doctoral Science Foundation
Collapse
Affiliation(s)
- Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Naiqing Ren
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Jiang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shufen Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang Jiang
- Jiujiang DeFu Technology Co. Ltd, Jiujiang, Jiangxi, 332000, China
| | - Ghulam Ali
- Advanced Energy Materials & System Lab (Principal Investigator), U.S.-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad, 44080, Pakistan
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianhong Rui
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
38
|
Dong T, Zhang S, Ren Z, Huang L, Xu G, Liu T, Wang S, Cui G. Electrolyte Engineering Toward High Performance High Nickel (Ni ≥ 80%) Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305753. [PMID: 38044323 PMCID: PMC10870087 DOI: 10.1002/advs.202305753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Indexed: 12/05/2023]
Abstract
High nickel (Ni ≥ 80%) lithium-ion batteries (LIBs) with high specific energy are one of the most important technical routes to resolve the growing endurance anxieties. However, because of their extremely aggressive chemistries, high-Ni (Ni ≥ 80%) LIBs suffer from poor cycle life and safety performance, which hinder their large-scale commercial applications. Among varied strategies, electrolyte engineering is very powerful to simultaneously enhance the cycle life and safety of high-Ni (Ni ≥ 80%) LIBs. In this review, the pivotal challenges faced by high-Ni oxide cathodes and conventional LiPF6 -carbonate-based electrolytes are comprehensively summarized. Then, the functional additives design guidelines for LiPF6 -carbonate -based electrolytes and the design principles of high voltage resistance/high safety novel electrolytes are systematically elaborated to resolve these pivotal challenges. Moreover, the proposed thermal runaway mechanisms of high-Ni (Ni ≥ 80%) LIBs are also reviewed to provide useful perspectives for the design of high-safety electrolytes. Finally, the potential research directions of electrolyte engineering toward high-performance high-Ni (Ni ≥ 80%) LIBs are provided. This review will have an important impact on electrolyte innovation as well as the commercial evolution of high-Ni (Ni ≥ 80%) LIBs, and also will be significant to breakthrough the energy density ceiling of LIBs.
Collapse
Affiliation(s)
- Tiantian Dong
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Shenghang Zhang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Zhongqin Ren
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Lang Huang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Gaojie Xu
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Tao Liu
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Shitao Wang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| |
Collapse
|
39
|
Zhuang X, Zhang S, Cui Z, Xie B, Gong T, Zhang X, Li J, Wu R, Wang S, Qiao L, Liu T, Dong S, Xu G, Huang L, Cui G. Interphase Regulation by Multifunctional Additive Empowering High Energy Lithium-Ion Batteries with Enhanced Cycle Life and Thermal Safety. Angew Chem Int Ed Engl 2023:e202315710. [PMID: 38078788 DOI: 10.1002/anie.202315710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 12/22/2023]
Abstract
High energy density lithium-ion batteries (LIBs) adopting high-nickel layered oxide cathodes and silicon-based composite anodes always suffer from unsatisfied cycle life and poor safety performance, especially at elevated temperatures. Electrode /electrolyte interphase regulation by functional additives is one of the most economic and efficacious strategies to overcome this shortcoming. Herein, cyano-groups (-CN) are introduced into lithium fluorinated phosphate to synthesize a novel multifunctional additive of lithium tetrafluoro (1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) phosphate (LiTFTCP), which endows high nickel LiNi0.8 Co0.1 Mn0.1 O2 /SiOx -graphite composite full cell with an ultrahigh cycle life and superior safety characteristics, by adding only 0.5 wt % LiTFTCP into a LiPF6 -carbonate baseline electrolyte. It is revealed that LiTFTCP additive effectively suppresses the HF generation and facilitates the formation of a robust and heat-resistant cyano-enriched CEI layer as well as a stable LiF-enriched SEI layer. The favorable SEI/CEI layers greatly lessen the electrode degradation, electrolyte consumption, thermal-induced gassing and total heat-releasing. This work illuminates the importance of additive molecular engineering and interphase regulation in simultaneously promoting the cycling and thermal safety of LIBs with high-nickel NCMxyz cathode and silicon-based composite anode.
Collapse
Affiliation(s)
- Xiangchun Zhuang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenghang Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zili Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bin Xie
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Tianyu Gong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaohu Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jiedong Li
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Rongxian Wu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shitao Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Lixin Qiao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Tao Liu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Gaojie Xu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Lang Huang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Guo Q, Luo R, Tang Z, Li X, Feng X, Ding Z, Gao B, Zhang X, Huo K, Zheng Y. Bidirectional Interphase Modulation of Phosphate Electrolyte Enables Intrinsic Safety and Superior Stability for High-Voltage Lithium-Metal Batteries. ACS NANO 2023. [PMID: 37992278 DOI: 10.1021/acsnano.3c09643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Developing advanced high voltage lithium-metal batteries (LMBs) with superior stability and intrinsic safety is of great significance for practical applications. However, the easy flammability of conventional carbonate solvents and inferior compatibility of commercial electrolytes for both highly reactive Li anodes and high-voltage cathodes severely hinder the implementation process. Hence, we rationally designed an intrinsically nonflammable and low-cost phosphate electrolyte toward stable high-voltage LMBs by bidirectionally modulating the interphases. Benefiting from the synergistic regulation of LiNO3 and DME dual-additives in the 1.5 M LiTFSI/Triethyl phosphate electrolyte, thin, dense and robust electrodes/electrolyte interphases were well constructed simultaneously on the surfaces of Li anode and Ni-rich cathode, dramatically improving the stability and compatibility between electrodes and electrolyte. Consequently, boosted kinetic and high Coulombic efficiency of 98.6% for Li metal plating/stripping over 400 cycles and superior cycling stability of exceeding 4,000 h in Li symmetric cell is achieved. More importantly, the Li∥LiNi0.6Mn0.2Co0.2O2 cell assembled with a thin Li anode and high mass-loading cathode at a high cutoff voltage of 4.6 V retains a 98.4% capacity retention after 500 cycles at 1C. This work affords a promising strategy to develop nonflammable electrolytes enabling the high safety, good cyclability, and low cost of high-energy LMBs.
Collapse
Affiliation(s)
- Qifei Guo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Rongjie Luo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zihuan Tang
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xingxing Li
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaoyu Feng
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhao Ding
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xuming Zhang
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Kaifu Huo
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
41
|
Zhao Y, Hu Z, Zhao Z, Chen X, Zhang S, Gao J, Luo J. Strong Solvent and Dual Lithium Salts Enable Fast-Charging Lithium-Ion Batteries Operating from -78 to 60 °C. J Am Chem Soc 2023; 145:22184-22193. [PMID: 37768698 DOI: 10.1021/jacs.3c08313] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Current lithium-ion batteries degrade under high rates and low temperatures due to the use of carbonate electrolytes with restricted Li+ conduction and sluggish Li+ desolvation. Herein, a strong solvent with dual lithium salts surmounts the thermodynamic limitations by regulating interactions among Li+ ions, anions, and solvents at the molecular level. Highly dissociated lithium bis(fluorosulfonyl)imide (LiFSI) in dimethyl sulfite (DMS) solvent with a favorable dielectric constant and melting point ensures rapid Li+ conduction while the high affinity between difluoro(oxalato)borate anions (DFOB-) and Li+ ions guarantees smooth Li+ desolvation within a wide temperature range. In the meantime, the ultrathin self-limited electrode/electrolyte interface and the electric double layer induced by DFOB- result in enhanced electrode compatibility. The as-formulated electrolyte enables stable cycles at high currents (41.3 mA cm-2) and a wide temperature range from -78 to 60 °C. The 1 Ah graphite||LiCoO2 (2 mAh cm-2) pouch cell achieves 80% reversible capacity at 2 C rate under -20 °C and 86% reversible capacity at 0.1 C rate under -50 °C. This work sheds new light on the electrolyte design with strong solvent and dual lithium salts and further facilitates the development of high-performance lithium-ion batteries operating under extreme conditions.
Collapse
Affiliation(s)
- Yumeng Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenglin Hu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhengfei Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinlian Chen
- Shanghai Institute of Ceramics,Chinese Academy of Sciences, Shanghai 200050, China
| | - Shu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences, Qingdao 266101, China
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101 P. R. China
| | - Jiayan Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Zhong Y, Xie X, Zeng Z, Lu B, Chen G, Zhou J. Triple-function Hydrated Eutectic Electrolyte for Enhanced Aqueous Zinc Batteries. Angew Chem Int Ed Engl 2023; 62:e202310577. [PMID: 37578644 DOI: 10.1002/anie.202310577] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2 O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2 O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+ ) mechanism, and the intercalated TMS works as a "pillar" that provides more zincophilic sites and stabilizes the structure of cathode (NH4 V4 O10 , (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6 mAh g-1 at a low current density of 0.2 A g-1 for over 40 days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.
Collapse
Affiliation(s)
- Yunpeng Zhong
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xuesong Xie
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Gen Chen
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|