1
|
Dreo B, Muralikrishnan AS, Husic R, Lackner A, Brügmann T, Haudum P, Bosch P, Thiel J, Fessler J, Stradner M. JAK/STAT signaling in rheumatoid arthritis leukocytes is uncoupled from serum cytokines in a subset of patients. Clin Immunol 2024; 264:110238. [PMID: 38729230 DOI: 10.1016/j.clim.2024.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE Rheumatoid Arthritis (RA) is a systemic autoimmune disease involving pro-inflammatory cytokines that can be therapeutically targeted by antibodies or kinase inhibitors. Nevertheless, these drugs fail in a subset of patients independent of the abundance of the targeted cytokines. We aim to explore the cellular basis of this phenomenon by analyzing the relation of cytokine abundance and activation of downstream signaling pathways in RA. METHODS The study included 62 RA patients and 9 healthy controls (HC). Phosphorylation of STAT 1-6 in various immune cell subsets was determined ex vivo using a novel robust flow cytometry-based protocol. Serum concentrations of IL-6, IL-10, IL-12p70, IL-17 A, interferon gamma, and TNFα in the same samples were measured using highly sensitive single molecule array (SIMOA). RESULTS We found an increase in circulating cytokines in RA patients, while STAT activity was lower in RA patients compared to HC. Based on STAT activity we determined three endotypes in active RA patients (cDAI>10, n = 28): 1) those with active STAT5a/b signaling in T cells (n = 7/28), 2) those with a low STAT activity in all assessed cell types (n = 14/28), and 3) those with active STAT1 and STAT3 signaling mainly in myeloid cells (n = 7/28). Integrating intracellular STAT activation and cytokine analysis revealed diminished JAK/STAT signaling in a subset of patients (n = 8/20) despite elevated serum cytokine concentrations. CONCLUSION Diminished JAK/STAT signaling in active RA may partly explain unresponsiveness to therapy targeting cytokine signaling. Analysis of JAK/STAT phosphorylation may identify patients at risk for non-response to these therapies.
Collapse
Affiliation(s)
- Barbara Dreo
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | | | - Rusmir Husic
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Angelika Lackner
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Theresa Brügmann
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Patrizia Haudum
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Philipp Bosch
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Jens Thiel
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Johannes Fessler
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Austria.
| | - Martin Stradner
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| |
Collapse
|
2
|
Chatterjee A, Jayaprakasan M, Chakrabarty AK, Lakkaniga NR, Bhatt BN, Banerjee D, Narwaria A, Katiyar CK, Dubey SK. Comprehensive insights into rheumatoid arthritis: Pathophysiology, current therapies and herbal alternatives for effective disease management. Phytother Res 2024; 38:2764-2799. [PMID: 38522945 DOI: 10.1002/ptr.8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Rheumatoid arthritis is a chronic autoimmune inflammatory disease characterized by immune response overexpression, causing pain and swelling in the synovial joints. This condition is caused by auto-reactive antibodies that attack self-antigens due to their incapacity to distinguish between self and foreign molecules. Dysregulated activity within numerous signalling and immunological pathways supports the disease's development and progression, elevating its complexity. While current treatments provide some alleviation, their effectiveness is accompanied by a variety of adverse effects that are inherent in conventional medications. As a result, there is a deep-rooted necessity to investigate alternate therapeutic strategies capable of neutralizing these disadvantages. Medicinal herbs display a variety of potent bioactive phytochemicals that are effective in the complementary management of disease, thus generating an enormous potency for the researchers to delve deep into the development of novel phytomedicine against autoimmune diseases, although additional evidence and understanding are required in terms of their efficacy and pharmacodynamic mechanisms. This literature-based review highlights the dysregulation of immune tolerance in rheumatoid arthritis, analyses the pathophysiology, elucidates relevant signalling pathways involved, evaluates present and future therapy options and underscores the therapeutic attributes of a diverse array of medicinal herbs in addressing this severe disease.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Monisha Jayaprakasan
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | | | | | | | | | | |
Collapse
|
3
|
Mahjoor M, Mahmoudvand G, Farokhi S, Shadab A, Kashfi M, Afkhami H. Double-edged sword of JAK/STAT signaling pathway in viral infections: novel insights into virotherapy. Cell Commun Signal 2023; 21:272. [PMID: 37784164 PMCID: PMC10544547 DOI: 10.1186/s12964-023-01240-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 10/04/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) is an intricate signaling cascade composed of various cytokines, interferons (IFN, growth factors, and other molecules. This pathway provides a delicate mechanism through which extracellular factors adjust gene expression, thereby acting as a substantial basis for environmental signals to influence cell growth and differentiation. The interactions between the JAK/STAT cascade and antiviral IFNs are critical to the host's immune response against viral microorganisms. Recently, with the emergence of therapeutic classes that target JAKs, the significance of this cascade has been recognized in an unprecedented way. Despite the functions of the JAK/STAT pathway in adjusting immune responses against viral pathogens, a vast body of evidence proposes the role of this cascade in the replication and pathogenesis of viral pathogens. In this article, we review the structure of the JAK/STAT signaling cascade and its role in immuno-inflammatory responses. We also highlight the paradoxical effects of this pathway in the pathogenesis of viral infections. Video Abstract.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mojtaba Kashfi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
4
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Lin S, Zhou Z, Xu C, Zeng F, Shi Z, Sun J, Mei X, Liu C, Li D. Cytokine Regulation and Fast Inflammation Resolution in Early Rheumatoid Arthritis by Cerium-Modified Gold Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18053-18063. [PMID: 35417127 DOI: 10.1021/acsami.1c22831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rheumatoid arthritis (RA) is an incurable chronic disorder that may induce autoinflammation and serious pain in the joints. Early diagnosis and treatment are important for RA prognosis. However, there is a lack of effective and objective diagnostic approaches. Levels of several immunity cytokines were found to change for patients with early RA, including IL-6, TNF-α, and IL-17 in serum. We assumed a combined change of these cytokines could predict early RA, and a total of 37 outpatients were found. After these patients with early symptoms had been followed for more than one year, 32 clinical cases of RA were diagnosed. The accuracy rate of the current method is >86%. We assumed the symptom relief could be achieved by regulating these cytokines and serum lipid-associated indicators. Thereafter, (R)-dihydrolipoic acid (R-DHLA)-stabilized gold nanoclusters (AuNCs) without (R-DHLA-AuNCs) and with cerium modification (R-DHLA-AuNCs-Ce) were employed for treatment of the RA rat model in vitro and in vivo. R-DHLA-AuNCs-Ce exhibited extraordinary reactive oxygen species-scavenging and anti-inflammation effects by regulating macrophage polarization, which was found to be more effective than methotrexate. The inflammation response of the joint microenvironment was also reduced with an exciting efficiency. By complex analysis of the pro-inflammatory cytokines and activity period indicators in vivo and in vitro, we concluded that macrophage-mediated inflammation exacerbated autoimmunity, which fully relieved the symptoms after administration of R-DHLA-AuNCs-Ce to RA rats.
Collapse
Affiliation(s)
- Sen Lin
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, P. R. China
| | - Zipeng Zhou
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, P. R. China
| | - Chang Xu
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, P. R. China
| | - Fanzhuo Zeng
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, P. R. China
| | - Zuqiang Shi
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, P. R. China
| | - Jiachen Sun
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, P. R. China
| | - Xifan Mei
- Department of Orthopedic, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121004, P. R. China
| | - Chang Liu
- Department of Endocrinology, Jinzhou Medical University, Jinzhou 121004, P. R. China
| | - Dan Li
- School of Pharmaceutical Science, Jinzhou Medical University, Jinzhou 121004, P. R. China
| |
Collapse
|
6
|
Sharma A, Tirpude NV, Bhardwaj N, Kumar D, Padwad Y. Berberis lycium fruit extract and its phytoconstituents berberine and rutin mitigate collagen-CFA-induced arthritis (CIA) via improving GSK3β/STAT/Akt/MAPKs/NF-κB signaling axis mediated oxi-inflammation and joint articular damage in murine model. Inflammopharmacology 2022; 30:655-666. [PMID: 35254584 DOI: 10.1007/s10787-022-00941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Rheumatoid arthritis (RA), a chronic auto-immune disease, is often result of persistent and misdirectional inflammation and cannot be effectually resolved by single-target selective drugs. Present study attempted to uncover anti-arthritic efficacy and governing molecular mechanism of BLFE and its phytoconstituents berberine and rutin, with focus on dysregulated oxi-inflammation and structural integrity during articular damage using Collagen II-CFA-induced RA mice model. NMR-based phytometabolomic analysis revealed presence of phenolics and alkaloids such as berberine and rutin. BLFE, rutin and berberine remarkably mitigated Collagen II-CFA-induced disease severity index, articular damage, immune cells influx and pannus formation. An effective decrease in levels of TNF-α, IL-6, IL-1β, IFN-γ, IL-13, IL-17, MMPs, RORγt, Ob-cadherin, Cox-2, iNOS and enhancement in IL-10, IL-4 and IL-5, BMP-6/7 was observed in BLFE, rutin and berberine treatments. Molecular mechanistic analysis demonstrated reduction in expression of p-STAT-1/3, p-PI3K, p-Akt, p-JNK, p-p38, p-IκB, p-NF-κB and β-catenin via BLFE, rutin and berberine. Furthermore, reduced activation of p-ERK and p-GSK3β and enhanced splenic Tregs was only noticed in BLFE and berberine. Thus, the signifying presence of these phytoconstituents could contribute to the above-mentioned findings. These findings imply that BLFE could be beneficial for assuaging deleterious aspects of RA mediated via perturbed inflammation.
Collapse
Affiliation(s)
- Anamika Sharma
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, UP, 201002, India
| | - Narendra Vijay Tirpude
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, UP, 201002, India
| | - Neha Bhardwaj
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, UP, 201002, India
| | - Yogendra Padwad
- Pharmacology and Toxicology Lab, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, P.O. Box No. 6, Palampur, HP, 176061, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
7
|
Millrine D, Jenkins RH, Hughes STO, Jones SA. Making sense of IL-6 signalling cues in pathophysiology. FEBS Lett 2022; 596:567-588. [PMID: 34618359 PMCID: PMC9673051 DOI: 10.1002/1873-3468.14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Unravelling the molecular mechanisms that account for functional pleiotropy is a major challenge for researchers in cytokine biology. Cytokine-receptor cross-reactivity and shared signalling pathways are considered primary drivers of cytokine pleiotropy. However, reports epitomized by studies of Jak-STAT cytokine signalling identify interesting biochemical and epigenetic determinants of transcription factor regulation that affect the delivery of signal-dependent cytokine responses. Here, a regulatory interplay between STAT transcription factors and their convergence to specific genomic enhancers support the fine-tuning of cytokine responses controlling host immunity, functional identity, and tissue homeostasis and repair. In this review, we provide an overview of the signalling networks that shape the way cells sense and interpret cytokine cues. With an emphasis on the biology of interleukin-6, we highlight the importance of these mechanisms to both physiological processes and pathophysiological outcomes.
Collapse
Affiliation(s)
- David Millrine
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
- Present address:
Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSir James Black CentreSchool of Life SciencesUniversity of Dundee3rd FloorDundeeUK
| | - Robert H. Jenkins
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Stuart T. O. Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Simon A. Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| |
Collapse
|
8
|
Joyo Y, Kawaguchi Y, Yonezu H, Senda H, Yasuma S, Shiraga H, Nozaki M, Aoyama M, Asai K, Murakami H, Waguri-Nagaya Y. The Janus kinase inhibitor (baricitinib) suppresses the rheumatoid arthritis active marker gliostatin/thymidine phosphorylase in human fibroblast-like synoviocytes. Immunol Res 2022; 70:208-215. [PMID: 35014010 PMCID: PMC8917024 DOI: 10.1007/s12026-022-09261-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/31/2021] [Indexed: 01/04/2023]
Abstract
Gliostatin/thymidine phosphorylase (GLS/TP) is known to have angiogenic and arthritogenic activities in the pathogenesis of rheumatoid arthritis (RA). The novel oral Janus kinase (JAK) inhibitor baricitinib has demonstrated high efficacy in RA. However, the effect of baricitinib on fibroblast-like synoviocytes (FLSs), a key component of invasive synovitis, has not been still elucidated. This study investigated whether GLS/TP production could be regulated by JAK/signal transducers and activators of transcription (STAT) signaling in FLSs derived from patients with RA. FLSs were cultured and stimulated by interferon (IFN)γ in the presence of baricitinib. Expression levels of GLS/TP were determined using reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunocytochemistry. Phosphorylation of STAT proteins was investigated by Western blot. In cultured FLSs, GLS/TP mRNA and protein levels were significantly induced by treatment with IFNγ and these inductions were suppressed by baricitinib treatment. Baricitinib inhibited IFNγ-induced STAT1 phosphorylation, while JAK/STAT activation played a pivotal role in IFNγ-mediated GLS/TP upregulation in RA. These results suggested that baricitinib suppressed IFNγ-induced GLS/TP expression by inhibiting JAK/STAT signaling, resulting in the attenuation of neovascularization, synovial inflammation, and cartilage destruction.
Collapse
Affiliation(s)
- Yuji Joyo
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yohei Kawaguchi
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan.,Department of Glial Cell Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hiroki Yonezu
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hiroya Senda
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan
| | - Sanshiro Yasuma
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan
| | - Hiroo Shiraga
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan
| | - Masahiro Nozaki
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Mizuho-Ku, Nagoya, 467-8603, Japan
| | - Kiyofumi Asai
- Department of Glial Cell Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Yuko Waguri-Nagaya
- Department of Orthopaedic Surgery, Nagoya City University East Medical Center, Wakamizu 1, Chikusa-Ku, Nagoya, 464-8547, Japan.
| |
Collapse
|
9
|
Zong D, Huang B, Li Y, Lu Y, Xiang N, Guo C, Liu Q, Sha Q, Du P, Yu Q, Zhang W, Cai P, Sun Y, Tao J, Li X, Cai S, Qu K. Chromatin accessibility landscapes of immune cells in rheumatoid arthritis nominate monocytes in disease pathogenesis. BMC Biol 2021; 19:79. [PMID: 33863328 PMCID: PMC8050920 DOI: 10.1186/s12915-021-01011-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that involves a variety of cell types. However, how the epigenetic dysregulations of peripheral immune cells contribute to the pathogenesis of RA still remains largely unclear. RESULTS Here, we analysed the genome-wide active DNA regulatory elements of four major immune cells, namely monocytes, B cells, CD4+ T cells and CD8+ T cells, in peripheral blood of RA patients, osteoarthritis (OA) patients and healthy donors using Assay of Transposase Accessible Chromatin with sequencing (ATAC-seq). We found a strong RA-associated chromatin dysregulation signature in monocytes, but no other examined cell types. Moreover, we found that serum C-reactive protein (CRP) can induce the RA-associated chromatin dysregulation in monocytes via in vitro experiments. And the extent of this dysregulation was regulated through the transcription factor FRA2. CONCLUSIONS Together, our study revealed a CRP-induced pathogenic chromatin dysregulation signature in monocytes from RA patients and predicted the responsible signalling pathway as potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Beibei Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Young Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China.
| | - Yichen Lu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Nan Xiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Chuang Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Qian Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Qing Sha
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Pengcheng Du
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Qiaoni Yu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Wen Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Pengfei Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Yanping Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China.
| | - Shanbao Cai
- Department of Orthopaedics and Bone Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230021, China.
| | - Kun Qu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, Anhui, China. .,CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, 230027, Anhui, China. .,School of Data Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
10
|
George G, Shyni GL, Raghu KG. Current and novel therapeutic targets in the treatment of rheumatoid arthritis. Inflammopharmacology 2020; 28:1457-1476. [PMID: 32948901 DOI: 10.1007/s10787-020-00757-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA), a multifactorial disease characterized by synovitis, cartilage destruction, bone erosion, and periarticular decalcification, finally results in impairment of joint function. Both genetic and environmental factors are risk factors in the development of RA. Unwanted side effects accompany most of the current treatment strategies, and around 20-40% of patients with RA do not clinically benefit from these treatments. The unmet need for new treatment options for RA has prompted research in the development of novel agents acting through physiologically and pharmacologically relevant targets. Here we discuss in detail three critical pathways, Janus kinase/signal transducer and activator of transcription (JAK/STAT), Th17, and hypoxia-inducible factor (HIF), and their roles as unique therapeutic targets in the field of RA. Some of the less developed but potential targets like nucleotide-binding and oligomerization domain-like receptor containing protein 3 (NLRP3) inflammasome and histone deacetylase 1 (HDAC1) are also discussed.
Collapse
Affiliation(s)
- Genu George
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.
| |
Collapse
|
11
|
Singh S, Singh TG, Mahajan K, Dhiman S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J Pharm Pharmacol 2020; 72:1306-1327. [PMID: 32812250 DOI: 10.1111/jphp.13326] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Rheumatoid arthritis is a chronic autoimmune disease manifested clinically by polyarthralgia associated with joint dysfunction triggering the antibodies targeting against the self-neoepitopes determined by autoimmune responses associated with chronic arthritic attacks. The activation of macrophages and other defence cells in response to self-epitopes as biomarkers in RA provides a better understanding of pathogenesis of disease and has led to the development of novel therapeutic approaches acting as potent inhibitors of these cells. KEY FINDINGS The current review retrieved the various medicinal plants possessing an active phytoconstituents with anti-inflammatory and antioxidant properties, which tends to be effective alternative approach over the synthetic drugs concerned with high toxic effects. The current available literature provided an evident data concluding that the active constituents like fatty acids, flavonoids, terpenes and sesquiterpene lactones attenuate the RA symptoms by targeting the inflammatory biomarkers involved in the pathogenesis of RA. SUMMARY Despite the various synthetic treatment approaches targeting immune cells, cytokines improved the quality of life but still the drug management is challenging due to toxic and chronic teratogenic effects with anti-arthritic drugs. The current review has elaborated the selected traditionally used herbal medicinal plants with phytoconstituents possessing anti-inflammatory activity by suppressing the inflammatory biomarkers with lesser side effects and providing the future exploration of natural drug therapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Kriti Mahajan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
12
|
El-Ghafar OAMA, Helal GK, Abo-Youssef AM. Apixaban exhibits anti-arthritic effects by inhibiting activated factor X-mediated JAK2/STAT3 and MAPK phosphorylation pathways. Inflammopharmacology 2020; 28:1253-1267. [PMID: 32141012 DOI: 10.1007/s10787-020-00693-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Activated factor X (FXa) is strongly linked to various inflammatory events. This study aimed to investigate the effect of FXa on janus kinase2/signal transducers and activators of transcription3 (JAK2/STAT3) and mitogen-activated protein kinase (MAPK) phosphorylation in relation to rheumatoid arthritis (RA). It also extends its scope to explore the possible anti-arthritic effects of apixaban, a selective FXa inhibitor. Rats were allocated into normal control; complete Freund's adjuvant (CFA, 0.4 ml/4 days/12 days); FXa (120 µg/kg/day/3 days) and CFA + FXa groups as well as three treated groups including CFA + apixaban; FXa + apixaban and CFA + FXa + apixaban. Apixaban was administered at a dose of 10 mg/kg/12 h for15 days. By the end of the experimental period, tissue samples were collected for the assessment of phosphorylated (p)-JAK2, STAT3, MAPK, matrixmetalloprotein-1 (MMP-1) and protease-activated receptor 2. Furthermore, Serum interleukin-6 (IL-6), platelet-derived growth factor (PDGF), anti-citrullinated protein antibody (ACPA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), plasma level of FXa and prothrombin time were evaluated. In support, histopathological and macroscopical examinations were performed. FXa activated JAK2, STAT3 and MAPK phosphorylation through activation of PAR 2, PDGF and IL-6 and concomitantly led to a significant elevation in ACPA, MMP-1 and 8-OHdG. Apixaban markedly amended FXa-induced changes. Conclusively, the current study revealed that FXa may have a drastic role in RA progression and pathogenesis at least through stimulation of JAK2/STAT3 and MAPK phosphorylation. Furthermore, apixaban exerted robust arthro-protective effects. These beneficial outcomes could be attributed to its ability to impede JAK2/STAT3 and MAPK activation, as well as to its antioxidant property.
Collapse
Affiliation(s)
| | - Gouda Kamel Helal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, 3 Cairo-Belbeis Desert Rd, Second Al Salam, Cairo, Egypt
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt.
| |
Collapse
|
13
|
Wang S, Lv J, Meng S, Tang J, Nie L. Recent Advances in Nanotheranostics for Treat-to-Target of Rheumatoid Arthritis. Adv Healthc Mater 2020; 9:e1901541. [PMID: 32031759 DOI: 10.1002/adhm.201901541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Early diagnosis, standardized treatment, and regular monitoring are the clinical treatment principle of rheumatoid arthritis (RA). The overarching principles and recommendations of treat-to-target (T2T) in RA advocate remission as the optimum aim, especially for patients with very early disease who are initiating therapy with anti-RA medications. However, traditional anti-RA drugs cannot selectively target the inflammatory areas and may cause serious side effects due to its short biological half-life and poor bioavailability. These limitations have significantly driven the research and application of nanomaterial-based drugs in theranostics of RA. Nanomedicines have appropriate sizes and easily modified surfaces which can enhance their biological compatibility and prolong circulation time of drug-loading systems in vivo. Traditional T2T regimens cannot evaluate the efficacy of drugs in real time, while clinical drug nanosizing can realize the integration of diagnosis and treatment of RA. This review bridges clinically proposed T2T concepts and nanomedicine in an integrated system for RA early-stage diagnosis and treatment. The most advanced progress in various nanodrug delivery systems for theranostics of RA is summarized, establishing a clear path and a new perspective for further optimization of T2T. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Shasha Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Jing Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| |
Collapse
|
14
|
Hosseini A, Gharibi T, Marofi F, Javadian M, Babaloo Z, Baradaran B. Janus kinase inhibitors: A therapeutic strategy for cancer and autoimmune diseases. J Cell Physiol 2020; 235:5903-5924. [DOI: 10.1002/jcp.29593] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Arezoo Hosseini
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Tohid Gharibi
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Faroogh Marofi
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Mahsa Javadian
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Zohreh Babaloo
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| |
Collapse
|
15
|
Samarpita S, Ganesan R, Rasool M. Cyanidin prevents the hyperproliferative potential of fibroblast-like synoviocytes and disease progression via targeting IL-17A cytokine signalling in rheumatoid arthritis. Toxicol Appl Pharmacol 2020; 391:114917. [PMID: 32044269 DOI: 10.1016/j.taap.2020.114917] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
The hyperplastic phenotype of fibroblast-like synoviocytes (FLSs) plays an important role for synovitis, chronic inflammation and joint destruction in rheumatoid arthritis (RA). Interleukin 17A (IL-17A), a signature pro-inflammatory cytokine effectively influences the hyperplastic transformation of FLS cells and synovial pannus growth. IL-17A cytokine signalling participates in RA pathology by regulating an array of pro-inflammatory mediators and osteoclastogenesis. Cyanidin, a key flavonoid inhibits IL-17A/IL-17 receptor A (IL-17RA) interaction and alleviates progression and disease severity of psoriasis and asthma. However, the therapeutic efficacy of cyanidin on IL-17A cytokine signalling in RA remains unknown. In the present study, cyanidin inhibited IL-17A induced migratory and proliferative capacity of FLS cells derived from adjuvant-induced arthritis (AA) rats. Cyanidin treatment reduced IL-17A mediated reprogramming of AA-FLS cells to overexpress IL-17RA. In addition, significantly decreased expression of IL-17A dependent cyr61, IL-23, GM-CSF, and TLR3 were observed in AA-FLS cells in response to cyanidin. At the molecular level, cyanidin modulated IL-17/IL-17RA dependent JAK/STAT-3 signalling in AA-FLS cells. Importantly, cyanidin activated PIAS3 protein to suppress STAT-3 specific transcriptional activation in AA-FLS cells. Cyanidin treatment to AA rats attenuated clinical symptoms, synovial pannus growth, immune cell infiltration, and bone erosion. Cyanidin reduced serum level of IL-23 and GM-CSF and expression of Cyr 61 and TLR3 in the synovial tissue of AA rats. Notably, the level of p-STAT-3 protein was significantly decreased in the synovial tissue of AA rats treated with cyanidin. This study provides the first evidence that cyanidin can be used as IL-17/17RA signalling targeting therapeutic drug for the treatment of RA and this need to be investigated in RA patients.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India
| | - Ramamoorthi Ganesan
- Immunology Program, Department of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, Florida 33612, United States
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
16
|
Inoue K, Hu X, Zhao B. Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption. FASEB J 2020; 34:2392-2407. [PMID: 31908034 PMCID: PMC7018544 DOI: 10.1096/fj.201902227r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Bone resorption is a severe consequence of inflammatory diseases associated with osteolysis, such as rheumatoid arthritis (RA), often leading to disability in patients. In physiological conditions, the differentiation of bone-resorbing osteoclasts is delicately regulated by the balance between osteoclastogenic and anti-osteoclastogenic mechanisms. Inflammation has complex impact on osteoclastogenesis and bone destruction, and the underlying mechanisms of which, especially feedback inhibition, are underexplored. Here, we identify a novel regulatory network mediated by RBP-J/NFATc1-miR182 in TNF-induced osteoclastogenesis and inflammatory bone resorption. This network includes negative regulator RBP-J and positive regulators, NFATc1 and miR182, of osteoclast differentiation. In this network, miR182 is a direct target of both RBP-J and NFATc1. RBP-J represses, while NFATc1 activates miR182 expression through binding to specific open chromatin regions in the miR182 promoter. Inhibition of miR182 by RBP-J servers as a critical mechanism that limits TNF-induced osteoclast differentiation and inflammatory bone resorption. Inflammation, such as that which occurs in RA, shifts the expression levels of the components in this network mediated by RBP-J/NFATc1-miR182-FoxO3/PKR (previously identified miR182 targets) towards more osteoclastogenic, rather than healthy conditions. Treatment with TNF inhibitors in RA patients reverses the expression changes of the network components and osteoclastogenic potential. Thus, this network controls the balance between activating and repressive signals that determine the extent of osteoclastogenesis. These findings collectively highlight the biological significance and translational implication of this newly identified intrinsic regulatory network in inflammatory osteoclastogenesis and osteolysis.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| |
Collapse
|
17
|
Kim KE, Jeon S, Song J, Kim TS, Jung MK, Kim MS, Park S, Park SB, Park JM, Park HJ, Cho D. The Novel Synthetic Peptide AESIS-1 Exerts a Preventive Effect on Collagen-Induced Arthritis Mouse Model via STAT3 Suppression. Int J Mol Sci 2020; 21:ijms21020378. [PMID: 31936141 PMCID: PMC7013888 DOI: 10.3390/ijms21020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that is associated with systemic inflammation and results in the destruction of joints and cartilage. The pathogenesis of RA involves a complex inflammatory process resulting from the action of various proinflammatory cytokines and, therefore, many novel therapeutic agents to block cytokines or cytokine-mediated signaling have been developed. Here, we tested the preventive effects of a small peptide, AESIS-1, in a mouse model of collagen-induced arthritis (CIA) with the aim of identifying a novel safe and effective biological for treating RA. This novel peptide significantly suppressed the induction and development of CIA, resulting in the suppression of synovial inflammation and cartilage degradation in vivo. Moreover, AESIS-1 regulated JAK/STAT3-mediated gene expression in vitro. In particular, the gene with the most significant change in expression was suppressor of cytokine signaling 3 (Socs3), which was enhanced 8-fold. Expression of the STAT3-specific inhibitor, Socs3, was obviously enhanced dose-dependently by AESIS-1 at both the mRNA and protein levels, resulting in a significant reduction of STAT3 phosphorylation in splenocytes from severe CIA mice. This indicated that AESIS-1 regulated STAT3 activity by upregulation of SOCS3 expression. Furthermore, IL-17 expression and the frequency of Th17 cells were considerably decreased by AESIS-1 in vivo and in vitro. Collectively, our data suggest that the novel synthetic peptide AESIS-1 could be an effective therapeutic for treating RA via the downregulation of STAT3 signaling.
Collapse
Affiliation(s)
- Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women’s University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 04310, Korea;
- Nano-Bio Resources Center, Sookmyung Women’s University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 04310, Korea;
| | - Suwon Jeon
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-ku, Seoul 02841, Korea;
| | - Jisun Song
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Korea; (J.S.); (T.S.K.)
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Korea; (J.S.); (T.S.K.)
| | - Min Kyung Jung
- Nano-Bio Resources Center, Sookmyung Women’s University, Chungpa-Dong 2-Ka, Yongsan-ku, Seoul 04310, Korea;
| | - Myun Soo Kim
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.P.)
| | - Sunyoung Park
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.P.)
| | - Seung Beom Park
- Cent’l Res. Inst., Ilyang Pharm. Co., Ltd., Hagal-ro 136beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17096, Korea; (S.B.P.); (J.M.P.)
| | - Jeong Min Park
- Cent’l Res. Inst., Ilyang Pharm. Co., Ltd., Hagal-ro 136beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17096, Korea; (S.B.P.); (J.M.P.)
| | - Hyun Jeong Park
- Department of Dermatology, Yeouido St. Mary’s Hospital, The Catholic University of Korea, Seoul 07345, Korea
- Correspondence: (H.J.P.); (D.C.); Tel.: +82-02-3779-1230 (H.J.P.); +82-02-3290-4015 (D.C.)
| | - Daeho Cho
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-ku, Seoul 02841, Korea;
- Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.P.)
- Correspondence: (H.J.P.); (D.C.); Tel.: +82-02-3779-1230 (H.J.P.); +82-02-3290-4015 (D.C.)
| |
Collapse
|
18
|
Singh V, Kalliolias GD, Ostaszewski M, Veyssiere M, Pilalis E, Gawron P, Mazein A, Bonnet E, Petit-Teixeira E, Niarakis A. RA-map: building a state-of-the-art interactive knowledge base for rheumatoid arthritis. Database (Oxford) 2020; 2020:baaa017. [PMID: 32311035 PMCID: PMC7170216 DOI: 10.1093/database/baaa017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease of unknown aetiology. The complex mechanism of aetiopathogenesis, progress and chronicity of the disease involves genetic, epigenetic and environmental factors. To understand the molecular mechanisms underlying disease phenotypes, one has to place implicated factors in their functional context. However, integration and organization of such data in a systematic manner remains a challenging task. Molecular maps are widely used in biology to provide a useful and intuitive way of depicting a variety of biological processes and disease mechanisms. Recent large-scale collaborative efforts such as the Disease Maps Project demonstrate the utility of such maps as versatile tools to organize and formalize disease-specific knowledge in a comprehensive way, both human and machine-readable. We present a systematic effort to construct a fully annotated, expert validated, state-of-the-art knowledge base for RA in the form of a molecular map. The RA map illustrates molecular and signalling pathways implicated in the disease. Signal transduction is depicted from receptors to the nucleus using the Systems Biology Graphical Notation (SBGN) standard representation. High-quality manual curation, use of only human-specific studies and focus on small-scale experiments aim to limit false positives in the map. The state-of-the-art molecular map for RA, using information from 353 peer-reviewed scientific publications, comprises 506 species, 446 reactions and 8 phenotypes. The species in the map are classified to 303 proteins, 61 complexes, 106 genes, 106 RNA entities, 2 ions and 7 simple molecules. The RA map is available online at ramap.elixir-luxembourg.org as an open-access knowledge base allowing for easy navigation and search of molecular pathways implicated in the disease. Furthermore, the RA map can serve as a template for omics data visualization.
Collapse
Affiliation(s)
- Vidisha Singh
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - George D Kalliolias
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
- Weill Cornell Medical Center, Weill Department of Medicine, 525 East 68th Street, New York, NY 10065, USA
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Maëva Veyssiere
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Eleftherios Pilalis
- eNIOS Applications P.C., R&D department, Alexandrou Pantou 25, 17671, Kallithea-Athens, Greece
| | - Piotr Gawron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), CEA, 2 rue Gaston Crémieux, CP5706 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Elisabeth Petit-Teixeira
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| | - Anna Niarakis
- Laboratoire Européen de Recherche pour la Polyarthrite Rhumatoïde - Genhotel, Univ Evry, Université Paris-Saclay, 2, rue Gaston Crémieux, 91057 EVRY-GENOPOLE cedex, Evry, France
| |
Collapse
|
19
|
Zhao B. Intrinsic Restriction of TNF-Mediated Inflammatory Osteoclastogenesis and Bone Resorption. Front Endocrinol (Lausanne) 2020; 11:583561. [PMID: 33133025 PMCID: PMC7578415 DOI: 10.3389/fendo.2020.583561] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF-κB p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Baohong Zhao,
| |
Collapse
|
20
|
ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11111736. [PMID: 31694340 PMCID: PMC6895846 DOI: 10.3390/cancers11111736] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023] Open
Abstract
All ligands of the epidermal growth factor receptor (EGF-R) are transmembrane proteins, which need to be proteolytically cleaved in order to be systemically active. The major protease responsible for this cleavage is the membrane metalloprotease ADAM17, which also has been implicated in cleavage of TNFα and interleukin-6 (IL-6) receptor. It has been recently shown that in the absence of ADAM17, the main protease for EGF-R ligand processing, colon cancer formation is largely abrogated. Intriguingly, colon cancer formation depends on EGF-R activity on myeloid cells rather than on intestinal epithelial cells. A major activity of EGF-R on myeloid cells is the stimulation of IL-6 synthesis. Subsequently, IL-6 together with the ADAM17 shed soluble IL-6 receptor acts on intestinal epithelial cells via IL-6 trans-signaling to induce colon cancer formation, which can be blocked by the inhibitor of IL-6 trans-signaling, sgp130Fc. Blockade of IL-6 trans-signaling therefore offers a new therapeutic window downstream of the EGF-R for the treatment of colon cancer and possibly of other EGF-R related neoplastic diseases.
Collapse
|
21
|
Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P. Methotrexate an Old Drug with New Tricks. Int J Mol Sci 2019; 20:E5023. [PMID: 31658782 PMCID: PMC6834162 DOI: 10.3390/ijms20205023] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Methotrexate (MTX) is the first line drug for the treatment of a number of rheumatic and non-rheumatic disorders. It is currently used as an anchor disease, modifying anti-rheumatic drug in the treatment of rheumatoid arthritis (RA). Despite the development of numerous new targeted therapies, MTX remains the backbone of RA therapy due to its potent efficacy and tolerability. There has been also a growing interest in the use of MTX in the treatment of chronic viral mediated arthritis. Many viruses-including old world alphaviruses, Parvovirus B19, hepatitis B/C virus, and human immunodeficiency virus-have been associated with arthritogenic diseases and reminiscent of RA. MTX may provide benefits although with the potential risk of attenuating patients' immune surveillance capacities. In this review, we describe the emerging mechanisms of action of MTX as an anti-inflammatory drug and complementing its well-established immunomodulatory activity. The mechanisms involve adenosine signaling modulation, alteration of cytokine networks, generation of reactive oxygen species and HMGB1 alarmin suppression. We also provide a comprehensive understanding of the mechanisms of MTX toxic effects. Lastly, we discussed the efficacy, as well as the safety, of MTX used in the management of viral-related rheumatic syndromes.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Xavier Guillot
- Service de Rhumatologie, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Jimmy Sélambarom
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Pascale Guiraud
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Claude Giry
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Marie Christine Jaffar-Bandjee
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Stéphane Ralandison
- Service de Rhumatologie-Médecine Interne, CHU Morafeno, Route d'Ivoloina 501, Toamasina, Madagascar.
| | - Philippe Gasque
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
- Pôle de Biologie, secteur Laboratoire d'Immunologie Clinique et Expérimentale de la zone de l'Océan Indien (LICE-OI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| |
Collapse
|
22
|
Bhatt M, Kumar S, Garg N, Siddiqui MH, Mittal B. Influence of IL-1β, STAT3 & 5 and TLR-5 gene polymorphisms on rheumatic heart disease susceptibility in north Indian population. Int J Cardiol 2019; 291:89-95. [PMID: 30929974 DOI: 10.1016/j.ijcard.2019.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Rheumatic heart disease (RHD) is the most serious complication of heart that comprises inflammatory reactions in heart valves. Many studies have demonstrated the contribution of host genetic factors in susceptibility to RHD and many cytokine gene variants have been linked with susceptibility to RHD. We sought to determine the role of genetic variants in IL-1β, STAT3, STAT5B and TLR5 genes in conferring risk of RHD in two cohorts of RHD patients. METHODS The study included 400 echocardiography confirmed RHD patients and 300 controls from North Indian Population. We categorized RHD patients into two sub-groups based on involvement of heart valves, mitral valve lesion alone (MVL), and combined valve lesions including mitral valve (CVL). Genotyping for all the polymorphisms was done using TaqMan /PCR-RFLP methods. RESULTS Our results showed that the genotypic frequencies of IL-1β, STAT3, STAT5B andTLR5 genes polymorphisms were significantly associated with RHD risk. To validate our results, we performed a replication study in additional 200 cases with similar clinical characteristics and results again confirmed consistent findings with RHD risk. In subgroup analysis, STAT3 polymorphism remained significant with MVL in RHD patients. CONCLUSION IL-1β, STAT3, STAT5B and TLR5 genes polymorphism may be useful markers for the identification of individuals with high risk of RHD in the susceptible population.
Collapse
Affiliation(s)
- Mansi Bhatt
- Department of Urology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India; Department of Biosciences, Integral University, Lucknow, India
| | - Surendra Kumar
- Department of Cytogenetics/Anatomy, All Indian Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Naveen Garg
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | | | - Balraj Mittal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University (BBAU), Lucknow, India.
| |
Collapse
|
23
|
Design, synthesis and structure-activity relationship study of aminopyridine derivatives as novel inhibitors of Janus kinase 2. Bioorg Med Chem Lett 2019; 29:1507-1513. [DOI: 10.1016/j.bmcl.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022]
|
24
|
Zhang N, Han L, Xue Y, Deng Q, Wu Z, Peng H, Zhang Y, Xuan L, Pan G, Fu Q. The Protective Effect of Magnesium Lithospermate B on Hepatic Ischemia/Reperfusion via Inhibiting the Jak2/Stat3 Signaling Pathway. Front Pharmacol 2019; 10:620. [PMID: 31231218 PMCID: PMC6558428 DOI: 10.3389/fphar.2019.00620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is an important component of the pathogenesis of hepatic ischemia/reperfusion injury (HIRI). Magnesium lithospermate B (MLB) has strong neuroprotective and cardioprotective effects. The purpose of this study was to determine whether MLB had underlying protective effects against hepatic I/R injury and to reveal the potential mechanisms related to the hepatoprotective effects. In this study, we first examined the protective effect of MLB on HIRI in mice that underwent 1 h ischemia followed by 6 h reperfusion. MLB pretreatment alleviated the abnormal liver function and hepatocyte damage induced by I/R injury. We found that serum inflammatory cytokines, including IL-6, IL-1β, and TNF-α, were significantly decreased by MLB during hepatic ischemia/reperfusion (I/R) injury, suggesting that MLB may alleviate hepatic I/R injury via inhibiting inflammatory signaling pathways. Second, we investigated the protein level of p-Jak2/Jak2 and p-Stat3/Stat3 using Western blotting and found that MLB could significantly inhibit the activation of the Jak2/Stat3 signaling pathway, which was further verified by AG490 in a mouse model. Finally, the effect of MLB on the Jak2/Stat3 pathway was further assessed in an in vitro model of RAW 264.7 cells; 1 µg/ml LPS induced the secretion of inflammatory mediators, including IL-6, TNF-α, and activation of the Jak2/Stat3 signaling pathway. MLB significantly inhibited the abnormal secretion of inflammatory factors and the activation of the Jak2/Stat3 signaling pathway in RAW264.7 cells. In conclusion, MLB was found for the first time to reduce inflammation induced by hepatic I/R via suppressing the Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiting Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lijiang Xuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18:773-789. [DOI: 10.1038/s41577-018-0066-7] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Bousoik E, Montazeri Aliabadi H. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8:287. [PMID: 30109213 PMCID: PMC6079274 DOI: 10.3389/fonc.2018.00287] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Janus tyrosine kinase (JAK) family of proteins have been identified as crucial proteins in signal transduction initiated by a wide range of membrane receptors. Among the proteins in this family JAK2 has been associated with important downstream proteins, including signal transducers and activators of transcription (STATs), which in turn regulate the expression of a variety of proteins involved in induction or prevention of apoptosis. Therefore, the JAK/STAT signaling axis plays a major role in the proliferation and survival of different cancer cells, and may even be involved in resistance mechanisms against molecularly targeted drugs. Despite extensive research focused on the protein structure and mechanisms of activation of JAKs, and signal transduction through these proteins, their importance in cancer initiation and progression seem to be underestimated. This manuscript is an attempt to highlight the role of JAK proteins in cancer biology, the most recent developments in targeting JAKs, and the central role they play in intracellular cross-talks with other signaling cascades.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States.,School of Pharmacy, Omar Al-Mukhtar University, Dèrna, Libya
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, School of Pharmacy, Chapman University, Irvine, CA, United States
| |
Collapse
|
27
|
Duan G, Song S, Niu S. WITHDRAWN: Long non-coding RNA HOTAIR promotes LPS-induced inflammatory injury by down-regulation of microRNA-124 in murine chondrogenic ATDC5 cells. Life Sci 2018:S0024-3205(18)30416-8. [PMID: 30031813 DOI: 10.1016/j.lfs.2018.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Guoqing Duan
- Department of Bone and Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Shiqiang Song
- Department of Bone and Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Shuaishuai Niu
- Department of Bone and Joint Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
28
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9:7204-7218. [PMID: 29467962 PMCID: PMC5805548 DOI: 10.18632/oncotarget.23208] [Citation(s) in RCA: 2719] [Impact Index Per Article: 388.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.
Collapse
Affiliation(s)
- Linlin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
29
|
Ahmad SF, Ansari MA, Nadeem A, Zoheir KMA, Bakheet SA, Alsaad AMS, Al-Shabanah OA, Attia SM. STA-21, a STAT-3 inhibitor, attenuates the development and progression of inflammation in collagen antibody-induced arthritis. Immunobiology 2016; 222:206-217. [PMID: 27717524 DOI: 10.1016/j.imbio.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/27/2016] [Accepted: 10/02/2016] [Indexed: 01/12/2023]
Abstract
We set out to investigate the influence of STA-21, a dynamic STAT-3 inhibitor, on the expansion and progression of rheumatoid arthritis (RA), and to determine its potential mechanisms of action in a mouse model of collagen antibody-induced arthritis (CAIA). To this end, arthritis was induced via intravenous (IV) injection of Balb/c mice with a cocktail of antibodies directed against type II collagen (1.5μg/mouse, IV), followed by lipopolysaccharide (LPS) at a dose of (25μg/mouse, i.p.) on day 3. Mice were then left untreated or were simultaneously treated with STA-21 (0.5mg/kg, i.p., once daily for 2 weeks) followed by evaluation for clinical and histological features of arthritic inflammation and flow cytometric analysis of cytokines and transcription factors in peripheral blood. STA-21 enhanced the clinical course of arthritis in CAIA mice and decreased CD8+RORγt+ and CD8+IL-21+ cells while inducing the production of CD8+Foxp3+ cells. Furthermore, STA-21 prevented the production of TNF-α and IL-6 in peripheral blood and increased IL-27 production by CD14+ cells. Moreover, STA-21 not only regulates Th1/Th2 serum cytokine levels but also the mRNA and protein expression of key factors including NF-κB p65, RORγt, T-bet, IL-4, GATA-3, JAK1, Stat3, and IL-21. Thus, administration of the Stat3 inhibitor STA-21 inhibits cellular signaling pathways and downstream activation of key transcription factors previously shown to play key roles in the pathogenesis of RA. Therefore, these data suggest that STA-21 could be considered as a potential treatment for patients with RA.
Collapse
Affiliation(s)
- Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khairy M A Zoheir
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Cell Biology, National Research Centre, Cairo, Egypt
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz M S Alsaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
30
|
Dey P, Panga V, Raghunathan S. A Cytokine Signalling Network for the Regulation of Inducible Nitric Oxide Synthase Expression in Rheumatoid Arthritis. PLoS One 2016; 11:e0161306. [PMID: 27626941 PMCID: PMC5023176 DOI: 10.1371/journal.pone.0161306] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
In rheumatoid arthritis (RA), nitric oxide (NO) is implicated in inflammation, angiogenesis and tissue destruction. The enzyme inducible nitric oxide synthase (iNOS) is responsible for the localised over-production of NO in the synovial joints affected by RA. The pro- and anti-inflammatory cytokines stimulate the synovial macrophages and the fibroblast-like synoviocytes to express iNOS. Therefore, the cytokine signalling network underlying the regulation of iNOS is essential to understand the pathophysiology of the disease. By using information from the literature, we have constructed, for the first time, the cytokine signalling network involved in the regulation of iNOS expression. Using the differential expression patterns obtained by re-analysing the microarray data on the RA synovium and the synovial macrophages available in the Gene Expression Omnibus (GEO) database, we aimed to establish the role played by the network genes towards iNOS regulation in the RA synovium. Our analysis reveals that the network genes belonging to interferon (IFN) and interleukin-10 (IL-10) pathways are always up-regulated in the RA synovium whereas the genes which are part of the anti-inflammatory transforming growth factor-beta (TGF-β) signalling pathway are mostly down-regulated. We observed a consistent up-regulation of the transcription factor signal transducers and activators of transcription 1 (STAT1) in the RA synovium and the macrophages. Interestingly, we found a consistent up-regulation of the iNOS interacting protein ras-related C3 botulinum toxin substrate 2 (RAC2) in the RA synovium as well as the macrophages. Importantly, we have constructed a model to explain the impact of IFN and IL-10 pathways on Rac2-iNOS interaction leading to over-production of NO and thereby causing chronic inflammation in the RA synovium. The interplay between STAT1 and RAC2 in the regulation of NO could have implications for the identification of therapeutic targets for RA.
Collapse
Affiliation(s)
- Poulami Dey
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronics City Phase I, Bengaluru 560 100, Karnataka, India
- Manipal University, Manipal, 576104, Karnataka, India
| | - Venugopal Panga
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronics City Phase I, Bengaluru 560 100, Karnataka, India
- Manipal University, Manipal, 576104, Karnataka, India
| | - Srivatsan Raghunathan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronics City Phase I, Bengaluru 560 100, Karnataka, India
- * E-mail:
| |
Collapse
|
31
|
Choi J, Kim H, Kim Y, Jang M, Jeon J, Hwang YI, Shon WJ, Song YW, Kang JS, Lee WJ. The Anti-inflammatory Effect of GV1001 Mediated by the Downregulation of ENO1-induced Pro-inflammatory Cytokine Production. Immune Netw 2015; 15:291-303. [PMID: 26770183 PMCID: PMC4700405 DOI: 10.4110/in.2015.15.6.291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
GV1001 is a peptide derived from the human telomerase reverse transcriptase (hTERT) sequence that is reported to have anti-cancer and anti-inflammatory effects. Enolase1 (ENO1) is a glycolytic enzyme, and stimulation of this enzyme induces high levels of pro-inflammatory cytokines from concanavalin A (Con A)-activated peripheral blood mononuclear cells (PBMCs) and ENO1-expressing monocytes in healthy subjects, as well as from macrophages in rheumatoid arthritis (RA) patients. Therefore, this study investigated whether GV1001 downregulates ENO1-induced pro-inflammatory cytokines as an anti-inflammatory peptide. The results showed that GV1001 does not affect the expression of ENO1 in either Con A-activated PBMCs or RA PBMCs. However, ENO1 stimulation increased the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and these cytokines were downregulated by pretreatment with GV1001. Moreover, p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB were activated when ENO1, on the surface of Con A-activated PBMCs and RA PBMCs, was stimulated, and they were successfully suppressed by pre-treatment with GV1001. These results suggest that GV1001 may be an effective anti-inflammatory peptide that downregulates the production of pro-inflammatory cytokines through the suppression of p38 MAPK and NF-κB activation following ENO1 stimulation.
Collapse
Affiliation(s)
- Jiyea Choi
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyemin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, Korea.; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Mirim Jang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jane Jeon
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Young-Il Hwang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Won Jun Shon
- Department of Endodontics, Seoul National University School of Dentistry, Seoul 03080, Korea
| | - Yeong Wook Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine, Medical Research Center, Seoul National University, Seoul 03080, Korea.; Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, Korea.; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Wang Jae Lee
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
32
|
Ahmad SF, Ansari MA, Zoheir KM, Bakheet SA, Korashy HM, Nadeem A, Ashour AE, Attia SM. Regulation of TNF-α and NF-κB activation through the JAK/STAT signaling pathway downstream of histamine 4 receptor in a rat model of LPS-induced joint inflammation. Immunobiology 2015; 220:889-98. [DOI: 10.1016/j.imbio.2015.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/18/2015] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
|
33
|
Gadhe CG, Lee E, Kim MH. Finding new scaffolds of JAK3 inhibitors in public database: 3D-QSAR models & shape-based screening. Arch Pharm Res 2015; 38:2008-19. [PMID: 25956696 DOI: 10.1007/s12272-015-0607-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/20/2015] [Indexed: 01/02/2023]
Abstract
The STAT/JAK3 pathway is a well-known therapeutic target in various diseases (ex. rheumatoid arthritis and psoriasis). The therapeutic advantage of JAK3 inhibition motivated to find new scaffolds with desired DMPK. For the purpose, in silico high-throughput sieves method is developed consisting of a receptor-guided three-dimensional quantitative structure-activity relationship study and shape-based virtual screening. We developed robust and predictive comparative molecular field analysis (q (2) = 0.760, r (2) = 0.915) and comparative molecular similarity index analysis (q (2) = 0.817, r (2) = 0.981) models and validated these using a test set, which produced satisfactory predictions of 0.925 and 0.838, respectively.
Collapse
Affiliation(s)
- Changdev G Gadhe
- Department of Pharmacy, College of Pharmacy, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Eunhee Lee
- Department of Pharmacy, College of Pharmacy, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Republic of Korea
| | - Mi-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, Republic of Korea.
| |
Collapse
|
34
|
Hildebrand D, Bode KA, Rieß D, Cerny D, Waldhuber A, Römmler F, Strack J, Korten S, Orth JHC, Miethke T, Heeg K, Kubatzky KF. Granzyme A produces bioactive IL-1β through a nonapoptotic inflammasome-independent pathway. Cell Rep 2014; 9:910-7. [PMID: 25437548 DOI: 10.1016/j.celrep.2014.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/22/2014] [Accepted: 09/29/2014] [Indexed: 01/21/2023] Open
Abstract
Bacterial components are recognized by the immune system through activation of the inflammasome, eventually causing processing of the proinflammatory cytokine interleukin-1? (IL-1?), a pleiotropic cytokine and one of the most important mediators of inflammation, through the protease caspase-1. Synthesis of the precursor protein and processing into its bioactive form are tightly regulated, given that disturbed control of IL-1? release can cause severe autoinflammatory diseases or contribute to cancer development. We show that the bacterial Pasteurella multocida toxin (PMT) triggers Il1b gene transcription in macrophages independently of Toll-like receptor signaling through RhoA/Rho-kinase-mediated NF-?? activation. Furthermore, PMT mediates signal transducer and activator of transcription (STAT) protein-controlled granzyme A (a serine protease) expression in macrophages. The exocytosed granzyme A enters target cells and mediates IL-1? maturation independently of caspase-1 and without inducing cytotoxicity. These findings show that macrophages can induce an IL-1?-initiated immune response independently of inflammasome activity.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Konrad A Bode
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - David Rieß
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Daniela Cerny
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Anna Waldhuber
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Trogerstraße 30, 81675 München, Germany
| | - Franziska Römmler
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Trogerstraße 30, 81675 München, Germany
| | - Julia Strack
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Simone Korten
- Labor Lademannbogen MVZ GmbH, Lademannbogen 61-63, 22339 Hamburg, Germany
| | - Joachim H C Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Thomas Miethke
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Mannheim der Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Klaus Heeg
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Katharina F Kubatzky
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Sharma K, Giri K, Dhiman V, Dixit A, Zainuddin M, Mullangi R. A validated LC-MS/MS assay for simultaneous quantification of methotrexate and tofacitinib in rat plasma: application to a pharmacokinetic study. Biomed Chromatogr 2014; 29:722-32. [DOI: 10.1002/bmc.3348] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/12/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Kuldeep Sharma
- Jubilant Biosys; 2nd Stage, Industrial Suburb, Yeshwanthpur Bangalore-560 022 India
| | - Kalpeshkumar Giri
- Jubilant Biosys; 2nd Stage, Industrial Suburb, Yeshwanthpur Bangalore-560 022 India
| | - Vinay Dhiman
- Jubilant Biosys; 2nd Stage, Industrial Suburb, Yeshwanthpur Bangalore-560 022 India
| | - Abhishek Dixit
- Jubilant Biosys; 2nd Stage, Industrial Suburb, Yeshwanthpur Bangalore-560 022 India
| | - Mohd Zainuddin
- Jubilant Biosys; 2nd Stage, Industrial Suburb, Yeshwanthpur Bangalore-560 022 India
| | - Ramesh Mullangi
- Jubilant Biosys; 2nd Stage, Industrial Suburb, Yeshwanthpur Bangalore-560 022 India
| |
Collapse
|
36
|
Gupta U, Mir SS, Srivastava A, Garg N, Agarwal SK, Pande S, Mittal B. Signal transducers and activators of transcription (STATs) gene polymorphisms related with susceptibility to rheumatic heart disease in north Indian population. Immunol Lett 2014; 161:100-105. [PMID: 24797343 DOI: 10.1016/j.imlet.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Rheumatic heart disease (RHD) is the most serious complication of heart that comprises inflammatory reactions in heart valves. Cytokines play a critical role in triggering inflammatory reactions and they activate the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway. Altered signals of STATs play important roles in the balance between proinflammatory and anti-inflammatory cytokines in inflammatory diseases. The aim of the present study was to investigate for the association of polymorphisms related with STAT genes, i.e. STAT3 (rs4796793 C/G) and STAT5b (rs6503691 C/T) with the pathogenesis of RHD. This case-control association study involved 300 healthy controls and 400 RHD patients from North Indian Population. We categorized RHD patients into two subgroups based on involvement of heart valves, mitral valve lesion alone (MVL), and combined valve lesions including mitral valve (CVL). Genotyping was done by RFLP/Taqman probes. We observed that STAT3 CG and GG genotypes were significantly associated with RHD (p=0.030 and p=0.014 respectively), STAT5b CT and TT genotypes were also significantly associated with RHD (p≤0.001). Haplotype analysis revealed that minor alleles of both the variants (Grs4796793Trs6503691) were significantly associated (p<0.0001) with increased risk of the disease susceptibility irrespective of gender or age of onset of the disease. However, the polymorphisms were not involved in severity of RHD as both MVL and CVL patients were equally affected. STAT Grs4796793Trs6503691 carriers may have reduced production of STAT3 leading to damage of heart valves. Thus, STAT genes polymorphisms may be useful markers for the identification of individuals with high risk of RHD in the susceptible population.
Collapse
Affiliation(s)
- Usha Gupta
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India; Department of Biosciences, Integral University, Lucknow, India
| | - Snober S Mir
- Department of Biosciences, Integral University, Lucknow, India
| | - Apurva Srivastava
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Naveen Garg
- Department of Cardiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Surendra K Agarwal
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Shantanu Pande
- Department of Cardiovascular and Thoracic Surgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Balraj Mittal
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India.
| |
Collapse
|
37
|
Donlin LT, Jayatilleke A, Giannopoulou EG, Kalliolias GD, Ivashkiv LB. Modulation of TNF-induced macrophage polarization by synovial fibroblasts. THE JOURNAL OF IMMUNOLOGY 2014; 193:2373-83. [PMID: 25057003 DOI: 10.4049/jimmunol.1400486] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells have emerged as powerful modulators of the immune system. In this study, we explored how the human macrophage response to TNF is regulated by human synovial fibroblasts, the representative stromal cell type in the synovial lining of joints that become activated during inflammatory arthritis. We found that synovial fibroblasts strongly suppressed TNF-mediated induction of an IFN-β autocrine loop and downstream expression of IFN-stimulated genes (ISGs), including chemokines CXCL9 and CXCL10 that are characteristic of classical macrophage activation. TNF induced the production of soluble synovial fibroblast factors that suppressed the macrophage production of IFN-β, and cooperated with TNF to limit the responsiveness of macrophages to IFN-β by suppressing activation of Jak-STAT signaling. Genome-wide transcriptome analysis showed that cocultured synovial fibroblasts modulate the expression of approximately one third of TNF-regulated genes in macrophages, including genes in pathways important for macrophage survival and polarization toward an alternatively activated phenotype. Pathway analysis revealed that gene expression programs regulated by synovial fibroblasts in our coculture system were also regulated in rheumatoid arthritis synovial macrophages, suggesting that these fibroblast-mediated changes may contribute to rheumatoid arthritis pathogenesis. This work furthers our understanding of the interplay between innate immune and stromal cells during an inflammatory response, one that is particularly relevant to inflammatory arthritis. Our findings also identify modulation of macrophage phenotype as a new function for synovial fibroblasts that may prove to be a contributing factor in arthritis pathogenesis.
Collapse
Affiliation(s)
- Laura T Donlin
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021;
| | - Arundathi Jayatilleke
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Eugenia G Giannopoulou
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; Biological Sciences Department, New York City College of Technology, City University of New York, New York, NY 11201
| | - George D Kalliolias
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; Department of Medicine, Weill Cornell Medical College, New York, NY 10021; and
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; Department of Medicine, Weill Cornell Medical College, New York, NY 10021; and Weill Cornell Graduate School of Medical Sciences, New York, NY 10021
| |
Collapse
|
38
|
Woetzel D, Huber R, Kupfer P, Pohlers D, Pfaff M, Driesch D, Häupl T, Koczan D, Stiehl P, Guthke R, Kinne RW. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation. Arthritis Res Ther 2014; 16:R84. [PMID: 24690414 PMCID: PMC4060460 DOI: 10.1186/ar4526] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 03/10/2014] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Discrimination of rheumatoid arthritis (RA) patients from patients with other inflammatory or degenerative joint diseases or healthy individuals purely on the basis of genes differentially expressed in high-throughput data has proven very difficult. Thus, the present study sought to achieve such discrimination by employing a novel unbiased approach using rule-based classifiers. METHODS Three multi-center genome-wide transcriptomic data sets (Affymetrix HG-U133 A/B) from a total of 79 individuals, including 20 healthy controls (control group - CG), as well as 26 osteoarthritis (OA) and 33 RA patients, were used to infer rule-based classifiers to discriminate the disease groups. The rules were ranked with respect to Kiendl's statistical relevance index, and the resulting rule set was optimized by pruning. The rule sets were inferred separately from data of one of three centers and applied to the two remaining centers for validation. All rules from the optimized rule sets of all centers were used to analyze their biological relevance applying the software Pathway Studio. RESULTS The optimized rule sets for the three centers contained a total of 29, 20, and 8 rules (including 10, 8, and 4 rules for 'RA'), respectively. The mean sensitivity for the prediction of RA based on six center-to-center tests was 96% (range 90% to 100%), that for OA 86% (range 40% to 100%). The mean specificity for RA prediction was 94% (range 80% to 100%), that for OA 96% (range 83.3% to 100%). The average overall accuracy of the three different rule-based classifiers was 91% (range 80% to 100%). Unbiased analyses by Pathway Studio of the gene sets obtained by discrimination of RA from OA and CG with rule-based classifiers resulted in the identification of the pathogenetically and/or therapeutically relevant interferon-gamma and GM-CSF pathways. CONCLUSION First-time application of rule-based classifiers for the discrimination of RA resulted in high performance, with means for all assessment parameters close to or higher than 90%. In addition, this unbiased, new approach resulted in the identification not only of pathways known to be critical to RA, but also of novel molecules such as serine/threonine kinase 10.
Collapse
Affiliation(s)
- Dirk Woetzel
- BioControl Jena GmbH, Wildenbruchstraße 15, 07745 Jena, Germany
| | - Rene Huber
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus Rudolf Elle, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Peter Kupfer
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Dirk Pohlers
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus Rudolf Elle, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany
- Present address: Center of Diagnostics GmbH, Chemnitz Hospital, Flemmingstr. 2, 09116 Chemnitz, Germany
| | - Michael Pfaff
- BioControl Jena GmbH, Wildenbruchstraße 15, 07745 Jena, Germany
- Department of Medical Engineering and Biotechnology, University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Dominik Driesch
- BioControl Jena GmbH, Wildenbruchstraße 15, 07745 Jena, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charite-Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Schillingallee 68, 18057 Rostock, Germany
| | - Peter Stiehl
- Institute of Pathology, University of Leipzig, Liebigstraße 24, 04103 Leipzig, Germany
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus Rudolf Elle, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany
| |
Collapse
|
39
|
Migita K, Izumi Y, Torigoshi T, Satomura K, Izumi M, Nishino Y, Jiuchi Y, Nakamura M, Kozuru H, Nonaka F, Eguchi K, Kawakami A, Motokawa S. Inhibition of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway in rheumatoid synovial fibroblasts using small molecule compounds. Clin Exp Immunol 2014; 174:356-63. [PMID: 23968543 DOI: 10.1111/cei.12190] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2013] [Indexed: 12/15/2022] Open
Abstract
Janus kinase (JAK) inhibitors have been developed as anti-inflammatory agents and have demonstrated clinical efficacy in rheumatoid arthritis (RA). We investigated if JAK-3-selective inhibition alone could disrupt cytokine signalling in rheumatoid synovial fibroblasts. In-vitro studies were performed using synovial fibroblasts isolated from patients with RA. Levels of activated JAK and signal transducer and activator of transcription (STAT) proteins were detected by immunoblot analysis. Target-gene expression levels were measured by reverse transcription-polymerase chain reaction (RT-PCR) or real-time PCR. The JAK inhibitors CP-690,550 and INCB028050 both suppressed activation of JAK-1/-2/-3 and downstream STAT-1/-3/-5, as well as the expression levels of target proinflammatory genes (MCP-I, SAA1/2) in oncostatin-M (OSM)-stimulated rheumatoid synovial fibroblasts. In contrast, the JAK-3-selective inhibitor, PF-956980, suppressed STAT-1/-5 activation but did not affect STAT-3 activation in OSM-stimulated rheumatoid synovial fibroblasts. In addition, PF-956980 significantly suppressed MCP-1 gene expression, but did not block SAA1/2 gene expression in OSM-stimulated rheumatoid synovial fibroblasts. These data suggest that JAK-3-selective inhibition alone is insufficient to control STAT-3-dependent signalling in rheumatoid synovial fibroblasts, and inhibition of JAKs, including JAK-1/-2, is needed to control the proinflammatory cascade in RA.
Collapse
Affiliation(s)
- K Migita
- Department of Rheumatology and Clinical Research Center, Nagasaki Medical Center, Omura, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dowty ME, Jesson MI, Ghosh S, Lee J, Meyer DM, Krishnaswami S, Kishore N. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis. J Pharmacol Exp Ther 2014; 348:165-73. [PMID: 24218541 DOI: 10.1124/jpet.113.209304] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A critical piece in the translation of preclinical studies to clinical trials is the determination of dosing regimens that allow maximum therapeutic benefit with minimum toxicity. The preclinical pharmacokinetic (PK)/pharmacodynamic (PD) profile of tofacitinib, an oral Janus kinase (JAK) inhibitor, in a mouse collagen-induced arthritis (mCIA) model was compared with clinical PK/PD data from patients with rheumatoid arthritis (RA). Preclinical evaluations included target modulation and PK/PD modeling based on continuous subcutaneous infusion or oral once- or twice-daily (BID) dosing paradigms in mice. The human PK/PD profile was obtained from pooled data from four phase 2 studies in patients with RA, and maximal effect models were used to evaluate efficacy after 12 weeks of tofacitinib treatment (1-15 mg BID). In mCIA, the main driver of efficacy was inhibition of cytokine receptor signaling mediated by JAK1 heterodimers, but not JAK2 homodimers, and continuous daily inhibition was not required to maintain efficacy. Projected efficacy could be predicted from total daily exposure irrespective of the oral dosing paradigm, with a total steady-state plasma concentration achieving 50% of the maximal response (Cave50) of ~100 nM. Tofacitinib potency (ED50) in clinical studies was ~3.5 mg BID (90% confidence interval: 2.3, 5.5) or total Cave50 of ~40 nM, derived using Disease Activity Scores from patients with RA. The collective clinical and preclinical data indicated the importance of Cave as a driver of efficacy, rather than maximum or minimum plasma concentration (Cmax or Cmin), where Cave50 values were within ~2-fold of each other.
Collapse
Affiliation(s)
- Martin E Dowty
- Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Andover, Massachusetts (M.E.D.); Drug Safety Research and Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts (M.I.J.); Pfizer Worldwide Research and Development, Chesterfield, Missouri (S.G., N.K.); Biotherapeutics, Pharmaceutical Sciences, Analytical Research and Development, Pfizer Worldwide Research and Development, Pfizer Inc, Chesterfield, Missouri (J.L., D.M.M.); and Department of Clinical Pharmacology, Pfizer Inc, Pfizer Worldwide Research and Development, Groton, Connecticut (S.K.)
| | | | | | | | | | | | | |
Collapse
|
41
|
Qiao Y, Giannopoulou EG, Chan CH, Park SH, Gong S, Chen J, Hu X, Elemento O, Ivashkiv LB. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 2013; 39:454-69. [PMID: 24012417 PMCID: PMC3857147 DOI: 10.1016/j.immuni.2013.08.009] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/21/2013] [Indexed: 12/13/2022]
Abstract
Synergistic activation of inflammatory cytokine genes by interferon-γ (IFN-γ) and Toll-like receptor (TLR) signaling is important for innate immunity and inflammatory disease pathogenesis. Enhancement of TLR signaling, a previously proposed mechanism, is insufficient to explain strong synergistic activation of cytokine production in human macrophages. Rather, we found that IFN-γ induced sustained occupancy of transcription factors STAT1, IRF-1, and associated histone acetylation at promoters and enhancers at the TNF, IL6, and IL12B loci. This priming of chromatin did not activate transcription but greatly increased and prolonged recruitment of TLR4-induced transcription factors and RNA polymerase II to gene promoters and enhancers. Priming sensitized cytokine transcription to suppression by Jak inhibitors. Genome-wide analysis revealed pervasive priming of regulatory elements by IFN-γ and linked coordinate priming of promoters and enhancers with synergistic induction of transcription. Our results provide a synergy mechanism whereby IFN-γ creates a primed chromatin environment to augment TLR-induced gene transcription.
Collapse
Affiliation(s)
- Yu Qiao
- Arthritis and Tissue Degeneration Program and Genomics Center, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ren DY, Xu T, Li R, Huang C, Huang Y, Li RQ, Li HY, Li J. 5,7,3′-Triacetyl Hesperetin Suppresses Adjuvant-Induced Arthritis in Rats through Modulating JAK2/STAT3 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:601-14. [DOI: 10.1142/s0192415x13500420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This work was designed to identify the effect of 5,7,3′-triacetyl hesperetin (TAHP) on rat adjuvant arthritis (AA) and further clarify the possible role of TAHP on modulating Janus kinase signal transducers and activators (JAK/STAT in this process. Freund's complete adjuvant was used to induce AA in rats. TAHP (33, 66, 132 mg/kg) was administered intragastrically. Secondary paw swelling, polyarthritis index, index of immune organs and histopathological assessment were used to evaluate the effects of TAHP on AA in rats. IL-6 in serum and in synovial tissues was examined with ELISA and RT-PCR. In addition, JAK2/STAT3 pathway-related key molecules mRNA expression in synovial tissues of AA rats were detected by RT-PCR and western blot respectively. It was found that TAHP (66, 132 mg/kg) could significantly inhibit secondary paw swelling, restore the index of immune organs and reduce polyarthritis index. Results of histopathological assessment showed that TAHP clearly ameliorated the pathological changes in AA rats. TAHP could downregulate the level of IL-6 in serum and in synovial tissues of AA rats. Besides, treatment with TAHP could decrease mRNA expressions of STAT3 and JAK2, as well as the ratio of p-JAK2/JAK2 protein and p-STAT3/STAT3 protein from synovial tissues. Thus, the paper demonstrated that TAHP had a therapeutic effect on AA in rats and the mechanisms were partly associated with modulating proinflammatory cytokine IL-6 production in serum and in synovial tissues and inhibiting excessive activation of JAK2/STAT3 signaling pathway which might play a crucial role in the pathogenesis of AA.
Collapse
Affiliation(s)
- Dan Yang Ren
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Key Laboratory of Bioactivity on Natural Products, Anhui 230032, P. R. China
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650000, P. R. China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Key Laboratory of Bioactivity on Natural Products, Anhui 230032, P. R. China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Key Laboratory of Bioactivity on Natural Products, Anhui 230032, P. R. China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Key Laboratory of Bioactivity on Natural Products, Anhui 230032, P. R. China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Key Laboratory of Bioactivity on Natural Products, Anhui 230032, P. R. China
| | - Ren Qiu Li
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650000, P. R. China
| | - Hui Ying Li
- Pharmaceutical Preparation Section, Children's Hospital of Kunming Medical University, Kunming, Yunnan 650000, P. R. China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Key Laboratory of Bioactivity on Natural Products, Anhui 230032, P. R. China
| |
Collapse
|
43
|
Therapeutic effect of 7, 3′-dimethoxy hesperetin on adjuvant arthritis in rats through inhibiting JAK2-STAT3 signal pathway. Int Immunopharmacol 2012; 14:157-63. [DOI: 10.1016/j.intimp.2012.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/22/2012] [Accepted: 07/01/2012] [Indexed: 12/18/2022]
|
44
|
Yoshida S, Arakawa F, Higuchi F, Ishibashi Y, Goto M, Sugita Y, Nomura Y, Niino D, Shimizu K, Aoki R, Hashikawa K, Kimura Y, Yasuda K, Tashiro K, Kuhara S, Nagata K, Ohshima K. Gene expression analysis of rheumatoid arthritis synovial lining regions by cDNA microarray combined with laser microdissection: up-regulation of inflammation-associated STAT1, IRF1, CXCL9, CXCL10, and CCL5. Scand J Rheumatol 2012; 41:170-9. [PMID: 22401175 PMCID: PMC3400100 DOI: 10.3109/03009742.2011.623137] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives The main histological change in rheumatoid arthritis (RA) is the villous proliferation of synovial lining cells, an important source of cytokines and chemokines, which are associated with inflammation. The aim of this study was to evaluate gene expression in the microdissected synovial lining cells of RA patients, using those of osteoarthritis (OA) patients as the control. Methods Samples were obtained during total joint replacement from 11 RA and five OA patients. Total RNA from the synovial lining cells was derived from selected specimens by laser microdissection (LMD) for subsequent cDNA microarray analysis. In addition, the expression of significant genes was confirmed immunohistochemically. Results The 14 519 genes detected by cDNA microarray were used to compare gene expression levels in synovial lining cells from RA with those from OA patients. Cluster analysis indicated that RA cells, including low- and high-expression subgroups, and OA cells were stored in two main clusters. The molecular activity of RA was statistically consistent with its clinical and histological activity. Expression levels of signal transducer and activator of transcription 1 (STAT1), interferon regulatory factor 1 (IRF1), and the chemokines CXCL9, CXCL10, and CCL5 were statistically significantly higher in the synovium of RA than in that of OA. Immunohistochemically, the lining synovium of RA, but not that of OA, clearly expressed STAT1, IRF1, and chemokines, as was seen in microarray analysis combined with LMD. Conclusions Our findings indicate an important role for lining synovial cells in the inflammatory and proliferative processes of RA. Further understanding of the local signalling in structural components is important in rheumatology.
Collapse
Affiliation(s)
- S Yoshida
- Department of Pathology, School of Medicine, Kurume University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 2012; 209:319-34. [PMID: 22249448 PMCID: PMC3280875 DOI: 10.1084/jem.20111566] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/19/2011] [Indexed: 01/28/2023] Open
Abstract
Tumor necrosis factor (TNF) plays a key role in the pathogenesis of inflammatory bone resorption and associated morbidity in diseases such as rheumatoid arthritis and periodontitis. Mechanisms that regulate the direct osteoclastogenic properties of TNF to limit pathological bone resorption in inflammatory settings are mostly unknown. Here, we show that the transcription factor recombinant recognition sequence binding protein at the J(κ) site (RBP-J) strongly suppresses TNF-induced osteoclastogenesis and inflammatory bone resorption, but has minimal effects on physiological bone remodeling. Myeloid-specific deletion of RBP-J converted TNF into a potent osteoclastogenic factor that could function independently of receptor activator of NF-κB (RANK) signaling. In the absence of RBP-J, TNF effectively induced osteoclastogenesis and bone resorption in RANK-deficient mice. Activation of RBP-J selectively in osteoclast precursors suppressed inflammatory osteoclastogenesis and arthritic bone resorption. Mechanistically, RBP-J suppressed induction of the master regulator of osteoclastogenesis (nuclear factor of activated T cells, cytoplasmic 1) by attenuating c-Fos activation and suppressing induction of B lymphocyte-induced maturation protein-1, thereby preventing the down-regulation of transcriptional repressors such as IRF-8 that block osteoclast differentiation. Thus, RBP-J regulates the balance between activating and repressive signals that regulate osteoclastogenesis. These findings identify RBP-J as a key upstream negative regulator of osteoclastogenesis that restrains excessive bone resorption in inflammatory settings.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
| | - Shannon N. Grimes
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
| | - Susan Li
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
| | - Xiaoyu Hu
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10065
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065
| |
Collapse
|
46
|
Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest 2011; 121:3375-83. [PMID: 21881215 PMCID: PMC3163962 DOI: 10.1172/jci57158] [Citation(s) in RCA: 551] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The successful treatment of certain autoimmune conditions with the humanized anti-IL-6 receptor (IL-6R) antibody tocilizumab has emphasized the clinical importance of cytokines that signal through the β-receptor subunit glycoprotein 130 (gp130). In this Review, we explore how gp130 signaling controls disease progression and examine why IL-6 has a special role among these cytokines as an inflammatory regulator. Attention will be given to the role of the soluble IL-6R, and we will provide a perspective into the clinical blockade of IL-6 activity in autoimmunity, inflammation, and cancer.
Collapse
Affiliation(s)
- Simon A. Jones
- Department of Infection, Immunity and Biochemistry, The School of Medicine, Cardiff University, Cardiff, United Kingdom.
Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Jürgen Scheller
- Department of Infection, Immunity and Biochemistry, The School of Medicine, Cardiff University, Cardiff, United Kingdom.
Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Stefan Rose-John
- Department of Infection, Immunity and Biochemistry, The School of Medicine, Cardiff University, Cardiff, United Kingdom.
Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
47
|
Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nat Immunol 2011; 12:607-15. [PMID: 21602809 DOI: 10.1038/ni.2043] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/20/2011] [Indexed: 12/14/2022]
Abstract
Endotoxin tolerance, a key mechanism for suppressing excessive inflammatory cytokine production, is induced by prior exposure of macrophages to Toll-like receptor (TLR) ligands. Induction of cross-tolerance to endotoxin by endogenous cytokines has not been investigated. Here we show that prior exposure to tumor necrosis factor (TNF) induced a tolerant state in macrophages, with less cytokine production after challenge with lipopolysaccharide (LPS) and protection from LPS-induced death. TNF-induced cross-tolerization was mediated by suppression of LPS-induced signaling and chromatin remodeling. TNF-induced cross-tolerance was dependent on the kinase GSK3, which suppressed chromatin accessibility and promoted rapid termination of signaling via the transcription factor NF-κB by augmenting negative feedback by the signaling inhibitors A20 and IκBα. Our results demonstrate an unexpected homeostatic function for TNF and a GSK3-mediated mechanism for the prevention of prolonged and excessive inflammation.
Collapse
|
48
|
The conserved histidine in epidermal growth factor-like domains of stabilin-2 modulates pH-dependent recognition of phosphatidylserine in apoptotic cells. Int J Biochem Cell Biol 2010; 42:1154-63. [PMID: 20382256 DOI: 10.1016/j.biocel.2010.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/12/2010] [Accepted: 03/31/2010] [Indexed: 11/21/2022]
Abstract
Clearance of apoptotic cells is involved in the resolution of inflammation, and this mechanism is controlled by the regulation of pro- and anti-inflammatory cytokine production during the ingestion of apoptotic cells. Inflamed areas show extracellular acidity, and low pH stimulates cellular functions of immune cells. However, little is known about the influence of extracellular acidic pH on the function of phagocytic cells. In this study, we showed that stabilin-2-mediated phagocytosis is activated in low pH media (pH 6.8) and examined the molecular mechanisms underlying this pH-dependent enhancement of phagocytic activity. Stabilin-2, which is expressed in human monocyte derived macrophages (HMDM), is a phosphatidylserine (PS) receptor that mediates phagocytosis of apoptotic cells, and releases the anti-inflammatory cytokine, TGF-beta. The PS binding activity of stabilin-2 is enhanced in low pH, and a conserved histidine(1403) in close proximity to the PS binding loop is critical for pH-dependent activity. We propose that protonation of His(1403) may rearrange the PS binding loop to enhance binding affinity in low pH, indicating that acidic pH might act as a danger signal to stimulate stabilin-2-mediated phagocytosis to resolve inflammation. Considering that phosphatidylserine is an important target molecule for apoptotic cells in the acidic microenvironment of inflammation and tumors, our results also have implications for pH sensitive targeting of apoptotic cells.
Collapse
|
49
|
Wang L, Gordon RA, Huynh L, Su X, Park Min KH, Han J, Arthur JS, Kalliolias GD, Ivashkiv LB. Indirect inhibition of Toll-like receptor and type I interferon responses by ITAM-coupled receptors and integrins. Immunity 2010; 32:518-30. [PMID: 20362473 DOI: 10.1016/j.immuni.2010.03.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/25/2009] [Accepted: 03/19/2010] [Indexed: 01/27/2023]
Abstract
An important function of immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptors is cross-regulation of heterologous receptor signaling, but mechanisms of cross-inhibition are poorly understood. We show that high-avidity ligation of ITAM-coupled beta2 integrins and FcgammaRs in macrophages inhibited type I interferon receptor and Toll-like receptor (TLR) signaling and induced expression of interleukin-10 (IL-10); signaling inhibitors SOCS3, ABIN-3, and A20; and repressors of cytokine gene transcription STAT3 and Hes1. Induction of inhibitors was dependent on a pathway composed of signaling molecules DAP12, Syk, and Pyk2 that coupled to downstream kinases p38 and MSKs and required integration of IL-10-dependent and -independent signals. ITAM-induced inhibitors abrogated TLR responses by cooperatively targeting distinct steps in TLR signaling. Inhibitory signaling was suppressed by IFN-gamma and attenuated in inflammatory arthritis synovial macrophages. These results provide an indirect mechanism of cross-inhibition of TLRs and delineate a signaling pathway important for deactivation of macrophages.
Collapse
Affiliation(s)
- Lu Wang
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Burkhardt J, Petit-Teixeira E, Teixeira VH, Kirsten H, Garnier S, Ruehle S, Oeser C, Wolfram G, Scholz M, Migliorini P, Balsa A, Westhovens R, Barrera P, Alves H, Pascual-Salcedo D, Bombardieri S, Dequeker J, Radstake TR, Van Riel P, van de Putte L, Bardin T, Prum B, Buchegger-Podbielski U, Emmrich F, Melchers I, Cornelis F, Ahnert P. Association of the X-chromosomal genes TIMP1 and IL9R with rheumatoid arthritis. J Rheumatol 2009; 36:2149-57. [PMID: 19723899 DOI: 10.3899/jrheum.090059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an inflammatory joint disease with features of an autoimmune disease with female predominance. Candidate genes located on the X-chromosome were selected for a family trio-based association study. METHODS A total of 1452 individuals belonging to 3 different sample sets were genotyped for 16 single-nucleotide polymorphisms (SNP) in 7 genes. The first 2 sets consisted of 100 family trios, each of French Caucasian origin, and the third of 284 additional family trios of European Caucasian origin. Subgroups were analyzed according to sex of patient and presence of anti-cyclic citrullinated peptide (anti-CCP) autoantibodies. RESULTS Four SNP were associated with RA in the first sample set and were genotyped in the second set. In combined analysis of sets 1 and 2, evidence remained for association of 3 SNP in the genes UBA1, TIMP1, and IL9R. These were again genotyped in the third sample set. Two SNP were associated with RA in the joint analysis of all samples: rs6520278 (TIMP1) was associated with RA in general (p = 0.035) and rs3093457 (IL9R) with anti-CCP-positive RA patients (p = 0.037) and male RA patients (p = 0.010). A comparison of the results with data from whole-genome association studies further supports an association of RA with TIMPL The sex-specific association of rs3093457 (IL9R) was supported by the observation that men homozygous for rs3093457-CC are at a significantly higher risk to develop RA than women (risk ratio male/female = 2.98; p = 0.048). CONCLUSION We provide evidence for an association of at least 2 X-chromosomal genes with RA: TIMP1 (rs6520278) and IL9R (rs3093457).
Collapse
Affiliation(s)
- Jana Burkhardt
- Institute of Clinical Immunology and Transfusion Medicine/Center for Biotechnology and Biomedicine (BBZ), Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|