1
|
Zhang S, Hao W, Chen D, Chen S, Li Z, Zhong F, Wang H, Wang J, Zheng Z, Zhan Z, Dai G, Liu H. Intermittent administration of PTH for the treatment of inflammatory bone loss does not enhance entheseal pathological new bone formation. Biochem Biophys Res Commun 2024; 711:149888. [PMID: 38603833 DOI: 10.1016/j.bbrc.2024.149888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE To investigate the effect of intermittent parathyroid hormone (iPTH) administration on pathological new bone formation during treatment of ankylosing spondylitis-related osteoporosis. METHODS Animal models with pathological bone formation caused by hypothetical AS pathogenesis received treatment with iPTH. We determined the effects of iPTH on bone loss and the formation of pathological new bone with micro-computed tomography (micro-CT) and histological examination. In addition, the tamoxifen-inducible conditional knockout mice (CAGGCre-ERTM; PTHflox/flox, PTH-/-) was established to delete PTH and investigate the effect of endogenous PTH on pathological new bone formation. RESULTS iPTH treatment significantly improved trabecular bone mass in the modified collagen-induced arthritis (m-CIA) model and unbalanced mechanical loading models. Meanwhile, iPTH treatment did not enhance pathological new bone formation in all types of animal models. Endogenous PTH deficiency had no effects on pathological new bone formation in unbalanced mechanical loading models. CONCLUSION Experimental animal models of AS treated with iPTH show improvement in trabecular bone density, but not entheseal pathological bone formation,indicating it may be a potential treatment for inflammatory bone loss does in AS.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Fangling Zhong
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Haitao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China
| | - Zhongping Zhan
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Guo Dai
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Guijas C, Horton LE, Hoang L, Domingo-Almenara X, Billings EM, Ware BC, Sullivan B, Siuzdak G. Microbial Metabolite 3-Indolepropionic Acid Mediates Immunosuppression. Metabolites 2022; 12:metabo12070645. [PMID: 35888769 PMCID: PMC9317520 DOI: 10.3390/metabo12070645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
The microbial-derived metabolite, 3-indolepropionic acid (3-IPA), has been intensely studied since its origins were discovered in 2009; however, 3-IPA's role in immunosuppression has had limited attention. Untargeted metabolomic analyses of T-cell exhaustion and immunosuppression, represented by dysfunctional under-responsive CD8+ T cells, reveal a potential role of 3-IPA in these responses. T-cell exhaustion was examined via infection of two genetically related mouse strains, DBA/1J and DBA/2J, with lymphocytic choriomeningitis virus (LCMV) Clone 13 (Cl13). The different mouse strains produced disparate outcomes driven by their T-cell responses. Infected DBA/2J presented with exhausted T cells and persistent infection, and DBA/1J mice died one week after infection from cytotoxic T lymphocytes (CTLs)-mediated pulmonary failure. Metabolomics revealed over 70 metabolites were altered between the DBA/1J and DBA/2J models over the course of the infection, most of them in mice with a fatal outcome. Cognitive-driven prioritization combined with statistical significance and fold change were used to prioritize the metabolites. 3-IPA, a tryptophan-derived metabolite, was identified as a high-priority candidate for testing. To test its activity 3-IPA was added to the drinking water of the mouse models during LCMV Cl13 infection, with the results showing that 3-IPA allowed the mice to survive longer. This negative immune-modulation effect might be of interest for the modulation of CTL responses in events such as autoimmune diseases, type I diabetes or even COVID-19. Moreover, 3-IPA's bacterial origin raises the possibility of targeting the microbiome to enhance CTL responses in diseases such as cancer and chronic infection.
Collapse
Affiliation(s)
- Carlos Guijas
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Lucy E. Horton
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
| | - Linh Hoang
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Xavier Domingo-Almenara
- Computational Metabolomics for Systems Biology Lab, Omics Sciences Unit, Eurecat—Technology Centre of Catalonia, 08005 Barcelona, Catalonia, Spain;
| | - Elizabeth M. Billings
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
| | - Brian C. Ware
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
| | - Brian Sullivan
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.E.H.); (B.C.W.)
- Correspondence: (B.S.); (G.S.); Tel.: +1-858-784-9425 (G.S.)
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (C.G.); (L.H.); (E.M.B.)
- Departments of Chemistry, Molecular, and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Correspondence: (B.S.); (G.S.); Tel.: +1-858-784-9425 (G.S.)
| |
Collapse
|
3
|
Wang Z, Zhou Z, Guo P, Wang M, Sun H, Tai Y, Xiao F, Han Y, Wei W, Wang Q. DBA/1 mice display equivalent cardiac function to C57BL/6J mice. Exp Physiol 2021; 106:868-881. [PMID: 33547685 DOI: 10.1113/ep089228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do normal adult DBA/1 mice have cardiac function and performance equal to those of C57BL/6J mice? What is the main finding and its importance? Male adult DBA/1 mice show equivalent cardiac function to C57BL/6J mice up to 8 months old. Therefore, cardiac dysfunction could be investigated in an autoimmune diseases model established with DBA/1 mice. ABSTRACT Cardiovascular mortality has been increasing, and in particular, cardiovascular damage caused by some chronic autoimmune diseases accounts for a large proportion of this. C57BL/6J mice have been used mostly in studies of cardiovascular diseases. However, for purposes of modelling, this strain of mouse has a very low incidence of some chronic immune diseases such as rheumatoid arthritis, to which instead DBA/1 mice are more susceptible. Basic cardiac function differs between mice with different genetic backgrounds. Therefore, we monitored cardiac function and structure of normal male C57BL/6J and DBA/1 mice for six consecutive months. Echocardiography was used to monitor cardiac functions once a month and cardiac systolic function was measured upon isoproterenol challenge at the end of observation. The Excitation-contraction coupling-related proteins were measured by western blotting. Heart tissue sections were subject to haematoxylin-eosin, TUNEL and Alizarin red staining. The results demonstrated that systolic and diastolic function did not vary significantly and both strains were indistinguishable in appearance and structure of hearts. DBA/1 mice showed a good cardiac β-adrenergic response comparable to C57BL/6J mice with isoproterenol treatment. The phosphorylation of phospholamban at either its protein kinase A or its Ca2+ /calmodulin-dependent protein kinase II site, as well as the activation of troponin I showed no significant difference between strains. These findings suggested that there was no obvious difference in the heart structure and function of normal male DBA/1 mice compared with C57BL/6J mice. The DBA/1 mouse is a strain applicable to investigating autoimmune disease-induced heart dysfunction and exploring potential interventions.
Collapse
Affiliation(s)
- Zhen Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Zhengwei Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Manman Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Hanfei Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Feng Xiao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
4
|
Li X, Chen S, Hu Z, Chen D, Wang J, Li Z, Li Z, Cui H, Dai G, Liu L, Wang H, Zhang K, Zheng Z, Zhan Z, Liu H. Aberrant upregulation of CaSR promotes pathological new bone formation in ankylosing spondylitis. EMBO Mol Med 2020; 12:e12109. [PMID: 33259138 PMCID: PMC7721361 DOI: 10.15252/emmm.202012109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022] Open
Abstract
Pathological new bone formation is a typical pathological feature in ankylosing spondylitis (AS), and the underlying molecular mechanism remains elusive. Previous studies have shown that the calcium‐sensing receptor (CaSR) is critical for osteogenic differentiation while also being highly involved in many inflammatory diseases. However, whether it plays a role in pathological new bone formation of AS has not been reported. Here, we report the first piece of evidence that expression of CaSR is aberrantly upregulated in entheseal tissues collected from AS patients and animal models with different hypothetical types of pathogenesis. Systemic inhibition of CaSR reduced the incidence of pathological new bone formation and the severity of the ankylosing phenotype in animal models. Activation of PLCγ signalling by CaSR promoted bone formation both in vitro and in vivo. In addition, various inflammatory cytokines induced upregulation of CaSR through NF‐κB/p65 and JAK/Stat3 pathways in osteoblasts. These novel findings suggest that inflammation‐induced aberrant upregulation of CaSR and activation of CaSR‐PLCγ signalling in osteoblasts act as mediators of inflammation, affecting pathological new bone formation in AS.
Collapse
Affiliation(s)
- Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zaiying Hu
- Department of Rheumatology and Immunology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Guo Dai
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Lei Liu
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haitao Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Kuibo Zhang
- Department of Spine Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zhongping Zhan
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
5
|
Li X, Wang J, Zhan Z, Li S, Zheng Z, Wang T, Zhang K, Pan H, Li Z, Zhang N, Liu H. Inflammation Intensity-Dependent Expression of Osteoinductive Wnt Proteins Is Critical for Ectopic New Bone Formation in Ankylosing Spondylitis. Arthritis Rheumatol 2018; 70:1056-1070. [PMID: 29481736 DOI: 10.1002/art.40468] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the molecular mechanism underlying inflammation-related ectopic new bone formation in ankylosing spondylitis (AS). METHODS Spinal tissues and sera were collected from patients with AS and healthy volunteers and examined for the expression of Wnt proteins. An in vitro cell culture system mimicking the local inflammatory microenvironment of bone-forming sites was established to study the relationship between inflammation and Wnt expression, the regulatory mechanism of inflammation-induced Wnt expression, and the role of Wnt signaling in new bone formation. Modified collagen-induced arthritis (CIA) and proteoglycan-induced spondylitis (PGIS) animal models were used to confirm the key findings in vivo. RESULTS The levels of osteoinductive Wnt proteins were increased in sera and spinal ligament tissues from patients with AS. Constitutive low-intensity tumor necrosis factor (TNF) stimulation, but not short-term or high-intensity TNF stimulation, induced persistent expression of osteoinductive Wnt proteins and subsequent bone formation through NF-κB (p65) and JNK/activator protein 1 (c-Jun) signaling pathways. Furthermore, inhibition of either the Wnt/β-catenin or Wnt/protein kinase Cδ (PKCδ) pathway significantly suppressed new bone formation. The increased expression of Wnt proteins was confirmed in both the modified CIA and PGIS models. A kyphotic and ankylosing phenotype of the spine was seen during long-term observation in the modified CIA model. Inhibition of either the Wnt/β-catenin or Wnt/PKCδ signaling pathway significantly reduced the incidence and severity of this phenotype. CONCLUSION Inflammation intensity-dependent expression of osteoinductive Wnt proteins is a key link between inflammation and ectopic new bone formation in AS. Activation of both the canonical Wnt/β-catenin and noncanonical Wnt/PKCδ pathways is required for inflammation-induced new bone formation.
Collapse
Affiliation(s)
- Xiang Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianru Wang
- The First Affiliated Hospital, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zhongping Zhan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sibei Li
- Guangzhou Chest Hospital, Guangzhou, China
| | - Zhaomin Zheng
- The First Affiliated Hospital, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | | | - Kuibo Zhang
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hehai Pan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zemin Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nu Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- The First Affiliated Hospital, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| |
Collapse
|
6
|
Lories RJ, Haroon N. Evolving concepts of new bone formation in axial spondyloarthritis: Insights from animal models and human studies. Best Pract Res Clin Rheumatol 2017; 31:877-886. [DOI: 10.1016/j.berh.2018.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
|
7
|
Avau A, Matthys P. Therapeutic Potential of Interferon-γ and Its Antagonists in Autoinflammation: Lessons from Murine Models of Systemic Juvenile Idiopathic Arthritis and Macrophage Activation Syndrome. Pharmaceuticals (Basel) 2015; 8:793-815. [PMID: 26610523 PMCID: PMC4695810 DOI: 10.3390/ph8040793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023] Open
Abstract
Interferon-γ (IFN-γ) affects immune responses in a complex fashion. Its immunostimulatory actions, such as macrophage activation and induction of T helper 1-type responsiveness, are widely acknowledged, however, as documented by a large body of literature, IFN-γ has also the potential to temper inflammatory processes via other pathways. In autoimmune and autoinflammatory disorders, IFN-γ can either play a disease-enforcing role or act as protective agent, depending on the nature of the disease. In animal models of any particular autoimmune disease, certain changes in the induction procedure can reverse the net outcome of introduction or ablation of IFN-γ. Here, we review the role of endogenous IFN-γ in inflammatory disorders and related murine models, with a focus on systemic juvenile idiopathic arthritis (sJIA) and macrophage activation syndrome (MAS). In particular, we discuss our recent findings in a mouse model of sJIA, in which endogenous IFN-γ acts as a regulatory agent, and compare with results from mouse models of MAS. Also, we elaborate on the complexity in the activity of IFN-γ and the resulting difficulty of predicting its value or that of its antagonists as treatment option.
Collapse
Affiliation(s)
- Anneleen Avau
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven B-3000, Belgium.
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven B-3000, Belgium.
| |
Collapse
|
8
|
Maruhashi T, Kaifu T, Yabe R, Seno A, Chung SH, Fujikado N, Iwakura Y. DCIR maintains bone homeostasis by regulating IFN-γ production in T cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5681-91. [PMID: 25926676 DOI: 10.4049/jimmunol.1500273] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/03/2015] [Indexed: 12/19/2022]
Abstract
Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor mainly expressed in DCs. Dcir (-/-) mice spontaneously develop autoimmune enthesitis and ankylosis accompanied by fibrocartilage proliferation and ectopic ossification. However, the mechanisms of new bone/cartilage formation in Dcir (-/-) mice remain to be elucidated. In this study, we show that DCIR maintains bone homeostasis by regulating IFN-γ production under pathophysiological conditions. DCIR deficiency increased bone volume in femurs and caused aberrant ossification in joints, whereas these symptoms were abolished in Rag2(-/-)Dcir(-/-) mice. IFN-γ-producing T cells accumulated in lymph nodes and joints of Dcir(-/-) mice, and purified Dcir(-/-) DCs enhanced IFN-γ(+) T cell differentiation. The ankylotic changes and bone volume increase were suppressed in the absence of IFN-γ. Thus, IFN-γ is a positive chondrogenic and osteoblastogenic factor, and DCIR is a crucial regulator of bone metabolism; consequently, both factors are potential targets for therapies directed against bone metabolic diseases.
Collapse
Affiliation(s)
- Takumi Maruhashi
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Tomonori Kaifu
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; and
| | - Rikio Yabe
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; Medical Mycology Research Center, Chiba University, Chiba 250-8673, Japan
| | - Akimasa Seno
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Medical Mycology Research Center, Chiba University, Chiba 250-8673, Japan
| | - Soo-Hyun Chung
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Noriyuki Fujikado
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; and
| | - Yoichiro Iwakura
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; and Medical Mycology Research Center, Chiba University, Chiba 250-8673, Japan
| |
Collapse
|
9
|
Abe Y, Ohtsuji M, Ohtsuji N, Lin Q, Tsurui H, Nakae S, Shirai T, Sudo K, Hirose S. Ankylosing enthesitis associated with up-regulated IFN-γ and IL-17 production in (BXSB × NZB) F1 male mice: a new mouse model. Mod Rheumatol 2014. [DOI: 10.3109/s10165-009-0166-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Sharma M, Mohapatra J, Acharya A, Deshpande SS, Chatterjee A, Jain MR. Blockade of tumor necrosis factor-α converting enzyme (TACE) enhances IL-1β and IFN-γ via caspase-1 activation: a probable cause for loss of efficacy of TACE inhibitors in humans? Eur J Pharmacol 2012; 701:106-13. [PMID: 23266381 DOI: 10.1016/j.ejphar.2012.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/01/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
TNF-α converting enzyme (TACE) is a member of the ADAM (a disintegrin and metalloproteinase) family and is known as ADAM17, which processes precursor TNF-α in order to release soluble TNF-α (sTNF-α). Inhibition of TACE has been effective as a strategy to inhibit arthritis in animal models; however, it has not been translated in the clinic due to lack of efficacy or toxicity. We hypothesized that inhibition of TACE may activate a different pro-inflammatory pathway in human. To investigate this, we studied the effect of TACE inhibitor DPC-333 on cytokine levels in concanavalin A (Con A) activated human peripheral blood mononuclear cells (hPBMC). We have also studied the effects of DPC-333 on Con A induced cytokine levels in mice in vivo or in vitro in whole blood assay. DPC-333 treatment significantly up-regulated IL-1β and IFN-γ in Con A activated hPBMC. In contrast, pre-treatment with DPC-333 effectively suppressed IL-1β and IFN-γ in mice in vivo or in vitro. Interestingly, DPC-333 was found to up-regulate mRNA expression of caspase-1 in hPBMC in a dose dependent fashion and selective caspase-1 inhibitor completely restored DPC-333 induced IL-1β and IFN-γ. Furthermore, selective IL-1β receptor antagonist (anakinra) prevented DPC-333 induced IFN-γ. In conclusion, our data demonstrates that blockade of TACE enhances IL-1β in a caspase-1 dependent manner in vitro in hPBMC and the elevation of IFN-γ is secondarily mediated via IL-1β. This novel finding might explain the possible cause behind the loss of efficacy of TACE inhibitors in human.
Collapse
Affiliation(s)
- Manoranjan Sharma
- Department of Pharmacology, Zydus Research Centre, Moraiya, Ahmedabad, Gujarat, India
| | | | | | | | | | | |
Collapse
|
11
|
Braem K, Carter S, Lories RJ. Spontaneous arthritis and ankylosis in male DBA/1 mice: further evidence for a role of behavioral factors in "stress-induced arthritis". Biol Proced Online 2012; 14:10. [PMID: 23253472 PMCID: PMC3537550 DOI: 10.1186/1480-9222-14-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 12/15/2012] [Indexed: 12/29/2022] Open
Abstract
Background Ageing male DBA/1 mice spontaneously develop arthritis in the hind paws. We and others have demonstrated that this model shares striking features with human spondyloarthritis, in particular entheseal involvement, progressive ankylosis but also dactylitis. Here, we report on our recent experience with this model highlighting how changes in the animal facility affect the development of the disease. Findings Ageing male DBA/1 mice from different litters were caged together (6 mice per cage) at the age of 10 weeks. The mice were checked twice a week for clinical signs of arthritis. Disease severity was assessed in further detail post-mortem by scoring for histomorphological characteristics. DBA/1 mice spontaneously develop macroscopically detectable arthritis, presenting as joint swelling or toe stiffness. Standard settings with open cages lead to an almost 100% incidence by the age of 26 weeks. The introduction of larger cages and filter tops reducing exposure to other cages dramatically affected incidence. Other negative factors include excess bedding material reducing the impact of walking and running. Switching back to the original conditions resulted again in a high incidence, further optimized by sensory exposure to female mice. We also showed that the related DBA/2 strain is sensitive to the disease. Conclusions Changing environmental factors in the housing conditions of DBA/1 mice severely affects the spontaneous development of arthritis. This points out that the model is very sensitive to external stress and sensory factors that are likely affecting the behavior of the male mice and that the model needs to be optimized in different situations.
Collapse
Affiliation(s)
- Kirsten Braem
- Tissue Homeostasis and Disease, Skeletal Biology and Engineering Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
12
|
Collagen-induced arthritis and related animal models: How much of their pathogenesis is auto-immune, how much is auto-inflammatory? Cytokine Growth Factor Rev 2011; 22:339-44. [DOI: 10.1016/j.cytogfr.2011.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Effector T cells in rheumatoid arthritis: Lessons from animal models. FEBS Lett 2011; 585:3649-59. [DOI: 10.1016/j.febslet.2011.04.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/19/2023]
|
14
|
Abe Y, Ohtsuji M, Ohtsuji N, Lin Q, Tsurui H, Nakae S, Shirai T, Sudo K, Hirose S. Ankylosing enthesitis associated with up-regulated IFN-gamma and IL-17 production in (BXSB x NZB) F(1) male mice: a new mouse model. Mod Rheumatol 2009; 19:316-22. [PMID: 19357807 DOI: 10.1007/s10165-009-0166-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 03/10/2009] [Indexed: 11/26/2022]
Abstract
We found that in contrast to (BXSB x NZB) F(1) female mice that spontaneously develop severe systemic lupus erythematosus (SLE), male (BXSB x NZB) F(1) mice are not prone to SLE, but instead develop seronegative ankylosing enthesitis in ankle/tarsal joints only when caged in groups, with the incidence reaching 83% at 7 months of age. This ankylosis is microscopically characterized by a marked proliferation of fibroblast-like cells positive for bone morphogenetic protein (BMP)-2 in association with heterotropic formation of cartilages and bones in hyperplastic entheseal tissues and subsequent fusion of tarsal bones. Elevated potentials of popliteal lymph node T cells producing interleukin (IL)-17 and interferon (IFN)-gamma were significantly associated with joint ankylosis, suggesting the involvement of these cytokines in effector phase mechanisms of the disease, including up-regulated BMP signaling pathways. There was no difference in serum autoantibody levels between affected and unaffected mice. Parental BXSB and NZB strains of both sexes did not develop the disease even when caged in groups, indicating that the disease develops under the control of susceptibility genes derived from both parental strains. These results indicate that (BXSB x NZB) F(1) male mice are a suitable model for clarifying genetic, environmental and molecular mechanisms underlying ankylosing enthesitis and related diseases.
Collapse
Affiliation(s)
- Yasuharu Abe
- Department of Pharmacy, Kanazawa Medical Center, National Hospital Organization, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Joint destruction and tissue responses determine the outcome of chronic arthritis. Joint inflammation and damage are often the dominant clinical presentation. However, in some arthritic diseases, in particular the spondyloarthritides, joint remodeling is a prominent feature, with new cartilage and bone formation leading to ankylosis and contributing to loss of function. A role for bone morphogenetic proteins in joint remodeling has been demonstrated in the formation of both enthesophytes and osteophytes. Data from genetic models support a role for bone morphogenetic protein signaling in cartilage homeostasis. Finally, this signaling pathway is likely to play a steering role in the synovium.
Collapse
Affiliation(s)
- Rik JU Lories
- Laboratory for Skeletal Development and Joint Disorders, Division of Rheumatology, Department of Musculoskeletal Sciences, Katholieke Universiteit Leuven, Belgium
| | - Frank P Luyten
- Laboratory for Skeletal Development and Joint Disorders, Division of Rheumatology, Department of Musculoskeletal Sciences, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
16
|
Geboes L, De Klerck B, Van Balen M, Kelchtermans H, Mitera T, Boon L, De Wolf-Peeters C, Matthys P. Freund's complete adjuvant induces arthritis in mice lacking a functional interferon-gamma receptor by triggering tumor necrosis factor alpha-driven osteoclastogenesis. ARTHRITIS AND RHEUMATISM 2007; 56:2595-607. [PMID: 17665444 DOI: 10.1002/art.22791] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the hypothesis that Freund's complete adjuvant (CFA) plays an essential role in the induction of collagen-induced arthritis in mice, by testing whether CFA by itself is able to induce arthritis in interferon-gamma receptor-knockout (IFNgammaR-KO) mice. METHODS IFNgammaR-KO and wild-type mice were sensitized with a single intradermal injection of CFA containing heat-killed Mycobacterium butyricum. Flow cytometric analysis and in vitro osteoclastogenesis assays were performed on blood, spleen, and bone marrow cells. Tumor necrosis factor (TNF) levels were measured in the serum, and levels of RANKL, osteoprotegerin (OPG), and TNFalpha in the synovium were determined by quantitative reverse transcriptase-polymerase chain reaction. Effects of treatment with the TNFalpha antagonist etanercept were assessed. RESULTS Symptoms of arthritis appeared in IFNgammaR-KO mice but not in wild-type mice, and reached an incidence of 55%. The onset coincided with an expansion of CD11b+ splenocytes that spontaneously produced TNFalpha and with increased osteoclastogenesis in spleen and blood cells. Expansion of CD11b+ splenocytes and osteoclast precursor cells was more pronounced in arthritic than in nonarthritic mice. There was a >100-fold increase in the RANKL:OPG ratio in the synovia of CFA-sensitized mice compared with those of naive animals. Treatment with etanercept prevented the development of arthritis and mitigated the increased expansion of myeloid cells as well as the increase in osteoclast precursor numbers in the spleen and blood. CONCLUSION These results indicate that sensitization of mice with CFA creates a condition in which dysregulation of a single cytokine leads to arthritis by triggering TNFalpha-driven osteoclastogenesis.
Collapse
Affiliation(s)
- Lies Geboes
- Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Proost P, Struyf S, Loos T, Gouwy M, Schutyser E, Conings R, Ronsse I, Parmentier M, Grillet B, Opdenakker G, Balzarini J, Van Damme J. Coexpression and interaction of CXCL10 and CD26 in mesenchymal cells by synergising inflammatory cytokines: CXCL8 and CXCL10 are discriminative markers for autoimmune arthropathies. Arthritis Res Ther 2007; 8:R107. [PMID: 16846531 PMCID: PMC1779382 DOI: 10.1186/ar1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 05/31/2006] [Accepted: 06/27/2006] [Indexed: 12/12/2022] Open
Abstract
Leukocyte infiltration during acute and chronic inflammation is regulated by exogenous and endogenous factors, including cytokines, chemokines and proteases. Stimulation of fibroblasts and human microvascular endothelial cells with the inflammatory cytokines interleukin-1beta (IL-1beta) or tumour necrosis factor alpha (TNF-alpha) combined with either interferon-alpha (IFN-alpha), IFN-beta or IFN-gamma resulted in a synergistic induction of the CXC chemokine CXCL10, but not of the neutrophil chemoattractant CXCL8. In contrast, simultaneous stimulation with different IFN types did not result in a synergistic CXCL10 protein induction. Purification of natural CXCL10 from the conditioned medium of fibroblasts led to the isolation of CD26/dipeptidyl peptidase IV-processed CXCL10 missing two NH2-terminal residues. In contrast to intact CXCL10, NH2-terminally truncated CXCL10(3-77) did not induce extracellular signal-regulated kinase 1/2 or Akt/protein kinase B phosphorylation in CXC chemokine receptor 3-transfected cells. Together with the expression of CXCL10, the expression of membrane-bound CD26/dipeptidyl peptidase IV was also upregulated in fibroblasts by IFN-gamma, by IFN-gamma plus IL-1beta or by IFN-gamma plus TNF-alpha. This provides a negative feedback for CXCL10-dependent chemotaxis of activated T cells and natural killer cells. Since TNF-alpha and IL-1beta are implicated in arthritis, synovial concentrations of CXCL8 and CXCL10 were compared in patients suffering from crystal arthritis, ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. All three groups of autoimmune arthritis patients (ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis) had significantly increased synovial CXCL10 levels compared with crystal arthritis patients. In contrast, compared with crystal arthritis, only rheumatoid arthritis patients, and not ankylosing spondylitis or psoriatic arthritis patients, had significantly higher synovial CXCL8 concentrations. Synovial concentrations of the neutrophil chemoattractant CXCL8 may therefore be useful to discriminate between autoimmune arthritis types.
Collapse
Affiliation(s)
- Paul Proost
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tamara Loos
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Evemie Schutyser
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - René Conings
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Isabelle Ronsse
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Marc Parmentier
- IRIBHN, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Bernard Grillet
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Ziekenhuis Zeeuws-Vlaanderen, Terneuzen, The Netherlands
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Lories RJU, Derese I, de Bari C, Luyten FP. Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondylarthritis. ACTA ACUST UNITED AC 2007; 56:489-97. [PMID: 17265484 DOI: 10.1002/art.22372] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To study the relationship between inflammation and remodeling by inhibiting tumor necrosis factor alpha (TNFalpha) in male DBA/1 mice with spontaneous arthritis, a model of spondylarthritis (SpA). METHODS TNFalpha was inhibited using etanercept, a soluble TNF receptor. The efficacy of the dose used (25 micro g/mouse) was confirmed in methylated bovine serum albumin (mBSA)-induced monarthritis, a model of inflammation-driven joint destruction. Male DBA/1 mice with spontaneous arthritis were caged together from the age of 10 weeks onward and were treated twice weekly with etanercept. The incidence and clinical severity of disease were recorded. Mice were killed at age 25 weeks, and histomorphologic analysis was performed. The presence of TNFalpha, NF-kappaB, and Smad signaling was studied using immunohistochemistry. Entheseal endochondral bone formation was modeled using micromass cultures of periosteal cells. RESULTS Etanercept inhibited mouse TNFalpha in vitro and in vivo. Etanercept treatment of mBSA-induced arthritis had a significant effect on the severity of disease. Etanercept did not affect the incidence or severity of spontaneous arthritis. Pathologic analysis revealed no differences between etanercept-treated and phosphate buffered saline-treated mice. TNFalpha-positive cells were observed in the synovium, in vessel-associated cells, in fibrocartilage, and in new cartilage. Activation of Smad signaling was observed in earlier stages of disease than was active NF-kappaB signaling. TNFalpha inhibited chondrogenesis in the micromass model. CONCLUSION Inhibition of TNF did not affect the severity and incidence of joint ankylosis in a mouse model of SpA. Therefore, the process of entheseal ankylosis may be independent of TNF. New tissue formation in SpA could be considered an additional and specific therapeutic target.
Collapse
|
19
|
Mori S, Zhang MC, Tanda N, Date F, Nose M, Furukawa H, Ono M. Genetic characterisation of spontaneous ankylosing arthropathy with unique inheritance from Fas-deficient strains of mice. Ann Rheum Dis 2006; 65:1273-8. [PMID: 16569686 PMCID: PMC1798312 DOI: 10.1136/ard.2005.050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2006] [Indexed: 11/04/2022]
Abstract
BACKGROUND The spontaneous onset of macroscopic arthropathy in the ankle of the particular F1 mice descended from two Fas-deficient strains of mice; a mutant substrain of MRL/Mp.Fas(lpr) (MRL/rpl) and C3H/He.Fas(lpr) (C3H/lpr) was recently observed. AIM To histopathologically characterise and genetically interpret the unique inheritance mode of disease in this arthropathy model. METHODS MRL/rpl, C3H/lpr, (MRL/rpl x C3H/lpr; MC) F1, (C3H/lpr x MRL/rpl; CM) F1 and MCF2 mice were bred under specific pathogen-free conditions. Histopathological grade of arthropathy was determined at 6 months by examination under a light microscope. To search for a linkage locus to the arthropathy, the whole genome of selected 48 male MCF2 mice with 71 polymorphic microsatellite markers was scanned, followed by quantitative trait locus analysis. RESULTS The incidence of microscopically defined arthropathy in the male and female MCF1 groups was 100% and 19.4%, respectively. No incidence was observed in the parental strains, MRL/rpl and C3H/lpr, and in CMF1 mice. In the MCF1 mice, the arthropathy mainly affected the ankle joints and was histopathologically characterised by marked entheseal proliferation with chondrocytic differentiation and ossification in the ankle joints, the manifestations similar to ankylosing enthesitis reported previously. An MRL/rpl-derived autosomal dominant susceptibility locus was mapped in the distal of D7Mit68 (60 cM) to the ankylosis onset. CONCLUSION The MCF1 mice stably develop spontaneous ankylosing disorders in the ankle, with a male predominance. The unique inheritance mode of ankylosis is possibly interpreted by the genetic interaction between the autosomal dominant locus and a Y-linked locus.
Collapse
Affiliation(s)
- S Mori
- Department of Oral Medicine and Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo, Aoba, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Loos T, Dekeyzer L, Struyf S, Schutyser E, Gijsbers K, Gouwy M, Fraeyman A, Put W, Ronsse I, Grillet B, Opdenakker G, Van Damme J, Proost P. TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis. J Transl Med 2006; 86:902-16. [PMID: 16847431 DOI: 10.1038/labinvest.3700453] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CXC chemokines are potent attractants of neutrophil granulocytes, T cells or natural killer cells. Toll-like receptors (TLR) recognize microbial components and are also activated by endogenous molecules possibly implicated in autoimmune arthritis. In contrast to CXC chemokine ligand 8 (CXCL8), no CXC chemokine receptor 3 (CXCR3) ligand (ie CXCL9, CXCL10 and CXCL11) was induced by bacterial TLR ligands in human microvascular endothelial cells (HMVEC). However, peptidoglycan (PGN), double-stranded (ds) RNA or lipopolysaccharide (LPS) (TLR2, TLR3 or TLR4 ligands, respectively) synergized with interferon-gamma (IFN-gamma) at inducing CXCL9 and CXCL10. In contrast, enhanced CXCL11 secretion was only obtained when IFN-gamma was combined with TLR3 ligand. Furthermore, flagellin, loxoribine and unmethylated CpG oligonucleotide (TLR5, TLR7 and TLR9 ligands, respectively) did not enhance IFN-gamma-dependent CXCR3 ligand production in HMVEC. In analogy with TLR ligands, tumor necrosis factor-alpha (TNF-alpha) or interleukin-1beta (IL-1beta), in combination with IFN-gamma, synergistically induced CXCL9 and CXCL11 in HMVEC and human fibroblasts, two fundamental cell types delineating the joint cavity. Etanercept, a humanized soluble recombinant p75 TNF-receptor/IgG(1)Fc fusionprotein, neutralized synergistic CXCL9 production induced by TNF-alpha plus IFN-gamma, but not synergy between IFN-gamma and the TLR ligands PGN or LPS. Synovial chemokine concentrations exemplify the physiopathological relevance of the observed in vitro chemokine production patterns. In synovial fluids of patients with spondylarthropathies (ie ankylosing spondylitis or psoriatic arthritis) or rheumatoid arthritis, significantly enhanced CXCL9, but not CXCL11 levels, were detected compared to concentrations in synovial fluids of patients with metabolic crystal-induced arthritis. Thus, CXCL9 is an important chemokine in autoimmune arthritis.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antigens, Bacterial
- Antigens, Viral
- Arthritis, Psoriatic/metabolism
- Arthritis, Rheumatoid/metabolism
- Cells, Cultured
- Chemokines, CXC/immunology
- Chemokines, CXC/metabolism
- CpG Islands
- Endothelial Cells
- Female
- Fibroblasts/metabolism
- Humans
- Interferon-gamma
- Interleukin-1
- Ligands
- Male
- Middle Aged
- Oligonucleotides
- Receptors, CXCR3
- Receptors, Chemokine/metabolism
- Synovial Fluid/metabolism
- Toll-Like Receptors/metabolism
- Tumor Necrosis Factor-alpha
Collapse
Affiliation(s)
- Tamara Loos
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lories RJU, Daans M, Derese I, Matthys P, Kasran A, Tylzanowski P, Ceuppens JL, Luyten FP. Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. ACTA ACUST UNITED AC 2006; 54:1736-46. [PMID: 16729286 DOI: 10.1002/art.21897] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The balance between destruction and homeostatic or reparative responses determines the outcome of arthritis. Increasing evidence suggests a role for signaling pathways, essential for development and growth, in the maintenance of tissue homeostasis and attempts at repair. Inappropriate activation of such pathways may also have a role in disease progression. We undertook this study to determine the effect of shifting the balance in bone morphogenetic protein (BMP) signaling in different mouse models of arthritis. METHODS Endogenous levels of noggin, a BMP antagonist, were reduced using heterozygous noggin(+/LacZ) mice in a model of inflammation-driven destruction (methylated bovine serum albumin [mBSA]-induced monarthritis), a model of systemic autoimmune arthritis (collagen-induced arthritis [CIA]), and a model of joint ankylosis (spontaneous arthritis in DBA/1 mice). In addition, we studied BMP inactivation by adenoviral noggin overexpression in destructive arthritis. Cartilage damage and activation of BMP signaling were studied by digital image analysis using Safranin O sulfated glycosaminoglycan staining and immunohistochemistry for phosphorylated Smads (Smads 1, 5, and 8), respectively. RESULTS Noggin haploinsufficiency provided protection for articular cartilage against destruction in mBSA-induced arthritis. Antagonist overexpression rendered cartilage more vulnerable in this model. Noggin gene transfer in knees affected by CIA also enhanced cartilage damage. Haploinsufficiency did not affect CIA, but noggin(+/LacZ) mice had an increased number of CD4-positive cells with normal immune responses. In noggin(+/LacZ) DBA/1 mice with spontaneous arthritis, we observed delayed progression from cartilage to bone formation. CONCLUSION Tight spatiotemporal control of BMP signaling appears to be critical in the response of joint tissues in models of arthritis.
Collapse
Affiliation(s)
- Rik J U Lories
- University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Carlsen S, Nandakumar KS, Holmdahl R. Type IX collagen deficiency enhances the binding of cartilage-specific antibodies and arthritis severity. Arthritis Res Ther 2006; 8:R102. [PMID: 16813664 PMCID: PMC1779414 DOI: 10.1186/ar1989] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/26/2006] [Accepted: 06/06/2006] [Indexed: 11/10/2022] Open
Abstract
Joint cartilage is attacked in both autoimmune inflammatory and osteoarthritic processes. Type IX collagen (CIX) is a protein of importance for cartilage integrity and stability. In this study we have backcrossed a transgenic disruption of the col9a1 gene, which leads to an absence of CIX, into two different inbred mouse strains, DBA/1 and B10.Q. None of the CIX-deficient mice developed observable clinical or microscopic osteoarthritis, but DBA/1 male mice had more pronounced enthesopathic arthritis, the so-called stress-induced arthritis. Both DBA/1 and B10.Q strains are susceptible to the induction of collagen-induced arthritis, and CIX deficiency in both strains led to the development of a more severe arthritis than in the controls. Induction of arthritis with monoclonal antibodies against type II collagen (CII) led to an earlier arthritis in the paws that also involved the knee joints. The antibodies used, which were specific for the J1 and the C1I epitopes of CII, initiate their arthritogenic attack by binding to cartilage. The C1I-specific antibodies bound to cartilage better in CIX-deficient mice than in wild-type animals, demonstrating that the lack of CIX in cartilage leads to an increased accessibility of structures for antibody binding and thus making the joints more vulnerable to inflammatory attack. These findings accentuate the importance of cartilage stability; cartilage disrupted as a result of genetic disorders could be more accessible and vulnerable to an autoimmune attack by pathogenic antibodies.
Collapse
Affiliation(s)
- Stefan Carlsen
- Medical Inflammation Research, BMC I11, Lund University, SE-221 84 Lund, Sweden
| | | | - Rikard Holmdahl
- Medical Inflammation Research, BMC I11, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
23
|
Lories RJU, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest 2005; 115:1571-9. [PMID: 15902307 PMCID: PMC1090472 DOI: 10.1172/jci23738] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 04/12/2005] [Indexed: 12/30/2022] Open
Abstract
Joint ankylosis is a major cause of disability in the human spondyloarthropathies. Here we report that this process partially recapitulates embryonic endochondral bone formation in a spontaneous model of arthritis in DBA/1 mice. Bone morphogenetic protein (BMP) signaling appears to be a key molecular pathway involved in this pathological cascade. Systemic gene transfer of noggin, a BMP antagonist, is effective both as a preventive and a therapeutic strategy in the mouse model, mechanistically interfering with enthesial progenitor cell proliferation in early stages of the disease process. Immunohistochemical staining for phosphorylated smad1/5 in enthesial biopsies of patients with spondyloarthropathy reveals active BMP signaling in similar target cells. Our data suggest that BMP signaling is an attractive therapeutic target for interfering with structural changes in spondyloarthropathy either as an alternative or complementary approach to current antiinflammatory treatments.
Collapse
Affiliation(s)
- Rik J U Lories
- Laboratory for Skeletal Development and Joint Disorders, Department of Rheumatology, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|