1
|
Vakilzadeh H, Varshosaz J, Dinari M, Mirian M, Soghrati S. Co-delivery of Interferon Regulatory Factor 5 (IRF5) siRNA and dasatinib by a disulfide bond bearing polymeric carrier for enhanced anti-inflammatory effects. Int J Biol Macromol 2024; 282:137094. [PMID: 39486736 DOI: 10.1016/j.ijbiomac.2024.137094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Co-delivery of chemical drugs and nucleic acids has attracted a great interest recently for treatment of inflammatory diseases. Dasatinib (DB), a tyrosine kinase inhibitor with anti-cancer effects, and Interferon Regulatory Factor 5 (IRF5) siRNA have shown anti-inflammatory effects. In the present study, a novel redox-responsive polymeric micelle was designed for co-delivery of DB and IRF5 siRNA-expressing plasmid (psiRF5) to enhance anti-inflammatory effects on macrophages. psiRF5 was condensed efficiently to redox-responsive micelles of DB-conjugated chitosan (CN) composed of disulfide bond, from different molecular weights of CN to form CN-SS-DB/psiRF5 micelles. The micelles with optimum N/P ratios had particle sizes of 287.8 and 245.4 nm and positive zeta potentials. The disulfide bond bearing micelles showed a redox-responsive drug release, protected the plasmid from being dissociated or degraded in exposure with heparin, serum and DNase I, and significantly enhanced the transfection efficiency and IRF5-gene silencing compared to naked psiRF5. The optimum micelles exhibited a dramatic reduction in IRF5 expression and revealed a notably higher anti-inflammatory effect than either DB or psiRF5, as indicated by more IL-10 and less IL-6 and TNF-α production by LPS-stimulated RAW264.7 macrophages incubated with the co-delivery system. The resultant nanocarriers might be promising for more effective treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hamed Vakilzadeh
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sahel Soghrati
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Carmona-Pérez L, Dagenais-Lussier X, Mai LT, Stögerer T, Swaminathan S, Isnard S, Rice MR, Barnes BJ, Routy JP, van Grevenynghe J, Stäger S. The TLR7/IRF-5 axis sensitizes memory CD4+ T cells to Fas-mediated apoptosis during HIV-1 infection. JCI Insight 2023; 8:e167329. [PMID: 37227774 PMCID: PMC10371351 DOI: 10.1172/jci.insight.167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
HIV-1 infection is characterized by inflammation and a progressive decline in CD4+ T cell count. Despite treatment with antiretroviral therapy (ART), the majority of people living with HIV (PLWH) maintain residual levels of inflammation, a low degree of immune activation, and higher sensitivity to cell death in their memory CD4+ T cell compartment. To date, the mechanisms responsible for this high sensitivity remain elusive. We have identified the transcription factor IRF-5 to be involved in impairing the maintenance of murine CD4+ T cells during chronic infection. Here, we investigate whether IRF-5 also contributes to memory CD4+ T cell loss during HIV-1 infection. We show that TLR7 and IRF-5 were upregulated in memory CD4+ T cells from PLWH, when compared with naturally protected elite controllers and HIVfree participants. TLR7 was upstream of IRF-5, promoting Caspase 8 expression in CD4+ T cells from ART HIV-1+ but not from HIVfree donors. Interestingly, the TLR7/IRF-5 axis acted synergistically with the Fas/FasL pathway, suggesting that TLR7 and IRF-5 expression in ART HIV-1+ memory CD4+ T cells represents an imprint that predisposes cells to Fas-mediated apoptosis. This predisposition could be blocked using IRF-5 inhibitory peptides, suggesting IRF-5 blockade as a possible therapy to prevent memory CD4+ T cell loss in PLWH.
Collapse
Affiliation(s)
- Liseth Carmona-Pérez
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Linh T. Mai
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Tanja Stögerer
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Sharada Swaminathan
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Stéphane Isnard
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Matthew R. Rice
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien van Grevenynghe
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, and Infectiopôle-INRS, Laval, Quebec, Canada
| |
Collapse
|
3
|
Remodeling articular immune homeostasis with an efferocytosis-informed nanoimitator mitigates rheumatoid arthritis in mice. Nat Commun 2023; 14:817. [PMID: 36781864 PMCID: PMC9925448 DOI: 10.1038/s41467-023-36468-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Massive intra-articular infiltration of proinflammatory macrophages is a prominent feature of rheumatoid arthritis (RA) lesions, which are thought to underlie articular immune dysfunction, severe synovitis and ultimately joint erosion. Here we report an efferocytosis-informed nanoimitator (EINI) for in situ targeted reprogramming of synovial inflammatory macrophages (SIMs) that thwarts their autoimmune attack and reestablishes articular immune homeostasis, which mitigates RA. The EINI consists of a drug-based core with an oxidative stress-responsive phosphatidylserine (PtdSer) corona and a shell composed of a P-selectin-blocking motif, low molecular weight heparin (LMWH). When systemically administered, the LMWH on the EINI first binds to P-selectin overexpressed on the endothelium in subsynovial capillaries, which functions as an antagonist, disrupting neutrophil synovial trafficking. Due to the strong dysregulation of the synovial microvasculature, the EINI is subsequently enriched in the joint synovium where the shell is disassembled upon the reactive oxygen species stimulation, and PtdSer corona is then exposed. In an efferocytosis-like manner, the PtdSer-coroneted core is in turn phagocytosed by SIMs, which synergistically terminate SIM-initiated pathological cascades and serially reestablish intra-articular immune homeostasis, conferring a chondroprotective effect. These findings demonstrate that SIMs can be precisely remodeled via the efferocytosis-mimetic strategy, which holds potential for RA treatment.
Collapse
|
4
|
Kakkar V, Assassi S, Allanore Y, Kuwana M, Denton CP, Khanna D, Del Galdo F. Type 1 interferon activation in systemic sclerosis: a biomarker, a target or the culprit. Curr Opin Rheumatol 2022; 34:357-364. [PMID: 36125916 PMCID: PMC9594133 DOI: 10.1097/bor.0000000000000907] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW Activation of the type 1 interferon (T1 IFN) pathway has been implicated in the pathogenesis of systemic sclerosis (SSc) by an increasing number of studies, most of which share key findings with similar studies in systemic lupus erythematosus (SLE). Here we will focus on the evidence for T1 IFN activation and dysregulation in SSc, and the rationale behind targeting the pathway going forward. RECENT FINDINGS An increased expression and activation of T1 IFN-regulated genes has been shown to be present in a significant proportion of SSc patients. TI IFN activation markers have been found to predict and correlate with response to immunosuppressive treatment as well as severity of organ involvement. As inhibition of the IFN-α receptor has been proven to be effective in active SLE, benefit may be seen in targeting the IFN pathway in SSc. SUMMARY The role played by T1 IFN and its regulatory genes in SSc is becoming increasingly evident and strikingly similar to the role observed in SLE. This observation, together with the benefit of type 1 IFN targeting in SLE, supports the notion of a potential therapeutic benefit in targeting T1 IFN in SSc.
Collapse
Affiliation(s)
- Vishal Kakkar
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, Texas, USA
| | - Yannick Allanore
- INSERM U1016 UMR 8104, Université Paris Cité, Hôpital Cochin, Paris, France
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | | | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA
| | - Francesco Del Galdo
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Starskaia I, Laajala E, Grönroos T, Härkönen T, Junttila S, Kattelus R, Kallionpää H, Laiho A, Suni V, Tillmann V, Lund R, Elo LL, Lähdesmäki H, Knip M, Kalim UU, Lahesmaa R. Early DNA methylation changes in children developing beta cell autoimmunity at a young age. Diabetologia 2022; 65:844-860. [PMID: 35142878 PMCID: PMC8960578 DOI: 10.1007/s00125-022-05657-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is a chronic autoimmune disease of complex aetiology, including a potential role for epigenetic regulation. Previous epigenomic studies focused mainly on clinically diagnosed individuals. The aim of the study was to assess early DNA methylation changes associated with type 1 diabetes already before the diagnosis or even before the appearance of autoantibodies. METHODS Reduced representation bisulphite sequencing (RRBS) was applied to study DNA methylation in purified CD4+ T cell, CD8+ T cell and CD4-CD8- cell fractions of 226 peripheral blood mononuclear cell samples longitudinally collected from seven type 1 diabetes-specific autoantibody-positive individuals and control individuals matched for age, sex, HLA risk and place of birth. We also explored correlations between DNA methylation and gene expression using RNA sequencing data from the same samples. Technical validation of RRBS results was performed using pyrosequencing. RESULTS We identified 79, 56 and 45 differentially methylated regions in CD4+ T cells, CD8+ T cells and CD4-CD8- cell fractions, respectively, between type 1 diabetes-specific autoantibody-positive individuals and control participants. The analysis of pre-seroconversion samples identified DNA methylation signatures at the very early stage of disease, including differential methylation at the promoter of IRF5 in CD4+ T cells. Further, we validated RRBS results using pyrosequencing at the following CpG sites: chr19:18118304 in the promoter of ARRDC2; chr21:47307815 in the intron of PCBP3; and chr14:81128398 in the intergenic region near TRAF3 in CD4+ T cells. CONCLUSIONS/INTERPRETATION These preliminary results provide novel insights into cell type-specific differential epigenetic regulation of genes, which may contribute to type 1 diabetes pathogenesis at the very early stage of disease development. Should these findings be validated, they may serve as a potential signature useful for disease prediction and management.
Collapse
Affiliation(s)
- Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Essi Laajala
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Toni Grönroos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Roosa Kattelus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Henna Kallionpää
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Veronika Suni
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vallo Tillmann
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
6
|
Ota Y, Kuwana M. Updates on genetics in systemic sclerosis. Inflamm Regen 2021; 41:17. [PMID: 34130729 PMCID: PMC8204536 DOI: 10.1186/s41232-021-00167-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disease, in which an interaction of genetic and environmental factors plays an important role in its development and pathogenesis. A number of genetic studies, including candidate gene analysis and genome-wide association study, have found that the associated genetic variants are mainly localized in noncoding regions in the expression quantitative trait locus and influence corresponding gene expression. The gene variants identified as a risk for SSc susceptibility include those associated with innate immunity, adaptive immune response, and cell death, while there are only few SSc-associated genes involved in the fibrotic process or vascular homeostasis. Human leukocyte antigen class II genes are associated with SSc-related autoantibodies rather than SSc itself. Since the pathways between the associated genotype and phenotype are still poorly understood, further investigations using multi-omics technologies are necessary to characterize the complex molecular architecture of SSc, identify biomarkers useful to predict future outcomes and treatment responses, and discover effective drug targets.
Collapse
Affiliation(s)
- Yuko Ota
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan.
| |
Collapse
|
7
|
Mai LT, Smans M, Silva-Barrios S, Fabié A, Stäger S. IRF-5 Expression in Myeloid Cells Is Required for Splenomegaly in L. donovani Infected Mice. Front Immunol 2020; 10:3071. [PMID: 32038622 PMCID: PMC6985270 DOI: 10.3389/fimmu.2019.03071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023] Open
Abstract
Persistent Leishmania donovani infection is characterized by chronic inflammation, immune suppression, and splenomegaly. We have previously reported that the transcription factor interferon regulatory factor 5 (IRF-5) is largely responsible for inducing the inflammatory response and maintaining protective Th1 cells following L. donovani inoculation in mice. However, the cellular source responsible for these effects is yet unknown. In this study, we investigated the role of IRF-5 in myeloid cells during experimental visceral leishmaniasis (VL). First, we show that the LysM-Cre mouse model is not suited for investigating gene expression in splenic myeloid cells during experimental VL. Using the Cd11c-Cre mouse model, we demonstrate that Irf5 expression in CD11c+ cells (monocytes, dendritic cells, activated macrophages) is essential for inducing splenomegaly and for recruiting myeloid cells to the spleen, but it is not required for the development or maintenance of parasite-specific IFNγ-producing CD4 T cells. CD11c-specific Irf5 -/- mice are more resistant to L. donovani infection, suggesting that the induction of splenomegaly is detrimental to the host.
Collapse
Affiliation(s)
- Linh Thuy Mai
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Mélina Smans
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sasha Silva-Barrios
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Aymeric Fabié
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Simona Stäger
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| |
Collapse
|
8
|
Fabié A, Mai LT, Dagenais-Lussier X, Hammami A, van Grevenynghe J, Stäger S. IRF-5 Promotes Cell Death in CD4 T Cells during Chronic Infection. Cell Rep 2019; 24:1163-1175. [PMID: 30067973 DOI: 10.1016/j.celrep.2018.06.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 01/26/2023] Open
Abstract
The transcription factor interferon regulatory factor 5 (IRF-5) plays an important function in innate immunity and in initiating pro-inflammatory responses against pathogens. IRF-5 is constitutively expressed in several cell types, including plasmacytoid dendritic cells, monocytes, and B cells. We have previously reported that IRF-5 is also expressed in T cells during infection. The role of IRF-5 in T cells is yet unknown. Here, we demonstrate that IRF-5 is increasingly expressed in interferon (IFN)-γ+ CD4 T cells over the course of L. donovani infection. This transcription factor is induced by apoptotic material via Toll-like receptor 7 (TLR7) and promotes the expression of death receptor 5 (DR5). IRF-5 activation sensitizes CD4 T cells to cell death. Because tissue disruption and chronic inflammation are common characteristics of persistent infections, activation of IRF-5 in CD4 T cells may represent a common pathway that leads to suppression of protective CD4 T cell responses, favoring the establishment of chronic infection.
Collapse
Affiliation(s)
- Aymeric Fabié
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Linh Thuy Mai
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | | | - Akil Hammami
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | | | - Simona Stäger
- INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
9
|
Nasonov EL, Avdeeva AS. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-452-461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|
10
|
Hoepel W, Newling M, Vogelpoel LTC, Sritharan L, Hansen IS, Kapsenberg ML, Baeten DLP, Everts B, den Dunnen J. FcγR-TLR Cross-Talk Enhances TNF Production by Human Monocyte-Derived DCs via IRF5-Dependent Gene Transcription and Glycolytic Reprogramming. Front Immunol 2019; 10:739. [PMID: 31024565 PMCID: PMC6464031 DOI: 10.3389/fimmu.2019.00739] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Antigen-presenting cells (APCs) such as dendritic cells (DCs) are crucial for initiation of adequate inflammatory responses, which critically depends on the cooperated engagement of different receptors. In addition to pattern recognition receptors (PRRs), Fc gamma receptors (FcγRs) have recently been identified to be important in induction of inflammation by DCs. FcγRs that recognize IgG immune complexes, which are formed upon opsonization of pathogens, induce pro-inflammatory cytokine production through cross-talk with PRRs such as Toll-like receptors (TLRs). While the physiological function of FcγR-TLR cross-talk is to provide protective immunity against invading pathogens, undesired activation of FcγR-TLR cross-talk, e.g., by autoantibodies, also plays a major role in the development of chronic inflammatory disorders such as rheumatoid arthritis (RA). Yet, the molecular mechanisms of FcγR-TLR cross-talk are still largely unknown. Here, we identified that FcγR-TLR cross-talk-induced cytokine production critically depends on activation of the transcription factor interferon regulatory factor 5 (IRF5), which results from induction of two different pathways that converge on IRF5 activation. First, TLR stimulation induced phosphorylation of TBK1/IKKε, which is required for IRF5 phosphorylation and subsequent activation. Second, FcγR stimulation induced nuclear translocation of IRF5, which is essential for gene transcription by IRF5. We identified that IRF5 activation by FcγR-TLR cross-talk amplifies pro-inflammatory cytokine production by increasing cytokine gene transcription, but also by synergistically inducing glycolytic reprogramming, which is another essential process for induction of inflammatory responses by DCs. Combined, here we identified IRF5 as a pivotal component of FcγR-TLR cross-talk in human APCs. These data may provide new potential targets to suppress chronic inflammation in autoantibody-associated diseases that are characterized by undesired or excessive FcγR-TLR cross-talk, such as RA, systemic sclerosis, and systemic lupus erythematous.
Collapse
Affiliation(s)
- Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Melissa Newling
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Lisa T C Vogelpoel
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Lathees Sritharan
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Ivo S Hansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Martien L Kapsenberg
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Almuttaqi H, Udalova IA. Advances and challenges in targeting IRF5, a key regulator of inflammation. FEBS J 2018; 286:1624-1637. [PMID: 30199605 PMCID: PMC6563445 DOI: 10.1111/febs.14654] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/26/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Interferon regulatory factor 5 (IRF5) belongs to a family of transcription factors, originally implicated in antiviral responses and interferon production. However, studies conducted in different laboratories over the last decade have placed IRF5 as a central regulator of the inflammatory response. It has become clear that IRF5 contributes to the pathogenesis of many inflammatory and autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease and systemic lupus erythematosus. Given the role of IRF5 in physiology and disease, IRF5 represents a potential therapeutic target. However, despite a significant interest from the pharmaceutical industry, inhibitors that interfere with the IRF5 pathway remain elusive. Here, we review the advances made by various studies in targeting multiple steps of signalling leading to IRF5 activation with their therapeutic potential, and the possible complications of such strategies are discussed.
Collapse
|
12
|
Wang X, Guo J, Wang Y, Xiao Y, Wang L, Hua S. Genetic variants of interferon regulatory factor 5 associated with the risk of community-acquired pneumonia. Gene 2018; 679:73-80. [PMID: 30176312 DOI: 10.1016/j.gene.2018.08.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Interferon regulatory factor 5 (IRF5) is a key transcription factor involved in the control of the expression of pro-inflammatory cytokines and immune responses to infection, and multiple polymorphisms of the IFR5 gene have been shown to be associated with autoimmune and infectious diseases. Several studies have investigated single nucleotide polymorphisms (SNPs) in a number of genes associated with the susceptibility to or severity and outcome of community-acquired pneumonia (CAP), but no research has yet been conducted on the role of IRF5 gene polymorphisms in CAP. In this study, we investigated the effects of four IFR5 variants, rs77571059, rs2004640, rs10954213, and rs3807306 on the susceptibility to CAP by genotyping 228 CAP patients and 177 healthy donors. Our results indicated that IFR5 variants rs77571059 and rs2004640 and haplotype GTAA were associated with the susceptibility to CAP and rs77571059 was related to the severity of the disease, suggesting that IFR5 variants may contribute to the pathogenesis of CAP and may serve as prognostic markers of CAP susceptibility and outcome.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun 130021, PR China.
| | - Jia Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun 130021, PR China
| | - Ying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Jilin University, Changchun 130021, PR China
| | - Yue Xiao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Jilin University, Changchun 130021, PR China
| | - Liying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in First Hospital, Jilin University, Changchun 130021, PR China.
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
13
|
Abstract
The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including systemic lupus erythematosus, Sjögren syndrome, myositis, systemic sclerosis, and rheumatoid arthritis. In normal immune responses, type I interferons have a critical role in the defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate persistent activation of the type I interferon pathway. Genetic variations in type I interferon-related genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in type I interferon responses seen between patients within a given disease. Inappropriate activation of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to the dysregulation of the type I interferon pathway in a number of rheumatic diseases. Theoretically, differences in type I interferon activity between patients might predict response to immune-based therapies, as has been demonstrated for rheumatoid arthritis. A number of type I interferon and type I interferon pathway blocking therapies are currently in clinical trials, the results of which are promising thus far. This Review provides an overview of the many ways in which the type I interferon system affects rheumatic diseases.
Collapse
Affiliation(s)
- Theresa L. Wampler Muskardin
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Timothy B. Niewold
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Division of Rheumatology, Department of Medicine and Pediatrics, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Esmaeili Reykande S, Rezaei A, Sadr M, Shabani M, Najmi Varzaneh F, Ziaee V, Rezaei N. Association of interferon regulatory factor 5 (IRF5) gene polymorphisms with juvenile idiopathic arthritis. Clin Rheumatol 2018; 37:2661-2665. [PMID: 29423720 DOI: 10.1007/s10067-018-4010-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 11/24/2022]
Abstract
Interferon regulatory factor 5 (IRF5) is a member of IRF family which induce signaling pathways and are involved in modulation of cell growth, differentiation, apoptosis, and immune system activity. Juvenile idiopathic arthritis (JIA) is an auto-inflammatory syndrome where the inflammatory markers are believed to play a fundamental role in its pathogenesis. In this study, we aimed to assess the association of IRF5 gene polymorphisms with susceptibility of JIA in Iranian population. Three IRF5 single-nucleotide polymorphisms (rs10954213 A/G, rs2004640 G/T, and rs3807306 G/T) were genotyped using TaqMan assays in 55 patients with JIA and 63 matched healthy individuals. The frequency of the IRF5 rs2004640 T allele was significantly higher (69 vs 45%, P value = 0.0013) in JIA group as compared to control. The frequency of the IRF5 rs 2004640 G allele was significantly higher in the control group in comparison to JIA group (54 vs 32%, P value = 0.001). Allele and genotype frequencies of the rs10954213 and rs3807306 did not show any significant difference between JIA and control group. IRF5 rs 2004640 T allele can be considered as a risk factor for the development of JIA and presence of rs 2004640 G may be act as protective factor.
Collapse
Affiliation(s)
- Samira Esmaeili Reykande
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arezou Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsima Shabani
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Farnaz Najmi Varzaneh
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Baltimore, MD, USA
| | - Vahid Ziaee
- Division of Pediatric Rheumatology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 14194, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
15
|
Treuter E, Fan R, Huang Z, Jakobsson T, Venteclef N. Transcriptional repression in macrophages-basic mechanisms and alterations in metabolic inflammatory diseases. FEBS Lett 2017; 591:2959-2977. [DOI: 10.1002/1873-3468.12850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Eckardt Treuter
- Department of Biosciences and Nutrition; Center for Innovative Medicine (CIMED); Karolinska Institutet; Huddinge Sweden
| | - Rongrong Fan
- Department of Biosciences and Nutrition; Center for Innovative Medicine (CIMED); Karolinska Institutet; Huddinge Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition; Center for Innovative Medicine (CIMED); Karolinska Institutet; Huddinge Sweden
| | - Tomas Jakobsson
- Department of Laboratory Medicine; Karolinska Institutet; Huddinge Sweden
| | - Nicolas Venteclef
- UMR_S 1138 Cordeliers Research; Institut National de la Santé et de la Recherche Médicale (INSERM); Sorbonne Universités; Université Pierre et Marie-Curie; Paris France
| |
Collapse
|
16
|
Cushing L, Winkler A, Jelinsky SA, Lee K, Korver W, Hawtin R, Rao VR, Fleming M, Lin LL. IRAK4 kinase activity controls Toll-like receptor-induced inflammation through the transcription factor IRF5 in primary human monocytes. J Biol Chem 2017; 292:18689-18698. [PMID: 28924041 DOI: 10.1074/jbc.m117.796912] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in innate immune signaling by Toll-like receptors (TLRs), and loss of IRAK4 activity in mice and humans increases susceptibility to bacterial infections and causes defects in TLR and IL1 ligand sensing. However, the mechanism by which IRAK4 activity regulates the production of downstream inflammatory cytokines is unclear. Using transcriptomic and biochemical analyses of human monocytes treated with a highly potent and selective inhibitor of IRAK4, we show that IRAK4 kinase activity controls the activation of interferon regulatory factor 5 (IRF5), a transcription factor implicated in the pathogenesis of multiple autoimmune diseases. Following TLR7/8 stimulation by its agonist R848, chemical inhibition of IRAK4 abolished IRF5 translocation to the nucleus and thus prevented IRF5 binding to and activation of the promoters of inflammatory cytokines in human monocytes. We also found that IKKβ, an upstream IRF5 activator, is phosphorylated in response to the agonist-induced TLR signaling. Of note, IRAK4 inhibition blocked IKKβ phosphorylation but did not block the nuclear translocation of NFκB, which was surprising, given the canonical role of IKKβ in phosphorylating IκB to allow NFκB activation. Moreover, pharmacological inhibition of either IKKβ or the serine/threonine protein kinase TAK1 in monocytes blocked TLR-induced cytokine production and IRF5 translocation to the nucleus, but not nuclear translocation of NFκB. Taken together, our data suggest a mechanism by which IRAK4 activity regulates TAK1 and IKKβ activation, leading to the nuclear translocation of IRF5 and induction of inflammatory cytokines in human monocytes.
Collapse
Affiliation(s)
- Leah Cushing
- From the Departments of Inflammation and Immunology and
| | - Aaron Winkler
- From the Departments of Inflammation and Immunology and
| | | | - Katherine Lee
- Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts 02139 and
| | - Wouter Korver
- Nodality Inc., South San Francisco, California 94080
| | | | - Vikram R Rao
- From the Departments of Inflammation and Immunology and
| | | | - Lih-Ling Lin
- From the Departments of Inflammation and Immunology and
| |
Collapse
|
17
|
Teos LY, Alevizos I. Genetics of Sjögren's syndrome. Clin Immunol 2017; 182:41-47. [PMID: 28476436 PMCID: PMC5660941 DOI: 10.1016/j.clim.2017.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/30/2017] [Accepted: 04/30/2017] [Indexed: 12/14/2022]
Abstract
The pathogenesis of Sjögren's syndrome has not been elucidated. There has been evidence that genetics play an important role in the development of this disease from earlier studies. However, till now only a number of genes have been identified to be associated with SS, and these have only a weak or moderate effect. In this review we summarize the findings of the genetics studies and emphasize the need of large multicenter projects that will increase the sample sizes to provide more meaningful associations, as is the case in other common autoimmune diseases.
Collapse
Affiliation(s)
- Leyla Y Teos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Ilias Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Vernerova L, Spoutil F, Vlcek M, Krskova K, Penesova A, Meskova M, Marko A, Raslova K, Vohnout B, Rovensky J, Killinger Z, Jochmanova I, Lazurova I, Steiner G, Smolen J, Imrich R. A Combination of CD28 (rs1980422) and IRF5 (rs10488631) Polymorphisms Is Associated with Seropositivity in Rheumatoid Arthritis: A Case Control Study. PLoS One 2016; 11:e0153316. [PMID: 27092776 PMCID: PMC4836711 DOI: 10.1371/journal.pone.0153316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/28/2016] [Indexed: 12/15/2022] Open
Abstract
Introduction The aim of the study was to analyse genetic architecture of RA by utilizing multiparametric statistical methods such as linear discriminant analysis (LDA) and redundancy analysis (RDA). Methods A total of 1393 volunteers, 499 patients with RA and 894 healthy controls were included in the study. The presence of shared epitope (SE) in HLA-DRB1 and 11 SNPs (PTPN22 C/T (rs2476601), STAT4 G/T (rs7574865), CTLA4 A/G (rs3087243), TRAF1/C5 A/G (rs3761847), IRF5 T/C (rs10488631), TNFAIP3 C/T (rs5029937), AFF3 A/T (rs11676922), PADI4 C/T (rs2240340), CD28 T/C (rs1980422), CSK G/A (rs34933034) and FCGR3A A/C (rs396991), rheumatoid factor (RF), anti–citrullinated protein antibodies (ACPA) and clinical status was analysed using the LDA and RDA. Results HLA-DRB1, PTPN22, STAT4, IRF5 and PADI4 significantly discriminated between RA patients and healthy controls in LDA. The correlation between RA diagnosis and the explanatory variables in the model was 0.328 (Trace = 0.107; F = 13.715; P = 0.0002). The risk variants of IRF5 and CD28 genes were found to be common determinants for seropositivity in RDA, while positivity of RF alone was associated with the CTLA4 risk variant in heterozygous form. The correlation between serologic status and genetic determinants on the 1st ordinal axis was 0.468, and 0.145 on the 2nd one (Trace = 0.179; F = 6.135; P = 0.001). The risk alleles in AFF3 gene together with the presence of ACPA were associated with higher clinical severity of RA. Conclusions The association among multiple risk variants related to T cell receptor signalling with seropositivity may play an important role in distinct clinical phenotypes of RA. Our study demonstrates that multiparametric analyses represent a powerful tool for investigation of mutual relationships of potential risk factors in complex diseases such as RA.
Collapse
Affiliation(s)
- Lucia Vernerova
- Institute of Clinical and Translational Research, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Frantisek Spoutil
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Vlcek
- Institute of Clinical and Translational Research, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Krskova
- Institute of Clinical and Translational Research, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Adela Penesova
- Institute of Clinical and Translational Research, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milada Meskova
- Institute of Clinical and Translational Research, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Marko
- Institute of Clinical and Translational Research, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | - Jozef Rovensky
- National Institute of Rheumatic Diseases, Piešťany, Slovakia
| | - Zdenko Killinger
- 5th Department of Internal Medicine, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Ivana Jochmanova
- 1st Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Ivica Lazurova
- 1st Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Guenter Steiner
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Josef Smolen
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Richard Imrich
- Institute of Clinical and Translational Research, Biomedical Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
19
|
Duffau P, Menn-Josephy H, Cuda CM, Dominguez S, Aprahamian TR, Watkins AA, Yasuda K, Monach P, Lafyatis R, Rice LM, Kenneth Haines G, Gravallese EM, Baum R, Richez C, Perlman H, Bonegio RG, Rifkin IR. Promotion of Inflammatory Arthritis by Interferon Regulatory Factor 5 in a Mouse Model. Arthritis Rheumatol 2016; 67:3146-57. [PMID: 26315890 DOI: 10.1002/art.39321] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/04/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Polymorphisms in the transcription factor interferon regulatory factor 5 (IRF5) are associated with an increased risk of developing rheumatoid arthritis (RA). This study was undertaken to determine the role of IRF5 in a mouse model of arthritis development. METHODS K/BxN serum-transfer arthritis was induced in mice deficient in IRF5, or lacking IRF5 only in myeloid cells, and arthritis severity was evaluated. K/BxN arthritis was also induced in mice deficient in TRIF, Toll-like receptor 2 (TLR2), TLR3, TLR4, and TLR7 to determine the pathways through which IRF5 might promote arthritis. In vitro studies were performed to determine the role of IRF5 in interleukin-1 (IL-1) receptor and TLR signaling. RESULTS Arthritis severity was reduced in IRF5-deficient, TRIF-deficient, TLR3-deficient, and TLR7-deficient mice. The expression of multiple genes regulating neutrophil recruitment or function and bioactive IL-1β formation was reduced in the joints during active arthritis in IRF5-deficient mice. In vitro studies showed that TLR7 and the TRIF-dependent TLR3 pathway induce proinflammatory cytokine production in disease-relevant cell types in an IRF5-dependent manner. CONCLUSION Our findings indicate that IRF5 contributes to disease pathogenesis in inflammatory arthritis. This is likely due at least in part to the role of IRF5 in mediating proinflammatory cytokine production downstream of TLR7 and TLR3. Since TLR7 and TLR3 are both RNA-sensing TLRs, this suggests that endogenous RNA ligands present in the inflamed joint promote arthritis development. These findings may be relevant to human RA, since RNA capable of activating TLR7 and TLR3 is present in synovial fluid and TLR7 and TLR3 are up-regulated in the joints of RA patients.
Collapse
Affiliation(s)
- Pierre Duffau
- Boston University School of Medicine, Boston, Massachusetts, and Hôpital Saint-André, Centre Hospitalier Universitaire de Bordeaux and Université de Bordeaux, CNRS UMR 5164, Bordeaux, France
| | | | | | | | | | | | - Kei Yasuda
- Boston University School of Medicine, Boston, Massachusetts
| | - Paul Monach
- Boston University School of Medicine, Boston, Massachusetts
| | | | - Lisa M Rice
- Boston University School of Medicine, Boston, Massachusetts
| | | | | | - Rebecca Baum
- University of Massachusetts Medical School, Worcester
| | - Christophe Richez
- Hôpital Pellegrin, Centre Hospitalier Universitaire de Bordeaux, and Université de Bordeaux, CNRS UMR 5164, Bordeaux, France
| | | | | | - Ian R Rifkin
- Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
20
|
Abstract
Interferon regulatory factor 5 (IRF5) has been demonstrated as a key transcription factor of the immune system, playing important roles in modulating inflammatory immune responses in numerous cell types including dendritic cells, macrophages, and B cells. As well as driving the expression of type I interferon in antiviral responses, IRF5 is also crucial for driving macrophages toward a proinflammatory phenotype by regulating cytokine and chemokine expression and modulating B-cell maturity and antibody production. This review highlights the functional importance of IRF5 in a disease setting, by discussing polymorphic mutations at the human Irf5 locus that lead to susceptibility to systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In concordance with this, we also discuss lessons in IRF5 functionality learned from murine in vivo models of autoimmune disease and inflammation and hypothesize that modulation of IRF5 activity and expression could provide potential therapeutic benefits in the clinic.
Collapse
Affiliation(s)
- Hayley L Eames
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| | - Alastair L Corbin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
21
|
Affiliation(s)
- Jianping Guo
- Department of Rheumatology and Immunology; Peking University People's Hospital; Beijing China
| | - Zhanguo Li
- Department of Rheumatology and Immunology; Peking University People's Hospital; Beijing China
| |
Collapse
|
22
|
Stein S, Lu ZX, Bahrami-Samani E, Park JW, Xing Y. Discover hidden splicing variations by mapping personal transcriptomes to personal genomes. Nucleic Acids Res 2015; 43:10612-22. [PMID: 26578562 PMCID: PMC4678817 DOI: 10.1093/nar/gkv1099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/09/2015] [Indexed: 01/27/2023] Open
Abstract
RNA-seq has become a popular technology for studying genetic variation of pre-mRNA alternative splicing. Commonly used RNA-seq aligners rely on the consensus splice site dinucleotide motifs to map reads across splice junctions. Consequently, genomic variants that create novel splice site dinucleotides may produce splice junction RNA-seq reads that cannot be mapped to the reference genome. We developed and evaluated an approach to identify ‘hidden’ splicing variations in personal transcriptomes, by mapping personal RNA-seq data to personal genomes. Computational analysis and experimental validation indicate that this approach identifies personal specific splice junctions at a low false positive rate. Applying this approach to an RNA-seq data set of 75 individuals, we identified 506 personal specific splice junctions, among which 437 were novel splice junctions not documented in current human transcript annotations. 94 splice junctions had splice site SNPs associated with GWAS signals of human traits and diseases. These involve genes whose splicing variations have been implicated in diseases (such as OAS1), as well as novel associations between alternative splicing and diseases (such as ICA1). Collectively, our work demonstrates that the personal genome approach to RNA-seq read alignment enables the discovery of a large but previously unknown catalog of splicing variations in human populations.
Collapse
Affiliation(s)
- Shayna Stein
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhi-Xiang Lu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L, Tomezsko P, Sharei A, Kourjian G, Porichis F, Hart M, Palmer CD, Sirignano M, Beisel C, Hildebrandt H, Cénac C, Villani AC, Diefenbach TJ, Le Gall S, Schwartz O, Herbeuval JP, Autran B, Guéry JC, Chang JJ, Altfeld M. Sex Differences in Plasmacytoid Dendritic Cell Levels of IRF5 Drive Higher IFN-α Production in Women. THE JOURNAL OF IMMUNOLOGY 2015; 195:5327-36. [PMID: 26519527 DOI: 10.4049/jimmunol.1501684] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 01/17/2023]
Abstract
Increased IFN-α production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFN-α upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. In this article, we show that basal levels of IFN regulatory factor (IRF) 5 in pDCs were significantly higher in females compared with males and positively correlated with the percentage of IFN-α-secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFN-α secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced Irf5 mRNA expression in pDCs and IFN-α production. IRF5 mRNA levels furthermore correlated with ESR1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by ESR1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFN-α production upon TLR7 stimulation in females and provide novel targets for the modulation of immune responses and inflammation.
Collapse
Affiliation(s)
- Morgane Griesbeck
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; Centre d'Immunonologie et des Maladies Infectieuses-Paris, Université Pierre et Marie Curie/INSERM U1135, Hôpital Pitié Salpêtrière, Paris 75013, France
| | - Susanne Ziegler
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20246, Germany
| | - Sophie Laffont
- INSERM U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France
| | - Nikaïa Smith
- Chemistry and Biology, Nucleotides and Immunology for Therapy, CNRS UMR-8601, Université Paris Descartes, Paris 75270, France
| | - Lise Chauveau
- Institut Pasteur, Unité de recherche associée CNRS 3015, Unite Virus et Immunité, Paris 75015, France
| | | | - Armon Sharei
- The David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139
| | | | | | - Meghan Hart
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | | | | | - Claudia Beisel
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20246, Germany; Medical Department, University Hospital Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Heike Hildebrandt
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20246, Germany
| | - Claire Cénac
- INSERM U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France
| | | | | | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Olivier Schwartz
- Institut Pasteur, Unité de recherche associée CNRS 3015, Unite Virus et Immunité, Paris 75015, France
| | - Jean-Philippe Herbeuval
- Chemistry and Biology, Nucleotides and Immunology for Therapy, CNRS UMR-8601, Université Paris Descartes, Paris 75270, France
| | - Brigitte Autran
- Centre d'Immunonologie et des Maladies Infectieuses-Paris, Université Pierre et Marie Curie/INSERM U1135, Hôpital Pitié Salpêtrière, Paris 75013, France
| | - Jean-Charles Guéry
- INSERM U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse F-31300, France
| | - J Judy Chang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3800, Australia
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139; Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg 20246, Germany;
| |
Collapse
|
24
|
Ryzhakov G, Eames HL, Udalova IA. Activation and Function of Interferon Regulatory Factor 5. J Interferon Cytokine Res 2015; 35:71-8. [DOI: 10.1089/jir.2014.0023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Grigory Ryzhakov
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hayley L. Eames
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Irina A. Udalova
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Type I IFNs as biomarkers in rheumatoid arthritis: towards disease profiling and personalized medicine. Clin Sci (Lond) 2014; 128:449-64. [DOI: 10.1042/cs20140554] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RA (rheumatoid arthritis) is a chronic rheumatic condition hallmarked by joint inflammation and destruction by self-reactive immune responses. Clinical management of RA patients is often hampered by its heterogeneous nature in both clinical presentation and outcome, thereby highlighting the need for new predictive biomarkers. In this sense, several studies have recently revealed a role for type I IFNs (interferons), mainly IFNα, in the pathogenesis of a subset of RA patients. Genetic variants associated with the type I IFN pathway have been linked with RA development, as well as with clinical features. Moreover, a role for IFNα as a trigger for RA development has also been described. Additionally, a type I IFN signature has been associated with the early diagnosis of RA and clinical outcome prediction in patients undergoing biological drug treatment, two challenging issues for decision-making in the clinical setting. Moreover, these cytokines have been related to endothelial damage and vascular repair failure in different autoimmune disorders. Therefore, together with chronic inflammation and disease features, they could probably account for the increased cardiovascular disease morbidity and mortality of these patients. The main aim of the present review is to provide recent evidence supporting a role for type I IFNs in the immunopathology of RA, as well as to analyse their possible role as biomarkers for disease management.
Collapse
|
26
|
Negi VS, Muralidharan N, Mehra S, Devaraju P, Mariaselvam CM, Gulati R, Salah S, Fortier C, Charron D, Krishnamoorthy R, Tamouza R. IRF5rs2004640 single nucleotide polymorphism is associated with susceptibility to rheumatoid arthritis in South Indian Tamils. ACTA ACUST UNITED AC 2014; 84:465-70. [PMID: 25284481 DOI: 10.1111/tan.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 11/29/2022]
Abstract
Polymorphism of interferon regulatory factor 5 (IRF5), a latent transcription factor gene has been associated with various auto-immune diseases. Our aim was to study the IRF5rs2004640 gene polymorphism and its association with disease susceptibility, disease phenotype and treatment response in South Indian Tamil patients with rheumatoid arthritis (RA).The study was conducted on 217 RA patients fulfilling the American College of Rheumatology (ACR) 2010 criteria and 482 healthy controls (HCs) without family history of autoimmune disease. The IRF5rs2004640 genotyping was performed using a TaqMan 5' allelic discrimination assay. We found that the IRF5rs2004640T allele [P < 0.0001, odds ratio (OR) 3.25, 95% confidence interval (CI) 2.55-4.12] and TT genotype (P < 0.0001, OR 4.60, 95% CI 3.23-6.57) were significantly more frequent in RA patients as compared with HCs. No association was found between IRF5rs2004640 polymorphism, clinical manifestations, autoantibody profile and treatment response. IRF5rs2004640 T (mutant) allele may be a susceptibility factor conferring risk for RA in South Indian Tamils, whereas G allele (wild type) may be protective.
Collapse
Affiliation(s)
- V S Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ferreiro-Iglesias A, Calaza M, Perez-Pampin E, Lopez Longo FJ, Marenco JL, Blanco FJ, Narvaez J, Navarro F, Cañete JD, de la Serna AR, Gonzalez-Alvaro I, Herrero-Beaumont G, Pablos JL, Balsa A, Fernandez-Gutierrez B, Caliz R, Gomez-Reino JJ, Gonzalez A. Lack of replication of interactions between polymorphisms in rheumatoid arthritis susceptibility: case-control study. Arthritis Res Ther 2014; 16:436. [PMID: 25260880 PMCID: PMC4207328 DOI: 10.1186/s13075-014-0436-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/21/2014] [Indexed: 01/18/2023] Open
Abstract
Introduction Approximately 100 loci have been definitively associated with rheumatoid arthritis (RA) susceptibility. However, they explain only a fraction of RA heritability. Interactions between polymorphisms could explain part of the remaining heritability. Multiple interactions have been reported, but only the shared epitope (SE) × protein tyrosine phosphatase nonreceptor type 22 (PTPN22) interaction has been replicated convincingly. Two recent studies deserve attention because of their quality, including their replication in a second sample collection. In one of them, researchers identified interactions between PTPN22 and seven single-nucleotide polymorphisms (SNPs). The other showed interactions between the SE and the null genotype of glutathione S-transferase Mu 1 (GSTM1) in the anti–cyclic citrullinated peptide–positive (anti-CCP+) patients. In the present study, we aimed to replicate association with RA susceptibility of interactions described in these two high-quality studies. Methods A total of 1,744 patients with RA and 1,650 healthy controls of Spanish ancestry were studied. Polymorphisms were genotyped by single-base extension. SE genotypes of 736 patients were available from previous studies. Interaction analysis was done using multiple methods, including those originally reported and the most powerful methods described. Results Genotypes of one of the SNPs (rs4695888) failed quality control tests. The call rate for the other eight polymorphisms was 99.9%. The frequencies of the polymorphisms were similar in RA patients and controls, except for PTPN22 SNP. None of the interactions between PTPN22 SNPs and the six SNPs that met quality control tests was replicated as a significant interaction term—the originally reported finding—or with any of the other methods. Nor was the interaction between GSTM1 and the SE replicated as a departure from additivity in anti-CCP+ patients or with any of the other methods. Conclusions None of the interactions tested were replicated in spite of sufficient power and assessment with different assays. These negative results indicate that whether interactions are significant contributors to RA susceptibility remains unknown and that strict standards need to be applied to claim that an interaction exists.
Collapse
|
28
|
Saliba DG, Heger A, Eames HL, Oikonomopoulos S, Teixeira A, Blazek K, Androulidaki A, Wong D, Goh FG, Weiss M, Byrne A, Pasparakis M, Ragoussis J, Udalova IA. IRF5:RelA interaction targets inflammatory genes in macrophages. Cell Rep 2014; 8:1308-17. [PMID: 25159141 PMCID: PMC4471814 DOI: 10.1016/j.celrep.2014.07.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/10/2014] [Accepted: 07/22/2014] [Indexed: 12/23/2022] Open
Abstract
Interferon Regulatory Factor 5 (IRF5) plays a major role in setting up an inflammatory macrophage phenotype, but the molecular basis of its transcriptional activity is not fully understood. In this study, we conduct a comprehensive genome-wide analysis of IRF5 recruitment in macrophages stimulated with bacterial lipopolysaccharide and discover that IRF5 binds to regulatory elements of highly transcribed genes. Analysis of protein:DNA microarrays demonstrates that IRF5 recognizes the canonical IRF-binding (interferon-stimulated response element [ISRE]) motif in vitro. However, IRF5 binding in vivo appears to rely on its interactions with other proteins. IRF5 binds to a noncanonical composite PU.1:ISRE motif, and its recruitment is aided by RelA. Global gene expression analysis in macrophages deficient in IRF5 and RelA highlights the direct role of the RelA:IRF5 cistrome in regulation of a subset of key inflammatory genes. We map the RelA:IRF5 interaction domain and suggest that interfering with it would offer selective targeting of macrophage inflammatory activities. Genome-wide function of IRF5 in LPS-stimulated macrophages was analyzed IRF5 cistrome overlaps with RelA cistrome at multiple loci IRF5 targets regulatory elements of highly inducible inflammatory genes IRF5 recruitment to key inflammatory loci is assisted by RelA
Collapse
Affiliation(s)
- David G Saliba
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Andreas Heger
- CGAT, MRC Functional Genomics Unit, University of Oxford, South Parks Road, Oxford OX13PT, UK
| | - Hayley L Eames
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Spyros Oikonomopoulos
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ana Teixeira
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Katrina Blazek
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Ariadne Androulidaki
- Institute for Genetics, University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne 50931, Germany
| | - Daniel Wong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Fui G Goh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Miriam Weiss
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Adam Byrne
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK
| | - Manolis Pasparakis
- Institute for Genetics, University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne 50931, Germany
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX37FY, UK.
| |
Collapse
|
29
|
Yu X, Wei B, Dai Y, Zhang M, Wu J, Xu X, Jiang G, Zheng S, Zhou L. Genetic polymorphism of interferon regulatory factor 5 (IRF5) correlates with allograft acute rejection of liver transplantation. PLoS One 2014; 9:e94426. [PMID: 24788560 PMCID: PMC4005731 DOI: 10.1371/journal.pone.0094426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/16/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although liver transplantation is one of the most efficient curative therapies of end stage liver diseases, recipients may suffer liver graft loss opst-operation. IRF-5, a member of Interferon Regulatory Factors, functions as a key regulator in TLR4 cascade, and is capable of inducing inflammatory cytokines. Although TLR4 has been proved to contribute to acute allograft rejection, including after liver transplantation, the correlation between IRF5 gene and acute rejection has not been elucidated yet. METHODS The study enrolled a total of 289 recipients, including 39 females and 250 males, and 39 recipients developed acute allograft rejection within 6 months post-transplantation. The allograft rejections were diagnosed by liver biopsies. Genome DNA of recipients was extracted from pre-operative peripheral blood. Genotyping of IRF-5, including rs3757385, rs752637 and rs11761199, was performed, followed by SNP frequency and Hardy-Weinberg equilibrium analysis. RESULTS The genetic polymorphism of rs3757385 was found associated with acute rejection. G/G homozygous individuals were at higher risk of acute rejection, with a P value of 0.042 (OR = 2.34 (1.07-5.10)). CONCLUSIONS IRF5, which transcriptionally activates inflammatory cytokines, is genetically associated with acute rejection and might function as a risk factor for acute rejection of liver transplantations.
Collapse
Affiliation(s)
- Xiaobo Yu
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bajin Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Dai
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guoping Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
30
|
Courties G, Heidt T, Sebas M, Iwamoto Y, Jeon D, Truelove J, Tricot B, Wojtkiewicz G, Dutta P, Sager HB, Borodovsky A, Novobrantseva T, Klebanov B, Fitzgerald K, Anderson DG, Libby P, Swirski FK, Weissleder R, Nahrendorf M. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol 2013; 63:1556-66. [PMID: 24361318 DOI: 10.1016/j.jacc.2013.11.023] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/15/2013] [Accepted: 11/05/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The aim of this study was to test whether silencing of the transcription factor interferon regulatory factor 5 (IRF5) in cardiac macrophages improves infarct healing and attenuates post-myocardial infarction (MI) remodeling. BACKGROUND In healing wounds, the M1 toward M2 macrophage phenotype transition supports resolution of inflammation and tissue repair. Persistence of inflammatory M1 macrophages may derail healing and compromise organ functions. The transcription factor IRF5 up-regulates genes associated with M1 macrophages. METHODS Here we used nanoparticle-delivered small interfering ribonucleic acid (siRNA) to silence IRF5 in macrophages residing in MIs and in surgically-induced skin wounds in mice. RESULTS Infarct macrophages expressed high levels of IRF5 during the early inflammatory wound-healing stages (day 4 after coronary ligation), whereas expression of the transcription factor decreased during the resolution of inflammation (day 8). Following in vitro screening, we identified an siRNA sequence that, when delivered by nanoparticles to wound macrophages, efficiently suppressed expression of IRF5 in vivo. Reduction of IRF5 expression, a factor that regulates macrophage polarization, reduced expression of inflammatory M1 macrophage markers, supported resolution of inflammation, accelerated cutaneous and infarct healing, and attenuated development of post-MI heart failure after coronary ligation as measured by protease targeted fluorescence molecular tomography-computed tomography imaging and cardiac magnetic resonance imaging (p < 0.05). CONCLUSIONS This work identified a new therapeutic avenue to augment resolution of inflammation in healing infarcts by macrophage phenotype manipulation. This therapeutic concept may be used to attenuate post-MI remodeling and heart failure.
Collapse
Affiliation(s)
- Gabriel Courties
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Timo Heidt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matthew Sebas
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Derrick Jeon
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jessica Truelove
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Benoit Tricot
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Greg Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hendrik B Sager
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Division of Health Science Technology, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
Clark DN, Lambert JP, Till RE, Argueta LB, Greenhalgh KE, Henrie B, Bills T, Hawkley TF, Roznik MG, Sloan JM, Mayhew V, Woodland L, Nelson EP, Tsai MH, Poole BD. Molecular effects of autoimmune-risk promoter polymorphisms on expression, exon choice, and translational efficiency of interferon regulatory factor 5. J Interferon Cytokine Res 2013; 34:354-65. [PMID: 24350899 DOI: 10.1089/jir.2012.0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rs2004640 single nucleotide polymorphism and the CGGGG copy-number variant (rs77571059) are promoter polymorphisms within interferon regulatory factor 5 (IRF5). They have been implicated as susceptibility factors for several autoimmune diseases. IRF5 uses alternative promoter splicing, where any of 4 first exons begin the mRNA. The CGGGG indel is in exon 1A's promoter; the rs2004640 allele creates a splicing recognition site, enabling usage of exon 1B. This study aimed at characterizing alterations in IRF5 mRNA due to these polymorphisms. Cells with risk polymorphisms exhibited ~2-fold higher levels of IRF5 mRNA and protein, but demonstrated no change in mRNA stability. Quantitative PCR demonstrated decreased usage of exons 1C and 1D in cell lines with the risk polymorphisms. RNA folding analysis revealed a hairpin in exon 1B; mutational analysis showed that the hairpin shape decreased translation 5-fold. Although translation of mRNA that uses exon 1B is low due to a hairpin, increased IRF5 mRNA levels in individuals with the rs2004640 risk allele lead to higher overall protein expression. In addition, several new splice variants of IRF5 were sequenced. IRF5's promoter polymorphisms alter first exon usage and increase transcription levels. High levels of IRF5 may bias the immune system toward autoimmunity.
Collapse
Affiliation(s)
- Daniel N Clark
- Department of Microbiology and Molecular Biology, Brigham Young University , Provo, Utah
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Clark DN, Read RD, Mayhew V, Petersen SC, Argueta LB, Stutz LA, Till RE, Bergsten SM, Robinson BS, Baumann DG, Heap JC, Poole BD. Four Promoters of IRF5 Respond Distinctly to Stimuli and are Affected by Autoimmune-Risk Polymorphisms. Front Immunol 2013; 4:360. [PMID: 24223576 PMCID: PMC3819785 DOI: 10.3389/fimmu.2013.00360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/23/2013] [Indexed: 01/18/2023] Open
Abstract
Introduction: Autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis affect millions of people worldwide. Interferon regulatory factor 5 (IRF5) contains polymorphisms associated with these autoimmune diseases. Two of these functional polymorphisms are found upstream of the IRF5 gene. rs2004640, which is a single nucleotide polymorphism and the CGGGG insertion/deletion (indel) were studied. IRF5 uses four different promoters for its four first exons: 1A, 1B, 1C, and 1D. Each promoter was analyzed, including functional differences due to the autoimmune-risk polymorphisms. Results: IRF5 promoters were analyzed using ChIP-Seq data (ENCODE database) and the FactorBook database to define transcription factor binding sites. To verify promoter activity, the promoters were cloned into luciferase plasmids. Each construct exhibited luciferase activity. Exons 1A and 1D contain putative PU.1 and NFkB binding sites. Imiquimod, a Toll-like receptor 7 (TLR7) ligand, was used to activate these transcription factors. IRF5 levels were doubled after imiquimod treatment (p < 0.001), with specific increases in the 1A promoter (2.2-fold, p = 0.03) and 1D promoter (2.8-fold, p = 0.03). A putative binding site for p53, which affects apoptosis, was found in the promoter for exon 1B. However, site-directed mutagenesis of the p53 site showed no effect in a reporter assay. Conclusion: The IRF5 exon 1B promoter has been characterized, and the responses of each IRF5 promoter to TLR7 stimulation have been determined. Changes in promoter activity and gene expression are likely due to specific and distinct transcription factors that bind to each promoter. Since high expression of IRF5 contributes to the development of autoimmune disease, understanding the source of increased IRF5 levels is key to understanding autoimmune etiology.
Collapse
Affiliation(s)
- Daniel N Clark
- Department of Microbiology and Molecular Biology, Brigham Young University , Provo, UT , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim K, Cho SK, Han TU, Kim JH, Kang SJ, Kang C, Bae SC. A redundant epistatic interaction between IRF5 and STAT4 of the type I interferon pathway in susceptibility to lupus and rheumatoid arthritis. Lupus 2013; 22:1336-40. [DOI: 10.1177/0961203313504479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective K. K. and S.-K. C. are co-first authors, and C. K. and S.-C. B. are co-senior authors. Two transcription factors in the type I interferon pathway, IRF5 and STAT4, have been genetically associated with susceptibility to both systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This study aimed to determine whether these two genes interact with each other to affect the disease susceptibilities. Methods The genetic interactions between IRF5 and STAT4 polymorphisms in SLE and RA susceptibility were examined using the epistasis options in PLINK software. This study analyzes the genetic data from 2558 unrelated Korean participants including 589 SLE patients, 987 RA patients, and 982 controls. Results All 12 polymorphisms were individually associated with SLE susceptibility ( p = 2.49 × 10−8 to 0.00360). Among the three SLE-associated polymorphisms of IRF5, rs77571059, alternatively called CGGGG(3–4) indel, exhibited the lowest p value (4.60 × 10−5) and accounted for the observed associations of the other two single-nucleotide polymorphisms (SNPs). Among the nine SLE-associated SNPs of STAT4, rs16833215 exhibited the lowest p value (2.49 × 10−8) and accounted for all the other associations. These two polymorphisms, rs77571059 of IRF5 and rs16833215 of STAT4, interacted with each other for SLE susceptibility in a redundant manner (ORinteraction = 0.77, Pepistasis = 0.040). Furthermore, these two polymorphisms, which had been individually associated with RA susceptibility, also interacted for RA susceptibility in the same manner (ORinteraction = 0.75, Pepistasis = 0.014). Conclusions A redundant interaction between IRF5 and STAT4 polymorphisms was found in susceptibility to the type I interferon pathway-associated rheumatic autoimmune diseases, SLE and RA, calling for further studies on confirmation of these findings.
Collapse
Affiliation(s)
- K Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Korea
| | - S-K Cho
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Korea
| | - T-U Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Korea
| | - J-H Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Korea
| | - S-J Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Korea
| | - C Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Korea
| | - S-C Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Korea
| |
Collapse
|
34
|
Alonso-Perez E, Fernandez-Poceiro R, Lalonde E, Kwan T, Calaza M, Gomez-Reino JJ, Majewski J, Gonzalez A. Identification of three new cis-regulatory IRF5 polymorphisms: in vitro studies. Arthritis Res Ther 2013; 15:R82. [PMID: 23941291 PMCID: PMC3978921 DOI: 10.1186/ar4262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 08/13/2013] [Indexed: 01/18/2023] Open
Abstract
Background Polymorphisms in the interferon regulatory factor 5 (IRF5) gene are associated with susceptibility to systemic lupus erythematosus, rheumatoid arthritis and other diseases through independent risk and protective haplotypes. Several functional polymorphisms are already known, but they do not account for the protective haplotypes that are tagged by the minor allele of rs729302. Methods Polymorphisms in linkage disequilibrium (LD) with rs729302 or particularly associated with IRF5 expression were selected for functional screening, which involved electrophoretic mobility shift assays (EMSAs) and reporter gene assays. Results A total of 54 single-nucleotide polymorphisms in the 5' region of IRF5 were genotyped. Twenty-four of them were selected for functional screening because of their high LD with rs729302 or protective haplotypes. In addition, two polymorphisms were selected for their prominent association with IRF5 expression. Seven of these twenty-six polymorphisms showed reproducible allele differences in EMSA. The seven were subsequently analyzed in gene reporter assays, and three of them showed significant differences between their two alleles: rs729302, rs13245639 and rs11269962. Haplotypes including the cis-regulatory polymorphisms correlated very well with IRF5 mRNA expression in an analysis based on previous data. Conclusion We have found that three polymorphisms in LD with the protective haplotypes of IRF5 have differential allele effects in EMSA and in reporter gene assays. Identification of these cis-regulatory polymorphisms will allow more accurate analysis of transcriptional regulation of IRF5 expression, more powerful genetic association studies and deeper insight into the role of IRF5 in disease susceptibility.
Collapse
|
35
|
Association of the IRF5 rs2004640 polymorphism with rheumatoid arthritis: a meta-analysis. Rheumatol Int 2013; 33:2757-61. [PMID: 23801380 DOI: 10.1007/s00296-013-2806-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 06/17/2013] [Indexed: 02/05/2023]
Abstract
Several molecular epidemiological studies have been conducted in recent years to evaluate a possible association between the interferon regulatory factor 5 (IRF5) rs2004640 polymorphism and rheumatoid arthritis risk in diverse populations. However, the results remain conflicting rather than conclusive. Our aim was to assess associations of IRF5 gene polymorphisms with rheumatoid arthritis risk. Meta-analysis was performed on six published case-control studies (from eight countries) that included 4,818 cases of rheumatoid arthritis and 4,316 controls. The rs2004640-T allele was associated with a significantly increased risk of rheumatoid arthritis when the dominant genetic model was applied (T/T + T/G versus G/G: P = 0.003, OR = 1.14, 95% CI 1.05-1.25). Upon stratified analysis by ethnicity, the rs2004640 polymorphism was associated with an increased rheumatoid arthritis risk in Caucasians when the homozygotic contrast model was employed(T/T versus G/G: P = 0.03, OR = 1.25, 95% CI 1.02-1.53) and this was also the case when the dominant genetic model was used (T/T + T/G versus G/G: P = 0.04, OR = 1.20, 95% CI 1.01-1.42), whereas, in Asian populations, only the dominant genetic model was associated with an increased rheumatoid arthritis risk (T/T + T/G versus G/G: P = 0.02, OR = 1.14, 95% CI 1.02-1.26). The results suggest that the IRF5 rs2004640 polymorphism is associated with rheumatoid arthritis especially when the dominant genetic model is applied.
Collapse
|
36
|
Chatzikyriakidou A, Voulgari PV, Lambropoulos A, Drosos AA. Genetics in rheumatoid arthritis beyond HLA genes: what meta-analyses have shown? Semin Arthritis Rheum 2013; 43:29-38. [PMID: 23768941 DOI: 10.1016/j.semarthrit.2012.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a complex disorder with many genetic and environmental factors to account for disease susceptibility. Individual genetic association studies usually suffer from small sample size leading to biased results of polymorphisms association with RA liability. Therefore, meta-analyses seem to resolve this limitation, up to a point, increasing the power of statistical analyses. In this review, we summarize the current knowledge of non-HLA genetic factors contributing to RA predisposition based on meta-analyses. METHODS Using the key words: rheumatoid arthritis, meta-analysis, and polymorphism, we searched the PubMed database for the associated articles. Up to the middle of November 2012, seventy-nine articles fulfilled the criteria and highlighted the current findings on the genetic factors contributing to RA susceptibility. RESULTS The association with RA was confirmed for 32 gene polymorphisms, being population specific in some cases. However, meta-analyses did not confirm an association in case of 16 gene variants, previously studied in individual studies for their association with RA. CONCLUSIONS The use of bioinformatics tools and functional studies of the summarized implicated genes in RA pathogenesis could shed light on the molecular pathways related to the disorder, helping to the development of new drug targets for a better treatment of RA.
Collapse
Affiliation(s)
- Anthoula Chatzikyriakidou
- Laboratory of General Biology and Genetics, Medical School, Aristotle University of Thessaloniki, Greece
| | | | | | | |
Collapse
|
37
|
Ruyssen-Witrand A, Constantin A, Cambon-Thomsen A, Thomsen M. New insights into the genetics of immune responses in rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 80:105-18. [PMID: 22835281 DOI: 10.1111/j.1399-0039.2012.01939.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease with a strong genetic component. Numerous aberrant immune responses have been described during the evolution of the disease. In later years, the appearance of anti-citrullinated protein antibodies (ACPAs) has become a hallmark for the diagnosis and prognosis of RA. The post-translational transformation of arginine residues of proteins and peptides into citrulline (citrullination) is a natural process in the body, but for unknown reasons autoreactivity towards citrullinated residues may develop in disposed individuals. ACPAs are often found years before clinical manifestations. ACPAs are present in about 70% of RA patients and constitute an important disease marker, distinguishing patient groups with different prognoses and different responses to various treatments. Inside the human leukocyte antigen (HLA) region, some HLA-DRB1 alleles are strongly associated with their production. Genome-wide association studies in large patient cohorts have defined a great number of single nucleotide polymorphisms (SNPs) outside of the HLA region that are associated with ACPA positive (ACPA+) RA. The SNPs are generally located close to or within genes involved in the immune response or signal transduction in immune cells. Some environmental factors such as tobacco smoking are also positively correlated with ACPA production. In this review, we will describe the genes and loci associated with ACPA+ RA or ACPA- RA and attempt to clarify their potential role in the development of the disease.
Collapse
|
38
|
Regulation of T helper cell differentiation by interferon regulatory factor family members. Immunol Res 2013; 54:169-76. [PMID: 22528124 DOI: 10.1007/s12026-012-8328-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interferon regulatory factors (IRFs) consist of a family of transcription factors with diverse functions in the transcriptional regulation of cellular responses in health and diseases. IRFs commonly contain a DNA-binding domain in the N-terminus, with most members also containing a C-terminal IRF-associated domain that mediates protein-protein interactions. Ten IRFs and several virus-encoded IRF homologs have been identified in mammals so far. In response to endogenous and microbial stimuli during an immune response, IRFs are activated, and selectively and cooperatively modulate the expression of key cytokine and transcription factors involved in T helper cell differentiation in T cells and/or antigen-presenting cells. This review focuses on recent advances in the understanding of IRF-mediated transcriptional regulation in T helper cell differentiation and discusses the implications on the development of cellular and humoral immune responses and the pathogenesis of immune disorders.
Collapse
|
39
|
Yasuda K, Nündel K, Watkins AA, Dhawan T, Bonegio RG, Ubellacker JM, Marshak-Rothstein A, Rifkin IR. Phenotype and function of B cells and dendritic cells from interferon regulatory factor 5-deficient mice with and without a mutation in DOCK2. Int Immunol 2013; 25:295-306. [PMID: 23291967 DOI: 10.1093/intimm/dxs114] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interferon regulatory factor 5-deficient (IRF5 (-/-) ) mice have been used for many studies of IRF5 biology. A recent report identifies a mutation in dedicator of cytokinesis 2 (DOCK2) as being responsible for the abnormal B-cell development phenotype observed in the IRF5 (-/-) line. Both dedicator of cytokinesis 2 (DOCK2) and IRF5 play important roles in immune cell function, raising the issue of whether immune effects previously associated with IRF5 are due to IRF5 or DOCK2. Here, we defined the insertion end-point of the DOCK2 mutation and designed a novel PCR to detect the mutation in genomic DNA. We confirmed the association of the DOCK2 mutation and the abnormal B-cell phenotype in our IRF5 (-/-) line and also established another IRF5 (-/-) line without the DOCK2 mutation. These two lines were used to compare the role of IRF5 in dendritic cells (DCs) and B cells in the presence or absence of the DOCK2 mutation. IRF5 deficiency reduces IFN-α, IFN-β and IL-6 production by Toll-like receptor 9 (TLR9)- and TLR7-stimulated DCs and reduces TLR7- and TLR9-induced IL-6 production by B cells to a similar extent in the two lines. Importantly however, IRF5 (-/-) mice with the DOCK2 mutation have higher serum levels of IgG1 and lower levels of IgG2b, IgG2a/c and IgG3 than IRF5 (-/-) mice without the DOCK2 mutation, suggesting that the DOCK2 mutation confers additional Th2-type effects. Overall, these studies help clarify the function of IRF5 in B cells and DCs in the absence of the DOCK2 mutation. In addition, the PCR described will be useful for other investigators using the IRF5 (-/-) mouse line.
Collapse
Affiliation(s)
- Kei Yasuda
- Department of Medicine, Renal Section, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Viatte S, Plant D, Bowes J, Lunt M, Eyre S, Barton A, Worthington J. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann Rheum Dis 2012; 71:1984-90. [PMID: 22661644 PMCID: PMC3595982 DOI: 10.1136/annrheumdis-2011-201225] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2012] [Indexed: 12/18/2022]
Abstract
INTRODUCTION There are now over 30 confirmed loci predisposing to rheumatoid arthritis (RA). Studies have been largely undertaken in patients with anticyclic citrullinated peptide (anti-CCP) positive RA, and some genetic associations appear stronger in this subgroup than in anti-CCP negative disease, although few studies have had adequate power to address the question. The authors therefore investigated confirmed RA susceptibility loci in a large cohort of anti-CCP negative RA subjects. METHODS RA patients and controls, with serological and genetic data, were available from UK Caucasian patients (n=4068 anti-CCP positive, 2040 anti-CCP negative RA) and 13,009 healthy controls. HLA-DRB1 genotypes and 36 single nucleotide polymorphisms were tested for association between controls and anti-CCP positive or negative RA. RESULTS The shared epitope (SE) showed a strong association with anti-CCP positive and negative RA, although the effect size was significantly lower in the latter (effect size ratio=3.18, p<1.0E-96). A non-intronic marker at TNFAIP3, GIN1/C5orf30, STAT4, ANKRD55/IL6ST, BLK and PTPN22 showed association with RA susceptibility, irrespective of the serological status, the latter three markers remaining significantly associated with anti-CCP negative RA, after correction for multiple testing. No significant association with anti-CCP negative RA was detected for other markers (eg, AFF3, CD28, intronic marker at TNFAIP3), though the study power for those markers was over 80%. DISCUSSION In the largest sample size studied to date, the authors have shown that the strength of association, the effect size and the number of known RA susceptibility loci associated with disease is different in the two disease serotypes, confirming the hypothesis that they might be two genetically different subsets.
Collapse
Affiliation(s)
- Sebastien Viatte
- Arthritis Research UK Epidemiology Unit, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Associations between interferon regulatory factor 5 polymorphisms and rheumatoid arthritis: a meta-analysis. Mol Biol Rep 2012; 40:1791-9. [PMID: 23073787 DOI: 10.1007/s11033-012-2233-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/10/2012] [Indexed: 01/19/2023]
Abstract
The aim of this study was to determine whether interferon regulatory factor 5 (IRF5) polymorphisms confers susceptibility to rheumatoid arthritis (RA) in populations with different ethnicities. We searched the literature using the Pubmed and Embase databases and conducted meta-analyses on associations between the four IRF5 polymorphisms (rs2004640, rs729302, rs752637, and rs2280714) and RA susceptibility, using fixed and random effects models. A total of 12 comparison studies were considered in this meta-analysis, which in total involved 7,916 RA patients and 6,452 controls, and eight European, three Asian, and one Argentinean population. Meta-analysis showed an association between the minor allele of rs2004640 and RA in all subjects (odds ratio [OR] = 0.928, 95 % confidence interval [CI] = 0.865-0.996, P = 0.037). After stratification by ethnicity, analysis indicated that the minor allele was significantly associated with RA in Europeans (OR = 0.889, 95 % CI = 0.839-0.941, P = 5.03 × 10(-6)), but not in Asians (OR = 1.057, 95 % CI = 0.978-1.144, P = 0.164). A direct comparison between anti-citrullinated peptide antibody-positive and -negative patients revealed no difference of the frequency of the rs2004640 minor allele (OR = 1.047, 95 % CI = 0.813-1.348, P = 0.724). Meta-analysis identified a significant association between RA and the minor allele of the rs729302 polymorphism in the overall population (OR = 0.896, 95 % CI = 0.826-0.972, P = 0.009) and in Asians (OR = 0.862, 95 % CI = 0.795-0.935, P = 3.50 × 10(-5)), but not in Europeans (OR = 0.951, 95 % CI = 0.877-1.031, P = 0.225). Meta-analysis showed an association between the minor allele of rs752637 and RA in Europeans (OR = 0.858, 95 % CI = 0.789-0.932, P = 3.03 × 10(-5)), but not in Asians (OR = 1.035, 95 % CI = 0.918-1.168, P = 0.572). No association was found between the rs2280714 polymorphism and RA susceptibility. This meta-analysis confirms that the IRF5 rs2004640, rs729302 and rs752637 polymorphisms are associated with RA susceptibility in different ethnic groups, especially in Europeans and Asians, but further study of this association is required in other ethnic groups.
Collapse
|
42
|
Hu GB, Lou HM, Dong XZ, Liu QM, Zhang SC. Characteristics of the interferon regulatory factor 5 (IRF5) and its expression in response to LCDV and poly I:C challenges in Japanese flounder, Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:377-382. [PMID: 22698613 DOI: 10.1016/j.dci.2012.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs.
Collapse
Affiliation(s)
- Guo-Bin Hu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | | | | | | | | |
Collapse
|
43
|
Eames HL, Saliba DG, Krausgruber T, Lanfrancotti A, Ryzhakov G, Udalova IA. KAP1/TRIM28: an inhibitor of IRF5 function in inflammatory macrophages. Immunobiology 2012; 217:1315-24. [PMID: 22995936 DOI: 10.1016/j.imbio.2012.07.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/20/2012] [Accepted: 07/27/2012] [Indexed: 12/13/2022]
Abstract
IRF5 plays a key role in the induction of pro-inflammatory cytokines, contributing to the plasticity and polarisation of macrophages to an M1 phenotype and initiation of a potent T(H)1-T(H)17 response. To better understand the means of IRF5 transcriptional action, we conducted a screen for IRF5-interacting partners by affinity purification coupled to mass spectrometry and identified KAP1/TRIM28 as a novel protein-protein interaction partner of IRF5. KAP1 acts as a transcriptional co-repressor, chiefly via recruitment of complexes involved in chromatin silencing, such as histone deacetylases and methyltransferases. We mapped the N-terminus of IRF5, encompassing its DNA-binding domain together with a highly intrinsically disordered region, as crucial for the IRF5-KAP1 interaction interface, and demonstrated that IRF5 can also form complexes with the methyltransferase SETDB1. Knockdown of KAP1 (TRIM28) gene expression in human M1 macrophages potentiated IRF5-mediated expression of TNF and other M1 macrophage markers. This effect may be linked to methyltransferase activity of SETDB1, such as trimethylation of lysine 9 of histone 3 (H3K9me3), deposition of which was decreased at the human TNF locus upon KAP1 knockdown. Our study furthers an understanding of the complex molecular interactions between the TRIM and IRF protein families, and highlights a role of the inhibitory properties of KAP1 in association with IRF5-mediated gene expression.
Collapse
Affiliation(s)
- H L Eames
- Kennedy Institute of Rheumatology, Imperial College, 65 Aspenlea Road, London W6 8LH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
44
|
Seddighzadeh M, Gonzalez A, Ding B, Ferreiro-Iglesias A, Gomez-Reino JJ, Klareskog L, Alfredsson L, Dunussi-Joannopoulos K, Clark JD, Padyukov L. Variants within STAT genes reveal association with anticitrullinated protein antibody-negative rheumatoid arthritis in 2 European populations. J Rheumatol 2012; 39:1509-16. [PMID: 22753649 DOI: 10.3899/jrheum.111284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE STAT3 and 4 are, among other factors, critical for the interleukin 12 (IL-12)-mediated Th1 response, for transfer of IL-23 signals, and for survival and expansion of Th17 cells. We investigated the association of STAT3 and STAT4 polymorphisms with serologically distinct subgroups of rheumatoid arthritis (RA). METHODS A total of 41 single-nucleotide polymorphisms (SNP) within STAT3 and STAT1-STAT4 loci were investigated in a Swedish cohort of 2043 RA cases and 1115 controls. Nine of the associated SNP were tested in a Spanish cohort of 1223 RA cases and 1090 controls. RESULTS Fourteen SNP in the STAT3 and STAT1-STAT4 loci were associated with anticitrullinated protein antibody (ACPA)-negative RA in the Swedish cohort. Three of the SNP in STAT4 and 2 SNP in STAT3 remained associated with ACPA-negative RA after considering the Spanish results. In addition, rs7574865 and rs10181656, in STAT4, were associated with ACPA-positive RA in the Swedish study. One of these SNP, rs7574865, showed a similar pattern of the association in serologically distinct subgroups of RA in a metaanalysis of all 7 published studies. CONCLUSION Our findings suggest that variants in STAT genes may contribute differentially to susceptibility to RA in seropositive and in seronegative patients.
Collapse
Affiliation(s)
- Maria Seddighzadeh
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Biomarkers for systemic lupus erythematosus. Transl Res 2012; 159:326-42. [PMID: 22424435 DOI: 10.1016/j.trsl.2012.01.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/13/2012] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
Abstract
The urgent need for lupus biomarkers was demonstrated in September 2011 during a Workshop sponsored by the Food and Drug Administration: Potential Biomarkers Predictive of Disease Flare. After 2 days of discussion and more than 2 dozen presentations from thought leaders in both industry and academia, it became apparent that highly sought biomarkers to predict lupus flare have not yet been identified. Even short of the elusive biomarker of flare, few biomarkers for systemic lupus erythematosus (SLE) diagnosis, monitoring, and stratification have been validated and employed for making clinical decisions. This lack of reliable, specific biomarkers for SLE hampers proper clinical management of patients with SLE and impedes development of new lupus therapeutics. As such, the intensity of investigation to identify lupus biomarkers is climbing a steep trajectory, lending cautious optimism that a validated panel of biomarkers for lupus diagnosis, monitoring, stratification, and prediction of flare may soon be in hand.
Collapse
|
46
|
Ferrante CJ, Leibovich SJ. Regulation of Macrophage Polarization and Wound Healing. Adv Wound Care (New Rochelle) 2012; 1:10-16. [PMID: 24527272 DOI: 10.1089/wound.2011.0307] [Citation(s) in RCA: 476] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Macrophages (Mφs) participate in wound healing by coordinating inflammatory and angiogenic processes. Mφs respond to environmental cues by adopting either "classically" activated (M1) proinflammatory or "alternatively" activated (M2a, M2b, M2c, M2d) wound healing phenotypes. THE PROBLEM Mφ polarization is essential for wound healing and aberrations in this process are linked to several pathologies. It is important to elucidate molecular mechanisms underlying Mφ polarization. BASIC/CLINICAL SCIENCE ADVANCES Mφs are categorized as proinflammatory (M1) or anti-inflammatory/wound healing (M2). M1 Mφs are observed in initial tissue damage responses, are induced by exogenous pathogen-associated molecular patterns or endogenous damage-associated molecular patterns, and exhibit increased phagocytosis and pro-inflammatory cytokine production, facilitating innate immunity and wound debridement. M2 Mφs predominate later in repair, express vascular endothelial growth factor, transforming growth factor beta, and interleukin 10 (IL-10), are activated by varied stimuli, assist in the resolution of inflammation, and promote tissue formation and remodeling. Recent work has characterized a novel "M2d" phenotype resulting from adenosine-dependent "switching" of M1 Mφs that exhibits a pattern of marker expression that is distinct from canonical IL-4/IL-13-dependent M2a Mφs. Recent studies have demonstrated important roles for specific transcriptional elements in M1 and M2a Mφ polarization, notably members of the interferon regulatory factor family interferon regulatory factor 5 (IRF5) and IRF4, respectively. The role of these IRFs in M2d polarization and wound healing remains to be determined. CLINICAL CARE RELEVANCE Knowledge of microenvironmental signals and molecular mechanisms that mediate Mφ polarization should permit their manipulation to regulate important physiological processes and resolve pathological conditions. CONCLUSION Proper Mφ polarization is essential to effective wound healing, and distinct phenotypes, such as the angiogenic M2d Mφ, may be of critical importance to this process. The IRF5 transcription factor has been shown to play a key role in M1 Mφ activation and the Jumonji domain containing-3-IRF4 pathway has been implicated in M2 Mφ activation.
Collapse
Affiliation(s)
- Christopher J. Ferrante
- Department of Cell Biology and Molecular Medicine and The Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Samuel Joseph Leibovich
- Department of Cell Biology and Molecular Medicine and The Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| |
Collapse
|
47
|
Nordang GBN, Viken MK, Amundsen SS, Sanchez ES, Flatø B, Førre OT, Martin J, Kvien TK, Lie BA. Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatology (Oxford) 2011; 51:619-26. [PMID: 22179739 DOI: 10.1093/rheumatology/ker364] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Polymorphisms in genes related to the IFN pathway were investigated for susceptibility to rheumatic diseases and correlation with gene expression in thymus. METHODS Forty-five polymorphisms were genotyped in Norwegian patients with RA (n = 518), JIA (n = 440), SLE (n = 154) and healthy controls (n = 756). Forty-two thymic samples were used for gene expression analysis. Six hundred and fifty SLE patients and 737 healthy controls from Spain were available for replication. RESULTS We found a novel association between interferon regulatory factor 5 (IRF5), rs2004640 and JIA, in particular with the polyarthritis RF-negative patients [odds ratio (OR) = 1.60; 95% confidence interval (CI) 1.17, 2.20; P = 0.003]. Also, we confirmed the associations between rs2004640 and SLE (OR = 1.95; 95% CI 1.50, 2.53; P = 3.75 × 10(-7)), which was further strengthened in a meta-analysis (OR = 1.44; 95% CI 1.36, 1.52; P = 2.11 × 10(-37)). Suggestive evidence of association between rs2004640 and RA was found in the Norwegian discovery cohort (OR = 1.19; 95% CI 1.02, 1.40; P = 0.029) and strengthened in a meta-analysis (OR = 1.11; 95% CI 1.05, 1.18; P = 0.00028). Expression levels of exon 1B IRF5 transcripts were dependent on the presence of the rs2004640 T risk allele in thymic tissue, while exon 1A transcript levels correlated with IRF5 promoter CGGGG-indel variants. CONCLUSION The IFN pathway gene, IRF5, is a common susceptibility factor for several rheumatic and autoimmune diseases, and risk variants are correlated with expression of alternative IRF5 transcripts in thymus implying a regulatory role.
Collapse
Affiliation(s)
- Gry B N Nordang
- Department of Medical Genetics, Oslo University Hospital, Ullevål, Kirkeveien 166, N-0407 Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL. Modulation of macrophage efferocytosis in inflammation. Front Immunol 2011; 2:57. [PMID: 22566847 PMCID: PMC3342042 DOI: 10.3389/fimmu.2011.00057] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/16/2011] [Indexed: 01/25/2023] Open
Abstract
A critical function of macrophages within the inflammatory milieu is the removal of dying cells by a specialized phagocytic process called efferocytosis (“to carry to the grave”). Through specific receptor engagement and induction of downstream signaling, efferocytosing macrophages promote resolution of inflammation by (i) efficiently engulfing dying cells, thus avoiding cellular disruption and release of inflammatory contents, and (ii) producing anti-inflammatory mediators such as IL-10 and TGF-β that dampen pro-inflammatory responses. Evidence suggests that plasticity in macrophage programming, in response to changing environmental cues, modulates efferocytic capability. Essential to programming for enhanced efferocytosis is activation of the nuclear receptors PPARγ, PPARδ, LXR, and possibly RXRα. Additionally, a number of signals in the inflammatory milieu, including those from dying cells themselves, can influence efferocytic efficacy either by acting as immediate inhibitors/enhancers or by altering macrophage programming for longer-term effects. Importantly, sustained inflammatory programming of macrophages can lead to defective apoptotic cell clearance and is associated with development of autoimmunity and other chronic inflammatory disorders. This review summarizes the current knowledge of the multiple factors that modulate macrophage efferocytic ability and highlights emerging therapeutic targets with significant potential for limiting chronic inflammation.
Collapse
Affiliation(s)
- Darlynn Korns
- Division of Cell Biology, Department of Pediatrics, National Jewish Health Denver, CO, USA
| | | | | | | | | |
Collapse
|
49
|
Kennedy A, Fearon U, Veale DJ, Godson C. Macrophages in synovial inflammation. Front Immunol 2011; 2:52. [PMID: 22566842 PMCID: PMC3342259 DOI: 10.3389/fimmu.2011.00052] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/19/2011] [Indexed: 01/09/2023] Open
Abstract
Synovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage–pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA). There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished. Here we will briefly review our current understanding of macrophages and macrophage polarization in RA as well as the elements implicated in controlling polarization, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype, and may represent a novel therapeutic paradigm.
Collapse
Affiliation(s)
- Aisling Kennedy
- School of Medicine and Medical Sciences, University College Dublin Conway Institute Dublin, Ireland
| | | | | | | |
Collapse
|
50
|
CARMONA FDAVID, SERRANO AURORA, RODRÍGUEZ-RODRÍGUEZ LUIS, CASTAÑEDA SANTOS, MIRANDA-FILLOY JOSÉA, MORADO INMACULADAC, NARVÁEZ JAVIER, SOLANS ROSER, SOPEÑA BERNARDO, MARÍ-ALFONSO BEGOÑA, UNZURRUNZAGA AINHOA, ORTEGO-CENTENO NORBERTO, BLANCO RICARDO, DE MIGUEL EUGENIO, HIDALGO-CONDE ANA, MARTÍN JAVIER, GONZÁLEZ-GAY MIGUELA. A Nonsynonymous Functional Variant of the ITGAM Gene Is Not Involved in Biopsy-proven Giant Cell Arteritis. J Rheumatol 2011; 38:2598-601. [DOI: 10.3899/jrheum.110685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective.To investigate whether a functional integrin alpha M (ITGAM) variant is involved in susceptibility to and clinical manifestations of giant cell arteritis (GCA).Methods.A Spanish cohort of 437 white patients with biopsy-proven GCA and 1388 healthy controls were genotyped using the TaqMan allele discrimination technology.Results.No association was observed between ITGAM rs1143679 and GCA (p = 0.80, OR 0.97). Similarly, subphenotype analyses did not yield significant differences between the case subgroups and the control set or between GCA patients with or without the main specific features of GCA.Conclusion.Our results suggest that the ITGAM rs1143679 variant does not play an important role in the pathophysiology of GCA.
Collapse
|