1
|
Nguyen RD, Nortey J, Gebreegziabher E, Hinterwirth A, Zhong L, Chen C, Doan T, Lietman TM, Gonzales JA. A Distinguishable Peripheral Blood and Conjunctival Transcriptome and Gut Microbiome in Sjögren's Disease: A Pilot Study. Eye Contact Lens 2025:00140068-990000000-00284. [PMID: 40314468 DOI: 10.1097/icl.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE To create a comprehensive multi-tissue molecular atlas of Sjögren's disease by using unbiased RNA sequencing to identify differentially expressed genes (DEGs) in peripheral blood and conjunctival transcriptomes, and to characterize the ocular surface and gut microbiome profiles in participants classified as Sjögren's versus non-Sjögren's disease. METHODS This exploratory study used high-throughput RNA sequencing to analyze peripheral blood, conjunctival swabs, and rectal swabs from participants (11 classified as Sjögren's disease and four classified as non-Sjögren's) to identify DEGs and microbial profiles that could distinguish these groups. RESULTS Differential gene expression analysis revealed upregulated type I interferon (IFI44L, OASL, USP18) and complement pathways (SERPING1) in peripheral blood, alongside activation of several novel pathways in the conjunctiva including intracellular vesicle trafficking (HIP1, GOLIM4, FIG4), immunometabolism (CERS5, HPRT1, ULK2), and cytoskeletal remodeling (MARK1, IQCB1) in Sjögren's disease. In addition, distinct gut microbiome compositions were observed in Sjögren's disease participants, characterized by an increased presence of Lactobacillus reuteri species. CONCLUSIONS Using unbiased RNA sequencing, we confirmed the role of type I interferon and complement pathways in the peripheral blood and identified novel molecular signatures in the conjunctiva of Sjögren's disease participants. These newly identified pathways-involved in intracellular vesicle trafficking, immunometabolism, and cytoskeletal remodeling-expand our understanding of disease mechanisms beyond traditional immune pathways. In addition, we found distinct gut microbial profiles in Sjögren's disease participants, although ocular surface microbiome showed no significant differences. Such findings may suggest possible new therapeutic targets and allow for Sjögren's disease patient stratification. However, validation in larger cohorts is needed to establish clinical significance and potential applications in Sjögren's disease.
Collapse
Affiliation(s)
- Robert D Nguyen
- Francis I. Proctor Foundation (R.D.N., J.N., E.G., A.H., L.Z., C.C., T.D., T.M.L., J.A.G.), University of California, San Francisco, CA; Department of Ophthalmology (T.D., T.M.L., J.A.G.), University of California, San Francisco, CA; Department of Ophthalmology (J.N.), Northwestern University, Chicago, IL
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Yang Y, Zhang Y, Liu K, Liu M, Zhang H, Guo M. IFI27, a potential candidate molecular marker for primary Sjogren's syndrome. Clin Rheumatol 2025; 44:1949-1960. [PMID: 40146445 DOI: 10.1007/s10067-025-07409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
OBJECTIVE The etiology of primary Sjogren's syndrome (pSS) is complex and not completely clear. This study was to identify key genes in pSS based on Gene Expression Omnibus (GEO). METHODS We downloaded the GSE40568, GSE80805, GSE127952, and GSE164885 mRNA expression profiles from GEO. Differentially expressed genes (DEGs) analyses were carried out by using the online analysis tool GEO2R and R. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate the biological processes, molecular function, cellular component, and KEGG signaling pathways for the DEGs in salivary glands (SGs) and peripheral blood mononuclear cells (PBMCs). Genes co-expressed were found in PBMCs and SGs of pSS patients. RT-qPCR was performed for validation. Finally, clinical correlation analysis and receiver operator characteristic (ROC) curve analysis were performed. RESULTS A total of thirty-nine up-regulated and one down-regulated genes were identified in pSS SGs. GO and KEGG pathway revealed that these DEGs were related to response to virus, and type I interferon signaling pathway. It was verified that fourteen genes were up-regulated in the SGs of pSS by RT-qPCR. Twenty up-regulated genes were identified in pSS patients PBMCs. Two genes were up-regulated in SGs and PBMCs of pSS patients, including IFI27 and IFI44L. The mRNA level of IFI27 was positively correlated with the disease activity of pSS patients. Furthermore, ROC analyses proved IFI27 may have diagnostic value for pSS. CONCLUSION IFI27 might serve as a potential biomarker for the early diagnosis and therapy of pSS. Key Points • IFI27 expression was significantly increased in PBMCs and SGs of pSS patients. • IFI27 was positively correlated with disease activity in pSS patients. • IFI27 might have a good diagnostic value for pSS.
Collapse
Affiliation(s)
- Yiying Yang
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, 410000, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Biology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Ying Zhang
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, 410000, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, 410000, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Meidong Liu
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, 410000, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, 410000, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, Xiangya School of Basic Medicine Science, Central South University, 410000, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Hakbilen S, Tezcan D, Onmaz DE, Yılmaz S, Körez MK, Ünlü A. The role of CXCL9, CXCL10, and CXCL13 chemokines in patients with Sjögren's syndrome. Clin Rheumatol 2025; 44:1635-1642. [PMID: 39992599 DOI: 10.1007/s10067-025-07367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Sjögren's syndrome (SS) is a chronic, systemic, and autoimmune disease characterized by lymphocytic infiltration of all exocrine glands, primarily the lacrimal and salivary glands. Chemokines play a key role in many inflammatory diseases. They play a fundamental role in recruitment, transport, and activation of immune cells. This study aimed to investigate the role of CXCL9, CXCL10, and CXCL13 chemokines in primary SS patients. METHOD The study included 62 SS patients and 68 individuals without known systemic or rheumatological disease. CXCL9, CXCL10, and CXCL13 levels were analyzed in both groups using ELISA test kits and compared. The mean age of SS and healthy controls (HC) were similar. White blood cell neutrophil and lymphocyte values were found significantly lower in the SS compared to the HC; ESR value was higher in SS. Other hemogram parameters such as hemoglobin, platelets, monocytes, and CRP did not show a significant difference. CXCL10 levels were found to be significantly higher in SS compared to HC. CXCL13 level was significantly lower in SS. However, there was no statistically significant difference in CXCL9 serum between SS and HC. There was a negative correlation between serum CXCL9 level and lymphocyte and there was also a positive correlation between CXCL13 serum level and leukocyte. CONCLUSION CXCL10 chemokine may serve as a potential biomarker for primary SS and it may also be a new therapeutic target. Key Points • Chemokines play a key role in Sjögren's syndrome. • CXCL10 may serve as a potential biomarker for primary SS.
Collapse
Affiliation(s)
- Selda Hakbilen
- Division of Rheumatology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Dilek Tezcan
- Department of Internal Medicine, Division of Rheumatology, Gülhane Faculty of Medicine, University of Health Sciences Turkey, Ankara, Turkey.
| | - Duygu Eryavuz Onmaz
- Division of Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Sema Yılmaz
- Division of Rheumatology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Muslu Kazım Körez
- Division of Biostatistics, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Ali Ünlü
- Division of Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
4
|
Ezzat SK, Anter HM, Habotta OA, Esmaeil DAM, Farag DA, Aman RM. Poly lactic-co-glycolic acid enhances the efficacy of the phytomedicine chrysin against cisplatin induced toxicity in submandibular salivary glands. Sci Rep 2025; 15:10262. [PMID: 40133531 PMCID: PMC11937592 DOI: 10.1038/s41598-025-93112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Chemotherapy, particularly cisplatin, is a prevalent cancer treatment. Unfortunately, many tissues, for instance the submandibular salivary glands, are toxically affected by cisplatin. Of significant interest, phytopharmaceuticals rich in flavonoids have demonstrated exceptional defense against chemotherapy induced toxicity, like chrysin (Chr); nevertheless, its low solubility and poor bioavailability have remained cornerstone issues. Accordingly, Chr was successfully encapsulated in the poly(d, l-lactide-co-glycolide) nanoparticles (PLGA NPs) scaffold. The developed chrysin-loaded poly(d, l-lactide-co-glycolide) nanoparticles (Chr-loaded PLGA NPs) were meticulously evaluated via comprehensive in vitro-in vivo investigations. Saliently, the outcomes of in vivo studies exhibited admirable in vivo counteraction effectiveness against cisplatin-induced toxicity in submandibular salivary glands in Albino rats upon comparing Chr-loaded PLGA NPs treated group with pure Chr as well as blank NPs treated ones. Inclusively, Chr-loaded PLGA NPs can be regarded as promising therapy to create recent vistas for dampening myriad adverse effects of different chemotherapies.
Collapse
Affiliation(s)
- Samah K Ezzat
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Dakahlia, 35516, Egypt
| | - Hend Mohamed Anter
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, 35516, Egypt
| | - Ola A Habotta
- Department of forensic medicine and toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, 35516, Egypt
| | - Doaa A M Esmaeil
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, Dakahlia, 35516, Egypt.
- Department of Oral Pathology, Faculty of Dentistry, Sinai University, Kantra Campus, Ismaeli, Egypt.
| | - Doaa A Farag
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, Dakahlia, 35516, Egypt
| | - Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, 35516, Egypt
| |
Collapse
|
5
|
Scholand KK, Schaefer L, Govindarajan G, Yu Z, Galletti JG, de Paiva CS. Aged regulatory T cells fail to control autoimmune lacrimal gland pathogenic CD4 + T cells. GeroScience 2025:10.1007/s11357-025-01576-y. [PMID: 40053297 DOI: 10.1007/s11357-025-01576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 03/12/2025] Open
Abstract
CD25KO mice are a model of Sjögren disease. CD25KO mice have severe inflammation and infiltrating lymphocytes to the lacrimal glands (LG). Whether the pathogenicity of CD25KO CD4+ T cells can be controlled in vivo by Tregs is unknown. Eight-week-old B6 and CD25KO mice LGs were submitted for RNA bulk sequencing. A total of 3481 genes were differentially expressed in CD25KO LG compared to B6. Tear washing analysis identified CD25KO mice had elevated protein levels of TNF, IFN-γ, and CCL5 and decreased protein levels of IL-12p40 and VEGF-A. Co-adoptive transfer of CD25KO CD4+ T cells with either young or aged B6 Tregs was performed in RAG1KO mice. Recipients of CD25KO CD4+ T cells alone had higher LG inflammation than naive mice. However, in recipients of young B6 Tregs plus CD25KO CD4+ T cells, LGs had significantly reduced inflammation. Recipients of CD25KO CD4+ T cells with aged B6 Tregs had more inflamed LGs than young Tregs, suggesting aged Tregs have less suppressive capacity in vivo. Altogether, CD25KO mice have phenotypic and genetic changes resulting in increased inflammation and severe lymphocytic infiltration in the LGs. However, this autoimmunity can be controlled by the addition of young, but not aged, Tregs, suggesting that aging Tregs have dysfunctional suppression.
Collapse
Affiliation(s)
- Kaitlin K Scholand
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Laura Schaefer
- Department of Molecular Virology and Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Gowthaman Govindarajan
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Jeremias G Galletti
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
- Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
6
|
Sisto M, Lisi S. Epigenetic Modulations of Non-Coding RNAs: A Novel Therapeutic Perspective in Sjӧgren's Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:403. [PMID: 39735974 DOI: 10.31083/j.fbl2912403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 12/31/2024]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease that can be classified as an epithelitis based on the immune-mediated attack directed specifically at epithelial cells. SS predominantly affects women, is characterized by the production of highly specific circulating autoantibodies, and the major targets are the salivary and lachrymal glands. Although a genetic predisposition has been amply demonstrated for SS, the etiology remains unclear. The recent integration of epigenetic data relating to autoimmune diseases opens new therapeutic perspectives based on a better understanding of the molecular processes implicated. In the autoimmune field, non-coding RNA molecules (nc-RNA), which regulate gene expression by binding to mRNAs and could have a therapeutic value, have aroused great interest. The focus of this review is to summarize the biological functions of nc-RNAs in the pathogenesis of SS and decode molecular pathways implicated in the disease, in order to identify new therapeutic strategies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
7
|
Ritter J, Szelinski F, Aue A, Stefanski AL, Rincon-Arevalo H, Chen Y, Nitschke E, Dang VD, Wiedemann A, Schrezenmeier E, Lino AC, Dörner T. Elevated unphosphorylated STAT1 and IRF9 in T and B cells of primary sjögren's syndrome: Novel biomarkers for disease activity and subsets. J Autoimmun 2024; 147:103243. [PMID: 38788537 DOI: 10.1016/j.jaut.2024.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/23/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVES Autoreactive B cells and interferon (IFN) signature are hallmarks of primary sjögren's syndrome (pSS), but how IFN signaling pathways influence autoantibody production and clinical manifestations remain unclear. More detailed studies hold promise for improved diagnostic methodologies and personalized treatment. METHODS We analyzed peripheral blood T and B cell subsets from 34 pSS patients and 38 healthy donors (HDs) at baseline and upon stimulation regarding their expression levels of type I and II IFN signaling molecules (STAT1/2, IRF1, IRF9). Additionally, we investigated how the levels of these molecules correlated with serological and clinical characteristics and performed ROC analysis. RESULTS Patients showed elevated IFN pathway molecules, including STAT1, STAT2 and IRF9 among most T and B cell subsets. We found a reduced ratio of phosphorylated STAT1 and STAT2 in patients in comparison to HDs, although B cells from patients were highly responsive by increased phosphorylation upon IFN stimulation. Correlation matrices showed further interrelations between STAT1, IRF1 and IRF9 in pSS. Levels of STAT1 and IRF9 in T and B cells correlated with the IFN type I marker Siglec-1 (CD169) on monocytes. High levels of STAT1 and IRF9 within pSS B cells were significantly associated with hypergammaglobulinemia as well as anti-SSA/anti-SSB autoantibodies. Elevated STAT1 levels were found in patients with extraglandular disease and could serve as a biomarker for this subgroup (p < 0.01). Notably, IRF9 levels in T and B cells correlated with EULAR Sjögren's syndrome disease activity index (ESSDAI). CONCLUSION Here, we provide evidence that in active pSS patients, enhanced IFN signaling incl. unphosphorylated STAT1 and STAT2 with IRFs entertain chronic T and B cell activation. Furthermore, increased STAT1 levels candidate as biomarker of extraglandular disease, while IRF9 levels can serve as biomarker for disease activity.
Collapse
Affiliation(s)
- Jacob Ritter
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Charitéplatz 1, 10117, Berlin, Germany
| | - Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Arman Aue
- German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany; Department of Nephrology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany; Department of Nephrology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Yidan Chen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Eduard Nitschke
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Van Duc Dang
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Eva Schrezenmeier
- German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Charitéplatz 1, 10117, Berlin, Germany; Department of Nephrology and Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany; German Rheumatism Research Center (DRFZ), a Leibniz Gesellschaft, Berlin, Germany.
| |
Collapse
|
8
|
Hong J, Cheng H, Wang P, Wu Y, Lu S, Zhou Y, Wang XB, Zhu X. CXCL9 may serve as a potential biomarker for primary Sjögren's syndrome with extra-glandular manifestations. Arthritis Res Ther 2024; 26:26. [PMID: 38229121 PMCID: PMC10792874 DOI: 10.1186/s13075-023-03229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune condition that causes harm to exocrine glands and also has extra-glandular manifestations (EGM). pSS patients with EGM have a worse prognosis than those with only sicca symptoms. Previous studies have shown that the minor salivary glands (MSG) of pSS patients exhibit a unique profile of cytokines and chemokines compared to healthy controls. However, there is a lack of research comparing pSS with EGM (pSS-EGM) and pSS without EGM (pSS-non-EGM). This study aims to explore potential biomarkers associated with pSS, particularly pSS with EGM. METHODS By utilizing RNA sequencing, we conducted an analysis on the gene expression profiles of MSG in 63 patients diagnosed with pSS, as well as 12 non-pSS individuals. Furthermore, we also investigated the MSG of pSS patients, both with and without EGM. Through bioinformatics analysis, we identified genes with differential expression (DEGs) and determined the core hub genes using PPI network. We then analyzed the top 20 DEGs and their correlation with the patients' clinical characteristics, and validated our findings using peripheral blood plasma. RESULTS A total of 725 differentially expressed genes (DEGs) were identified in the comparison between pSS and non-pSS groups, and 727 DEGs were observed between pSS-EGM and pSS-non-EGM. It is noteworthy that the expression levels of CXCL9 were higher in both pSS patients and pSS-EGM when compared to the control group. Taking into consideration the significance of the top 20 DEGs in relation to clinical parameters and the central hub genes, we ultimately chose CXCL9. In comparison to the non-pSS group, pSS patients exhibited notably greater expression of the CXCL9 gene in the MSG, as well as higher levels of CXCL9 protein in their plasma (p < 0.001). Furthermore, the expression of the CXCL9 gene and levels of CXCL9 protein were notably higher in pSS patients accompanied by EGM and those with SSA antibodies. Additionally, a correlation was found between the expression of the CXCL9 gene and the EULAR Sjogren's Syndrome Disease Activity Index (ESSDAI), as well as with immunoglobulin G (IgG) levels and erythrocyte sedimentation rate (ESR). Meanwhile, the protein levels of CXCL9 were found to be correlated with IgG levels and ESSDAI. CONCLUSION CXCL9 proves to be a valuable biomarker in pSS, specifically due to its strong ability to differentiate between pSS patients with EGM and those without EGM. There is a significant correlation between CXCL9 and various clinical parameters both at the gene and protein level. Therefore, CXCL9 could be a potential target for future treatment of pSS.
Collapse
Affiliation(s)
- Jingwei Hong
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Hui Cheng
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Ping Wang
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Yanzhi Wu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Saisai Lu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Yan Zhou
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China
| | - Xiao Bing Wang
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China.
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xiaofang Zhu
- Rheumatology Department, First Affiliated Hospital of Wenzhou Medical University, Nanbai Xiang Street, Ouhai District, Wenzhou, China.
| |
Collapse
|
9
|
He W, Lu Y, Shi R, An Q, Zhao J, Gao X, Zhang L, Ma D. Application of omics in Sjögren's syndrome. Inflamm Res 2023; 72:2089-2109. [PMID: 37878024 DOI: 10.1007/s00011-023-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE The pathogenesis, diagnosis, and treatment of Sjögren's syndrome (SS) face many challenges, and there is an urgent need to develop new technologies to improve our understanding of SS. METHODS By searching the literature published domestically and internationally in the past 20 years, this artical reviewed the research of various omics techniques in SS. RESULTS Omics technology provided valuable insights into the pathogenesis, early diagnosis, condition and efficacy evaluation of SS. It is helpful to reveal the pathogenesis of the disease and explore new treatment schemes, which will open a new era for the study of SS. CONCLUSION At present, omics research has made some gratifying achievements, but there are still many uncertainties. Therefore, in the future, we should improve research techniques, standardize the collection of samples, and adopt a combination of multi-omics techniques to jointly study the pathogenesis of SS and provide new schemes for its treatment.
Collapse
Affiliation(s)
- Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China.
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
10
|
Wiley MM, Khatri B, Joachims ML, Tessneer KL, Stolarczyk AM, Rasmussen A, Anaya JM, Aqrawi LA, Bae SC, Baecklund E, Björk A, Brun JG, Bucher SM, Dand N, Eloranta ML, Engelke F, Forsblad-d’Elia H, Fugmann C, Glenn SB, Gong C, Gottenberg JE, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kelly JA, Khanam S, Kim K, Kvarnström M, Mandl T, Martín J, Morris DL, Nocturne G, Norheim KB, Olsson P, Palm Ø, Pers JO, Rhodus NL, Sjöwall C, Skarstein K, Taylor KE, Tombleson P, Thorlacius GE, Venuturupalli S, Vital EM, Wallace DJ, Grundahl KM, Radfar L, Brennan MT, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Appel S, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner BM, Rischmueller M, Witte T, Farris AD, Mariette X, Shiboski CH, Wahren-Herlenius M, Alarcón-Riquelme ME, Ng WF, Sivils KL, Guthridge JM, Adrianto I, Vyse TJ, Tsao BP, Nordmark G, Lessard CJ. Variants in the DDX6-CXCR5 autoimmune disease risk locus influence the regulatory network in immune cells and salivary gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561076. [PMID: 39071447 PMCID: PMC11275775 DOI: 10.1101/2023.10.05.561076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Fine mapping and bioinformatic analysis of the DDX6-CXCR5 genetic risk association in Sjögren's Disease (SjD) and Systemic Lupus Erythematosus (SLE) identified five common SNPs with functional evidence in immune cell types: rs4938573, rs57494551, rs4938572, rs4936443, rs7117261. Functional interrogation of nuclear protein binding affinity, enhancer/promoter regulatory activity, and chromatin-chromatin interactions in immune, salivary gland epithelial, and kidney epithelial cells revealed cell type-specific allelic effects for all five SNPs that expanded regulation beyond effects on DDX6 and CXCR5 expression. Mapping the local chromatin regulatory network revealed several additional genes of interest, including lnc-PHLDB1-1. Collectively, functional characterization implicated the risk alleles of these SNPs as modulators of promoter and/or enhancer activities that regulate cell type-specific expression of DDX6, CXCR5, and lnc-PHLDB1-1, among others. Further, these findings emphasize the importance of exploring the functional significance of SNPs in the context of complex chromatin architecture in disease-relevant cell types and tissues.
Collapse
Affiliation(s)
- Mandi M. Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Michelle L. Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Kandice L. Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Anna M. Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | | | - Lara A. Aqrawi
- Department of Health Sciences, Kristiania University College, Oslo, Norway
- University of Oslo, Norway
| | | | | | | | - Johan G. Brun
- University of Bergen, Bergen, Norway
- Haukeland University Hospital, Bergen, Norway
| | | | - Nick Dand
- King’s College London, London, United Kingdom
| | | | | | | | | | - Stuart B. Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Chen Gong
- King’s College London, London, United Kingdom
| | | | | | | | | | | | | | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Sharmily Khanam
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | | | | | | | - Javier Martín
- Instituto de Biomedicina y Parasitología López-Neyra, Granada, Spain
| | | | - Gaetane Nocturne
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kiely M. Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | | | - Judith A. James
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lindsey A. Criswell
- University of California San Francisco, San Francisco, California, USA
- National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Simon J. Bowman
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Roald Omdal
- University of Bergen, Bergen, Norway
- Stavanger University Hospital, Stavanger, Norway
| | | | - Blake M. Warner
- National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | | | - A. Darise Farris
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Xavier Mariette
- Université Paris-Saclay, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France
| | | | | | | | - Marta E. Alarcón-Riquelme
- Karolinska Institutet, Solna, Sweden
- Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Spain
| | | | - Wan-Fai Ng
- NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Kathy L. Sivils
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Betty P. Tsao
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Christopher J. Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
11
|
Xu S, Zhu C, Jiang J, Cheng H, Wang P, Hong J, Yang S, Li Z, Wang X. Non-invasive diagnosis of primary Sjögren's syndrome using ultrasonography and transcriptome biomarkers. Clin Immunol 2023; 255:109739. [PMID: 37586671 DOI: 10.1016/j.clim.2023.109739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Diagnosing primary Sjögren's syndrome (pSS) is difficult due to clinical heterogeneity and the absence of non-invasive specific biomarkers. To develop non-invasive pSS diagnosis methods that integrate classic clinical indexes, major salivary gland ultrasonography (SGUS), and gene expression profiles shared by labial gland and peripheral blood, we conducted a study on a cohort of 358 subjects. We identified differentially expressed genes (DEGs) in glands and blood that were enriched in defense response to virus and type I interferon production pathways. Four upregulated DEGs common in glands and blood were identified as hub genes based on the protein-protein interaction networks. A random forest model was trained using features, including SGUS, anti-SSA/Ro60, keratoconjunctivitis sicca tests, and gene expression levels of MX1 and RSAD2. The model achieved comparable pSS diagnosis accuracy to the golden standard method based on labial gland biopsy. Our findings implicate this novel model as a promising diagnosis technique of pSS.
Collapse
Affiliation(s)
- Shihao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Chengwei Zhu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiachun Jiang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hui Cheng
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jingwei Hong
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shiping Yang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200001, China.
| |
Collapse
|
12
|
Horai Y, Shimizu T, Umeda M, Nishihata SY, Nakamura H, Kawakami A. Current Views on Pathophysiology and Potential Therapeutic Targets in Sjögren's Syndrome: A Review from the Perspective of Viral Infections, Toll-like Receptors, and Long-Noncoding RNAs. J Clin Med 2023; 12:5873. [PMID: 37762814 PMCID: PMC10531551 DOI: 10.3390/jcm12185873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Sjögren's syndrome (SS) is a rheumatic disease characterized by sicca and extraglandular symptoms, such as interstitial lung disease and renal tubular acidosis. SS potentially affects the prognosis of patients, especially in cases of complicated extraglandular symptoms; however, only symptomatic therapies against xerophthalmia and xerostomia are currently included in the practice guidelines as recommended therapies for SS. Considering that SS is presumed to be a multifactorial entity caused by genetic and environmental factors, a multidisciplinary approach is necessary to clarify the whole picture of its pathogenesis and to develop disease-specific therapies for SS. This review discusses past achievements and future prospects for pursuing the pathophysiology and therapeutic targets for SS, especially from the perspectives of viral infections, toll-like receptors (TLRs), long-noncoding RNAs (lncRNAs), and related signals. Based on the emerging roles of viral infections, TLRs, long-noncoding RNAs and related signals, antiviral therapy, hydroxychloroquine, and vitamin D may lower the risk of or mitigate SS. Janus-kinase (JAK) inhibitors are also potential novel therapeutic options for several rheumatic diseases involving the JAK-signal transducer and activator of transcription pathways, which are yet to be ascertained in a randomized controlled study targeting SS.
Collapse
Affiliation(s)
- Yoshiro Horai
- Department of Rheumatology, Sasebo City General Hospital, Sasebo 857-8511, Japan
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
- Clinical Research Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| | - Shin-Ya Nishihata
- Department of Rheumatology, National Hospital Organization Ureshino Medical Center, Ureshino 843-0393, Japan;
| | - Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| |
Collapse
|
13
|
Londe AC, Fernandez-Ruiz R, Julio PR, Appenzeller S, Niewold TB. Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. J Rheumatol 2023; 50:1103-1113. [PMID: 37399470 DOI: 10.3899/jrheum.2022-0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 07/05/2023]
Abstract
Type I interferon (IFN-I) is thought to play a role in many systemic autoimmune diseases. IFN-I pathway activation is associated with pathogenic features, including the presence of autoantibodies and clinical phenotypes such as more severe disease with increased disease activity and damage. We will review the role and potential drivers of IFN-I dysregulation in 5 prototypic autoimmune diseases: systemic lupus erythematosus, dermatomyositis, rheumatoid arthritis, primary Sjögren syndrome, and systemic sclerosis. We will also discuss current therapeutic strategies that directly or indirectly target the IFN-I system.
Collapse
Affiliation(s)
- Ana Carolina Londe
- A.C. Londe, MSc, Autoimmunity Lab, and Graduate Program in Physiopathology, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ruth Fernandez-Ruiz
- R. Fernandez-Ruiz, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Paulo Rogério Julio
- P. Rogério Julio, MSc, Autoimmunity Lab, and Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Simone Appenzeller
- S. Appenzeller, MD, PhD, Autoimmunity Lab, and Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Timothy B Niewold
- T.B. Niewold, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA.
| |
Collapse
|
14
|
Tanaka Y, Kusuda M, Yamaguchi Y. Interferons and systemic lupus erythematosus: Pathogenesis, clinical features, and treatments in interferon-driven disease. Mod Rheumatol 2023; 33:857-867. [PMID: 36440704 DOI: 10.1093/mr/roac140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023]
Abstract
Type I interferons (IFNs) have recently received a lot of attention with the elucidation of the pathogenesis of systemic lupus erythematosus (SLE). Type I IFNs are associated with many SLE symptoms and play a role in the pathogenesis of autoimmune diseases that may occur concurrently with SLE, such as Sjögren's syndrome, antiphospholipid syndrome, myositis, scleroderma, and interferonopathy. Type I IFNs could be the link between these diseases. However, direct measurement of type I IFN levels and the IFN gene signature is currently unavailable in clinical practice. This review discusses type I IFN signalling in SLE, investigates the role of type I IFN in the clinical manifestations and symptoms associated with SLE and other IFN-related diseases, and discusses the clinical tests that can be used to diagnose SLE and measure disease activity. In addition, the role of type I IFN-blocking therapies as potential treatments for SLE is discussed.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | | | | |
Collapse
|
15
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Katsiougiannis S, Stergiopoulos A, Moustaka K, Havaki S, Samiotaki M, Stamatakis G, Tenta R, Skopouli FN. Salivary gland epithelial cell in Sjögren's syndrome: Metabolic shift and altered mitochondrial morphology toward an innate immune cell function. J Autoimmun 2023; 136:103014. [PMID: 36898185 DOI: 10.1016/j.jaut.2023.103014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/19/2023] [Indexed: 03/10/2023]
Abstract
Salivary gland epithelial cells (SGEC) are the main targets of the autoimmune reactivity in Sjögren's syndrome (SS). This study aimed to investigate the core proteomic differences between SS and Control- (Ct) -derived SGEC. Proteome analysis of cultured SGEC from five SS patients and four Ct was performed in a label-free quantitation format (LFQ). Electron microscopy was applied for analysis of the mitochondrial ultrastructure of SGEC in minor salivary gland sections from six SS patients and four Ct. Four hundred seventy-four proteins were identified differentially abundant in SS- compared to Ct-SGEC. After proteomic analysis, two distinct protein expression patterns were revealed. Gene ontology (GO) pathway analysis of each protein block revealed that the cluster with highly abundant proteins in SS-SGEC showed enrichment in pathways associated with membrane trafficking, exosome-mediated transport and exocytosis as well as innate immunity related mainly to neutrophil degranulation. In contrast, the low abundance protein cluster in SS-SGEC was enriched for proteins regulating the translational process of proteins related to metabolic pathways associated to mitochondria. Electron microscopy showed decreased total number of mitochondria in SS-SGEC, which appeared elongated and swollen with less and abnormal cristae compared to Ct-SGEC mitochondria. This study defines, for the first time, the core proteomic differences of SGEC between SS and Ct, substantiates the metamorphosis of SGEC into an innate immune cell and reveals that these cells are translationally shifted towards metabolism rewiring. These metabolic alterations are related mainly to mitochondria and are mirrored in situ with heavy morphological changes.
Collapse
Affiliation(s)
- S Katsiougiannis
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece; Laboratory of Autoimmunity, Biomedical Research Foundation of the Academy of Athens, Greece
| | - A Stergiopoulos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - K Moustaka
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - S Havaki
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Samiotaki
- Institute for Bio-Innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - G Stamatakis
- Institute for Bio-Innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - R Tenta
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - F N Skopouli
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece; Euroclinic of Athens, Athens, Greece.
| |
Collapse
|
17
|
Chi C, Solomon O, Shiboski C, Taylor KE, Quach H, Quach D, Barcellos LF, Criswell LA. Identification of Sjögren's syndrome patient subgroups by clustering of labial salivary gland DNA methylation profiles. PLoS One 2023; 18:e0281891. [PMID: 36862625 PMCID: PMC9980741 DOI: 10.1371/journal.pone.0281891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
Heterogeneity in Sjögren's syndrome (SS), increasingly called Sjögren's disease, suggests the presence of disease subtypes, which poses a major challenge for the diagnosis, management, and treatment of this autoimmune disorder. Previous work distinguished patient subgroups based on clinical symptoms, but it is not clear to what extent symptoms reflect underlying pathobiology. The purpose of this study was to discover clinical meaningful subtypes of SS based on genome-wide DNA methylation data. We performed a cluster analysis of genome-wide DNA methylation data from labial salivary gland (LSG) tissue collected from 64 SS cases and 67 non-cases. Specifically, hierarchical clustering was performed on low dimensional embeddings of DNA methylation data extracted from a variational autoencoder to uncover unknown heterogeneity. Clustering revealed clinically severe and mild subgroups of SS. Differential methylation analysis revealed that hypomethylation at the MHC and hypermethylation at other genome regions characterize the epigenetic differences between these SS subgroups. Epigenetic profiling of LSGs in SS yields new insights into mechanisms underlying disease heterogeneity. The methylation patterns at differentially methylated CpGs are different in SS subgroups and support the role of epigenetic contributions to the heterogeneity in SS. Biomarker data derived from epigenetic profiling could be explored in future iterations of the classification criteria for defining SS subgroups.
Collapse
Affiliation(s)
- Calvin Chi
- Division of Computing, Center for Computational Biology, Data Science and Society, University of California Berkeley, Berkeley, California, United States of America
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Olivia Solomon
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Caroline Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Kimberly E. Taylor
- Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Hong Quach
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Diana Quach
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Lisa F. Barcellos
- Division of Computing, Center for Computational Biology, Data Science and Society, University of California Berkeley, Berkeley, California, United States of America
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California Berkeley, Berkeley, California, United States of America
| | - Lindsey A. Criswell
- Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Lacrimal Gland Epithelial Cells Shape Immune Responses through the Modulation of Inflammasomes and Lipid Metabolism. Int J Mol Sci 2023; 24:ijms24054309. [PMID: 36901740 PMCID: PMC10001612 DOI: 10.3390/ijms24054309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Lacrimal gland inflammation triggers dry eye disease through impaired tear secretion by the epithelium. As aberrant inflammasome activation occurs in autoimmune disorders including Sjögren's syndrome, we analyzed the inflammasome pathway during acute and chronic inflammation and investigated its potential regulators. Bacterial infection was mimicked by the intraglandular injection of lipopolysaccharide (LPS) and nigericin, known to activate the NLRP3 inflammasome. Acute injury of the lacrimal gland was induced by interleukin (IL)-1α injection. Chronic inflammation was studied using two Sjögren's syndrome models: diseased NOD.H2b compared to healthy BALBc mice and Thrombospondin-1-null (TSP-1-/-) compared to TSP-1WTC57BL/6J mice. Inflammasome activation was investigated by immunostaining using the R26ASC-citrine reporter mouse, by Western blotting, and by RNAseq. LPS/Nigericin, IL-1α and chronic inflammation induced inflammasomes in lacrimal gland epithelial cells. Acute and chronic inflammation of the lacrimal gland upregulated multiple inflammasome sensors, caspases 1/4, and interleukins Il1b and Il18. We also found increased IL-1β maturation in Sjögren's syndrome models compared with healthy control lacrimal glands. Using RNA-seq data of regenerating lacrimal glands, we found that lipogenic genes were upregulated during the resolution of inflammation following acute injury. In chronically inflamed NOD.H2b lacrimal glands, an altered lipid metabolism was associated with disease progression: genes for cholesterol metabolism were upregulated, while genes involved in mitochondrial metabolism and fatty acid synthesis were downregulated, including peroxisome proliferator-activated receptor alpha (PPARα)/sterol regulatory element-binding 1 (SREBP-1)-dependent signaling. We conclude that epithelial cells can promote immune responses by forming inflammasomes, and that sustained inflammasome activation, together with an altered lipid metabolism, are key players of Sjögren's syndrome-like pathogenesis in the NOD.H2b mouse lacrimal gland by promoting epithelial dysfunction and inflammation.
Collapse
|
19
|
Zhan Q, Zhang J, Lin Y, Chen W, Fan X, Zhang D. Pathogenesis and treatment of Sjogren's syndrome: Review and update. Front Immunol 2023; 14:1127417. [PMID: 36817420 PMCID: PMC9932901 DOI: 10.3389/fimmu.2023.1127417] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease accompanied by multiple lesions. The main manifestations include dryness of the mouth and eyes, along with systemic complications (e.g., pulmonary disease, kidney injury, and lymphoma). In this review, we highlight that IFNs, Th17 cell-related cytokines (IL-17 and IL-23), and B cell-related cytokines (TNF and BAFF) are crucial for the pathogenesis of SS. We also summarize the advances in experimental treatment strategies, including targeting Treg/Th17, mesenchymal stem cell treatment, targeting BAFF, inhibiting JAK pathway, et al. Similar to that of SLE, RA, and MS, biotherapeutic strategies of SS consist of neutralizing antibodies and inflammation-related receptor blockers targeting proinflammatory signaling pathways. However, clinical research on SS therapy is comparatively rare. Moreover, the differences in the curative effects of immunotherapies among SS and other autoimmune diseases are not fully understood. We emphasize that targeted drugs, low-side-effect drugs, and combination therapies should be the focus of future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Xiao Q, Wu X, Deng C, Zhao L, Peng L, Zhou J, Zhang W, Zhao Y, Fei Y. The potential role of RNA N6-methyladenosine in primary Sjögren's syndrome. Front Med (Lausanne) 2022; 9:959388. [PMID: 36465909 PMCID: PMC9710536 DOI: 10.3389/fmed.2022.959388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/24/2022] [Indexed: 07/28/2023] Open
Abstract
Objective The pathogenesis of primary Sjögren's syndrome (pSS) remains incompletely understood. The N6-methyladenosine (m6A) RNA modification, the most abundant internal transcript modification, has close associations with multiple diseases. This study aimed to investigate the role of m6A in patients with pSS. Materials and methods This study enrolled 44 patients with pSS, 50 age- and gender-matched healthy controls (HCs), and 11 age- and gender-matched patients with non-SS sicca. We detected the messenger RNA (mRNA) levels of m6A elements (including METTL3, WTAP, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2), ISG15, and USP18 in peripheral blood mononuclear cells (PBMCs) from patients with pSS, patients with non-SS sicca, and HCs. The clinical characteristics and laboratory findings of patients with pSS and patients with non-SS sicca were also collected. We used binary logistic regression to determine if m6A elements were risk factors for pSS. Results The mRNA levels of m6A writers (METTL3 and RBM15), erasers (ALKBH5 and FTO), and readers (YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2) were all significantly higher in PBMCs from patients with pSS than in HCs. The mRNA levels of m6A writers (METTL3 and WTAP) and readers (YTHDF2, YTHDF3, and YTHDC2) were lower in PBMCs from patients with pSS compared to patients with non-SS sicca. The expression of METTL3, RBM15, FTO, YTHDF1, YTHDF2, YTHDC1, and YTHDC2 was positively correlated with the level of C-reactive protein (CRP) of patients with pSS. The mRNA level of YTHDF1 in PBMCs from patients with pSS was negatively correlated with the EULAR Sjögren's syndrome disease activity index (ESSDAI) score. In patients with pSS, FTO, YTHDC1, and YTHDC2 were also related to white blood cells (WBCs), neutrophils, lymphocytes, and monocytes. Increased mRNA level of ALKBH5 in PBMCs was a risk factor for pSS, as determined by binary logistic regression analysis. The mRNA level of ISG15 was positively correlated with that of FTO, YTHDF2, YTHDF3, and YTHDC2 in patients with pSS. Conclusion Compared with HCs, the expression of METTL3, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2 was considerably higher in PBMCs from patients with pSS. In comparison with patients with non-SS sicca, the expression of METTL3, WTAP, YTHDF2, YTHDF3, and YTHDC2 was reduced in PBMCs from patients with pSS. The m6A elements correlating with clinical variables may indicate the disease activity and inflammation status of pSS. Elevated expression of ALKBH5 was a risk factor for pSS. The dynamic process of m6A modification is active in pSS. m6A elements (FTO, YTHDF2, YTHDF3, or YTHDC2) might target ISG15, stimulate the expression of ISG15, and activate the type I IFN signaling pathway, playing an active role in initiating the autoimmunity in pSS.
Collapse
Affiliation(s)
- Qiufeng Xiao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xunyao Wu
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Linyi Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science and Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
21
|
Joachims ML, Khatri B, Li C, Tessneer KL, Ice JA, Stolarczyk AM, Means N, Grundahl KM, Glenn SB, Kelly JA, Lewis DM, Radfar L, Stone DU, Guthridge JM, James JA, Scofield RH, Wiley GB, Wren JD, Gaffney PM, Montgomery CG, Sivils KL, Rasmussen A, Farris AD, Adrianto I, Lessard CJ. Dysregulated long non-coding RNA in Sjögren's disease impacts both interferon and adaptive immune responses. RMD Open 2022; 8:e002672. [PMID: 36456101 PMCID: PMC9717416 DOI: 10.1136/rmdopen-2022-002672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Sjögren's disease (SjD) is an autoimmune disease characterised by inflammatory destruction of exocrine glands. Patients with autoantibodies to Ro/SSA (SjDRo+) exhibit more severe disease. Long non-coding RNAs (lncRNAs) are a functionally diverse class of non-protein-coding RNAs whose role in autoimmune disease pathology has not been well characterised. METHODS Whole blood RNA-sequencing (RNA-seq) was performed on SjD cases (n=23 Ro/SSA negative (SjDRo-); n=27 Ro/SSA positive (SjDRo+) and healthy controls (HCs; n=27). Bioinformatics and pathway analyses of differentially expressed (DE) transcripts (log2 fold change ≥2 or ≤0.5; padj<0.05) were used to predict lncRNA function. LINC01871 was characterised by RNA-seq analyses of HSB-2 cells with CRISPR-targeted LINC01871 deletion (LINC01871-/ -) and in vitro stimulation assays. RESULTS Whole blood RNA-seq revealed autoantibody-specific transcription profiles and disproportionate downregulation of DE transcripts in SjD cases relative to HCs. Sixteen DE lncRNAs exhibited correlated expression with the interferon (IFN)-regulated gene, RSAD2, in SjDRo+ (r≥0.65 or ≤-0.6); four antisense lncRNAs exhibited IFN-regulated expression in immune cell lines. LINC01871 was upregulated in all SjD cases. RNA-seq and pathway analyses of LINC01871-/ - cells implicated roles in cytotoxic function, differentiation and IFNγ induction. LINC01871 was induced by IFNγ in a myeloid cell line and regulated by calcineurin/NFAT pathway and T cell receptor (TCR) signalling in primary human T cells. CONCLUSION LINC01871 influences expression of many immune cell genes and growth factors, is IFNγ inducible, and regulated by calcineurin signalling and TCR ligand engagement. Altered LINC01871 expression may influence the dysregulated T cell inflammatory pathways implicated in SjD.
Collapse
Affiliation(s)
- Michelle L Joachims
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bhuwan Khatri
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Chuang Li
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kandice L Tessneer
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John A Ice
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Anna M Stolarczyk
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nicolas Means
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kiely M Grundahl
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Stuart B Glenn
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - David M Lewis
- Department of Oral and Maxillofacial Pathology, The University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | - Lida Radfar
- Oral Diagnosis and Radiology Department, The University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA
| | - Donald U Stone
- Department of Ophthalmology, Dean McGee Eye Institute, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA
| | - Graham B Wiley
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jonathan D Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Patrick M Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Courtney G Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Astrid Rasmussen
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Indra Adrianto
- Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| | - Christopher J Lessard
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
22
|
An Q, Zhao J, Zhu X, Yang B, Wu Z, Su Y, Zhang L, Xu K, Ma D. Exploiting the role of T cells in the pathogenesis of Sjögren's syndrome for therapeutic treatment. Front Immunol 2022; 13:995895. [PMID: 36389806 PMCID: PMC9650646 DOI: 10.3389/fimmu.2022.995895] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 08/19/2023] Open
Abstract
Sjögrens syndrome (SS) is caused by autoantibodies that attack proprioceptive salivary and lacrimal gland tissues. Damage to the glands leads to dry mouth and eyes and affects multiple systems and organs. In severe cases, SS is life-threatening because it can lead to interstitial lung disease, renal insufficiency, and lymphoma. Histological examination of the labial minor salivary glands of patients with SS reveals focal lymphocyte aggregation of T and B cells. More studies have been conducted on the role of B cells in the pathogenesis of SS, whereas the role of T cells has only recently attracted the attention of researchers. This review focusses on the role of various populations of T cells in the pathogenesis of SS and the progress made in research to therapeutically targeting T cells for the treatment of patients with SS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
23
|
McCoy SS, Parker M, Gurevic I, Das R, Pennati A, Galipeau J. Ruxolitinib inhibits IFNγ-stimulated Sjögren's salivary gland MSC HLA-DR expression and chemokine-dependent T cell migration. Rheumatology (Oxford) 2022; 61:4207-4218. [PMID: 35218354 PMCID: PMC9536796 DOI: 10.1093/rheumatology/keac111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Sjögren's disease (SjD) is a systemic autoimmune disease characterized by focal lymphocytic infiltrate of salivary glands (SGs) and high SG IFNγ, both of which are associated with elevated lymphoma risk. IFNγ is also biologically relevant to mesenchymal stromal cells (MSCs), a SG resident cell with unique niche regenerative and immunoregulatory capacities. In contrast to the role of IFNγ in SjD, IFNγ promotes an anti-inflammatory MSC phenotype in other diseases. The objective of this study was to define the immunobiology of IFNγ-exposed SG-MSCs with and without the JAK1 & 2 inhibitor, ruxolitinib. METHODS SG-MSCs were isolated from SjD and controls human subjects. SG-MSCs were treated with 10 ng/ml IFNγ +/- 1000 nM ruxolitinib. Experimental methods included flow cytometry, RNA-sequencing, chemokine array, ELISA and transwell chemotaxis experiments. RESULTS We found that IFNγ promoted expression of SG-MSC immunomodulatory markers, including HLA-DR, and this expression was inhibited by ruxolitinib. We confirmed the differential expression of CXCL9, CXCL10, CXCL11, CCL2 and CCL7, initially identified with RNA sequencing. SG-MSCs promoted CD4+ T cell chemotaxis when pre-stimulated with IFNγ. Ruxolitinib blocks chemotaxis through inhibition of SG-MSC production of CXCL9, CXCL10 and CXCL11. CONCLUSIONS These findings establish that ruxolitinib inhibits IFNγ-induced expression of SG-MSC immunomodulatory markers and chemokines. Ruxolitinib also reverses IFNγ-induced CD4+ T cell chemotaxis, through inhibition of CXCL9, -10 and -11. Because IFNγ is higher in SjD than control SGs, we have identified SG-MSCs as a plausible pathogenic cell type in SjD. We provide proof of concept supporting further study of ruxolitinib to treat SjD.
Collapse
Affiliation(s)
- Sara S McCoy
- Division or Rheumatology, Department of Medicine, University of Wisconsin School of Medicine and Health
| | - Maxwell Parker
- Division or Rheumatology, Department of Medicine, University of Wisconsin School of Medicine and Health
| | - Ilya Gurevic
- Division or Rheumatology, Department of Medicine, University of Wisconsin School of Medicine and Health
| | - Rahul Das
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
24
|
Ridgewell D, Thalayasingam N, Ng WF. Sjögren's syndrome: shedding light on emerging and key drug targets. Expert Opin Ther Targets 2022; 26:869-882. [PMID: 36576336 DOI: 10.1080/14728222.2022.2157259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Sjögren's syndrome (SS) is an immune-mediated inflammatory condition characterized by sicca syndrome, musculoskeletal pain, and fatigue. Extra-glandular manifestations are common and there is a markedly increased risk of lymphoma development. SS is associated with high health-economic burden driven largely by the symptom burden on patients. Currently, there is no approved disease-modifying treatment and management is based on empirical evidence. Progress in the understanding of SS pathogenesis has led to an expanding portfolio of more targeted therapies under development. AREAS COVERED This review summarizes the key development in targeted biological therapies in SS including emerging targets. It also highlights the challenges in therapeutic development in SS such as disease heterogeneity and defining appropriate disease assessment tools to evaluate therapeutic efficacy. EXPERT OPINION Early trials in SS failed to meet their primary outcomes which may in part due to the use of inappropriate or insensitive study endpoints. Recent trials targeting B-cells, B-T cell co-stimulation and IFN signaling have shown promising results. Development of composite endpoints including patient reported outcomes and objective disease measure may provide a more holistic approach to disease assessment. The impact of these new tools on therapeutic development that benefit patients remains to be fully evaluated.
Collapse
Affiliation(s)
- Dominic Ridgewell
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nishanthi Thalayasingam
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Wan-Fai Ng
- Musculoskeletal Theme, NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
25
|
Tan Z, Wang L, Li X. Composition and regulation of the immune microenvironment of salivary gland in Sjögren’s syndrome. Front Immunol 2022; 13:967304. [PMID: 36177010 PMCID: PMC9513852 DOI: 10.3389/fimmu.2022.967304] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized by exocrine gland dysfunction and inflammation. Patients often have dry mouth and dry eye symptoms, which seriously affect their lives. Improving dry mouth and eye symptoms has become a common demand from patients. For this reason, researchers have conducted many studies on external secretory glands. In this paper, we summarize recent studies on the salivary glands of pSS patients from the perspective of the immune microenvironment. These studies showed that hypoxia, senescence, and chronic inflammation are the essential characteristics of the salivary gland immune microenvironment. In the SG of pSS, genes related to lymphocyte chemotaxis, antigen presentation, and lymphocyte activation are upregulated. Interferon (IFN)-related genes, DNA methylation, sRNA downregulation, and mitochondrial-related differentially expressed genes are also involved in forming the immune microenvironment of pSS, while multiple signaling pathways are involved in regulation. We further elucidated the regulation of the salivary gland immune microenvironment in pSS and relevant, targeted treatments.
Collapse
|
26
|
Kelly AL, Nelson RJ, Sara R, Alberto S. Sjögren Syndrome: New Insights in the Pathogenesis and Role of Nuclear Medicine. J Clin Med 2022; 11:5227. [PMID: 36079157 PMCID: PMC9456759 DOI: 10.3390/jcm11175227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/18/2022] Open
Abstract
In the last years, new insights into the molecular basis of rheumatic conditions have been described, which have generated particular interest in understanding the pathophysiology of these diseases, in which lies the explanation of the diversity of clinical presentation and the difficulty in diagnostic and therapeutic approaches. In this review, we focus on the new pathophysiological findings for Sjögren syndrome and on the derived new SPECT and PET radiopharmaceuticals to detect inflammation of immunological origin, focusing on their role in diagnosis, prognosis, and the evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Anzola Luz Kelly
- Nuclear Medicine Unit, Clinica Universitaria Colombia, Bogotá 111321, Colombia
- Nuclear Medicine Unit, Clinica Reina Sofia, Bogotá 110121, Colombia
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Rivera Jose Nelson
- Internal Medicine Department Clinica Reina Sofia, Bogotá 110121, Colombia
| | - Ramírez Sara
- Fundacion Universitaria Sanitas, Bogotá 110111, Colombia
| | - Signore Alberto
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University, 00185 Rome, Italy
| |
Collapse
|
27
|
Zhang L, Wax J, Huang R, Petersen F, Yu X. Meta-Analysis and Systematic Review of the Association between a Hypoactive NCF1 Variant and Various Autoimmune Diseases. Antioxidants (Basel) 2022; 11:1589. [PMID: 36009308 PMCID: PMC9404811 DOI: 10.3390/antiox11081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic association studies have discovered the GTF2I-NCF1 intergenic region as a strong susceptibility locus for multiple autoimmune disorders, with the missense mutation NCF1 rs201802880 as the causal polymorphism. In this work, we aimed to perform a comprehensive meta-analysis of the association of the GTF2I-NCF1 locus with various autoimmune diseases and to provide a systemic review on potential mechanisms underlying the effect of the causal NCF1 risk variants. The frequencies of the two most extensively investigated polymorphisms within the locus, GTF2I rs117026326 and NCF1 rs201802880, vary remarkably across the world, with the highest frequencies in East Asian populations. Meta-analysis showed that the GTF2I-NCF1 locus is significantly associated with primary Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis, and neuromyelitis optica spectrum disorder. The causal NCF1 rs201802880 polymorphism leads to an amino acid substitution of p.Arg90His in the p47phox subunit of the phagocyte NADPH oxidase. The autoimmune disease risk His90 variant results in a reduced ROS production in phagocytes. Clinical and experimental evidence shows that the hypoactive His90 variant might contribute to the development of autoimmune disorders via multiple mechanisms, including impairing the clearance of apoptotic cells, regulating the mitochondria ROS-associated formation of neutrophil extracellular traps, promoting the activation and differentiation of autoreactive T cells, and enhancing type I IFN responses. In conclusion, the identification of the association of NCF1 with autoimmune disorders demonstrates that ROS is an essential regulator of immune tolerance and autoimmunity mediated disease manifestations.
Collapse
Affiliation(s)
- Liang Zhang
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Jacqueline Wax
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Renliang Huang
- Hainan Women and Children’s Medical Center, Haikou 571100, China
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Member of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| |
Collapse
|
28
|
Khatri B, Tessneer KL, Rasmussen A, Aghakhanian F, Reksten TR, Adler A, Alevizos I, Anaya JM, Aqrawi LA, Baecklund E, Brun JG, Bucher SM, Eloranta ML, Engelke F, Forsblad-d’Elia H, Glenn SB, Hammenfors D, Imgenberg-Kreuz J, Jensen JL, Johnsen SJA, Jonsson MV, Kvarnström M, Kelly JA, Li H, Mandl T, Martín J, Nocturne G, Norheim KB, Palm Ø, Skarstein K, Stolarczyk AM, Taylor KE, Teruel M, Theander E, Venuturupalli S, Wallace DJ, Grundahl KM, Hefner KS, Radfar L, Lewis DM, Stone DU, Kaufman CE, Brennan MT, Guthridge JM, James JA, Scofield RH, Gaffney PM, Criswell LA, Jonsson R, Eriksson P, Bowman SJ, Omdal R, Rönnblom L, Warner B, Rischmueller M, Witte T, Farris AD, Mariette X, Alarcon-Riquelme ME, Shiboski CH, Wahren-Herlenius M, Ng WF, Sivils KL, Adrianto I, Nordmark G, Lessard CJ. Genome-wide association study identifies Sjögren's risk loci with functional implications in immune and glandular cells. Nat Commun 2022; 13:4287. [PMID: 35896530 PMCID: PMC9329286 DOI: 10.1038/s41467-022-30773-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sjögren's disease is a complex autoimmune disease with twelve established susceptibility loci. This genome-wide association study (GWAS) identifies ten novel genome-wide significant (GWS) regions in Sjögren's cases of European ancestry: CD247, NAB1, PTTG1-MIR146A, PRDM1-ATG5, TNFAIP3, XKR6, MAPT-CRHR1, RPTOR-CHMP6-BAIAP6, TYK2, SYNGR1. Polygenic risk scores yield predictability (AUROC = 0.71) and relative risk of 12.08. Interrogation of bioinformatics databases refine the associations, define local regulatory networks of GWS SNPs from the 95% credible set, and expand the implicated gene list to >40. Many GWS SNPs are eQTLs for genes within topologically associated domains in immune cells and/or eQTLs in the main target tissue, salivary glands.
Collapse
Affiliation(s)
- Bhuwan Khatri
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kandice L. Tessneer
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Astrid Rasmussen
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Farhang Aghakhanian
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Tove Ragna Reksten
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Adam Adler
- grid.274264.10000 0000 8527 6890NGS Core Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Ilias Alevizos
- grid.419633.a0000 0001 2205 0568Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD USA
| | - Juan-Manuel Anaya
- grid.412191.e0000 0001 2205 5940Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogotá, Colombia
| | - Lara A. Aqrawi
- grid.5510.10000 0004 1936 8921Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway ,grid.457625.70000 0004 0383 3497Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Eva Baecklund
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan G. Brun
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sara Magnusson Bucher
- grid.15895.300000 0001 0738 8966Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maija-Leena Eloranta
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Fiona Engelke
- grid.10423.340000 0000 9529 9877Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Helena Forsblad-d’Elia
- grid.8761.80000 0000 9919 9582Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Stuart B. Glenn
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Daniel Hammenfors
- grid.412008.f0000 0000 9753 1393Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Juliana Imgenberg-Kreuz
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Janicke Liaaen Jensen
- grid.5510.10000 0004 1936 8921Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Svein Joar Auglænd Johnsen
- grid.412835.90000 0004 0627 2891Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Malin V. Jonsson
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Section for Oral and Maxillofacial Radiology, Department of Clinical Dentistry, Medical Faculty, University of Bergen, Bergen, Norway
| | - Marika Kvarnström
- grid.4714.60000 0004 1937 0626Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden ,grid.425979.40000 0001 2326 2191Academic Specialist Center, Center for Rheumatology and Studieenheten, Stockholm Health Services, Region Stockholm, Sweden
| | - Jennifer A. Kelly
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - He Li
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.505430.7Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA USA
| | - Thomas Mandl
- grid.4514.40000 0001 0930 2361Rheumatology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Javier Martín
- grid.4711.30000 0001 2183 4846Instituto de Biomedicina y Parasitología López-Neyra, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Gaétane Nocturne
- grid.413784.d0000 0001 2181 7253Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France
| | - Katrine Brække Norheim
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412835.90000 0004 0627 2891Department of Rheumatology, Stavanger University Hospital, Stavanger, Norway
| | - Øyvind Palm
- grid.5510.10000 0004 1936 8921Department of Rheumatology, University of Oslo, Oslo, Norway
| | - Kathrine Skarstein
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anna M. Stolarczyk
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Kimberly E. Taylor
- grid.266102.10000 0001 2297 6811Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California USA
| | - Maria Teruel
- grid.4489.10000000121678994Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Elke Theander
- grid.411843.b0000 0004 0623 9987Department of Rheumatology, Skåne University Hospital, Malmö, Sweden ,Medical Affairs, Jannsen-Cilag EMEA (Europe/Middle East/Africa), Beerse, Belgium
| | - Swamy Venuturupalli
- grid.50956.3f0000 0001 2152 9905Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Daniel J. Wallace
- grid.50956.3f0000 0001 2152 9905Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Kiely M. Grundahl
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | | | - Lida Radfar
- grid.266900.b0000 0004 0447 0018Oral Diagnosis and Radiology Department, University of Oklahoma College of Dentistry, Oklahoma City, OK USA
| | - David M. Lewis
- grid.266900.b0000 0004 0447 0018Department of Oral and Maxillofacial Pathology, University of Oklahoma College of Dentistry, Oklahoma City, OK USA
| | - Donald U. Stone
- grid.266902.90000 0001 2179 3618Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - C. Erick Kaufman
- grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Michael T. Brennan
- grid.239494.10000 0000 9553 6721Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC USA ,grid.241167.70000 0001 2185 3318Department of Otolaryngology/Head and Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Joel M. Guthridge
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Judith A. James
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - R. Hal Scofield
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA ,grid.413864.c0000 0004 0420 2582US Department of Veterans Affairs Medical Center, Oklahoma City, OK USA
| | - Patrick M. Gaffney
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Lindsey A. Criswell
- grid.266102.10000 0001 2297 6811Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, California USA ,grid.266102.10000 0001 2297 6811Institute of Human Genetics (IHG), University of California San Francisco, San Francisco, CA USA ,grid.280128.10000 0001 2233 9230Genomics of Autoimmune Rheumatic Disease Section, National Human Genome Research Institute, NIH, Bethesda, MD USA
| | - Roland Jonsson
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412008.f0000 0000 9753 1393Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Per Eriksson
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, Linköping, Sweden
| | - Simon J. Bowman
- grid.412563.70000 0004 0376 6589Rheumatology Department, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK ,grid.6572.60000 0004 1936 7486Rheumatology Research Group, Institute of Inflammation & Ageing, University of Birmingham, Birmingham, UK ,grid.415667.7Rheumatology Department, Milton Keynes University Hospital, Milton Keynes, UK
| | - Roald Omdal
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.412835.90000 0004 0627 2891Department of Internal Medicine, Clinical Immunology Unit, Stavanger University Hospital, Stavanger, Norway
| | - Lars Rönnblom
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Blake Warner
- grid.419633.a0000 0001 2205 0568Salivary Disorder Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD USA
| | - Maureen Rischmueller
- grid.278859.90000 0004 0486 659XRheumatology Department, The Queen Elizabeth Hospital, Woodville, South Australia ,grid.1010.00000 0004 1936 7304University of Adelaide, Adelaide, South Australia
| | - Torsten Witte
- grid.10423.340000 0000 9529 9877Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - A. Darise Farris
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA
| | - Xavier Mariette
- grid.413784.d0000 0001 2181 7253Université Paris-Saclay, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1184, Le Kremlin Bicêtre, France
| | - Marta E. Alarcon-Riquelme
- grid.4489.10000000121678994Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | | | - Caroline H. Shiboski
- grid.266102.10000 0001 2297 6811Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA USA
| | | | - Marie Wahren-Herlenius
- grid.7914.b0000 0004 1936 7443Department of Clinical Science, University of Bergen, Bergen, Norway ,grid.4714.60000 0004 1937 0626Rheumatology Unity, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Wan-Fai Ng
- grid.1006.70000 0001 0462 7212Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK ,grid.420004.20000 0004 0444 2244NIHR Newcastle Biomedical Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Kathy L. Sivils
- grid.274264.10000 0000 8527 6890Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.505430.7Translational Sciences, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA USA
| | - Indra Adrianto
- grid.239864.20000 0000 8523 7701Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health System, Detroit, MI USA
| | - Gunnel Nordmark
- grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christopher J. Lessard
- grid.274264.10000 0000 8527 6890Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK USA ,grid.266902.90000 0001 2179 3618Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
29
|
Guthridge JM, Wagner CA, James JA. The promise of precision medicine in rheumatology. Nat Med 2022; 28:1363-1371. [PMID: 35788174 PMCID: PMC9513842 DOI: 10.1038/s41591-022-01880-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023]
Abstract
Systemic autoimmune rheumatic diseases (SARDs) exhibit extensive heterogeneity in clinical presentation, disease course, and treatment response. Therefore, precision medicine - whereby treatment is tailored according to the underlying pathogenic mechanisms of an individual patient at a specific time - represents the 'holy grail' in SARD clinical care. Current strategies include treat-to-target therapies and autoantibody testing for patient stratification; however, these are far from optimal. Recent innovations in high-throughput 'omic' technologies are now enabling comprehensive profiling at multiple levels, helping to identify subgroups of patients who may taper off potentially toxic medications or better respond to current molecular targeted therapies. Such advances may help to optimize outcomes and identify new pathways for treatment, but there are many challenges along the path towards clinical translation. In this Review, we discuss recent efforts to dissect cellular and molecular heterogeneity across multiple SARDs and future directions for implementing stratification approaches for SARD treatment in the clinic.
Collapse
Affiliation(s)
- Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Catriona A Wagner
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
30
|
Sarrand J, Baglione L, Parisis D, Soyfoo M. The Involvement of Alarmins in the Pathogenesis of Sjögren's Syndrome. Int J Mol Sci 2022; 23:ijms23105671. [PMID: 35628481 PMCID: PMC9145074 DOI: 10.3390/ijms23105671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 02/01/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune disease that affects exocrine glands, primarily the salivary and lachrymal glands. It is characterized by lymphoplasmacytic infiltration of the glandular tissues, ultimately leading to their dysfunction and destruction. Besides classic dry eyes and dry mouth defined as sicca syndrome, patients affected by the disease also typically display symptoms such as fatigue, pain and in more than 50% of cases, systemic manifestations such as arthritis, interstitial lung involvement, neurological involvement and an increased risk of lymphoma. The pathophysiological mechanisms underlying SS still remain elusive. The crucial role of innate immunity has been advocated in recent years regarding the pathogenesis of pSS, especially in the initiation and progression toward autoimmunity. Alarmins are endogenous molecules that belong to the large family of damage associated molecular pattern (DAMP). Alarmins are rapidly released, ensuing cell injury and interacting with pattern recognition receptors (PRR) such as toll-like receptors (TLR) to recruit and activate cells of the innate immune system and to promote adaptive immunity responses. This review highlights the current knowledge of various alarmins and their role in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
| | - Laurie Baglione
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
| | - Dorian Parisis
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (J.S.); (L.B.); (D.P.)
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Correspondence:
| |
Collapse
|
31
|
Negrini S, Emmi G, Greco M, Borro M, Sardanelli F, Murdaca G, Indiveri F, Puppo F. Sjögren's syndrome: a systemic autoimmune disease. Clin Exp Med 2022; 22:9-25. [PMID: 34100160 PMCID: PMC8863725 DOI: 10.1007/s10238-021-00728-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Sjögren's syndrome is a chronic autoimmune disease characterized by ocular and oral dryness resulting from lacrimal and salivary gland dysfunction. Besides, a variety of systemic manifestations may occur, involving virtually any organ system. As a result, the disease is characterized by pleomorphic clinical manifestations whose characteristics and severity may vary greatly from one patient to another. Sjögren's syndrome can be defined as primary or secondary, depending on whether it occurs alone or in association with other systemic autoimmune diseases, respectively. The pathogenesis of Sjögren's syndrome is still elusive, nevertheless, different, not mutually exclusive, models involving genetic and environmental factors have been proposed to explain its development. Anyhow, the emergence of aberrant autoreactive B-lymphocytes, conducting to autoantibody production and immune complex formation, seems to be crucial in the development of the disease. The diagnosis of Sjögren's syndrome is based on characteristic clinical signs and symptoms, as well as on specific tests including salivary gland histopathology and autoantibodies. Recently, new classification criteria and disease activity scores have been developed primarily for research purposes and they can also be useful tools in everyday clinical practice. Treatment of Sjögren's syndrome ranges from local and symptomatic therapies aimed to control dryness to systemic medications, including disease-modifying agents and biological drugs. The objective of this review paper is to summarize the recent literature on Sjögren's syndrome, starting from its pathogenesis to current therapeutic options.
Collapse
Affiliation(s)
- Simone Negrini
- Department of Internal Medicine, Clinical Immunology and Translational Medicine Unit, University of Genoa and IRCCS Ospedale Policlinico San Martino, Viale Benedetto XV, 6, 16132, Genoa, Italy.
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Monica Greco
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Matteo Borro
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | | | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Francesco Indiveri
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| |
Collapse
|
32
|
Jonsson R. Disease mechanisms in Sjögren's syndrome: what do we know? Scand J Immunol 2022; 95:e13145. [PMID: 35073430 DOI: 10.1111/sji.13145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Why should we explore and study disease mechanisms? This is particularly important when we are dealing with complex pathogenesis without a direct causal agent e.g. syndromes with multiple organ involvements. Sjögren's syndrome is definitely such an entity. Also, there are a number of reasons for such studies such as disclosing the aetiology, to identify biomarkers for diagnosis and assessment of the disease process and monitor response to treatment, to determine targets for treatment, to define critical items in classification criteria, among others. Samples available for the study of disease mechanisms in Sjögren's syndrome have included serum (autoantibodies, cytokines), DNA (gene profiling, GWAS), cells (phenotypes/flow cytometry, proportion of cells/CyTOF), tissue (focal inflammation, germinal centres, mass cytometry), saliva (proteomics, biochemistry, mucosal immunity). An original explanatory concept for the pathogenesis of Sjögren's syndrome proposed a specific and self-perpetuating immune mediated loss of exocrine tissue as the principal cause of glandular hypofunction. This hypothesis however falls short of accommodating several Sjögren's syndrome-related phenomena and experimental findings. Today, the emergence of advanced bio-analytical platforms has further enabled the identification of central pathogenic processes and potential biomarkers. The purpose of this minor review is to highlight a selection of previous but also recent and novel aspects on the disease mechanisms in Sjögren's syndrome.
Collapse
Affiliation(s)
- Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
33
|
Horeth E, Oyelakin A, Song EAC, Che M, Bard J, Min S, Kiripolsky J, Kramer JM, Sinha S, Romano RA. Transcriptomic and Single-Cell Analysis Reveals Regulatory Networks and Cellular Heterogeneity in Mouse Primary Sjögren's Syndrome Salivary Glands. Front Immunol 2021; 12:729040. [PMID: 34912329 PMCID: PMC8666453 DOI: 10.3389/fimmu.2021.729040] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Sjögren’s Syndrome (SS) is a chronic autoimmune disease of unknown etiology which primarily affects the salivary and lacrimal glands resulting in the loss of secretory function. Treatment options for SS have been hampered due to the lack of a better understanding of the underlying gene regulatory circuitry and the interplay between the myriad pathological cellular states that contribute to salivary gland dysfunction. To better elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of the submandibular glands (SMG) of a well-established primary Sjögren’s Syndrome (pSS) mouse model. Our comprehensive examination of global gene expression and comparative analyses with additional SS mouse models and human datasets, have identified a number of important pathways and regulatory networks that are relevant in SS pathobiology. To complement these studies, we have performed single-cell RNA sequencing to examine and identify the molecular and cellular heterogeneity of the diseased cell populations of the mouse SMG. Interrogation of the single-cell transcriptomes has shed light on the diversity of immune cells that are dysregulated in SS and importantly, revealed an activated state of the salivary gland epithelial cells that contribute to the global immune mediated responses. Overall, our broad studies have not only revealed key pathways, mediators and new biomarkers, but have also uncovered the complex nature of the cellular populations in the SMG that are likely to drive the progression of SS. These newly discovered insights into the underlying molecular mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.
Collapse
Affiliation(s)
- Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jonathan Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
34
|
Pontarini E, Coleby R, Bombardieri M. Cellular and molecular diversity in Sjogren's syndrome salivary glands: Towards a better definition of disease subsets. Semin Immunol 2021; 58:101547. [PMID: 34876330 DOI: 10.1016/j.smim.2021.101547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Primary Sjögren's syndrome (pSS) is a highly heterogeneous disease in terms of clinical presentation ranging from a mild disease localised to the salivary and lacrimal glands, to multiorgan complications of various degrees of severity, finishing with the evolution, in around 5% of pSS patients, to B cell lymphomas most commonly arising in the inflamed salivary glands. Currently, there are poor positive or negative predictors of disease evolution able to guide patient management and treatment at early stages of the diseases. Recent understanding of the pathogenic mechanisms driving immunopathology in pSS, particularly through histological and transcriptomic analysis of minor and parotid salivary gland (SG) biopsies, has highlighted a high degree of cellular and molecular heterogeneity of the inflammatory lesions but also allowed the identification of clusters of patients with similar underlying SG immunopathology. In particular, patients presenting with high degrees of B/T cell infiltration and the formation of ectopic lymphoid structures (ELS) in the SG have been associated, albeit with conflicting results, with higher degree of disease severity and enhanced risk of lymphoma evolution, suggesting that a dysregulated adaptive immune response plays a key role in driving disease manifestations in pSS. Recent data from randomised clinical trials with novel biological therapies in pSS have also highlighted the potential role of SG immunopathology and molecular pathology in stratifying patients for trial inclusion as well as assessing proof of mechanisms in longitudinal SG biopsies before and after treatment. Although significant progress has been made in the understanding of disease pathogenesis and heterogeneity through cellular and molecular SG pathology, further work is needed to validate their clinical utility in routine clinical settings and in randomised clinical trials.
Collapse
Affiliation(s)
- Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
35
|
Abstract
Sjögren's syndrome (SjS) is a systemic autoimmune disease marked by xerostomia (dry mouth), keratoconjunctivitis sicca (eye dryness), and other systematic disorders. Its pathogenesis involves an inflammatory process that is characterized by lymphocytic infiltration into exocrine glands and other tissues. Although the development of ectopic lymphoid tissue and overproduction of autoantibodies by hyperactive B cells suggest that they may promote SjS development, treatment directed towards them fails to induce significant laboratory or clinical improvement. T cells are overwhelming infiltrators in most phases of the disease, and the involvement of multiple T cell subsets of suggests the extraordinary complexity of SjS pathogenesis. The factors, including various cellular subtypes and molecules, regulate the activation and suppression of T cells. T cell activation induces inflammatory cell infiltration, B cell activation, tissue damage, and metabolic changes in SjS. Knowledge of the pathways that link these T cell subtypes and regulation of their activities are not completely understood. This review comprehensively summarizes the research progress and our understanding of T cells in SjS, including CD4+ T cells, CD8+ TRM cells, and innate T cells, to provide insights into for clinical treatment.
Collapse
|
36
|
Papadopoulos VE, Skarlis C, Evangelopoulos ME, Mavragani CP. Type I interferon detection in autoimmune diseases: challenges and clinical applications. Expert Rev Clin Immunol 2021; 17:883-903. [PMID: 34096436 DOI: 10.1080/1744666x.2021.1939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accumulating data highlights that the dysregulation of type I interferon (IFN) pathways plays a central role in the pathogenesis of several systemic and organ-specific autoimmune diseases. Advances in understanding the role of type I IFNs in these disorders can lead to targeted drug development as well as establishing potential disease biomarkers. AREAS COVERED Here, we summarize current knowledge regarding the role of type I IFNs in the major systemic, as well as organ-specific, autoimmune disorders, including prominent inflammatory CNS disorders like multiple sclerosis. EXPERT OPINION Type I IFN involvement and its clinical associations in a wide spectrum of autoimmune diseases represents a promising area for research aiming to unveil common pathogenetic pathways in systemic and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vassilis E Papadopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Cao N, Shi H, Chen C, Xie L, Wang Z, Zheng L, Yu C. Characterization of comprehensive dynamic epigenetic changes during human primary Sjögren's syndrome progression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1044. [PMID: 34422956 PMCID: PMC8339825 DOI: 10.21037/atm-21-1754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/24/2021] [Indexed: 11/06/2022]
Abstract
Background Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease characterized by reduced exocrine gland (principally the salivary and lacrimal glands) activity caused by chronic lymphocytic infiltration. Although pSS has been closely associated with an increased risk of mucosa-associated lymphoid tissue (MALT) lymphoma, the dynamic epigenetic changes in the gland cells that accompany the pathogenesis are not entirely understood. Methods In this study, we harvested tissue samples from the labial gland with (LG_pSS) or without pSS (LG_NC) before MALT development, as well as the parotid gland with tumor tissues (PG_MALT) and paracancerous tissues (PG_NC) of two pSS patients with MALT lymphoma, and conducted RNA-seq and ChIP-seq for tri-methylated histone 3 lysine 4, 9, 27, 36, and 79 (H3K4/9/27/36/79me3). Results Transcriptome landscapes indicated two outcomes of pSS progression with or without MALT lymphoma represented by distinct populations of differentially expressed genes and their functions. Furthermore, the epigenetic atlas of genome-wide H3K4/9/27/36/79me3 was in different stages for various samples, indicating that the variance of H3K4me3 was the earliest event, followed by selective alterations of H3K9/27/36/79me3. These four epigenetic modifications determine the final outcome of pSS progression. Conclusions Our results not only advance the understanding of the dynamics of pSS progression and highlight the importance of epigenetic alterations in regulating transcription during this pathological process, but also identify potential therapeutic targets for pSS treatment and lymphoma intervention.
Collapse
Affiliation(s)
- Ningning Cao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, the Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huan Shi
- Department of Oral and Maxillofacial Surgery, College of Stomatology, the Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chan Chen
- Department of Oral and Maxillofacial Surgery, College of Stomatology, the Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lisong Xie
- Department of Oral and Maxillofacial Surgery, College of Stomatology, the Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhijun Wang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, the Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral and Maxillofacial Surgery, College of Stomatology, the Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chuangqi Yu
- Department of Oral and Maxillofacial Surgery, College of Stomatology, the Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
38
|
Nakamura H, Tanaka T, Pranzatelli T, Ji Y, Yin H, Perez P, Afione SA, Jang SI, Goldsmith C, Zheng CY, Swaim WD, Warner BM, Hirata N, Noguchi M, Atsumi T, Chiorini JA. Lysosome-associated membrane protein 3 misexpression in salivary glands induces a Sjögren's syndrome-like phenotype in mice. Ann Rheum Dis 2021; 80:1031-1039. [PMID: 33658234 PMCID: PMC8292598 DOI: 10.1136/annrheumdis-2020-219649] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Sjögren's syndrome (SS) is an autoimmune sialadenitis with unknown aetiology. Although extensive research implicated an abnormal immune response associated with lymphocytes, an initiating event mediated by salivary gland epithelial cell (SGEC) abnormalities causing activation is poorly characterised. Transcriptome studies have suggested alternations in lysosomal function are associated with SS, but a cause and effect linkage has not been established. In this study, we demonstrated that altered lysosome activity in SGECs by expression of lysosome-associated membrane protein 3 (LAMP3) can initiate an autoimmune response with autoantibody production and salivary dysfunction similar to SS. METHODS Retroductal cannulation of the submandibular salivary glands with an adeno-associated virus serotype 2 vector encoding LAMP3 was used to establish a model system. Pilocarpine-stimulated salivary flow and the presence of autoantibodies were assessed at several time points post-cannulation. Salivary glands from the mice were evaluated using RNAseq and histologically. RESULTS Following LAMP3 expression, saliva flow was significantly decreased and serum anti-Ro/SSA and La/SSB antibodies could be detected in the treated mice. Mechanistically, LAMP3 expression increased apoptosis in SGECs and decreased protein expression related to saliva secretion. Analysis of RNAseq data suggested altered lysosomal function in the transduced SGECs, and that the cellular changes can chemoattract immune cells into the salivary glands. Immune cells were activated via toll-like receptors by damage-associated molecular patterns released from LAMP3-expressing SGECs. CONCLUSIONS These results show a critical role for lysosomal trafficking in the development of SS and establish a causal relationship between LAMP3 misexpression and the development of SS.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Tsutomu Tanaka
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Thomas Pranzatelli
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Youngmi Ji
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Hongen Yin
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Sandra A Afione
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Shyh-Ing Jang
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Corrine Goldsmith
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Chang Yu Zheng
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - William D Swaim
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Noriyuki Hirata
- Division of Cancer Biology, Hokkaido University, Sapporo, Japan
| | | | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Sapporo, Japan
| | - John A Chiorini
- AAV Biology Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Li N, Li L, Wu M, Li Y, Yang J, Wu Y, Xu H, Luo D, Gao Y, Fei X, Jiang L. Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren's Syndrome. Front Immunol 2021; 12:697157. [PMID: 34367157 PMCID: PMC8343000 DOI: 10.3389/fimmu.2021.697157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease of the exocrine glands characterized by specific pathological features. Previous studies have pointed out that salivary glands from pSS patients express a unique profile of cytokines, adhesion molecules, and chemokines compared to those from healthy controls. However, there is limited evidence supporting the utility of individual markers for different stages of pSS. This study aimed to explore potential biomarkers associated with pSS disease progression and analyze the associations between key genes and immune cells. Methods We combined our own RNA sequencing data with pSS datasets from the NCBI Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) via bioinformatics analysis. Salivary gland biopsies were collected from 14 pSS patients, 6 non-pSS patients, and 6 controls. Histochemical staining and transmission electron micrographs (TEM) were performed to macroscopically and microscopically characterize morphological features of labial salivary glands in different disease stages. Then, we performed quantitative PCR to validate hub genes. Finally, we analyzed correlations between selected hub genes and immune cells using the CIBERSORT algorithm. Results We identified twenty-eight DEGs that were upregulated in pSS patients compared to healthy controls. These were mainly involved in immune-related pathways and infection-related pathways. According to the morphological features of minor salivary glands, severe interlobular and periductal lymphocytic infiltrates, acinar atrophy and collagen in the interstitium, nuclear shrinkage, and microscopic organelle swelling were observed with pSS disease progression. Hub genes based on above twenty-eight DEGs, including MS4A1, CD19, TCL1A, CCL19, CXCL9, CD3G, and CD3D, were selected as potential biomarkers and verified by RT-PCR. Expression of these genes was correlated with T follicular helper cells, memory B cells and M1 macrophages. Conclusion Using transcriptome sequencing and bioinformatics analysis combined with our clinical data, we identified seven key genes that have potential value for evaluating pSS severity.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyao Wu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
de Paiva CS, Trujillo-Vargas CM, Schaefer L, Yu Z, Britton RA, Pflugfelder SC. Differentially Expressed Gene Pathways in the Conjunctiva of Sjögren Syndrome Keratoconjunctivitis Sicca. Front Immunol 2021; 12:702755. [PMID: 34349764 PMCID: PMC8326832 DOI: 10.3389/fimmu.2021.702755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Sjögren syndrome (SS) is an autoimmune condition that targets the salivary and lacrimal glands, with cardinal clinical signs of dry eye (keratoconjunctivitis sicca, KCS) and dry mouth. The conjunctiva of SS patients is often infiltrated by immune cells that participate in the induction and maintenance of local inflammation. The purpose of this study was to investigate immune-related molecular pathways activated in the conjunctiva of SS patients. Female SS patients (n=7) and controls (n=19) completed a series of oral, ocular surface exams. Symptom severity scores were evaluated using validated questionnaires (OSDI and SANDE). All patients fulfilled the ACR/EULAR criteria for SS and the criteria for KCS. Fluorescein and lissamine green dye staining evaluated tear-break-up time (TBUT), corneal and conjunctival disease, respectively. Impression cytology of the temporal bulbar conjunctiva was performed to collect cells lysed and subjected to gene expression analysis using the NanoString Immunology Panel. 53/594 differentially expressed genes (DEGs) were observed between SS and healthy controls; 49 DEGs were upregulated, and 4 were downregulated (TRAF5, TGFBI, KLRAP1, and CMKLRI). The top 10 DEGs in descending order were BST2, IFITM1, LAMP3, CXCL1, IL19, CFB, LY96, MX1, IL4R, CDKN1A. Twenty pathways had a global significance score greater or equal to 2. Spearman correlations showed that 29/49 upregulated DEGs correlated with either TBUT (inverse) or OSDI or conjunctival staining score (positive correlations). Venn diagrams identified that 26/29 DEGs correlated with TBUT, 5/26 DEGs correlated with OSDI, and 16/26 correlated with conjunctival staining scores. Five upregulated DEGs (CFB, CFI, IL1R1, IL2RG, IL4R) were uniquely negatively correlated with TBUT. These data indicate that the conjunctiva of SS patients exhibits a phenotype of immune activation, although some genes could be inhibitory. Some of the DEGs and pathways overlap with previous DEGs in salivary gland biopsies, but new DEGs were identified, and some of these correlated with symptoms and signs of dry eye. Our results indicate that gene analysis of conjunctiva imprints is a powerful tool to understand the pathogenesis of SS and develop new therapeutic targets.
Collapse
Affiliation(s)
- Cintia S. de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia M. Trujillo-Vargas
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Laura Schaefer
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Robert A. Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | |
Collapse
|
41
|
Quartuccio L, De Marchi G, Longhino S, Manfrè V, Rizzo MT, Gandolfo S, Tommasini A, De Vita S, Fox R. Shared Pathogenetic Features Between Common Variable Immunodeficiency and Sjögren's Syndrome: Clues for a Personalized Medicine. Front Immunol 2021; 12:703780. [PMID: 34322134 PMCID: PMC8311857 DOI: 10.3389/fimmu.2021.703780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Common variable immunodeficiency disorders (CVID) are a group of rare diseases of the immune system and the most common symptomatic primary antibody deficiency in adults. The “variable” aspect of CVID refers to the approximately half of the patients who develop non-infective complications, mainly autoimmune features, in particular organ specific autoimmune diseases including thyroiditis, and cytopenias. Among these associated conditions, the incidence of lymphoma, including mucosal associated lymphoid tissue (MALT) type, is increased. Although these associated autoimmune disorders in CVID are generally attributed to Systemic Lupus Erythematosus (SLE), we propose that Sjogren’s syndrome (SS) is perhaps a better candidate for the associated disease. SS is an autoimmune disorder characterized by the lymphocytic infiltrates of lacrimal and salivary glands, leading to dryness of the eyes and mouth. Thus, it is a lymphocyte aggressive disorder, in contrast to SLE where pathology is generally attributed to auto-antibody and complement activation. Although systemic lupus erythematosus (SLE) shares these features with SS, a much higher frequency of MALT lymphoma distinguishes SS from SLE. Also, the higher frequency of germ line encoded paraproteins such as the monoclonal rheumatoid factor found in SS patients would be more consistent with the failure of B-cell VDJ switching found in CVID; and in contrast to the hypermutation that characterizes SLE autoantibodies. Thus, we suggest that SS may fit as a better “autoimmune” association with CVID. Examining the common underlying biologic mechanisms that promote lymphoid infiltration by dysregulated lymphocytes and lymphoma in CVID may provide new avenues for treatment in both the diseases. Since the diagnosis of SLE or rheumatoid arthritis is usually based on specific autoantibodies, the associated autoimmune features of CVID patients may not be recognized in the absence of autoantibodies.
Collapse
Affiliation(s)
- Luca Quartuccio
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Simone Longhino
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Valeria Manfrè
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Maria Teresa Rizzo
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | | | - Alberto Tommasini
- Pediatric Immunology, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, ASU FC, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Robert Fox
- Rheumatology Clinic, Scripps Memorial Hospital and Research Foundation, La Jolla, CA, United States
| |
Collapse
|
42
|
Imgenberg-Kreuz J, Rasmussen A, Sivils K, Nordmark G. Genetics and epigenetics in primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:2085-2098. [PMID: 30770922 PMCID: PMC8121440 DOI: 10.1093/rheumatology/key330] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
Primary Sjögren’s syndrome (pSS) is considered to be a multifactorial disease, where underlying genetic predisposition, epigenetic mechanisms and environmental factors contribute to disease development. In the last 5 years, the first genome-wide association studies in pSS have been completed. The strongest signal of association lies within the HLA genes, whereas the non-HLA genes IRF5 and STAT4 show consistent associations in multiple ethnicities but with a smaller effect size. The majority of the genetic risk variants are found at intergenic regions and their functional impact has in most cases not been elucidated. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNAs play a role in the pathogenesis of pSS by their modulating effects on gene expression and may constitute a dynamic link between the genome and phenotypic manifestations. This article reviews the hitherto published genetic studies and our current understanding of epigenetic mechanisms in pSS.
Collapse
Affiliation(s)
- Juliana Imgenberg-Kreuz
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Astrid Rasmussen
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kathy Sivils
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Gunnel Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden2Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
43
|
Vitali C, Minniti A, Pignataro F, Maglione W, Del Papa N. Management of Sjögren's Syndrome: Present Issues and Future Perspectives. Front Med (Lausanne) 2021; 8:676885. [PMID: 34164418 PMCID: PMC8215198 DOI: 10.3389/fmed.2021.676885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
In view of the new possibilities for the treatment of primary Sjögren's syndrome (pSS) given by the availability of new biotechnological agents targeting the various molecular and cellular actors of the pathological process of the disease, classification criteria aimed at selecting patients to be enrolled in therapeutic trials, and validated outcome measures to be used as response criteria to these new therapies, have been developed and validated in the last decades. Unfortunately, the therapeutic trials so far completed with these new treatments have yielded unsatisfactory or only partially positive results. The main issues that have been evoked to justify the poor results of the new therapeutic attempts are: (i) the extreme variability of the disease phenotypes of the patients enrolled in the trials, which are dependent on different underlying patterns of biological mechanisms, (ii) the fact that the disease has a long indolent course, and that most of the enrolled patients might already have irreversible clinical features. The advances in the research of new disease biomarkers that can better distinguish the different clinical phenotypes of patients and diagnose the disease in an earlier phase are also discussed.
Collapse
Affiliation(s)
- Claudio Vitali
- Rheumatology Outpatient Clinics, "Mater Domini" Humanitas Hospital, Castellanza, Italy
| | | | | | - Wanda Maglione
- Department of Rheumatology, ASST G. Pini-CTO, Milan, Italy
| | | |
Collapse
|
44
|
Jara D, Carvajal P, Castro I, Barrera MJ, Aguilera S, González S, Molina C, Hermoso M, González MJ. Type I Interferon Dependent hsa-miR-145-5p Downregulation Modulates MUC1 and TLR4 Overexpression in Salivary Glands From Sjögren's Syndrome Patients. Front Immunol 2021; 12:685837. [PMID: 34149728 PMCID: PMC8208490 DOI: 10.3389/fimmu.2021.685837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sjögren’s syndrome (SS) is an autoimmune disease that mainly affects salivary glands (SG) and is characterized by overactivation of the type I interferon (IFN) pathway. Type I IFNs can decrease the levels of hsa-miR-145-5p, a miRNA with anti-inflammatory roles that is downregulated in SG from SS-patients. Two relevant targets of hsa-miR-145-5p, mucin 1 (MUC1) and toll-like receptor 4 (TLR4) are overexpressed in SS-patients and contribute to SG inflammation and dysfunction. This study aimed to evaluate if hsa-miR-145-5p modulates MUC1 and TLR4 overexpression in SG from SS-patients in a type I IFN dependent manner. Labial SG (LSG) biopsies from 9 SS-patients and 6 controls were analyzed. We determined hsa-miR-145-5p levels by TaqMan assays and the mRNA levels of MUC1, TLR4, IFN-α, IFN-β, and IFN-stimulated genes (MX1, IFIT1, IFI44, and IFI44L) by real time-PCR. We also performed in vitro assays using type I IFNs and chemically synthesized hsa-miR-145-5p mimics and inhibitors. We validated the decreased hsa-miR-145-5p levels in LSG from SS-patients, which inversely correlated with the type I IFN score, mRNA levels of IFN-β, MUC1, TLR4, and clinical parameters of SS-patients (Ro/La autoantibodies and focus score). IFN-α or IFN-β stimulation downregulated hsa-miR-145-5p and increased MUC1 and TLR4 mRNA levels. Hsa-miR-145-5p overexpression decreased MUC1 and TLR4 mRNA levels, while transfection with a hsa-miR-145-5p inhibitor increased mRNA levels. Our findings show that type I IFNs decrease hsa-miR-145-5p expression leading to upregulation of MUC1 and TLR4. Together, this suggests that type I interferon-dependent hsa-miR-145-5p downregulation contributes to the perpetuation of inflammation in LSG from SS-patients.
Collapse
Affiliation(s)
- Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Marcela Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
45
|
Goel RR, Kotenko SV, Kaplan MJ. Interferon lambda in inflammation and autoimmune rheumatic diseases. Nat Rev Rheumatol 2021; 17:349-362. [PMID: 33907323 PMCID: PMC8077192 DOI: 10.1038/s41584-021-00606-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
Interferons are potent antiviral cytokines that modulate immunity in response to infection or other danger signals. In addition to their antiviral functions, type I interferons (IFNα and IFNβ) are important in the pathogenesis of autoimmune diseases. Type III interferons (IFNλs) were initially described as a specialized system that inhibits viral replication at epithelial barrier surfaces while limiting inflammatory damage. However, evidence now suggests that type III interferons have complex effects on both innate and adaptive immune responses and might also be pathogenic in systemic autoimmune diseases. Concentrations of IFNλs are increased in blood and tissues in a number of autoimmune rheumatic diseases, including systemic lupus erythematosus, and are further associated with specific clinical and laboratory parameters. This Review is aimed at providing a critical evaluation of the current literature on IFNλ biology and how type III interferons might contribute to immune dysregulation and tissue damage in autoimmunity. The potential effects of type III interferons on treatment strategies for autoimmune rheumatic diseases, such as interferon blockade, are also considered.
Collapse
Affiliation(s)
- Rishi R Goel
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Dela Cruz A, Kartha V, Tilston-Lunel A, Mi R, Reynolds TL, Mingueneau M, Monti S, Jensen JL, Skarstein K, Varelas X, Kukuruzinska MA. Gene expression alterations in salivary gland epithelia of Sjögren's syndrome patients are associated with clinical and histopathological manifestations. Sci Rep 2021; 11:11154. [PMID: 34045583 PMCID: PMC8159963 DOI: 10.1038/s41598-021-90569-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Sjögren's syndrome (SS) is a complex autoimmune disease associated with lymphocytic infiltration and secretory dysfunction of salivary and lacrimal glands. Although the etiology of SS remains unclear, evidence suggests that epithelial damage of the glands elicits immune and fibrotic responses in SS. To define molecular changes underlying epithelial tissue damage in SS, we laser capture microdissected (LCM) labial salivary gland epithelia from 8 SS and 8 non-SS controls for analysis by RNA sequencing (RNAseq). Computational interrogation of gene expression signatures revealed that, in addition to a division of SS and non-SS samples, there was a potential intermediate state overlapping clustering of SS and non-SS samples. Differential expression analysis uncovered signaling events likely associated with distinct SS pathogenesis. Notable signals included the enrichment of IFN-γ and JAK/STAT-regulated genes, and the induction of genes encoding secreted factors, such as LTF, BMP3, and MMP7, implicated in immune responses, matrix remodeling and tissue destruction. Identification of gene expression signatures of salivary epithelia associated with mixed clinical and histopathological characteristics suggests that SS pathology may be defined by distinct molecular subtypes. We conclude that gene expression changes arising in the damaged salivary epithelia may offer novel insights into the signals contributing to SS development and progression.
Collapse
Affiliation(s)
- Ariana Dela Cruz
- Department of Translational Dental Medicine, Boston University School of Dental Medicine, Boston, USA
| | - Vinay Kartha
- Department of Medicine, Boston University School of Medicine, Boston, USA
| | | | - Rongjuan Mi
- Department of Translational Dental Medicine, Boston University School of Dental Medicine, Boston, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | | | - Stefano Monti
- Department of Medicine, Boston University School of Medicine, Boston, USA
| | | | | | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, USA.
| | - Maria A Kukuruzinska
- Department of Translational Dental Medicine, Boston University School of Dental Medicine, Boston, USA.
| |
Collapse
|
47
|
Zhu X, Lu S, Zhu L, Yu M, Wei T, Zhu X, Chen D, Chen C. CXCR2 May Serve as a Useful Index of Disease Activity in Interstitial Lung Disease Associated With Primary Sjögren's Syndrome. Front Mol Biosci 2021; 8:640779. [PMID: 34055876 PMCID: PMC8155469 DOI: 10.3389/fmolb.2021.640779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease characterized by typical autoantibody production and lymphocytic-mediated exocrine gland damage. Interstitial lung disease (ILD) is a common complication of pSS and can be associated with a poor prognosis. However, the pathogenesis of ILD in pSS is still unclear. Methods: In this study, we used RNA sequencing to investigate the gene-expression profile of the minor salivary glands (MSGs) from 36 patients with ILD-pSS and 128 patients with non-ILD-pSS. Results: In the remarkably enriched chemokine-mediated signaling pathway, C-X-C motif chemokine receptor 2 (CXCR2), a receptor for interleukin-8, which participates in the activation of neutrophils, was found to be significantly elevated in both MSG and plasma from pSS patients with vs. without ILD (p < 0.001). Furthermore, the CXCR2 expression level in MSG and plasma was significantly associated with the diffusing capacity of the lungs for carbon monoxide, erythrocyte sedimentation rate, and EULAR Sjögren's Syndrome disease Activity Index in ILD-pSS. Conclusion: Therefore, with its potential role in ILD progression in patients with pSS and its strong association with clinical manifestations of the disease, CXCR2 may serve as a useful index for disease activity in ILD associated with pSS.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saisai Lu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixia Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengjiao Yu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingting Wei
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Chen
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Department of Pneumology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
48
|
Chi C, Taylor KE, Quach H, Quach D, Criswell LA, Barcellos LF. Hypomethylation mediates genetic association with the major histocompatibility complex genes in Sjögren's syndrome. PLoS One 2021; 16:e0248429. [PMID: 33886574 PMCID: PMC8062105 DOI: 10.1371/journal.pone.0248429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
Differential methylation of immune genes has been a consistent theme observed in Sjögren's syndrome (SS) in CD4+ T cells, CD19+ B cells, whole blood, and labial salivary glands (LSGs). Multiple studies have found associations supporting genetic control of DNA methylation in SS, which in the absence of reverse causation, has positive implications for the potential of epigenetic therapy. However, a formal study of the causal relationship between genetic variation, DNA methylation, and disease status is lacking. We performed a causal mediation analysis of DNA methylation as a mediator of nearby genetic association with SS using LSGs and genotype data collected from 131 female members of the Sjögren's International Collaborative Clinical Alliance registry, comprising of 64 SS cases and 67 non-cases. Bumphunter was used to first identify differentially-methylated regions (DMRs), then the causal inference test (CIT) was applied to identify DMRs mediating the association of nearby methylation quantitative trait loci (MeQTL) with SS. Bumphunter discovered 215 DMRs, with the majority located in the major histocompatibility complex (MHC) on chromosome 6p21.3. Consistent with previous findings, regions hypomethylated in SS cases were enriched for gene sets associated with immune processes. Using the CIT, we observed a total of 19 DMR-MeQTL pairs that exhibited strong evidence for a causal mediation relationship. Close to half of these DMRs reside in the MHC and their corresponding meQTLs are in the region spanning the HLA-DQA1, HLA-DQB1, and HLA-DQA2 loci. The risk of SS conferred by these corresponding MeQTLs in the MHC was further substantiated by previous genome-wide association study results, with modest evidence for independent effects. By validating the presence of causal mediation, our findings suggest both genetic and epigenetic factors contribute to disease susceptibility, and inform the development of targeted epigenetic modification as a therapeutic approach for SS.
Collapse
Affiliation(s)
- Calvin Chi
- Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, California, United States of America
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Kimberly E. Taylor
- Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Hong Quach
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Diana Quach
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Lindsey A. Criswell
- Department of Medicine, Russell/Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, California, United States of America
| | - Lisa F. Barcellos
- Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, California, United States of America
- Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
49
|
Haque M, Siegel RJ, Fox DA, Ahmed S. Interferon-stimulated GTPases in autoimmune and inflammatory diseases: promising role for the guanylate-binding protein (GBP) family. Rheumatology (Oxford) 2021; 60:494-506. [PMID: 33159795 DOI: 10.1093/rheumatology/keaa609] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human IFNs are secreted cytokines shown to stimulate the expression of over one thousand genes. These IFN-inducible genes primarily encode four major protein families, known as IFN-stimulated GTPases (ISGs), namely myxovirus-resistance proteins, guanylate-binding proteins (GBPs), p47 immunity-related GTPases and very large inducible guanosine triphosphate hydrolases (GTPases). These families respond specifically to type I or II IFNs and are well reported in coordinating immunity against some well known as well as newly discovered viral, bacterial and parasitic infections. A growing body of evidence highlights the potential contributory and regulatory roles of ISGs in dysregulated inflammation and autoimmune diseases. Our focus was to draw attention to studies that demonstrate increased expression of ISGs in the serum and affected tissues of patients with RA, SS, lupus, IBD and psoriasis. In this review, we analysed emerging literature describing the potential roles of ISGs, particularly the GBP family, in the context of autoimmunity. We also highlighted the promise and implications for therapeutically targeting IFNs and GBPs in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Mahamudul Haque
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Ruby J Siegel
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - David A Fox
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA.,Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
50
|
Role of the Innate Immunity Signaling Pathway in the Pathogenesis of Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms22063090. [PMID: 33803026 PMCID: PMC8002742 DOI: 10.3390/ijms22063090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by chronic inflammation of the salivary and lacrimal glands and extra-glandular lesions. Adaptive immune response including T- and B-cell activation contributes to the development of SS. However, its pathogenesis has not yet been elucidated. In addition, several patients with SS present with the type I interferon (IFN) signature, which is the upregulation of the IFN-stimulated genes induced by type I IFN. Thus, innate immune responses including type I IFN activity are associated with SS pathogenesis. Recent studies have revealed the presence of activation pattern recognition receptors (PRRs) including Toll-like receptors, RNA sensor retinoic acid-inducible gene I and melanoma differentiation-associated gene 5, and inflammasomes in infiltrating and epithelial cells of the salivary glands among patients with SS. In addition, the activation of PRRs via the downstream pathway such as the type I IFN signature and nuclear factor kappa B can directly cause organ inflammation, and it is correlated with the activation of adaptive immune responses. Therefore, this study assessed the role of the innate immune signal pathway in the development of inflammation and immune abnormalities in SS.
Collapse
|