1
|
Hamed R, Obeid RZ, Huwaij RA, Qattan D, Shahin NA. Topical gel formulations as potential dermal delivery carriers for green-synthesized zinc oxide nanoparticles. Drug Deliv Transl Res 2025; 15:885-907. [PMID: 38837118 DOI: 10.1007/s13346-024-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
This study aimed to incorporate green-synthesized zinc oxide nanoparticles (ZnO NPs), functionalized with polyethylene glycol (PEG) and linked to doxorubicin (DOX), into various topical gel formulations (hydrogel, oleogel, and bigel) to enhance their dermal delivery. The ZnO NPs were produced using the aqueous extract of the root hair of Phoenix dactylifera. The optimized green-synthesized ZnO NPs, PEGylated and conjugated to DOX, demonstrated a particle size below 100 nm, low polydispersity index, and zeta potential between - 11 and - 19 mV. The UV-Vis spectroscopy analysis confirmed characteristic absorption peaks at 351 and 545 nm for ZnO and DOX, respectively. The transmission electron microscope (TEM) images revealed well-dispersed spherical nanoparticles without aggregation. Additionally, ZnO NPs-loaded gels exhibited uniformity, cohesion, no phase separation, pseudoplastic flow, and viscoelastic properties. The in vitro release studies showed that DOX-PEG-ZnO NPs hydrogel released 99.5% of DOX after 5 h of starting the release. Moreover, the penetration of DOX-PEG-ZnO NPs through excised rat skin was visualized by TEM. In conclusion, the hydrogel formulation containing green-synthesized DOX-PEG-ZnO NPs holds great promise for dermal administration in skin cancer treatment. Furthermore, the release rate and skin penetration of DOX from gels were varied based on the type of gel matrix and corroborated with their corresponding rheological properties.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Ruwa Z Obeid
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Rana Abu Huwaij
- Department of Pharmacy, College of Pharmacy, Amman Arab University, Mubis, 11953, Jordan
| | - Duaa Qattan
- Department of Pathology and Electron Microscopy, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
2
|
Gunawardana S, Dias B. Methodological advances in formulation and assay of herbal resources-based topical drug delivery systems. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025; 22:74-86. [PMID: 39291730 DOI: 10.1515/jcim-2024-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024]
Abstract
Medicinal plants have been utilized for centuries as a source of healing compounds, which consist of thousands of known bioactive molecules with therapeutic potentials. This article aims to explore and emphasize the significance of medicinal plants and bioactive compounds in the development of topical pharmaceutical formulations. The journey from the extraction of phytochemicals to the development of topical pharmaceutical formulations is described with the aid of scientific evidence selected from PubMed, Google Scholar, ScienceDirect, and Web of Science. Articles published in English during 2018-2023 period were considered and selected randomly. The review discusses the extraction process of medicinal plants, solvent selection, and green synthesis of metal nanoparticles. Subsequently, various biological activities of plant extracts are elaborated especially focusing on antimicrobial, antioxidant, anti-inflammatory, and sun protection activities, along with the corresponding in vitro assays commonly employed for the evaluation. The article presents the process of compound isolation through bioactivity-guided fractionation and also the toxicity evaluation of isolated fractions. Finally, the formulation of medicinal plant extracts into topical pharmaceuticals is addressed, emphasizing the stability evaluation procedures necessary for ensuring product quality and efficacy.
Collapse
Affiliation(s)
- Shehara Gunawardana
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences, 674983 CINEC Campus , Malabe, Sri Lanka
| | - Bhavantha Dias
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences, 674983 CINEC Campus , Malabe, Sri Lanka
| |
Collapse
|
3
|
El-Fitiany RA, El Nahas R, Al Balkhi S, Aljaeedi S, Alblooshi A, Hassan FM, Khaleel A, Samadi A, Khasawneh MA. Alchemy in Nature: The Role of Lawsonia inermis Extract Choice in Crafting Potent Anticancer Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4637-4661. [PMID: 39798120 PMCID: PMC11759054 DOI: 10.1021/acsami.4c19585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025]
Abstract
Phyto-nanotechnology provides an eco-friendly approach for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. Lawsonia inermis (LI) has been historically valued for its diverse medicinal applications, especially its exceptional biological potency against various skin diseases, attributed to its rich abundance of bioactive compounds. Therefore, herein, plant-based iron and zinc NPs were biofabricated via sustainable and simple methods, using crude extracts of the aerial parts of LI as reducing, coating, and stabilizing agents. Since the extraction method affects the type of extracted phytocompounds, two extraction approaches─aqueous and hydro-alcoholic─were applied to determine the influence of the extraction route on the physicochemical and biological properties of the formed NPs. These properties were characterized via various analytical techniques and assays. The UV-Vis spectra revealed absorption bands ranging from 265 to 270 nm, while FT-IR confirmed the successful coating of the NPs with the extracts' phytochemicals, validating the biofabrication of the proposed NPs. The alcoholic-based NPs displayed higher total phenolic content, total flavonoid content, and antioxidant effect compared to their aqueous-based counterparts, reaching up to 55.13 μg of GAE/1 mg of dry weight (DW), 30.48 μg of QU/1 mg of DW, and IC50 of 46.02 μg/mL, respectively. All tested samples, except for Fe NPs, displayed significant cytotoxic effects against skin cancer, resulting in a cell viability as low as 1% at 1000 μg/mL. QTOF-LC/MS/MS analyses of LI extracts revealed tentative identification of more than 100 metabolites with phenolic compounds representing the largest share. Orthogonal Projections to Latent Structures Discriminant Analysis modeling revealed a clear separation between both extracts, with more than 40 marker compounds. The results indicated that both extracts were effective for the green synthesis of Fe and Zn NPs for biomedical applications, with the alcoholic extract of LI as a superior coating candidate and the aqueous extract as a stronger reducing agent. This work showcases the influence of extraction protocols on physicochemical and biological characteristics of the resulting nanoparticles.
Collapse
Affiliation(s)
- Rana Ahmed El-Fitiany
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
- Pharmacognosy
Department, Faculty of Pharmacy, Egyptian
Chinese University, Cairo, 19346, Egypt
| | - Riham El Nahas
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Seba Al Balkhi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Shouq Aljaeedi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Afra Alblooshi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Fathy M. Hassan
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Abbas Khaleel
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Abdelouahid Samadi
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| | - Mohammad A. Khasawneh
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain, 15551, United
Arab Emirates
| |
Collapse
|
4
|
Hadadian M, Allahyari R, Mahdavi B, Rezaei-Seresht E. Design, characterization, and in vitro evaluation of magnetic carboxymethylated β-cyclodextrin as a pH-sensitive carrier system for amantadine delivery: a novel approach for targeted drug delivery. RSC Adv 2025; 15:446-459. [PMID: 39758925 PMCID: PMC11698272 DOI: 10.1039/d4ra06269h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025] Open
Abstract
In this study, a magnetic carboxymethylated β-cyclodextrin (Mag/CM-β-CD) was developed as a carrier system to assess its capability on drug delivery application by forming an inclusion complex with amantadine (Amn) as a drug model. The synthesized inclusion complex (Mag/CM-β-CD/Amn) was analyzed using various techniques, including FT-IR, XRD, BET, TGA, TEM, VSM, and DLS. The encapsulation efficiency and drug release study of Mag/CM-β-CD/Amn were adopted using the spectroscopic method. Furthermore, the kinetics of drug release by different mathematical models was studied. The cytotoxicity evaluation of Mag/CM-β-CD and Mag/CM-β-CD/Amn was studied using MTT assay against the HUVEC cell line. The TEM imaging showed a spherical morphology and average size of less than 25 nm for the drug complex. Mag/CM-β-CD showed high EE% by absorbing 81.51% of amantadine. Mag/CM-β-CD/Amn showed a pH-sensitive manner with a higher release rate at acidic pH. In addition, a kinetic study reveals that the release process followed the Fickian mechanism and was governed by diffusion. The MTT assay demonstrated low toxicity for the Mag/CM-β-CD/Amn complex in HUVEC cells, showing a cell viability of 57.13% at a concentration of 1000 μg mL-1. The results indicate that the developed system is an effective vehicle for transporting drugs in targeted drug delivery applications.
Collapse
Affiliation(s)
- Mehrdad Hadadian
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University Sabzevar Iran
| | - Reza Allahyari
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University Sabzevar Iran
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University Sabzevar Iran
| | - Esmail Rezaei-Seresht
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University Sabzevar Iran
| |
Collapse
|
5
|
El-Fitiany RA, AlBlooshi A, Samadi A, Khasawneh MA. Phytosynthesis, Characterization, Phenolic and Biological Evaluation of Leptadenia pyrotechnica-Based Zn and Fe Nanoparticles Utilizing Two Different Extraction Techniques. Int J Nanomedicine 2024; 19:11003-11021. [PMID: 39502631 PMCID: PMC11537101 DOI: 10.2147/ijn.s480716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Phyto-nanotechnology offers a sustainable method for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. The diverse medicinal flora in the UAE, particularly Leptadenia pyrotechnica (LP), provides a vital resource for advancing this research area. This plant is historically valued in the region for its wide medicinal applications due to its abundance of bioactive compounds. Methods In this study, eco-friendly, straightforward, and low-temperature hydrothermal synthesis methods were applied to synthesize potentially therapeutic Zn and Fe NPs using LP extracts. The generated NPs were characterized using UV-VIS, FT-IR, SEM, EDX, XRD and DLS. Moreover, they were investigated for their total phenolic and flavonoid contents, along with their antioxidant and skin anticancer effects. Results The UV-Vis spectra disclosed absorption band at about 275 nm, and the FT-IR confirmed the successful coating of the NPs with the plants' phytochemicals, thus ensuring the successful bio-fabrication of the proposed NPs. SEM/EDX outcomes suggest a more potent reducing effect of the aqueous extract, while a more effective coating of the alcoholic extract. DLS revealed monodispersed NPs, with average sizes ranging from 43.82 to 207.8 nm. LFeC demonstrated the highest phenolic and flavonoid contents (49.96±4.76 μg of GAE/mg of DW and 43.89±2.89 μg of Qu/mg of DW, respectively) and the greatest potency against skin cancer cell lines (IC50=263.56 µg/mL). However, LZnC exhibited the strongest radical scavenging effect against DPPH and ABTS radicals (IC50=139.45µg/mL and 35.1µg/mL, respectively). Discussion The results of this study demonstrated that both extracts of LP are effective in the green synthesis of Fe and Zn nanoparticles for biomedical applications, with alcoholic extracts providing superior coating, capping, and stabilizing properties, leading to lower agglomeration, higher carbon content, total phenolic and flavonoid contents, along with enhanced anticancer and antioxidant effects. This work gives a showcase of sustainable materials that are promising for therapeutic applications.
Collapse
Affiliation(s)
- Rana Ahmed El-Fitiany
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Afra AlBlooshi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad A Khasawneh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Omran SA, Ghani BA. Effect of fenugreek oil on healing of experimentally induced buccal mucosal ulcer by immunohistochemical evaluation of Ki-67 expression. Cell Biochem Biophys 2024; 82:2363-2371. [PMID: 38869686 DOI: 10.1007/s12013-024-01347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Wound healing involves multiple populations of cells, the extracellular matrix, and soluble mediators' actions like growth factors and cytokines. Wound care was the target of many research, utilizing new therapy techniques and the progression of acute and chronic wound treatments with techniques involving plants to improve healing and decrease the side effects of drugs. When fenugreek is applied to an ulcer, its anti-inflammatory components are released, reducing unnecessary inflammation and accelerating the healing process. Healing is controlled by growth factors that naturally activate and boost the proliferation of cells, such as Ki-67, which is associated with the growth fraction and represents the cell's ability to proliferate. The current study aims to assess the expression of Ki-67 in rat mucosal ulcers treated with fenugreek leave oil. Twenty-four male Wistar albino rats of 350-450 gm weight were used. The rats were grouped as follows; normal group (normal tissue without ulcer induction), control group (tissue with surgical ulcer induction on the right side), and study group (ulcer treated with fenugreek leave oil on the left side), and had been sacrificed at 3- and 7-day healing durations. Thereafter, the tissue specimens were used for immunohistochemical analysis of Ki-67. The obtained outcomes showed that expression of Ki-67 increased in groups where ulcers were induced, with significant differences between control and study groups on the 3rd day. It was concluded that the application of fenugreek oil had an accelerating effect on the healing process of mucosal ulcers, as indicated by the elevated expression level of Ki-67.
Collapse
Affiliation(s)
- Sarah A Omran
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq.
| | - Ban A Ghani
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Wu Y, Cheng Z, Hu W, Tang S, Zhou X, Dong S. Biosynthesized Silver Nanoparticles Inhibit Osteoclastogenesis by Suppressing NF-κB Signaling Pathways. Adv Biol (Weinh) 2024; 8:e2300355. [PMID: 37953696 DOI: 10.1002/adbi.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Indexed: 11/14/2023]
Abstract
Osteoclasts overactivity plays a critical role in the progress of inflammatory bone loss. In addition, ROS can facilitate the formation and function of osteoclasts. Silver nanoparticles (Ag NPs) with ROS scavenging activity are potential candidates for inflammatory bone loss. In this regard, the biosynthetic Ag NPs with low toxicity and high stability by using Flos Sophorae Immaturus extract as the reducing and capping agents are reported. The inflammatory bone loss model is established by injecting LPS. Quantitative reverse transcription-polymerase chain reaction and Western Blot are utilized to determine the expression level of target biomarkers related to osteoclast formation. Ag NPs can significantly reduce the number of TRAP-positive (TRAP+ ) cells. In addition, Ag NPs down-regulate the expression of biomarkers relevant to osteoclast formation. Interestingly, Ag NPs can effectively suppress osteoclast formation via down-regulating ROS-mediated phosphorylation of NF-κB pathways. The in vivo study shows that Ag NPs can ameliorate bone density and decrease osteoclast number. Due to these benefits, the constructed Ag NPs can delay the progression of inflammatory bone loss. These findings suggest that Ag NPs are a potential therapeutic agent in the treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Yu Wu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhong Cheng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Shanwen Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Xue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
8
|
Orshiso TA, Zereffa EA, Murthy HCA, Demissie TB, Pardeshi O, Avhad LS, Ghotekar S. Biosynthesis of Artemisia abyssinica Leaf Extract-Mediated Bimetallic ZnO-CuO Nanoparticles: Antioxidant, Anticancer, and Molecular Docking Studies. ACS OMEGA 2023; 8:41039-41053. [PMID: 37969984 PMCID: PMC10633890 DOI: 10.1021/acsomega.3c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Currently, plant extract-mediated synthesized metal oxide nanoparticles (MO NPs) have played a substantial role in biological applications. Hence, this study focused on the eco-benign one-pot synthesis of bimetallic ZnO-CuO nanoparticles (ZC NPs) using the leaf extract of Artemisia abyssinica (LEAA) and evaluations of their anticancer, antioxidant, and molecular binding efficacy. The optical absorption peak at 380 nm from UV-visible (UV-vis) analysis revealed the formation of ZC NPs. X-ray diffraction (XRD) results revealed the fabrication of mixed-phase crystals with hexagonal and monoclinic structures of ZC NPs with an average crystallite size of 14 nm. Moreover, the biosynthesis of ZC NPs with a spherical morphology and an average particle size of 13.09 nm was confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM) results. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA/DTA) spectroscopy confirmed the involvement of functional groups from LEAA during the synthesis of ZC NPs. ZC NPs have exhibited the ferric ion reducing power (FRAP) with an absorbance of 1.826 ± 0.00 at 200 μg/mL and DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radical scavenging activity of 95.71 ± 0.02% at 200 μg/mL with an IC50 value of 3.28 μg/mL. Moreover, ZC NPs had shown a promising in vitro anticancer activity of 89.20 ± 0.038 at 500 μg/mL with an IC50 value of 33.12 μg/mL against breast cancer (MCF-7) cell lines. Likewise, ZC NPs have shown strong binding affinity (-8.50 kcal/mol) against estrogen receptor α (ERα) in molecular docking simulations. These findings suggested that the biosynthesized ZC NPs could be used as promising antioxidant and anticancer drug candidates, particularly for breast cancer ailments. However, the in vivo cytotoxicity test will be recommended to ensure further use of ZC NPs.
Collapse
Affiliation(s)
- Temesgen Achamo Orshiso
- Department
of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia
| | - Enyew Amare Zereffa
- Department
of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia
| | - H. C. Ananda Murthy
- Department
of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box 1888, Adama 1888, Ethiopia
- Department
of Prosthodontics, Saveetha Dental College & Hospital, Saveetha
Institute of Medical and Technical Science (SIMAT), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, Gaborone 0022, Botswana
| | - Onkar Pardeshi
- Department
of Electronics, KKHA Arts, SMGL Commerce and SPHJ Science College, Savitribai Phule Pune University, Chandwad 423 101, Maharashtra, India
| | - Lata S. Avhad
- Department
of Chemistry, Karmaveer Shantarambapu Kondaji Wavare Arts, Science
& Commerce College, Savitribai Phule
Pune University, CIDCO, Nashik 422008, Maharashtra, India
| | - Suresh Ghotekar
- Faculty of
Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
9
|
Li J, Mahdavi B, Baghayeri M, Rivandi B, Lotfi M, Mahdi Zangeneh M, Zangeneh A, Tayebee R. A new formulation of Ni/Zn bi-metallic nanocomposite and evaluation of its applications for pollution removal, photocatalytic, electrochemical sensing, and anti-breast cancer. ENVIRONMENTAL RESEARCH 2023; 233:116462. [PMID: 37352956 DOI: 10.1016/j.envres.2023.116462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Nanocomposites have gained attention due to their variety of applications in different fields. In this research, we have reported a green synthesis of a bi-metallic nanocomposite of nickel and zinc using an aqueous extract of Citrus sinensis in the presence of chitosan (Ni/Zn@orange/chitosan). The nanocomposite was characterized using different techniques. We have examined various applications for Ni/Zn@orange/chitosan. The NPs were manufactured in spherical morphology with a particle range size of 17.34-90.51 nm. Ni/Zn@orange/chitosan showed an acceptable ability to remove dyes of Congo red and methyl orange from an aqueous solution after 80 min furthermore, it uptaking the drug mefenamic acid from a solution. Ni/Zn@orange/chitosan also exhibited great photocatalytic activity in synthesizing benzimidazole using benzyl alcohol and o-phenylenediamine. Ni/Zn@orange/chitosan was found as a potent electrochemical sensor to determine glucose. In the molecular and cellular section of the current research, the cells with composite nanoparticles were studied by MTT way about the anti-breast adenocarcinoma potentials malignant cell lines. The IC50 of composite nanoparticles were 320, 460, 328, 500, 325, 379, 350, and 396 μg/mL concering RBA, NMU, SK-BR-3, CAMA-1, MCF7, AU565, MDA-MB-468, and Hs 281.T breast adenocarcinoma cell lines, respectively. The results revealed the newly synthesized nanocomposite is a potent photocatalyst, dye pollution removal agent, and an acceptable new drug to treat breast cancer.
Collapse
Affiliation(s)
- Jia Li
- Department of Breast Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, China.
| | - Behnam Mahdavi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran.
| | - Behnaz Rivandi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Lotfi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Akram Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Tayebee
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
10
|
Green Synthesis of Zinc Oxide Nanoparticles Using Nostoc sp. and Their Multiple Biomedical Properties. Catalysts 2023. [DOI: 10.3390/catal13030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Zinc oxide nanoparticles (ZnONPs) are the top candidate in the field of biological applications because of their high surface area and excellent catalytic activities. In the present study, the cyanobacteria-mediated biosynthesis of zinc oxide NPs using Nostoc sp. extract as a stabilizing, chelating, and reducing agent is reported. ZnONPs were biologically synthesized using an eco-friendly and simple technique with a minimal reaction time and calcination temperature. Various methods, including X-ray diffraction (XRD), ultraviolet spectroscopy (UV), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the biosynthesized zinc oxide NPs. XRD analysis depicted the crystalline form of zinc oxide NPs, and the Scherrer equation determined a mean crystalline size of ~28.21 nm. The SEM results reveal the spherical shape of the biosynthesized nanoparticles. Various functional groups were involved in the capping and stabilization of the zinc oxide NPs, which were confirmed by FTIR analysis. The zinc oxide NPs showed strong UV-vis absorption at 340 nm. Multiple in vitro biological applications showed significant therapeutic potential for zinc oxide NPs. Potential antimicrobial assays were reported for zinc oxide NPs via the disc-diffusion method and food poisoning method, respectively. All other activities mentioned below are described with the concentration and IC50 values. Biocompatibility with human erythrocytes and macrophages (IC50: 433 µg/mL, IC50 > 323 µg/mL) and cytotoxic properties using brine shrimps (IC50: 11.15 µg/mL) and Leishmania tropics (Amastigotes IC50: 43.14 µg mL−1 and Promastigotes IC50: 14.02 µg mL−1) were determined. Enzyme inhibition assays (protein kinase and alpha amylase) were performed and showed strong potential. Free radical scavenging tests showed strong antioxidant capacities. These results indicate that zinc oxide NPs synthesized by Nostoc sp. have strong biological applications and are promising candidates for clinical development.
Collapse
|
11
|
Waghchaure RH, Adole VA. Biosynthesis of metal and metal oxide nanoparticles using various parts of plants for antibacterial, antifungal and anticancer activity: A review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Cai Y, Karmakar B, Babalghith AO, Batiha GES, AlSalem HS, El-Kott AF, Shati AA, Alfaifi MY, Elbehairi SEI. Decorated Au NPs on lignin coated magnetic nanoparticles: Investigation of its catalytic application in the reduction of aromatic nitro compounds and its performance against human lung cancer. Int J Biol Macromol 2022; 223:1067-1082. [PMID: 36368366 DOI: 10.1016/j.ijbiomac.2022.10.268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
In the recent years, bio-functionalized noble metal doped advanced magnetics nanocomposite materials has been materialized as potential featured catalysts in diverse applications. In this connection, we report herein a novel biogenic lignin driven Au nanoparticle supported Fe3O4 composite material. The procedure is free from any harsh reducing or stabilizing agent. Morphology and structural features were assessed following different physicochemical methodologies like FT-IR, FE-SEM, TEM, EDS, XRD, VSM and ICP-OES techniques. Thereafter, the [Fe3O4/Lignin/Au] material was successfully employed in the efficient reduction of different nitroarenes in aqueous medium. The process was monitored over UV-Vis spectroscopic study. Excellent yields were achieved with a range of diverse functionalized nitroarenes within 10-45 min of reaction. The nanocatalyst was recycled 10 times without any significant loss of catalytic activity. Distinctiveness of the material's activity was validated by comparing the results in the reduction of 4-nitrophenol. Furthermore, the prepared [Fe3O4/Lignin/Au] nanocomposite system exhibited outstanding antioxidant and anticancer effects against five lung cancer cell lines, such as, BICR 3, BICR 78, CALU 1, ChaGo-K-1, and A549. Cytotoxicity assay was determined in terms of % cell viability following MTT protocol. The corresponding IC50 values were obtained as 47, 31, 19, 25, and 31 μg/mL respectively.
Collapse
Affiliation(s)
- Yi Cai
- Department of Medical Oncology, Chinese PLA General Hospital & Medical School, Beijing 100853, China
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24 Parganas (North), India
| | - Ahmad O Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ali A Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| |
Collapse
|
13
|
Wang J, Yuan Q, Morovvati H, Goorani S. Green synthesis, characterization and anti-atherosclerotic properties of vanadium nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Li Y, Zeng Q, Deng H, Xiang T, Qi W, Wu D. Ameliorating effect of gold nanoparticles decorated on biodegradable apple pectin modified magnetic nanoparticles on epididymo-orchitis inducing alterations in sperm quality and spermatogenic cells apoptosis. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Introducing a novel chemotherapeutic supplement prepared by silver nanoparticles green-formulated by Salvia officinalis leaf aqueous extract to treat the human oral squamous cell carcinoma. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Green formulation, chemical characterization and anti-acute leukemia effects of vanadium nanoparticles containing Foeniculum vulgare extract. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Zheng J, Karmakar B, El-kott AF, Elsaid FG, Shati AA, Negm S, Alsayegh AA, El-Saber Batiha G. Characterization and cytotoxicity and antihuman renal cell carcinoma potentials of starch capped-copper oxide nanoparticles synthesized by ultrasonic irradiation: Introducing a novel chemotherapeutic drug. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
18
|
Gholami M, Abbasi N, Ghaneialvar H, Karimi E, Afzalinia A, Zangeneh MM, Yadollahi M. Investigation of biological effects of chitosan magnetic nano-composites hydrogel. NANOTECHNOLOGY 2022; 33:495603. [PMID: 36125420 DOI: 10.1088/1361-6528/ac88da] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The growing concern about microorganism infections, especially hospital-acquired infections, has driven the demand for effective and safe agents in recent years. Herein, novel nanocomposites were prepared based on layered double hydroxides (LDH NPs), Fe2O3nanoparticles (Fe2O3NPs), and chitosan hydrogel beads in different concentrations. The characteristics and composition of the prepared materials were investigated by various techniques such as XRD, FESEM, and FTIR. The results indicate that the nanocomposites are synthesized successfully, and each component is present in hydrogel matrixes. Then, their biomedical properties, including antibacterial, antifungal, and antioxidant activity, were examined. Our findings demonstrate that the antimicrobial activity of nanocomposites significantly depends on the concentration of each component and their chemical groups. It shows itself in the result of the inhibitory zone of all bacteria or fungi samples. The obtained results indicate that the nanocomposite of Chitosan-hydrogel beads with 20% LDH and Fe2O3(CHB-LDH-Fe2O3%20) and Chitosan-hydrogel beads based on 20% LDH (CHB-LDH%20) showed excellent antibacterial and antifungal properties against all tested bacteria and fungi (P ≤ 0.01). In addition, the antioxidant effects of the synthesized materials (especially CHB-LDH Fe2O3%20 and CHB-LDH%20) were investigated, showing high antioxidant efficacy against DPPH free radicals (P ≤ 0.01). According to our findings, we can say that these materials are promising biomaterials for inhibiting some infectious bacteria and fungi.
Collapse
Affiliation(s)
- Milad Gholami
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Pharmacology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Elahe Karimi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ahmad Afzalinia
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehdi Yadollahi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
19
|
Al-Radadi NS. Saussurea Costus for Sustainable and Eco-friendly Synthesis of Palladium Nanoparticles and their Biological Activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
20
|
Hao W, Jia Y, Wang C, Wang X. Preparation, chemical characterization and determination of the antioxidant, cytotoxicity and therapeutic effects of gold nanoparticles green-synthesized by Calendula officinalis flower extract in diabetes-induced cardiac dysfunction in rat. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Shahriari M, Liu S, Ebrahimi Z, Cao L. A strategy for the treatment of lung carcinoma by in situ immobilization of Ag nanoparticles on the surface of Fe3O4 nanoparticles that modified by lignin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Kis B, Moacă EA, Tudoran LB, Muntean D, Magyari-Pavel IZ, Minda DI, Lombrea A, Diaconeasa Z, Dehelean CA, Dinu Ș, Danciu C. Green Synthesis of Silver Nanoparticles Using Populi gemmae Extract: Preparation, Physicochemical Characterization, Antimicrobial Potential and In Vitro Antiproliferative Assessment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5006. [PMID: 35888477 PMCID: PMC9318049 DOI: 10.3390/ma15145006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022]
Abstract
Green route is an economic, facile and eco-friendly method, employed for the synthesis of various types of nanoparticles, having it as a starting point biological entity, especially as a plant extract. The present study aims to obtain silver nanoparticles (AgNPs) starting from an ethanolic extract of Populi gemmae (Pg), by adjusting the reaction parameters. The morphological and structural characterization exhibited that both the reaction temperature and the concentration of metal salt, contributes to the obtaining of Pg-AgNPs with adjustable size and shape. The newly synthesized nanoparticles exhibited a good antibacterial activity on Gram-positive bacteria as well as antifungal activity. The in vitro antiproliferative activity of Pg-AgNPs was assessed on two different cancer cell lines (breast cancer cells-MCF7 and lung carcinoma epithelial cells-A549). Results have shown that the green-synthetized Pg-AgNPs_S2 (obtained at 60 °C, using AgNO3 of 5 M) induced a substantial decrease in tumor cell viability in a dose-dependent manner with an IC50 ranging from 5.03 to 5.07 µg/mL on A549 cell line and 3.24 to 4.93 µg/mL on MCF7 cell line.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
| | - Elena-Alina Moacă
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Laboratory “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for R & D of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Delia Muntean
- Department of Microbiology Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Daliana Ionela Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeș” University of Medicine and Pharmacy, 9 Revolutiei Bulevard, 300041 Timișoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (B.K.); (I.Z.M.-P.); (D.I.M.); (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
23
|
Li W, Wan L, Cheng R, Li J, Jin H. One-pot preparation of pectin encapsulated Cu2O nanoparticles under ultrasound condition: Investigation of its catalytic, Cytotoxicity, antioxidant, and anti-colorectal cancer properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Preparation and characterization of a novel magnetized nanosphere as a carrier system for drug delivery using Forssk. hydrogel combined with mefenamic acid as the drug model. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Zhang H, Xu W, Wang P, Zhang L. Ultrasound assisted synthesis of starch-capped Cu2O NPs towards the degradation of dye and its anti-lung carcinoma properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
26
|
Sun J, Zheng X. Fabrication of Zinc loaded silicon carbide Nanocomposite for in vitro cell viability and in vivo wound dressing care. J Microencapsul 2022; 39:341-351. [PMID: 35670223 DOI: 10.1080/02652048.2022.2084168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM In this investigation, Zinc-silicon carbide (Zn-SiC) materials were fabricated by a simple approach by using Zn nanoparticles (Zn-NPs) loaded on silicon carbide (SiC) with enhanced antibacterial and healing activity. METHODS Zn-NPs loaded on SiC fabricated by the DIY laser melting technique. The TEM and Zeta-sizer confirmed the morphology and size of the nanoparticles. The characterization was done using Fourier transforms infrared spectroscopy (FTIR), and X-ray diffraction (XRD), Thermogravimetric analysis (TGA). Further, the fabricated nanoparticles were evaluated for their mechanical properties and biocompatibility under storage conditions. In-vivo wound healing was measured by observing a percentage reduction in the wound. RESULTS Zn-SiC NPs have 54.6 ± 5.25 nm mean particle size, -15.9 ± 2.35 mV zeta potential with 0.187 ± 0.05 polydispersity index (PD1). The nanoparticles showed good biocompatibility and in-vivo wound healing properties. CONCLUSIONS These results strongly support the possibility of using these Zn particles loaded on SiC NPs as a promising wound healing agent after cesarean section.
Collapse
Affiliation(s)
- Junhong Sun
- Department of Obstetrics, Wenling First People's Hospital, Wenling-317500, China
| | - Xian Zheng
- Department of Obstetrics, Wenling First People's Hospital, Wenling-317500, China
| |
Collapse
|
27
|
Sharma P, Bhardwaj N, Kumar V. Greener Iron Oxide Nanomaterial Inhibits Corrosion of Stainless Steel 316L in Ringer’s Solution. JOURNAL OF BIO- AND TRIBO-CORROSION 2022; 8:49. [DOI: 10.1007/s40735-022-00642-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 01/12/2025]
|
28
|
Green synthesis of cobalt nanoparticles using Calendula officinalis leaves extract: chemical characterization and anti-lung cancer activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Formulation of a novel anti-leukemia drug and evaluation of its therapeutic effects in comparison with Cytarabine. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Shahriari M, Ali Hosseini Sedigh M, Shahriari M, Stenzel M, Mahdi Zangeneh M, Zangeneh A, Mahdavi B, Asadnia M, Gholami J, Karmakar B, Veisi H. Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It’s catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Preparation, characterization, and antibacterial properties of “green” synthesis of Ag nanoparticles and AgNPs/kaolin composite. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01757-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Zhao L, Lan T, Jiang G, Yan B. Protective effect of the gold nanoparticles green synthesized by Calendula officinalis L. extract on cerebral ischemia stroke-reperfusion injury in rats: A preclinical trial study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Rizwana H, Alwhibi MS, Al-Judaie RA, Aldehaish HA, Alsaggabi NS. Sunlight-Mediated Green Synthesis of Silver Nanoparticles Using the Berries of Ribes rubrum (Red Currants): Characterisation and Evaluation of Their Antifungal and Antibacterial Activities. Molecules 2022; 27:molecules27072186. [PMID: 35408589 PMCID: PMC9000498 DOI: 10.3390/molecules27072186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Plants are a treasure trove of several important phytochemicals that are endowed with therapeutic and medicinal properties. Ribes rubrum L. (red currants) are seasonal berries that are widely consumed for their nutritional value and are known for their health benefits. Red currants are a rich source of secondary metabolites such as polyphenols, tocopherols, phenolic acids, ascorbic acid, and flavonoids. In this study, sunlight-mediated synthesis of silver nanoparticles (AgNPs) was successfully accomplished within 9 min after adding the silver nitrate solution to the aqueous extract of red currant. The synthesised AgNPs were characterised with UV–Vis, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared spectrum (FTIR), and energy-dispersive X-ray spectrum (EDX). The efficacy of aqueous extracts of red currants and AgNPs in controlling the growth of some pathogenic fungi and bacteria was also investigated. The UV–visible (UV–Vis) spectrum displayed an absorption peak at 435 nm, which corresponded to the surface plasmon band. The strong silver signal on the EDX spectrum at 3 keV, authenticated the formation of AgNPs. The several peaks on the FTIR spectrum of the aqueous extract of red currant and the nanoparticles indicated the presence of some important functional groups such as amines, carbonyl compounds, and phenols that are vital in facilitating the process of capping and bioreduction, besides conferring stability to nanoparticles. The TEM microphotographs showed that the nanoparticles were well dispersed, roughly spherical, and the size of the nanoparticles ranged from 8 to 59 nm. The red currant silver nanoparticles were highly potent in inhibiting the growth and proliferation of some fungal and bacterial test isolates, especially Alternaria alternata, Colletotrichum musae, and Trichoderma harzianum. Based on the robust antifungal and antibacterial activity demonstrated in this study, red currant nanoparticles can be investigated as potential replacements for synthetic fungicides and antibiotics.
Collapse
|
34
|
Abbasi BA, Iqbal J, Israr M, Yaseen T, Zahra SA, Shahbaz A, Rahdar A, Raouf B, Khan SU, Kanwal S, Mahmood T. Rhamnella gilgitica functionalized green synthesis of ZnONPs and their multiple therapeutic properties. Microsc Res Tech 2022; 85:2338-2350. [PMID: 35294072 DOI: 10.1002/jemt.24090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/03/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023]
Abstract
In the recent years, green synthesis of zinc oxide nanoparticles (ZnONPs) using plant extracts and phytochemicals has gained significant attention. In present research study, facile, green, and tunable ZnONPs were biosynthesized from Rhamnella gilgitica leaf aqueous extract as a strong reducing and stabilizing agents. The prepared ZnONPs@Rhamnella were characterized and validated using common nanotechnology techniques (UV-Vis, XRD, EDX, FT-IR, SEM, TEM, DLS, and Raman) and revealed spherical morphology with particle size ~21 nm. The asynthesized ZnONPs were further evaluated for different biological applications. Strong antimicrobial efficacies were reported for ZnONPs using disc-diffusion method and were capable of rendering significant antimicrobial potential. ZnONPs were evaluated against HepG2 (IC50 : 18.40 μg/ml) and HUH7 (IC50 : 20.59 μg/ml) cancer cell lines and revealed strong anticancer properties. Dose-dependent MTT cytotoxicity assay was confirmed using Leishmania tropica "KWH23 strain" (promastigote: IC50 : 26.78 μg/ml and amastigote: IC50 : 29.57 μg/ml). Antioxidant activities (DPPH: 93.36%, TAC: 72.43%) were performed to evaluate their antioxidant potentials. Further, protein kinase and α-amylase inhibition assays were determined. Biocompatibility assays were done using human RBCs and macrophages thus revealed biosafe and non-toxic nature of ZnONPs@Rhamnella. In current experiment, we concluded that greenly orchestrated ZnONPs is an attractive, non-toxic and ecofriendly candidate and showed potential biological activities. In future, different clinical trials and in vivo studies are necessary for the confirmation of these remedial properties of ZnONPs using different animal models.
Collapse
Affiliation(s)
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Pakistan
| | - Muhammad Israr
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Pakistan
| | - Syeda Anber Zahra
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Shahbaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Islamic Republic of Iran
| | - Blqees Raouf
- Department of Physics, Riphah International University, Islamabad, Pakistan
| | - Shahid Ullah Khan
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,Department of Biochemistry, Women Medical and Dental College, Abbottabad, Pakistan
| | - Sobia Kanwal
- Department of Biology and environmental Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
35
|
Chen M, Zhao H, Cheng Y, Wang L, Alotaibi SH, Zhang Y. Anti-human Glioma Cancer Potentials of Neobavaisoflavone as Natural Antioxidant Compound and Its Inhibition Profiles for Acetylcholinesterase and Butyrylcholinesterase Enzymes with Molecular Modeling and Spin Density Distributions Studies. J Oleo Sci 2022; 71:277-288. [PMID: 35110469 DOI: 10.5650/jos.ess21288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, the carcinogenic potential of Neobavaisoflavone as a natural antioxidant compound and the inhibitory profiles of acetylcholinesterase and butyrylcholinesterase were investigated by molecular modeling and spin density distribution studies. To evaluate the antioxidant properties of neobavaisoflavone, DPPH test was performed in the presence of butyl hydroxytoluene as a control. Neobavaisoflavone cell viability was low compared to normal human glioma cancer cell lines, namely LN-229, U-87 and A-172 cell lines, without any effect of cytotoxicity on normal cell line. Neobavaisoflavone inhibited half of DPPH at 125 μg/mL. The best effects of Neobavaisoflavone antihypertensive glioma against the above cell lines were in the LN-229 cell line. In addition, the significant anti-cancer potential of human glioma Neobavaisoflavone against the popular human glioma cancer cell lines is related in this study. IC50 values were calculated by Neobavaisoflavone diagrams, 63.87 nM for AChE and 112.98 nM for BuChE, % Activity- [Inhibitor]. According to the above results, Neobavaisoflavone can be used to treat a variety of human glioma cancers in humans. In addition, molecular modeling calculations were performed to compare the biochemical activities of the Neobavaisoflavone molecule with enzymes. After molecular insertion calculations, ADME/T analysis was performed to investigate the properties of the neobavaisoflavone molecule, which will be used as a drug in the future. Then, different parameters for the antioxidant activity of the neobavaisoflavone molecule were calculated.
Collapse
Affiliation(s)
- Mingsheng Chen
- Science and Technology Innovation Platform of Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University
| | - Yingying Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University
| | - Linlin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University
| | - Saad H Alotaibi
- Department of Chemistry, Turabah University College, Taif University
| | - Yuelin Zhang
- Science and Technology Innovation Platform of Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University
| |
Collapse
|
36
|
Lu L, Zhuang Z, Fan M, Liu B, Yang Y, Huang J, Da X, Mo J, Li Q, Lu H. Green formulation of Ag nanoparticles by Hibiscus rosa-sinensis: Introducing a navel chemotherapeutic drug for the treatment of liver cancer. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Wang X, Liu Z, Bani-Fwaz MZ, Marzouki R, Ali IH, El-kott AF, Alhomaid FA. Ag nanoparticles immobilized on guanidine modified-KIT-5 mesoporous nanostructure: Evaluation of its catalytic activity for synthesis of propargylamines and investigation of its antioxidant and anti-lung cancer effects. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Pereira D, Carreira TS, Alves N, Sousa Â, Valente JFA. Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. Int J Mol Sci 2022; 23:1165. [PMID: 35163090 PMCID: PMC8835760 DOI: 10.3390/ijms23031165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Tiago Soares Carreira
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Nuno Alves
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Joana F. A. Valente
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| |
Collapse
|
39
|
Wei X, Liu Y, El-kott A, Ahmed AE, Khames A. Calendula officinalis-based green synthesis of titanium nanoparticle: Fabrication, characterization, and evaluation of human colorectal carcinoma. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci Rep 2021; 11:20988. [PMID: 34697404 PMCID: PMC8545962 DOI: 10.1038/s41598-021-99839-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
Due to their versatile applications, ZnONPs have been formulated by several approaches, including green chemistry methods. In the current study, convenient and economically viable ZnONPs were produced using Elaeagnus angustifolia (EA) leaf extracts. The phytochemicals from E. angustifolia L. are believed to serve as a non-toxic source of reducing and stabilizing agents. The physical and chemical properties of ZnONPs were investigated employing varying analytical techniques (UV, XRD, FT-IR, EDX, SEM, TEM, DLS and Raman). Strong UV–Vis absorption at 399 nm was observed for green ZnONPs. TEM, SEM and XRD analyses determined the nanoscale size, morphology and crystalline structure of ZnONPs, respectively. The ZnONPs were substantiated by evaluation using HepG2 (IC50: 21.7 µg mL−1) and HUH7 (IC50: 29.8 µg mL−1) cancer cell lines and displayed potential anticancer activities. The MTT cytotoxicity assay was conducted using Leishmania tropica “KWH23” (promastigotes: IC50, 24.9 µg mL−1; and amastigotes: IC50, 32.83 µg mL−1). ZnONPs exhibited excellent antimicrobial potencies against five different bacterial and fungal species via the disc-diffusion method, and their MIC values were calculated. ZnONPs were found to be biocompatible using human erythrocytes and macrophages. Free radical scavenging tests revealed excellent antioxidant activities. Enzyme inhibition assays were performed and revealed excellent potential. These findings suggested that EA@ZnONPs have potential applications and could be used as a promising candidate for clinical development.
Collapse
|
41
|
Erdogan SS, Gur TF, Terzi NK, Dogan B. Evaluation of the cutaneous wound healing potential of tamanu oil in wounds induced in rats. J Wound Care 2021; 30:Vi-Vx. [PMID: 34597168 DOI: 10.12968/jowc.2021.30.sup9a.v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIMS Tamanu is a plant oil derived from the fruit and seeds of the Calophyllum inophyllum tree. Although scientific data on tamanu oil are limited, it is recommended worldwide for the treatment of abrasions, burns, diabetic wounds and scars. This study aimed to compare the wound healing efficacy of the topical use of tamanu oil with a reference drug in rats. METHODS Uniform wounds were induced on the dorsum of 21 rats, randomly divided into three groups. The control group received normal saline; the tamanu group received tamanu oil; and the centella group was treated with Centella asiatica. Wound healing was clinically evaluated using wound healing scoring and wound contraction. A biopsy was taken from the wound sites of each rat on days 7, 14 and 21 for histopathological evaluation. RESULTS Wound contraction was significantly lower in the tamanu group compared with the other groups. On day 7, the intensity of macrophage infiltration and mature granulation tissues were significantly higher in the centella and tamanu groups than in the control group. Fibrosis and collagen density were higher in the tamanu group than the other groups on day 7. CONCLUSION In wound healing in rats, tamanu oil accelerated the formation of macrophage-granulation tissues-fibrosis and resulted in less wound contraction.
Collapse
Affiliation(s)
- Sevil S Erdogan
- Department of Dermatology, University of Health Sciences, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Tugba F Gur
- Department of Dermatology, University of Health Sciences, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Neslihan K Terzi
- Department of Pathology, University of Health Sciences, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Bilal Dogan
- Department of Dermatology, University of Health Sciences, Sultan 2. Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
42
|
Tang T, Xia Q, Guo J, Chinnathambi A, Alrashood ST, Alharbi SA, Zhang J. In situ supported of silver nanoparticles on Thymbra spicata extract coated magnetic nanoparticles under the ultrasonic condition: Its catalytic activity in the synthesis of Propargylamines and their anti-human colorectal properties in the in vitro condition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Xu J, Li L, Zhang J, Min Y. Decorated of Au NPs over L-arginine-modified Fe3O4 nanoparticles as a novel nanomagnetic composite for the treatment of human ovarian cancer. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
44
|
Shi Z, Mahdavian Y, Mahdavian Y, Mahdigholizad S, Irani P, Karimian M, Abbasi N, Ghaneialvar H, Zangeneh A, Mahdi Zangeneh M. Cu immobilized on chitosan-modified iron oxide magnetic nanoparticles: Preparation, characterization and investigation of its anti-lung cancer effects. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
45
|
Ding W, Liang Z, El-Kott AF, El-Kenawy AE. Investigation of anti-human ovarian cancer effects of decorated Au nanoparticles on Thymbra spicata extract modified Fe3O4 nanoparticles. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
46
|
Solati K, Karimi M, Rafieian-Kopaei M, Abbasi N, Abbaszadeh S, Bahmani M. Phytotherapy for Wound Healing: The Most Important Herbal Plants in Wound Healing Based on Iranian Ethnobotanical Documents. Mini Rev Med Chem 2021; 21:500-519. [PMID: 33213344 DOI: 10.2174/1389557520666201119122608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Wound healing is a process that starts with the inflammatory response after the occurrence of any damage. This process initiates by restoring the wound surface coating tissue, migrating fibroblasts to form the required collagen, forming a healing tissue and finally, leading to contortion and extraction of the wound. Today, various drugs are used to heal wounds. However, the drugs used to repair wounds have some defects and side effects. In spite of all attempts to accelerate wound healing definitely, no safe drug has been introduced for this purpose. Therefore, the necessity to identify herbal plants in ethnopharmacology and ethnobotany documents with healing effects is essential. In this article, we tried to review and present effective Iranian medicinal plants and herbal compounds used for wound healing. Searching was performed on databases, including ISI Web of Science, PubMed, PubMed Central, Scopus, ISC, SID, Magiran and some other databases. The keywords used included wound healing, skin treatment, medicinal plants, ethnobotany, and phytotherapy. In this regard, 139 medicinal plants effective on wound healing were identified based on ethnopharmacology and ethnobotanical sources of Iran. Plants such as Salvia officinalis, Echium amoenum, Verbascum spp., G1ycyrrhiza glabra, Medicago sativa, Mentha pulegium, Datura stramonium L., Alhagi spp., Aloe vera, Hypericum perforatum, Pistacia atlantica and Prosopis cineraria are the most important and useful medicinal plants used for wound healing in Iran. These native Iranian medicinal plants are rich in antioxidants and biological compounds and might be used for wound healing and preparation of new drugs.
Collapse
Affiliation(s)
- Kamal Solati
- Department of Psychiatry, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Karimi
- Department of Surgery, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord Shahrekord, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saber Abbaszadeh
- Department of Clinical Biochemistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Bahmani
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
47
|
Green formulation, chemical characterization, and antioxidant, cytotoxicity, and anti-human cervical cancer effects of vanadium nanoparticles: A pre-clinical study. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
48
|
Zhang Y, Mahdavi B, Mohammadhosseini M, Rezaei-Seresht E, Paydarfard S, Qorbani M, Karimian M, Abbasi N, Ghaneialvar H, Karimi E. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103105] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Mahdavi B, Paydarfard S, Rezaei‐Seresht E, Baghayeri M, Nodehi M. Green synthesis of NiONPs using
Trigonella subenervis
extract and its applications as a highly efficient electrochemical sensor, catalyst, and antibacterial agent. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behnam Mahdavi
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Sogand Paydarfard
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Esmail Rezaei‐Seresht
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| |
Collapse
|