1
|
Abdulmalek S, Mostafa N, Gomaa M, El‑Kersh M, Elkady AI, Balbaa M. Bee venom-loaded EGFR-targeting peptide-coupled chitosan nanoparticles for effective therapy of hepatocellular carcinoma by inhibiting EGFR-mediated MEK/ERK pathway. PLoS One 2022; 17:e0272776. [PMID: 35947632 PMCID: PMC9365195 DOI: 10.1371/journal.pone.0272776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/27/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the world's most risky diseases due to the lack of clear and cost-effective therapeutic targets. Currently, the toxicity of conventional chemotherapeutic medications and the development of multidrug resistance is driving research into targeted therapies. The nano-biomedical field's potential for developing an effective therapeutic nano-sized drug delivery system is viewed as a significant pharmaceutical trend for the encapsulation and release of numerous anticancer therapies. In this regard, current research is centered on the creation of biodegradable chitosan nanoparticles (CSNPs) for the selective and sustained release of bee venom into liver cancer cells. Furthermore, surface modification with polyethylene glycol (PEG) and GE11 peptide-conjugated bee venom-CSNPs allows for the targeting of EGFR-overexpressed liver cancer cells. A series of in vitro and in vivo cellular analyses were used to investigate the antitumor effects and mechanisms of targeted bee venom-CSNPs. Targeted bee venom-CSNPs, in particular, were found to have higher cytotoxicity against HepG2 cells than SMMC-7721 cells, as well as stronger cellular uptake and a substantial reduction in cell migration, leading to improved cancer suppression. It also promotes cancer cell death in EGFR overexpressed HepG2 cells by boosting reactive oxygen species, activating mitochondria-dependent pathways, inhibiting EGFR-stimulated MEK/ERK pathway, and elevating p38-MAPK in comparison to native bee venom. In hepatocellular carcinoma (HCC)-induced mice, it has anti-cancer properties against tumor tissue. It also improved liver function and architecture without causing any noticeable toxic side effects, as well as inhibiting tumor growth by activating the apoptotic pathway. The design of this cancer-targeted nanoparticle establishes GE11-bee venom-CSNPs as a potential chemotherapeutic treatment for EGFR over-expressed malignancies. Finally, our work elucidates the molecular mechanism underlying the anticancer selectivity of targeted bee venom-CSNPs and outlines therapeutic strategies to target liver cancer.
Collapse
Affiliation(s)
- Shaymaa Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nouf Mostafa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Marwa Gomaa
- Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed El‑Kersh
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ayman I. Elkady
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Effectual Anticancer Potentiality of Loaded Bee Venom onto Fungal Chitosan Nanoparticles. INT J POLYM SCI 2020. [DOI: 10.1155/2020/2785304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chitosan and its nanoparticles (NPs) could be extracted from numerous fungal species and used as effectual carriers for bioactive compounds. The fungal chitosan (FC) was innovatively acquired from Fusarium oxysporum grown mycelia, characterized and used for NP synthesis and loading with bee venom (BV). The nano-FC (NFC) had 192.4 nm mean NP diameter, 38.22% loading capacity, and 92.42% entrapment efficiency. BV release from NFC was pH and time dependent; burst BV release was detected at the first 6 h, followed by gradual releases up to 30 h. The in vitro anticancer potentiality valuation, of NFC, BV, and NFC/BV nanoconjugates against HeLa cervix carcinoma, revealed that they all had potent dose-dependent anticancer activity; BV/NFC nanoconjugates were the most effective with IC50=200 μg/mL. The fluorescent staining of treated HeLa cells with BV/NFC nanoconjugates, with DAPI and acridine orange/propidium iodide combination, indicated the appearance of early apoptosis, secondary apoptosis, and secondary necrosis markers and their increment with exposure prolongation. The production of NFC from F. oxysporum and their loading with BV are strongly counseled for production of potent natural antitumor agent with augmented activity against cervix carcinoma.
Collapse
|
3
|
Preparation and Drug-Release Kinetics of Porous Poly(L-lactic acid)/Rifampicin Blend Particles. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/128154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Porous polymer spheres are promising materials as carriers for controlled drug release. As a new drug-carrier material, blend particles composed of poly(L-lactic acid) (PLLA) and rifampicin were developed using the freeze-drying technique. The blend particles exhibit high porosity with a specific surface area of 10–40 m2 g−1. Both the size and porosity of the particles depend on the concentration of the original solution and on the method of freezing. With respect to the latter, we used the drop method (pouring the original solution dropwise into liquid nitrogen) and the spray method (freezing a mist of the original solution). The release kinetics of rifampicin from the blend particles into water depends significantly on the morphology of the blend particles. The results show that the release rate can be controlled to a great extent by tuning the size and porosity of the blend particles, both of which are varied by parameters such as the solution concentration and the method of freezing.
Collapse
|
4
|
Kutikov AB, Song J. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomater 2013; 9:8354-64. [PMID: 23791675 PMCID: PMC3745304 DOI: 10.1016/j.actbio.2013.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/13/2023]
Abstract
Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as poly(lactic acid) (PLA) are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity and biological performance of the composite. To overcome this challenge, we combined a hydrophilic polyethylene glycol (PEG) block with poly(d,l-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25wt.% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain>200% vs. <40% for HA-PLA), superhydrophilic (∼0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenic gene expression upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications.
Collapse
Affiliation(s)
- Artem B. Kutikov
- Department of Orthopedics & Physical Rehabilitation, Department of Cell and Developmental Biology. University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, Department of Cell and Developmental Biology. University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| |
Collapse
|
5
|
Chen AZ, Pu XM, Yin GF, Zhao C, Wang SB, Liu YG, Wang GY, Kang YQ. Study of lysozyme-polymer composite microparticles in supercritical CO2. J Appl Polym Sci 2012. [DOI: 10.1002/app.36492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Sasaki T, Tanaka K, Morino D, Sakurai K. Morphology and release kinetics of protein-loaded porous poly(l-lactic Acid) spheres prepared by freeze-drying technique. ISRN PHARMACEUTICS 2011; 2011:490567. [PMID: 22389850 PMCID: PMC3263714 DOI: 10.5402/2011/490567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/26/2011] [Indexed: 11/25/2022]
Abstract
Freeze-drying a biodegradable polymer, poly(L-lactic acid) (PLLA), from 1,4-dioxane solutions provided very porous spherical particles of ca. 3 mm in radius with specific surface area of 8–13 m2 g−1. The surface of the particle was found to be less porous compared with its interior. To apply the freeze-dried PLLA (FDPLLA) to drug delivery system, its morphology and drug releasing kinetics were investigated, bovine serum albumin (BSA) being used as a model drug compound. Immersion of FDPLLA into a BSA aqueous solution gave BSA-loaded FDPLLA, where mass fraction of the adsorbed BSA reached up to 79%. Time-dependent release profile of BSA in water suggested a two-step mechanism: (1) very rapid release of BSA deposited on and near the particle surface, which results in an initial burst, and (2) leaching of BSA from the interior of the particle by the diffusion process. It was suggested that the latter process is largely governed by the surface porosity. The porosity of both the interior and surface was found to decrease remarkably as the concentration of the original PLLA/1,4-dioxane solution increases, C0. Thus, C0 is a key parameter that controls the loading and releasing of BSA.
Collapse
Affiliation(s)
- Takashi Sasaki
- Department of Materials Science and Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910 8507, Japan
| | | | | | | |
Collapse
|
7
|
Dorati R, Genta I, Tomasi C, Modena T, Colonna C, Pavanetto F, Perugini P, Conti B. Polyethylenglycol-co-poly-D,L-lactide copolymer based microspheres: preparation, characterization and delivery of a model protein. J Microencapsul 2009; 25:330-8. [PMID: 18465305 DOI: 10.1080/02652040801996763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To prepare and characterize polyethylenglycol-co-poly-D,L-lactide (PEG-D,L-PLA) multiblock copolymer microspheres containing ovalbumin. Microsphere batches made of Poly-D,L-lactide (PLA) homopolymers were prepared in order to evaluate how the presence of PEG segments into PEG-D,L-PLA copolymer could affect the behaviour of microspheres as carrier of protein drugs. METHODS The PEG-D,L-PLA and PLA microspheres, loaded with the model protein ovalbumin, were prepared using double emulsion solvent evaporation method. The effect of PEG segments in the microparticles matrix, on the morphology, size distribution, encapsulation efficiency and release behaviour was studied. RESULTS According to the results, PEG-D,L-PLA microspheres were more hydrophilic than PLA microparticles and with lower glass transition temperature. The surface of PEG-D,L-PLA microspheres was not as smooth as that of PLA microparticles, the mean diameter of PEG-D,L-PLA microparticles was bigger than that of PLA microspheres. Protein release from the microspheres was affected by the morphological structure of PEG-D,L-PLA microspheres and properties of PEG-D,L-PLA copolymer. This study suggests that PEG-D,L-PLA multiblock copolymer may be used as carrier in protein delivery systems for different purposes.
Collapse
Affiliation(s)
- R Dorati
- Department of Pharmaceutical Chemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Gao G, Yao P. Structure and activity transition of lysozyme on interacting with and releasing from polyelectrolyte with different hydrophobicity. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Wells LA, Sheardown H. Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. Eur J Pharm Biopharm 2007; 65:329-35. [PMID: 17156984 DOI: 10.1016/j.ejpb.2006.10.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 10/13/2006] [Accepted: 10/18/2006] [Indexed: 11/30/2022]
Abstract
Alginate has potential as a matrix for controlled delivery of protein-based drugs that require site-specific long-term delivery. In the current work albumin, lysozyme and chymotrypsin were encapsulated into alginate microspheres using a novel method that involved soaking the microspheres in a protein-containing NaCl solution. This was followed by recrosslinking with calcium chloride. High pI proteins also appeared to physically crosslink the sodium alginate which resulted in more sustained release. Release was affected by the nature of the releasate solution. In TRIS buffered saline, the high pI proteins chymotrypsin and lysozyme showed sustained release lasting over 150 h. Release into 0.15% NaCl led to relatively constant release of lysozyme and chymotrypsin over more than 2000 h; reduction of the releasate volume lengthened the lysozyme release to greater than 8 months. Released lysozyme was shown to remain active for at least 16 days, in some cases with activity greater than 100% of the active control. This encapsulation technique can therefore be used to rapidly load alginate microspheres with proteins, with high isoelectric point proteins showing particular promise. Furthermore, the interactions between the high pI proteins and the alginate gel could potentially be exploited to generate new protein delivery systems.
Collapse
Affiliation(s)
- L A Wells
- Department of Chemical Engineering, McMaster University, Hamilton, Ont., Canada
| | | |
Collapse
|
11
|
Babu VR, Sairam M, Hosamani KM, Aminabhavi TM. Development of 5-fluorouracil loaded poly(acrylamide-co-methylmethacrylate) novel core-shell microspheres: In vitro release studies. Int J Pharm 2006; 325:55-62. [PMID: 16884868 DOI: 10.1016/j.ijpharm.2006.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 05/06/2006] [Accepted: 06/15/2006] [Indexed: 11/16/2022]
Abstract
Novel poly(acrylamide-methylmethacrylate) copolymeric core-shell microspheres crosslinked with N,N'-methylene bisacrylamide have been prepared by free radical emulsion polymerization using varying amounts of acrylamide (AAm), methylmethacrylate (MMA) and N,N'-methylene bisacrylamide (NNMBA). 5-Fluorouracil was loaded into these microspheres during in situ polymerization (method-I) as well as by the absorption and adsorption technique (method-II). The core-shell microspheres have been characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (X-RD) to understand about the drug dispersion in microspheres. Scanning electron microscopy (SEM) was used to assess the surface morphology of particles prepared. In vitro release of 5-fluorouracil has been studied in terms of core-shell composition, amount of crosslinking agent and amount of 5-fluorouracil in the microspheres. Core-shell microspheres with different copolymer compositions have been prepared in yields ranging 80-85%. DSC and X-RD techniques indicated a uniform distribution of 5-fluorouracil particles in core-shell microspheres, whereas SEM suggested the formation of well-defined core-shell structures. The in vitro drug release indicated that particle size and release kinetics depend upon copolymer composition, amount of crosslinking agent used and amount of 5-fluorouracil present in the microspheres. Prolonged and controlled release of 5-fluorouracil was achieved when drug was loaded by method-I instead of method-II.
Collapse
Affiliation(s)
- V Ramesh Babu
- Drug Delivery Division, Center of Excellence in Polymer Science, Karnatak University, Dharwad 580003, India
| | | | | | | |
Collapse
|
12
|
Martin BJ, Suckow MA, Wolter WR, Berger T, Turner JW. Use of mucosal immunization with porcine zona pellucida (PZP) in mice and rabbits. Anim Reprod Sci 2006; 93:372-8. [PMID: 16249060 DOI: 10.1016/j.anireprosci.2005.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 09/14/2005] [Indexed: 11/17/2022]
Abstract
Rabbits (Oryctolagus cuniculus) and two strains of mice (Mus musculus, one inbred and one outbred) were immunized against porcine zona pellucida (PZP) antigen. Alginate microspheres or cholera toxin B were used alone or in combination when mucosal immunization routes were used. Serum antibody responses and fertility were assessed. Neither rabbit or mouse groups immunized by mucosal routes generated significant antibody responses to PZP as compared to parenteral immunization (ANOVA, P > 0.05). The study shows that porcine zona pellucida is not an effective mucosal antigen in small mammals.
Collapse
Affiliation(s)
- Brent J Martin
- Division of Laboratory Animal Medicine, Medical University of Ohio, 3055 Arlington Avenue, Toledo, OH 43614, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
With advances in biotechnology, genomics, and combinatorial chemistry, a wide variety of new, more potent and specific therapeutics are being created. Because of common problems such as low solubility, high potency, and/or poor stability of many of these new drugs, the means of drug delivery can impact efficacy and potential for commercialization as much as the nature of the drug itself. Thus, there is a corresponding need for safer and more effective methods and devices for drug delivery. Indeed, drug delivery systems—designed to provide a therapeutic agent in the needed amount, at the right time, to the proper location in the body, in a manner that optimizes efficacy, increases compliance and minimizes side effects—were responsible for $47 billion in sales in 2002, and the drug delivery market is expected to grow to $67 billion by 2006.
Collapse
Affiliation(s)
- Mauro Ferrari
- Department of Biomedical Engineering, University of Texas Health Science Center, Houston, TX ,University of Texas M.D. Anderson Cancer Center, Houston, TX ,Rice University, Houston, TX ,University of Texas Medical Branch, Galveston, TX ,Texas Alliance for NanoHealth, Houston, TX
| | - Abraham P. Lee
- Biomedical Engineering, University of California, Irvine
| | - L. James Lee
- Chemical and Biomolecular Engineering, The Ohio State University, USA
| |
Collapse
|
14
|
Abstract
Controlled release drug delivery employs drug-encapsulating devices from which therapeutic agents may be released at controlled rates for long periods of time, ranging from days to months. Such systems offer numerous advantages over traditional methods of drug delivery, including tailoring of drug release rates, protection of fragile drugs and increased patient comfort and compliance. Polymeric microspheres are ideal vehicles for many controlled delivery applications due to their ability to encapsulate a variety of drugs, biocompatibility, high bioavailability and sustained drug release characteristics. Research discussed in this review is focused on improving large-scale manufacturing, maintaining drug stability and enhancing control of drug release rates. This paper describes methods of microparticle fabrication and the major factors controlling the release rates of encapsulated drugs. Furthermore, recent advances in the use of polymer microsphere-based systems for delivery of single-shot vaccines, plasmid DNA and therapeutic proteins are discussed, as well as some future directions of microsphere research.
Collapse
Affiliation(s)
- Neelesh K Varde
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
15
|
Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm 2004; 282:1-18. [PMID: 15336378 DOI: 10.1016/j.ijpharm.2004.04.013] [Citation(s) in RCA: 831] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 04/21/2004] [Accepted: 04/22/2004] [Indexed: 11/25/2022]
Abstract
Polymer microspheres can be employed to deliver medication in a rate-controlled and sometimes targeted manner. Medication is released from a microsphere by drug leaching from the polymer or by degradation of the polymer matrix. Since the rate of drug release is controlled by these two factors, it is important to understand the physical and chemical properties of the releasing medium. This review presents the methods used in the preparation of microspheres from monomers or from linear polymers and discusses the physio-chemical properties that affect the formation, structure, and morphology of the spheres. Topics including the effects of molecular weight, blended spheres, crystallinity, drug distribution, porosity, and sphere size are discussed in relation to the characteristics of the release process. Added control over release profiles can be obtained by the employment of core-shell systems and pH-sensitive spheres; the enhancements presented by such systems are discussed through literature examples.
Collapse
Affiliation(s)
- S Freiberg
- Département de chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Que., H3C 3J7, Canada
| | | |
Collapse
|