1
|
Sonu PK, Srivastav AK, Anjali, Peddireddy V, Kumar U. Extraction and physiochemical characterization of micro-fibrillated cellulose based composite biofilm derived from Aegle marmelos fruit shells waste for packaging applications supported by in-silico docking studies. Int J Biol Macromol 2025; 309:142921. [PMID: 40210077 DOI: 10.1016/j.ijbiomac.2025.142921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
The utilization of waste shells from Aegle marmelos (bael) as a source of Micro fibrillated cellulose (MFC) was undertaken for applications in food packaging within the framework of this investigation. FTIR analysis of CAM and Raw Aegle marmelos shell powder (RAM) showed stretching of -OH and -CH groups at 3339 cm-1 and 2889 cm-1. Our results showed that crystallinity indices of CAM and RAM were 39.59 % and 18.89 %, respectively indicating a significant raise in crystallinity after extraction. FTIR analysis reveals the presence of hydroxyl groups (3306 cm-1) in all films. Exploration of the results indicated the development of covalent and H (hydrogen) bonds between CAM and Guar gum/Chitosan (GT), as discerned through FT-IR studies. X-ray diffraction unveiled in the amorphous feature of the films following CAM into GT composite film. Evaluation through FE-SEM exhibited a densely disordered network contributing to a heightened contact angle of the resultant film with an enhanced concentration of CAM. Cellulose Iβ and Chitosan showed stronger binding affinity of -7.3 kcal/mol, suggesting greater compatibility and stability. The antioxidant capacity of the films increased from 10.90 to 61.80 due to addition of CAM in the GT mixture where elevated concentrations demonstrated better scavenging activity.
Collapse
Affiliation(s)
- Prince Kumar Sonu
- Department of Nutrition Biology, School of Interdisciplinary & Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 12031, India
| | - Amit Kumar Srivastav
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Anjali
- Department of Nutrition Biology, School of Interdisciplinary & Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 12031, India
| | - Vidyullatha Peddireddy
- Department of Nutrition Biology, School of Interdisciplinary & Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 12031, India.
| | - Umesh Kumar
- Department of Nutrition Biology, School of Interdisciplinary & Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 12031, India.
| |
Collapse
|
2
|
Lithi IJ, Ahmed Nakib KI, Chowdhury AMS, Sahadat Hossain M. A review on the green synthesis of metal (Ag, Cu, and Au) and metal oxide (ZnO, MgO, Co 3O 4, and TiO 2) nanoparticles using plant extracts for developing antimicrobial properties. NANOSCALE ADVANCES 2025; 7:2446-2473. [PMID: 40207090 PMCID: PMC11976448 DOI: 10.1039/d5na00037h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Green synthesis (GS) is a vital method for producing metal nanoparticles with antimicrobial properties. Unlike traditional methods, green synthesis utilizes natural substances, such as plant extracts, microorganisms, etc., to create nanoparticles. This eco-friendly approach results in non-toxic and biocompatible nanoparticles with superior antimicrobial activity. This paper reviews the prospects of green synthesis of metal nanoparticles of silver (Ag), copper (Cu), gold (Au) and metal oxide nanoparticles of zinc (ZnO), magnesium (MgO), cobalt (Co3O4), and titanium (TiO2) using plant extracts from tissues of leaves, barks, roots, etc., antibacterial mechanisms of metal and metal oxide nanoparticles, and obstacles and factors that need to be considered to overcome the limitations of the green synthesis process. The clean surfaces and minimal chemical residues of these nanoparticles contribute to their effectiveness. Certain metals exhibit enhanced antibacterial properties only in GS methods due to the presence of bioactive compounds from natural reducing agents such as Au and MgO. GS improves TiO2 antibacterial properties under visible light, while it would be impossible without UV activation. These nanoparticles have important antimicrobial properties for treating microbial infections and combating antibiotic resistance against bacteria, fungi, and viruses by disrupting microbial membranes, generating ROS, and interfering with DNA and protein synthesis. Nanoscale size and large surface area make them critical for developing advanced antimicrobial treatments. They are effective antibacterial agents for treating infections, suitable in water purification systems, and fostering innovation by creating green, economically viable antibacterial materials. Therefore, green synthesis of metal and metal oxide nanoparticles for antibacterial agents supports several United Nations Sustainable Development Goals (SDGs), including health improvement, sustainability, and innovation.
Collapse
Affiliation(s)
- Israt Jahan Lithi
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Kazi Imtiaz Ahmed Nakib
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - A M Sarwaruddin Chowdhury
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
3
|
Irani M, Abadi PG, Ahmadian-Attari MM, Rezaee A, Kordbacheh H, Goleij P. In vitro and in vivo studies of Dragon's blood plant (D. cinnabari)-loaded electrospun chitosan/PCL nanofibers: Cytotoxicity, antibacterial, and wound healing activities. Int J Biol Macromol 2024; 257:128634. [PMID: 38065451 DOI: 10.1016/j.ijbiomac.2023.128634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
The D. cinnabari plant was loaded into the chitosan (Chn)/polycaprolactone (PCL) nanofibers in two forms: resin (D. cinnabari) and its ethyl acetate fraction. The Chn/PCL, Chn/PCL/D. cinnabari (CPD, 1, 3, and 5 %), and Chn/PCL/ethyl acetate extract D. cinnabari (CPED, 1, 3, and 5 %) showed no toxicity against human dermal fibroblast cells. The lactate dehydrogenase assay results indicated that the toxicity of pour, coated D. cinnabari, and CPED nanofibers were lower than 10 and 15 % after 1 and 3 days, respectively. The antibacterial results showed the inhibition zone for ethyl acetate extract D. cinnabari (ED-3 %), the Chn/PCL-2, and CPED3% nanofibers was 8.1, 7.4, 4.2, 5.1 mm, 12.8, 12.4, 21.7, 17.2 mm, and 24.7, 22.9, 37.1, 30.2 mm against S. aureus, B. subtilis, E. coli, and P. aeruginosa, respectively. The antibacterial activity results showed synergistic effect between the Chn/PCL and ethyl acetate extract D. cinnabari occurred. The diameter of wounds (1.50 × 1.50 cm diameter) made on the dorsal surface of rabbits reduced to 1.50 × 0.70, 0.50 × 0.30, 1.00 × 1.00, 0.60 × 0.50, 0.20 × 0.05, and 0.00 × 0.00 cm in the presence of ordinary gauze dressing, silver sulfadiazine, ED-3 %, Chn/PCL-2, CPD3%, and CPED3%nanofibers, respectively, after 14 days.
Collapse
Affiliation(s)
- Mohammad Irani
- Department of Pharmaceutics, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| | | | - Mohammad Mahdi Ahmadian-Attari
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hananeh Kordbacheh
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, North Cyprus, Mersin 10, Turkey
| | - Pouya Goleij
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
4
|
Shandhiya M, Janarthanan B, Sharmila S. A comprehensive review on antibacterial analysis of natural extract-based metal and metal oxide nanoparticles. Arch Microbiol 2024; 206:52. [PMID: 38175198 DOI: 10.1007/s00203-023-03743-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024]
Abstract
Pharmaceutical, food packing, cosmetics, agriculture, energy storage devices widely utilize metal and metal oxide nanoparticles prepared via different physical and chemical methods. It resulted in the release of several dangerous compounds and solvents as the nanoparticles were being formed. Currently, Researchers interested in preparing nanoparticles (NPs) via biological approach due to their unique physiochemical properties which took part in reducing the environmental risks. However, a number of microbial species are causing dangerous illnesses and are a threat to the entire planet. The metal and metal oxide nanoparticles played a significant role in the identification and elimination of microbes when prepared using natural extract. Its biological performance is thus also becoming exponentially more apparent than it was using in conventional techniques. Despite the fact that they hurt germs, their small size and well-defined shape encourage surface contact with them. The generation of Reactive Oxygen Species (ROS), weakens the bacterial cell membrane by allowing internal cellular components to seep out. The bacterium dies as a result of this. Numerous studies on different nanoparticles and their antibacterial efficacy against various diseases are still accessible. The main objective of the biogenic research on the synthesis of key metals and metal oxides (such as gold, silver, titanium dioxide, nickel oxide, and zinc oxide) using various plant extracts is reviewed in this study along with the process of nanoparticle formation and the importance of phytochemicals found in the plant extract.
Collapse
Affiliation(s)
- M Shandhiya
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - B Janarthanan
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, India
| | - S Sharmila
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India.
| |
Collapse
|
5
|
Kaur H, Kumar S, Kaur G, Kaur N, Badru R, Saini R. An emerging expanse: Novel and eco-friendly-biogenic synthesis of E. cardamomum-wrapped TiO 2 nanoparticles for environmental and biological applications. ENVIRONMENTAL RESEARCH 2023; 234:116599. [PMID: 37429400 DOI: 10.1016/j.envres.2023.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The present research is targeted at E. cardamomum-derived TiO2-photocatalyst synthesis, reporting for the first time. The structural properties observed from the XRD pattern reveal that EC:TiO2 has an anatase phase and crystallite size is assessed by Debye-Scherrer's method (3.56 nm), WH-method (3.30 nm), and Modified-Debye-Scherrer's method (3.27 nm). An optical study by the UV-Vis spectrum shows strong absorption at 313 nm, and the corresponding band gap value is 3.28 eV. The topographical and morphological properties revealed by SEM and HRTEM images, elucidate the formation of multi-shaped particles of nano-size. Further, the phytochemicals on the EC:TiO2 NPs' surface are confirmed by the FTIR spectrum. The photocatalytic activity is well studied under UV light towards Congo Red dye, along with an effect of the dose of catalyst. EC:TiO2 (20 mg) has exhibited high photocatalytic efficiency up to 97% for 150 min of exposure due to the morphological, structural, and optical properties. CR degradation reaction exhibits pseudo-first-order kinetics, displaying a rate constant value of 0.01320 min-1. Reusability investigations reveal that after four photocatalysis cycles, EC:TiO2 has an effective efficiency of >85%. Additionally, EC:TiO2 NPs have been assessed for antibacterial activity and show potential against two bacterial species (S. aureus and P. aeruginosa). Therefore, these research outcomes from the eco-friendly and low-cost synthesis, are promising for the use of EC:TiO2 as a talented photocatalyst towards the removal of crystal violet dye as well as an antibacterial agent against bacterial pathogens.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physics, Chandigarh University, Gharuan, Mohali, 140413, India.
| | - Sanjeev Kumar
- Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India.
| | - Gaganpreet Kaur
- Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Navjot Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Rahul Badru
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, Punjab, India
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J1P3, Canada
| |
Collapse
|
6
|
Sui Y, Xie L, Meng D, Ruan Y, Zhong Z, Huang L. Cardiovascular protective properties of green synthesised iron nanoparticles from Calendula officinalis leaf aqueous extract on Mitoxantrone-induced DNA fragmentation and apoptosis in HDMVECn, HUVEC, HAEC, HCAEC, HCASMC and HPAEC cells. JOURNAL OF EXPERIMENTAL NANOSCIENCE 2022; 17:126-137. [DOI: 10.1080/17458080.2021.2003339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Yuying Sui
- Intensive Care Unit, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liangzhen Xie
- Department of Gerontology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Dongmei Meng
- Intensive Care Unit, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yunjun Ruan
- Department of Gerontology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zheng Zhong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Linxi Huang
- Intensive Care Unit, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Meng L, Li S, Wanyan C. Design and evaluation of a novel nano copper/chitosan–starch bio-composite on antimicrobial property and wound-healing efficacy. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Govindasamy GA, Mydin RBSMN, Harun NH, Effendy WNFWE, Sreekantan S. Annealing temperature influences the cytocompatibility, bactericidal and bioactive properties of green synthesised TiO2 nanocomposites. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Tang T, Xia Q, Guo J, Chinnathambi A, Alrashood ST, Alharbi SA, Zhang J. In situ supported of silver nanoparticles on Thymbra spicata extract coated magnetic nanoparticles under the ultrasonic condition: Its catalytic activity in the synthesis of Propargylamines and their anti-human colorectal properties in the in vitro condition. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
|
11
|
Yadav E, Yadav P, Verma A. In silico Study of Trianthema portulacastrum Embedded Iron Oxide Nanoparticles on Glycogen Synthase Kinase-3β: A Possible Contributor to its Enhanced in vivo Wound Healing Potential. Front Pharmacol 2021; 12:664075. [PMID: 34079461 PMCID: PMC8165444 DOI: 10.3389/fphar.2021.664075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Rich amount of phenolic compounds are available in Trianthema portulacastrum L. (TP) leaves and are traditionally utilized as a wound dressing material. Oxidative stress and inflammation affect the Wnt/β-catenin pathway by modulating the glycogen synthase kinase-3β (GSK) activity subjected to delay in wound healing. The objective of the current study was to explore the wound healing effect of ferric oxide nanoparticles biosynthesized with fractionated TP extract (FeTP). The ability of TP active components (polyphenols) to inhibit the GSK was explored by using molecular docking studies. FeTP were synthesized, characterized, utilized to prepare an ointment and its efficacy was investigated against full-thickness dermal wounds. Different wound healing parameters, level of enzymatic antioxidants, hydroxyproline content and tissue cytokines level were analyzed. Histopathology was performed to confirm the healing by newly formed tissue architecture. Rats treated with FeTP showed significantly swift healing with faster wound contraction rate, high tensile strength and hydroxyproline content along with the utilization of less time for epithelialization. Histopathological study also validated the potential wound healing effect of FeTP with complete re-epithelialization. The results of the present study cumulatively revealed that the green synthesized FeTP ointment approach may serve as a potential tool for dermal wound healing.
Collapse
Affiliation(s)
- Ekta Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| | - Pankajkumar Yadav
- Pharmaceutics Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, India
| |
Collapse
|
12
|
Hua L, Li W, Chen Y, Liang K, Cai H, Wang J, Wang S, Yin T, Liang L. A hexanuclear Nd (III) complex derived from a Schiff base with significant antitumor and antifungal activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lijuan Hua
- Department of Chemistry Bengbu Medical College Bengbu China
| | - Wenge Li
- Department of Chemistry Bengbu Medical College Bengbu China
| | - Yan Chen
- Department of Chemistry Bengbu Medical College Bengbu China
| | - Kai Liang
- Department of Chemistry Bengbu Medical College Bengbu China
| | - He Cai
- Department of Chemistry Bengbu Medical College Bengbu China
| | - Jing Wang
- Department of Chemistry Bengbu Medical College Bengbu China
| | - Siyu Wang
- Department of Chemistry Bengbu Medical College Bengbu China
| | - Tianyue Yin
- Department of Chemistry Bengbu Medical College Bengbu China
| | - Lili Liang
- Department of Chemistry Bengbu Medical College Bengbu China
| |
Collapse
|
13
|
Keabadile OP, Aremu AO, Elugoke SE, Fayemi OE. Green and Traditional Synthesis of Copper Oxide Nanoparticles-Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2502. [PMID: 33327366 PMCID: PMC7764311 DOI: 10.3390/nano10122502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022]
Abstract
The current study compared the synthesis, characterization and properties of copper oxide nanoparticles (CuO) based on green and traditional chemical methods. The synthesized CuO were confirmed by spectroscopic and morphological characterization such as ultraviolet-visible (UV-vis) spectroscopy, fourier transform infrared (FTIR) spectroscopy, zeta potential, scanning electron microscopy (SEM) and energy dispersed X-ray (EDX). Electrochemical behavior of the modified electrodes was done using cyclic voltammetry (CV) in ferricyanide/ferrocyanide ([Fe(CN)6]4-/[Fe(CN)6]3-) redox probe. As revealed by UV spectrophotometer, the absorption peaks ranged from 290-293 nm for all synthesized nanoparticles. Based on SEM images, CuO were spherical in shape with agglomerated particles. Zeta potential revealed that the green CuO have more negative surface charge than the chemically synthesized CuO. The potential of the green synthesized nanoparticles was higher relative to the chemically synthesized one. Cyclic voltammetry studies indicated that the traditional chemically synthesized CuO and the green CuO have electrocatalytic activity towards the ferricyanide redox probe. This suggests that the green CuO can be modified with other nanomaterials for the preparation of electrochemical sensors towards analytes of interest.
Collapse
Affiliation(s)
- Obakeng P. Keabadile
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa; (O.P.K.); (S.E.E.)
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Adeyemi O. Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa;
| | - Saheed E. Elugoke
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa; (O.P.K.); (S.E.E.)
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa; (O.P.K.); (S.E.E.)
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
14
|
Venil CK, Malathi M, Velmurugan P, Renuka Devi P. Green synthesis of silver nanoparticles using canthaxanthin from Dietzia maris AURCCBT01 and their cytotoxic properties against human keratinocyte cell line. J Appl Microbiol 2020; 130:1730-1744. [PMID: 33078530 DOI: 10.1111/jam.14889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
AIM Nano-biotechnologically synthesizing silver nanoparticles via canthaxanthin pigment extracted from Dietzia maris AURCCBT01 and assessing their cytotoxic therapeutic potential against human keratinocyte cell line (HaCaT) were the key objectives of this study. METHODS AND RESULTS The pigment extracted from D. maris AURCCBT01 was identified as canthaxanthin using UV-VIS spectroscopy, FTIR, NMR (1 H NMR and 13 C NMR) and MS. Canthaxanthin, treated with silver nitrate solution, produced canthaxanthin-mediated silver nanoparticles and they were characterized by UV-VIS spectroscopy, FTIR, XRD, FESEM-EDX and TEM-SAED techniques. UV-VIS spectroscopy pointed out an absorption band at 420 nm, relating to the surface plasmon resonance of silver nanoparticles. FTIR findings suggested that the diverse functional groups of canthaxanthin bio-molecules played a significant task in capping the silver nanoparticles. XRD analysis exhibited 40·20 nm for the crystal size of nanoparticles. FESEM and TEM exhibited that the biosynthesized silver nanoparticles were spherical in shape with crystalline nature and the particle size was 40-50 nm. Moreover, the cytotoxicity assessment of the synthesized nanoparticles in HaCaT revealed significant cytotoxicity in the cultured cells with an IC50 value of 43 µg ml-1 . CONCLUSION Stable silver nanoparticles synthesized using canthaxanthin from D. maris AURCCBT01 were found effective for application in wound healing activity. SIGNIFICANCE AND IMPACT OF THE STUDY Biosynthesized silver nanoparticles via canthaxanthin bacterial pigment exhibited their cytotoxicity effect in HaCaT and testified their eventual therapeutic potential in the wound healing activity with no side effects in a cost effective and eco-friendly process.
Collapse
Affiliation(s)
- C K Venil
- Department of Biotechnology, Anna University, Coimbatore, Tamil Nadu, India
| | - M Malathi
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - P Velmurugan
- Department of Biotechnology, Alagappa University - Science Campus, Karaikudi, Tamil Nadu, India
| | - P Renuka Devi
- Department of Biotechnology, Anna University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
15
|
Horstmann Risso N, Ottonelli Stopiglia CD, Oliveira MT, Haas SE, Ramos Maciel T, Reginatto Lazzari N, Kelmer EL, Pinto Vilela JA, Beckmann DV. Chlorhexidine Nanoemulsion: A New Antiseptic Formulation. Int J Nanomedicine 2020; 15:6935-6944. [PMID: 33061360 PMCID: PMC7519836 DOI: 10.2147/ijn.s228280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Nanoparticle solutions have been studied to improve antimicrobial effect. The aim of this study was to develop, characterize, and evaluate the in vitro and in vivo antiseptic efficacy of 0.25% aqueous-based chlorhexidine nanoemulsion (NM-Cl 0.25% w/v). Methods The NM-Cl 0.25% w/v (2.5mg/mL) and free chlorhexidine nanoemulsion (FCN; same composition of NM-Cl without the molecule of chlorhexidine) were synthetized by the spontaneous emulsification method. Characterization analyses of physical and chemical properties were performed. The NM-Cl 0.25% w/v was compared with chlorhexidine 0.5% alcohol base (CS-Cl 0.5%) in vitro studies (microdilution study and kill curve study), and in vivo study (antisepsis of rats dorsum). Kruskal–Wallis test was used between groups and inside the same group, at different sample times and the Mann–Whitney test was performed when difference was detected. Results The NM-Cl 0.25% w/v presented adequate physicochemical characteristics for a nanoemulsion, revealing a more basic pH than FCN and difference between zeta potential of NM-Cl 0.25% w/v and FCN. The NM-Cl 0.25% w/v and CS-Cl 0.5% solutions were more effective on Gram-positive than on Gram-negative bacteria (p≤0.05). NM-Cl 0.25% w/v presented upper antiseptic effect in the microdilution study and residual antiseptic effect was maintained for a longer time when compared to CS-Cl 0.5% (kill curve study). The four-fold (minimal inhibitory concentration) of NM-Cl 0.25% were the formulations with most durable effect within those tested, presenting residual effect until T6 for both bacteria. In the in vivo study, both formulations (NM-Cl 0.25% w/v and CS-Cl 0.5%) had a reduction of the microorganisms in the skin of the rats (p<0.0001) not revealing any difference between the formulations at different times, showing the antiseptic effect of NM-Cl (p≤0.05). Conclusion Both in vitro and in vivo experiments demonstrated that NM-Cl showed promising future as an antiseptic for cutaneous microbiota.
Collapse
Affiliation(s)
- Natalia Horstmann Risso
- Postgraduate Program in Animal Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | | | - Marília Teresa Oliveira
- Postgraduate Program in Animal Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Sandra Elisa Haas
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | - Tamara Ramos Maciel
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, RS, Brazil
| | | | - Edilson Luis Kelmer
- Veterinary Medicine Course, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | | | - Diego Vilibaldo Beckmann
- Postgraduate Program in Animal Sciences, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| |
Collapse
|
16
|
Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon 2020; 6:e04610. [PMID: 32775756 PMCID: PMC7404533 DOI: 10.1016/j.heliyon.2020.e04610] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
First study of phytosynthesis of TiO2 NPs using the leaf (KL), pod (KP), seed (KS) and seed shell (KSS) extracts of kola nut tree (Cola nitida) is herein reported. The TiO2 NPs were characterized and evaluated for their antimicrobial, dye degradation, antioxidant and anticoagulant activities. The nearly spherical-shaped particles had λmax of 272.5–275.0 nm with size range of 25.00–191.41 nm. FTIR analysis displayed prominent peaks at 3446.79, 1639.49 and 1382.96 cm−1, indicating the involvement of phenolic compounds and proteins in the phytosynthesis of TiO2 NPs. Both SAED and XRD showed bioformation of crystalline anatase TiO2 NPs which inhibited multidrug-drug resistant bacteria and toxigenic fungi. The catalytic activities of the particles were profound, with degradation of malachite green by 83.48–86.28 % without exposure to UV-irradiation, scavenging of DPPH and H2O2by 51.19–60.08 %, and 78.45–99.23 % respectively. The particles as well prevented the coagulation of human blood. In addition to the antimicrobial and dye-degrading activities, we report for the first time the H2O2 scavenging and anticoagulant activities of TiO2 NPs, showing that the particles can be useful for catalytic and biomedical applications.
Collapse
|
17
|
Huang J, Wu C, Tang S, Zhou P, Deng J, Zhang Z, Wang Y, Wang Z. Chiral Active β-Glucan Nanoparticles for Synergistic Delivery of Doxorubicin and Immune Potentiation. Int J Nanomedicine 2020; 15:5083-5095. [PMID: 32764938 PMCID: PMC7368591 DOI: 10.2147/ijn.s258145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022] Open
Abstract
Background β-glucans are chiral polysaccharides with well-defined immunological properties and supramolecular wrapping ability of its chiral feature. However, the exploitation of chiral properties of these nanoparticles in drug delivery systems was seldom conducted. Methods β-glucan molecules with different chain lengths were extracted from yeast Saccharomyces cerevisiae and thereafter modified. In a conformation transition process, these β-glucan molecules were then self-assembled with anti-cancer drug doxorubicin into nanoparticles to construct drug delivery systems. The chiral interactions between the drug and carriers were revealed by circular dichroism spectra, ultraviolet and visible spectrum, fourier transform infrared spectroscopy, dynamic light scattering and transmission electron microscope. The immune-potentiation properties of modified β-glucan nanoparticles were evaluated by analysis of the mRNA expression in RAW264.7 cell model. Further, the antitumor efficacy of the nanoparticles against the human breast cancer were studied in MCF-7 cell model by cellular uptake and cytotoxicity experiments. Results β-glucan nanoparticles can activate macrophages to produce immune enhancing cytokines (IL-1β, IL-6, TNF-α, IFN-γ). A special chirality of the carriers in diameter of 50~160 nm can also associate with higher drug loading ability of 13.9% ~38.2% and pH-sensitive release with a change of pH from 7.4 to 5.0. Cellular uptake and cytotoxicity experiments also prove that the chiral-active β-glucan nanoparticles can be used in anti-cancer nanomedicine. Conclusion This work demonstrates that β-glucans nanoparticles with special chiral feature which leading to strong immunopotentiation ability and high drug loading efficiency can be developed as a novel type of nanomedicine for anti-cancer treatment.
Collapse
Affiliation(s)
- Jintao Huang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510632, People's Republic of China
| | - Chaoxi Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Shunqing Tang
- Biomedical Engineering Institute, Jinan University, Guangzhou 510632, People's Republic of China
| | - Pengjun Zhou
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jianping Deng
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510632, People's Republic of China
| | - Zhen Zhang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510632, People's Republic of China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhiping Wang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
18
|
Zhao H, Su H, Ahmeda A, Sun Y, Li Z, Zangeneh MM, Nowrozi M, Zangeneh A, Moradi R. Biosynthesis of copper nanoparticles using
Allium eriophyllum
Boiss leaf aqueous extract; characterization and analysis of their antimicrobial and cutaneous wound‐healing potentials. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hongwei Zhao
- Burn DepartmentHarbin Fifth Hospital Harbin 150040 China
| | - Haitao Su
- Burn DepartmentHarbin Fifth Hospital Harbin 150040 China
| | - Ahmad Ahmeda
- College of Medicine, QU HealthQatar University Doha Qatar
| | - Yanqiu Sun
- Burn DepartmentHarbin Fifth Hospital Harbin 150040 China
| | - Zongyu Li
- Burn DepartmentHarbin Fifth Hospital Harbin 150040 China
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Masoumeh Nowrozi
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Rohallah Moradi
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
19
|
Zhang C, Liu J, Ahmeda A, Liu Y, Feng J, Guan H, Li C, Nowrozi M, Zangeneh MM, Zangeneh A, Almasi M. Biosynthesis of zinc nanoparticles using
Allium saralicum
R.M. Fritsch leaf extract; Chemical characterization and analysis of their cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chunnan Zhang
- Department of Integration of Traditional Chinese and Western MedicineHeilongjiang Provincial Hospital Harbin 150000 China
| | - Jiayu Liu
- Rehabilitation DepartmentHeilongjiang Provincial Hospital Harbin 150000 China
| | - Ahmad Ahmeda
- College of Medicine, QU HealthQatar University Doha Qatar
| | - Yandong Liu
- Department of Integration of Traditional Chinese and Western MedicineHeilongjiang Provincial Hospital Harbin 150000 China
| | - Jianyu Feng
- Department of Integration of Traditional Chinese and Western MedicineHeilongjiang Provincial Hospital Harbin 150000 China
| | - Hui Guan
- Department of Integration of Traditional Chinese and Western MedicineHeilongjiang Provincial Hospital Harbin 150000 China
| | - Cuiyun Li
- Rehabilitation DepartmentHeilongjiang Provincial Hospital Harbin 150000 China
| | - Masoumeh Nowrozi
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Maryam Almasi
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
| |
Collapse
|
20
|
Hemmati S, Zangeneh MM, Zangeneh A. CuCl2 anchored on polydopamine coated-magnetic nanoparticles (Fe3O4@PDA/Cu(II)): Preparation, characterization and evaluation of its cytotoxicity, antioxidant, antibacterial, and antifungal properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Ahmeda A, Abbasi N, Ghaneialvar H, Zangeneh MM, Zangeneh A. Application of titanium nanoparticles containing natural compounds in cutaneous wound healing. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ahmad Ahmeda
- College of Medicine, QU HealthQatar University Doha Qatar
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
- Department of Clinical Biochemistry, Faculty of MedicineIlam University of Medical Sciences Ilam Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
| | - Akram Zangeneh
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
| |
Collapse
|
22
|
Fierascu I, Fierascu IC, Brazdis RI, Baroi AM, Fistos T, Fierascu RC. Phytosynthesized Metallic Nanoparticles-between Nanomedicine and Toxicology. A Brief Review of 2019's Findings. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E574. [PMID: 31991830 PMCID: PMC7040630 DOI: 10.3390/ma13030574] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Phytosynthesized nanoparticles represent a continuously increasing field of research, with numerous studies published each year. However, with the emerging interest in this area, the quality of the published works is also continuously increasing, switching from routine antioxidant or antimicrobial studies on trivial microbial lines to antibiotic-resistant strains or antitumoral studies. However, this increasing interest has not been not reflected in the studies regarding the toxicological effects of nanoparticles (NPs); this should be a subject of greatest interest, as the increasing administration of NPs in general (and phytosynthesized NPs in particular) could lead to their accumulation in the environment (soil, water and living organisms). The present review aims to present the most recent findings in the application of phytosynthesized NPs as antimicrobial and antitumoral agents, as well as the results regarding their toxicological potential.
Collapse
Affiliation(s)
- Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Ioana Catalina Fierascu
- University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Zentiva Romania S.A., 50 Theodor Pallady Blvd., 032266 Bucharest, Romania
| | - Roxana Ioana Brazdis
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, Emerging Nanotechnologies Group, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (R.I.B.); (A.M.B.); (T.F.)
| |
Collapse
|