1
|
Okabe N, Hovanesyan M, Azarapetian S, Dai W, Weisinger B, Parabucki A, Balter SR, Shohami E, Segal Y, Carmichael ST. Theta Frequency Electromagnetic Stimulation Enhances Functional Recovery After Stroke. Transl Stroke Res 2025; 16:194-206. [PMID: 37962771 PMCID: PMC11976812 DOI: 10.1007/s12975-023-01202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023]
Abstract
Extremely low-frequency, low-intensity electromagnetic field (ELF-EMF) therapy is a non-invasive brain stimulation method that can modulate neuroprotection and neuroplasticity. ELF-EMF was recently shown to enhance recovery in human stroke in a small pilot clinical trial (NCT04039178). ELF-EMFs encompass a wide range of frequencies, typically ranging from 1 to 100 Hz, and their effects can vary depending on the specific frequency employed. However, whether and to what extent the effectiveness of ELF-EMFs depends on the frequency remains unclear. In the present study, we aimed to assess the efficacy of different frequency-intensity protocols of ELF-EMF in promoting functional recovery in a mouse cortical stroke model with treatment initiated 4 days after the stroke, employing a series of motor behavior tests. Our findings demonstrate that a theta-frequency ELF-EMF (5 Hz) effectively enhances functional recovery in a reach-to-grasp task, whereas neither gamma-frequency (40 Hz) nor combination frequency (5-16-40 Hz) ELF-EMFs induce a significant effect. Importantly, our histological analysis reveals that none of the ELF-EMF protocols employed in our study affect infarct volume, inflammatory, or glial activation, suggesting that the observed beneficial effects may be mediated through non-neuroprotective mechanisms. Our data indicate that ELF-EMFs have an influence on functional recovery after stroke, and this effect is contingent upon the specific frequency used. These findings underscore the critical importance of optimizing the protocol parameters to maximize the beneficial effects of ELF-EMF. Further research is warranted to elucidate the underlying mechanisms and refine the protocol parameters for optimal therapeutic outcomes in stroke rehabilitation.
Collapse
Affiliation(s)
- Naohiko Okabe
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| | - Mary Hovanesyan
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Srbui Azarapetian
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Weiye Dai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | | | | | | | - Esther Shohami
- BrainQ Technologies, Ltd., Jerusalem, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Segal
- BrainQ Technologies, Ltd., Jerusalem, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Fenici R, Picerni M, Fenici P, Brisinda D. An advanced vision of magnetocardiography as an unrivalled method for a more comprehensive non-invasive clinical electrophysiological assessment. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 52:100514. [PMID: 40093307 PMCID: PMC11909459 DOI: 10.1016/j.ahjo.2025.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/08/2025] [Indexed: 03/19/2025]
Abstract
Decades of experimental and clinical studies, along with the most recent clinical trials, have demonstrated the diagnostic potential of magnetocardiography, particularly for the non-invasive early diagnosis of myocardial ischemia. It has also proven to be a valuable clinical tool for monitoring fetal well-being, normal growth, prenatal arrhythmias, and risk markers for sudden death. Such applications have recently received official recognition from Health Canada and the American Heart Association. This unquestionable success, and the additional evidence of magnetocardiography's high sensitivity in diagnosing infiltrative and inflammatory cardiomyopathies, has sparked renewed interest among clinicians. However, while these aforementioned applications are likely to significantly influence the broader clinical adoption of magnetocardiography, the general focus on these areas has shifted attention away from what we have always regarded as the fundamental strength of contactless cardiac magnetic field mapping: its unique ability to bridge the gap between experimental electrophysiology at the cellular level and non-invasive clinical assessments of human electrophysiology. This review aims to engage readers by sharing our vision, experience, and several key research milestones, emphasizing the lesser-explored yet significant potential of magnetocardiography. Specifically, it highlights its unique capability to detect electrically silent phenomena that may be critical for the timely and accurate identification of arrhythmogenic focal electrotonic and vortex currents, which can trigger or sustain life-threatening arrhythmias.
Collapse
Affiliation(s)
- Riccardo Fenici
- Biomagnetism and Clinical Physiology International Center, Rome, Italy
- Catholic University of the Sacred Heart, School of Medicine and Surgery
| | - Marco Picerni
- Biomagnetism and Clinical Physiology International Center, Rome, Italy
- International School for Advanced Studies (SISSA)
| | - Peter Fenici
- Biomagnetism and Clinical Physiology International Center, Rome, Italy
- Catholic University of the Sacred Heart, School of Medicine and Surgery
| | - Donatella Brisinda
- Biomagnetism and Clinical Physiology International Center, Rome, Italy
- Catholic University of the Sacred Heart, School of Medicine and Surgery
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Grinberg M, Ilin N, Nemtsova Y, Sarafanov F, Ivanova A, Dolinin A, Pirogova P, Vodeneev V, Mareev E. Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band. PLANT SIGNALING & BEHAVIOR 2024; 19:2294425. [PMID: 38147417 PMCID: PMC10761032 DOI: 10.1080/15592324.2023.2294425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Alternating magnetic fields (MF) with Schumann resonance frequencies accompanied the development of living organisms throughout evolution, but today it remains unclear whether they can have a special biological effect in comparison with surrounding non-resonant frequencies. This work shows some stimulating effect of extremely low-frequency MFs on morphometric parameters and the activity of physiological processes in wheat (Triticum aestivum L.). It is shown that the MF effect is more pronounced for transient processes - photosynthesis reactions and changes in electrical potential caused by turning on light. For light-induced electrical reactions, the dependence of the severity of the effect on the frequency of the applied MF was demonstrated. It is shown that the most pronounced effect occurs in the 14.3 Hz field, which corresponds to the second harmonic of the Schumann resonance. The predominant sensitivity of signal-regulatory systems gives reason to assume the influence of MFs with Schumann resonance frequencies on the interaction of plants with environmental factors under conditions of a changed electromagnetic environment. Such conditions can occur, for example, with an increase in lightning activity caused by climate change, which serves as the basis for the generation of Schumann resonances, and with the development of artificial ecosystems outside the Earth's atmosphere.
Collapse
Affiliation(s)
- Marina Grinberg
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Nikolay Ilin
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Yulia Nemtsova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Fedor Sarafanov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Angelina Ivanova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Dolinin
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Polina Pirogova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Evgeny Mareev
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Geophysical Research, Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Wang Y, Zhao ZG, Chai Z, Fang JC, Chen M. Electromagnetic field and cardiovascular diseases: A state-of-the-art review of diagnostic, therapeutic, and predictive values. FASEB J 2023; 37:e23142. [PMID: 37650634 DOI: 10.1096/fj.202300201rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Despite encouraging advances in early diagnosis and treatment, cardiovascular diseases (CVDs) remained a leading cause of morbidity and mortality worldwide. Increasing evidence has shown that the electromagnetic field (EMF) influences many biological processes, which has attracted much attention for its potential therapeutic and diagnostic modalities in multiple diseases, such as musculoskeletal disorders and neurodegenerative diseases. Nonionizing EMF has been studied as a therapeutic or diagnostic tool in CVDs. In this review, we summarize the current literature ranging from in vitro to clinical studies focusing on the therapeutic potential (external EMF) and diagnostic potential (internal EMF generated from the heart) of EMF in CVDs. First, we provided an overview of the therapeutic potential of EMF and associated mechanisms in the context of CVDs, including cardiac arrhythmia, myocardial ischemia, atherosclerosis, and hypertension. Furthermore, we investigated the diagnostic and predictive value of magnetocardiography in CVDs. Finally, we discussed the critical steps necessary to translate this promising approach into clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Gang Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Chai
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Cheng Fang
- School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
A novel implant surface modification mode of Fe3O4-containing TiO2 nanorods with sinusoidal electromagnetic field for osteoblastogenesis and angiogenesis. Mater Today Bio 2023; 19:100590. [PMID: 36910272 PMCID: PMC9996442 DOI: 10.1016/j.mtbio.2023.100590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Implants made of Ti and its alloys are widely utilized in orthopaedic surgeries. However, insufficient osseointegration of the implants often causes complications such as aseptic loosening. Our previous research discovered that disordered titanium dioxide nanorods (TNrs) had satisfactory antibacterial properties and biocompatibility, but TNrs harmed angiogenic differentiation, which might retarded the osseointegration process of the implants. Magnetic nanomaterials have a certain potential in promoting osseointegration, electromagnetic fields within a specific frequency and intensity range can facilitate angiogenic and osteogenic differentiation. Therefore, this study used Fe3O4 to endow magnetism to TNrs and explored the regulation effects of Ti, TNrs, and Fe3O4-TNrs under 1 mT 15 Hz sinusoidal electromagnetic field (SEMF) on osteoblastogenesis, osseointegration, angiogenesis, and its mechanism. We discovered that after the addition of SEMF treatment to VR-EPCs cultured on Fe3O4-TNrs, the calcineurin/NFAT signaling pathway was activated, which then reversed the inhibitory effect of Fe3O4-TNrs on angiogenesis. Besides, Fe3O4-TNrs with SEMF enhanced osteogenic differentiation and osseointegration. Therefore, the implant modification mode of Fe3O4-TNrs with the addition of SEMF could more comprehensively promote osseointegration and provided a new idea for the modification of implants.
Collapse
|
6
|
Weisinger B, Pandey DP, Saver JL, Hochberg A, Bitton A, Doniger GM, Lifshitz A, Vardi O, Shohami E, Segal Y, Reznik Balter S, Djemal Kay Y, Alter A, Prasad A, Bornstein NM. Frequency-tuned electromagnetic field therapy improves post-stroke motor function: A pilot randomized controlled trial. Front Neurol 2022; 13:1004677. [PMID: 36452175 PMCID: PMC9702345 DOI: 10.3389/fneur.2022.1004677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Impaired upper extremity (UE) motor function is a common disability after ischemic stroke. Exposure to extremely low frequency and low intensity electromagnetic fields (ELF-EMF) in a frequency-specific manner (Electromagnetic Network Targeting Field therapy; ENTF therapy) is a non-invasive method available to a wide range of patients that may enhance neuroplasticity, potentially facilitating motor recovery. This study seeks to quantify the benefit of the ENTF therapy on UE motor function in a subacute ischemic stroke population. METHODS In a randomized, sham-controlled, double-blind trial, ischemic stroke patients in the subacute phase with moderately to severely impaired UE function were randomly allocated to active or sham treatment with a novel, non-invasive, brain computer interface-based, extremely low frequency and low intensity ENTF therapy (1-100 Hz, < 1 G). Participants received 40 min of active ENTF or sham treatment 5 days/week for 8 weeks; ~three out of the five treatments were accompanied by 10 min of concurrent physical/occupational therapy. Primary efficacy outcome was improvement on the Fugl-Meyer Assessment - Upper Extremity (FMA-UE) from baseline to end of treatment (8 weeks). RESULTS In the per protocol set (13 ENTF and 8 sham participants), mean age was 54.7 years (±15.0), 19% were female, baseline FMA-UE score was 23.7 (±11.0), and median time from stroke onset to first stimulation was 11 days (interquartile range (IQR) 8-15). Greater improvement on the FMA-UE from baseline to week 4 was seen with ENTF compared to sham stimulation, 23.2 ± 14.1 vs. 9.6 ± 9.0, p = 0.007; baseline to week 8 improvement was 31.5 ± 10.7 vs. 23.1 ± 14.1. Similar favorable effects at week 8 were observed for other UE and global disability assessments, including the Action Research Arm Test (Pinch, 13.4 ± 5.6 vs. 5.3 ± 6.5, p = 0.008), Box and Blocks Test (affected hand, 22.5 ± 12.4 vs. 8.5 ± 8.6, p < 0.0001), and modified Rankin Scale (-2.5 ± 0.7 vs. -1.3 ± 0.7, p = 0.0005). No treatment-related adverse events were reported. CONCLUSIONS ENTF stimulation in subacute ischemic stroke patients was associated with improved UE motor function and reduced overall disability, and results support its safe use in the indicated population. These results should be confirmed in larger multicenter studies. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04039178, identifier: NCT04039178.
Collapse
Affiliation(s)
| | - Dharam P. Pandey
- Manipal Hospital Physiotherapy and Rehabilitation, New Delhi, India
| | - Jeffrey L. Saver
- Department of Neurology, UCLA Comprehensive Stroke and Vascular Neurology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | | | | | | | - Ofir Vardi
- BrainQ Technologies, Ltd., Jerusalem, Israel
| | - Esther Shohami
- BrainQ Technologies, Ltd., Jerusalem, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Segal
- BrainQ Technologies, Ltd., Jerusalem, Israel
| | | | | | | | - Atul Prasad
- Department of Neurology, B. L. Kapur Super Specialty Hospital (BLK), National Capital Territory of Delhi, New Delhi, India
| | | |
Collapse
|
7
|
Brief Electrical Stimulation Triggers an Effective Regeneration of Leech CNS. eNeuro 2020; 7:ENEURO.0030-19.2020. [PMID: 32471846 PMCID: PMC7317182 DOI: 10.1523/eneuro.0030-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
The search for therapeutic strategies to promote neuronal regeneration following injuries toward functional recovery is of great importance. Brief low-frequency electrical stimulation (ES) has been reported as a useful method to improve neuronal regeneration in different animal models; however, the effect of ES on single neuron behavior has not been shown. Here, we study the effect of brief ES on neuronal regeneration of the CNS of adult medicinal leeches. Studying the regeneration of selected sets of identified neurons allow us to quantify the ES effect per cell type at the single-cell level. Chains of the CNS that were subjected to cut injury were observed for 3 d, and the spontaneous regeneration was compared with the electrically stimulated injured chains. We show that the ES improves the efficiency of regeneration of Retzius cells, as larger masses of the total branching tree traverse the injury site with better directed growth with no effect on the average branching tree length. No antero-posterior polarity was found along regeneration within the leech CNS. Moreover, the microglial cell distribution was examined revealing more microglial cells in proximity to the stimulation site compared with non-stimulated. Our results lay a foundation for future ES-based neuroregenerative therapies.
Collapse
|
8
|
Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann Resonance band. Sci Rep 2019; 9:1645. [PMID: 30733450 PMCID: PMC6367437 DOI: 10.1038/s41598-018-36341-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023] Open
Abstract
The Schumann Resonances (ScR) are Extremely Low Frequency (ELF) electromagnetic resonances in the Earth-ionosphere cavity excited by global lightning discharges. This natural electromagnetic noise has likely existed on the Earth ever since the Earth had an atmosphere and an ionosphere, hence surrounding us throughout our evolutionary history. The purpose of this study was to examine the influence of extremely weak magnetic fields in the ScR first mode frequency range on the spontaneous contractions, calcium transients and Creatine Kinase (CK) release of rat cardiac cell cultures. We show that applying 7.8 Hz, 90 nT magnetic fields (MF) causes a gradual decrease in the spontaneous calcium transients’ amplitude, reaching 28% of the initial amplitude after 40 minutes of MF application, and accompanied with a gradual decrease in the calcium transients’ rise time. The mechanical spontaneous contractions cease after the ScR fields have been applied for more than 30 minutes, when the calcium transient’s amplitude reached ~60% of its initial value. The influence of the ScR MF was reversible, independent of the field magnitude in the range 20 pT-100 nT, and independent of the external DC magnetic field. However, the effect is frequency dependent; the described changes occurred only in the 7.6–8 Hz range. In addition, applying 7.8 Hz, 90 nT MF for 1.5 hours, reduced the amount of CK released to the buffer, during normal conditions, hypoxic conditions and oxidative stress induced by 80 μM H2O2. We show that the ScR field induced reduction in CK release is associated with a stress response process and has a protective character.
Collapse
Affiliation(s)
- G Elhalel
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - C Price
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - D Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Tel Aviv, Israel
| | - A Shainberg
- Faculty of Life Sciences, Bar Ilan University, Tel Aviv, Israel
| |
Collapse
|
9
|
Uzieliene I, Bernotas P, Mobasheri A, Bernotiene E. The Role of Physical Stimuli on Calcium Channels in Chondrogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19102998. [PMID: 30275359 PMCID: PMC6212952 DOI: 10.3390/ijms19102998] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/04/2018] [Accepted: 09/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human mesenchymal stem cells (hMSC) are becoming increasingly popular in tissue engineering. They are the most frequently used stem cell source for clinical applications due to their high potential to differentiate into several lineages. Cartilage is known for its low capacity for self-maintenance and currently there are no efficient methods to improve cartilage repair. Chondrogenic differentiation of hMSC isolated from different tissues is widely employed due to a high clinical demand for the improvement of cartilage regeneration. Calcium channels that are regulated by physical stimuli seem to play a pivotal role in chondrogenic differentiation of MSCs. These channels increase intracellular calcium concentration, which leads to the initiation of the relevant cellular processes that are required for differentiation. This review will focus on the impact of different physical stimuli, including electrical, electromagnetic/magnetic and mechanical on various calcium channels and calcium signaling mechanisms during chondrogenic differentiation of hMSC.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| |
Collapse
|
10
|
Aharonovich Y, Scheinowitz M, Zlochiver S. Cardiac KATP channel modulation by 16Hz magnetic fields - A theoretical study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:161-164. [PMID: 28268304 DOI: 10.1109/embc.2016.7590665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heart exposure to 16Hz magnetic fields (MFs) was shown to be cardio-protective for diseased hearts; still, the mechanism of this effect is unknown. We hypothesize that a possible one mechanism is an increased trans-membrane KATP channel open probability due to modulation of the degree of dissociation between K+ ions, having a resonance frequency of 16Hz, and the channel selectivity filter. The Fan-Makielski Markovian KATP channel model was adopted, and the MF bio-effect was manifested by modulating the open probability of the channel using the predictive MF bio-effect parameter based on Binhi's quantum mechanics model. The model was integrated in a ventricular single cell model and the MF effect on the calcium transients [Ca2+] was assessed. Periodic pacing (Cycle Length CL=1sec) was applied and a 16Hz or 32Hz MF was turned on at t=0 for 10min. MF exposure gradually decreased [Ca2+] due to KATP channel opening, more strongly at 16Hz. Additionally, a small negative diastolic shift was observed. These numerical results demonstrated similarity to published experimental data using similar 16Hz MF exposure. We conclude that 16Hz MF exposure increases the KATP channel open probability, lowering the cellular calcium load. Our model could be integrated in a tissue model to predict optimal MF parameters for future cardiac therapy devices.
Collapse
|
11
|
Takahashi M, Saito A, Jimbo Y, Nakasono S. Evaluation of the effects of power-frequency magnetic fields on the electrical activity of cardiomyocytes differentiated from human induced pluripotent stem cells. J Toxicol Sci 2017; 42:223-231. [PMID: 28321048 DOI: 10.2131/jts.42.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although cardiac activity is known to differ between species in many respects, most evaluations of the cardiac effects of low-frequency electric and magnetic fields, which have a stimulant effect on electrically activated cells, have been performed in non-human experimental animals and cells, and the effects in humans have been assessed using theoretical models. In recent years, it has been verified that human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS-CM) are useful for evaluating human responses to various cardioactive compounds. In this study, we applied hiPSCMs for the first time to evaluate the human cardiac effects of power-frequency magnetic fields (MFs). After preparation of hiPS-CMs, we subjected a hiPS-CM monolayer formed on a multi-electrode array to short-term exposure to a 50 Hz MF at 400 mT with recording of the extracellular field potentials. The field potential duration of the hiPS-CMs did not differ significantly pre- and post-exposure, indicating that under these conditions, exposure to a 50 Hz MF at 400 mT does not affect the electrical activity of hiPSCMs.
Collapse
Affiliation(s)
- Masayuki Takahashi
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI)
| | | | | | | |
Collapse
|
12
|
Cornacchione M, Pellegrini M, Fassina L, Mognaschi ME, Di Siena S, Gimmelli R, Ambrosino P, Soldovieri MV, Taglialatela M, Gianfrilli D, Isidori AM, Lenzi A, Naro F. β-Adrenergic response is counteracted by extremely-low-frequency pulsed electromagnetic fields in beating cardiomyocytes. J Mol Cell Cardiol 2016; 98:146-58. [DOI: 10.1016/j.yjmcc.2016.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
|
13
|
Golbach LA, Portelli LA, Savelkoul HFJ, Terwel SR, Kuster N, de Vries RBM, Verburg-van Kemenade BML. Calcium homeostasis and low-frequency magnetic and electric field exposure: A systematic review and meta-analysis of in vitro studies. ENVIRONMENT INTERNATIONAL 2016; 92-93:695-706. [PMID: 26872872 DOI: 10.1016/j.envint.2016.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/10/2015] [Accepted: 01/18/2016] [Indexed: 05/24/2023]
Abstract
Low frequency magnetic field (LF MF) exposure is recurrently suggested to have the ability to induce health effects in society. Therefore, in vitro model systems are used to investigate biological effects of exposure. LF MF induced changes of the cellular calcium homeostasis are frequently hypothesised to be the possible target, but this hypothesis is both substantiated and rejected by numerous studies in literature. Despite the large amount of data, no systematic analysis of in vitro studies has been conducted to address the strength of evidence for an association between LF MF exposure and calcium homeostasis. Our systematic review, with inclusion of 42 studies, showed evidence for an association of LF MF with internal calcium concentrations and calcium oscillation patterns. The oscillation frequency increased, while the amplitude and the percentage of oscillating cells remained constant. The intracellular calcium concentration increased (SMD 0.351, 95% CI 0.126, 0.576). Subgroup analysis revealed heterogeneous effects associated with the exposure frequency, magnetic flux density and duration. Moreover, we found support for the presence of MF-sensitive cell types. Nevertheless, some of the included studies may introduce a great risk of bias as a result of uncontrolled or not reported exposure conditions, temperature ranges and ambient fields. In addition, mathematical calculations of the parasitic induced electric fields (IEFs) disclosed their association with increased intracellular calcium. Our results demonstrate that LF MF might influence the calcium homeostasis in cells in vitro, but the risk of bias and high heterogeneity (I(2)>75%) weakens the analyses. Therefore any potential clinical implications await further investigation.
Collapse
Affiliation(s)
- Lieke A Golbach
- Cell Biology and Immunology Group, Wageningen University, P.O.Box 338, 6700AH Wageningen, The Netherlands
| | - Lucas A Portelli
- The Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstrasse 43, CH-8004 Zurich, Switzerland
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University, P.O.Box 338, 6700AH Wageningen, The Netherlands
| | - Sofie R Terwel
- Cell Biology and Immunology Group, Wageningen University, P.O.Box 338, 6700AH Wageningen, The Netherlands
| | - Niels Kuster
- The Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstrasse 43, CH-8004 Zurich, Switzerland; Department of Information Technology and Electrical Engineering, Swiss Federal Technical Institute (ETHZ), Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Rob B M de Vries
- SYRCLE, Central Animal Laboratory, Radboud University Medical Center, The Netherlands
| | | |
Collapse
|
14
|
Adler D, Fixler D, Scheinowitz M, Shainberg A, Katz A. Weak electromagnetic fields alter Ca(2+) handling and protect against hypoxia-mediated damage in primary newborn rat myotube cultures. Pflugers Arch 2016; 468:1459-65. [PMID: 27194243 DOI: 10.1007/s00424-016-1837-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Weak electromagnetic fields (WEF) enhance Ca(2+) entry into cells via voltage-gated Ca(2+) channels and affect various aspects of metabolism, structure, and function. However, little information is available on the effect of WEF on skeletal muscle, which depends primarily on intracellular Ca(2+) stores for function and metabolism. Here, we examine the effects of 30 min exposure of rat primary myotube cultures to WEF (1.75 μT, 16 Hz) on Ca(2+) handling and creatine kinase (CK) release. Free myoplasmic Ca(2+) concentration ([Ca(2+) i]) was measured with the ratiometric dye indo-1. WEF did not affect basal [Ca(2+)]i but decreased the twitch [Ca(2+)]i transient in a time-dependent manner, and the twitch amplitude was decreased to ∼30 % after 30 min. WEF completely abolished the increase in [Ca(2+)]i induced by potassium chloride (∼60 mM) but had no effect on the increase induced by caffeine (∼6 mM). Hypoxia (2 h exposure to 100 % argon) resulted in a marked loss of CK into the medium (400 % of normoxic value), as well as a rapid (within 20 min) and sustained increase in basal [Ca(2+)]i (∼20 % above baseline). However, during exposure to WEF, basal [Ca(2+)]i remained constant during the initial 60 min of hypoxia and, thereafter, increased to levels similar to those observed in the absence of WEF. Finally, WEF blocked about 80 % of hypoxia-mediated CK release (P < 0.05). These data demonstrate that WEF inhibits increases in [Ca(2+)]i by interfering with muscle excitation and protects against muscle damage induced by hypoxia. Thus, WEF may have therapeutic/protective effects on skeletal muscle.
Collapse
Affiliation(s)
- Dana Adler
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, 40700, Israel
| | - Dror Fixler
- School of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Mickey Scheinowitz
- Department of Biomedical Engineering, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Asher Shainberg
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Abram Katz
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, 40700, Israel.
| |
Collapse
|
15
|
Ankri R, Melzer S, Tarnok A, Fixler D. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential tool for in vivo atherosclerosis tracking. Int J Nanomedicine 2015; 10:4437-46. [PMID: 26185445 PMCID: PMC4501352 DOI: 10.2147/ijn.s86615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, we report a potential noninvasive technique for the detection of vulnerable plaques using scatter analyses with flow cytometry (FCM) method combined with the diffusion reflection (DR) method. The atherosclerotic plaques are commonly divided into two major categories: stable and vulnerable. The vulnerable plaques are rich with inflammatory cells, mostly macrophages (MΦ), which release enzymes that break down collagen in the cap. The detection method is based on uptake of gold nanorods (GNR) by MΦ. The GNR have unique optical properties that enable their detection using the FCM method, based on their scattering properties, and using the DR method, based on their unique absorption properties. This work demonstrates that after GNR labeling of MΦ, 1) the FCM scatter values increased up to 3.7-fold with arbitrary intensity values increasing from 1,110 to 4,100 and 2) the DR slope changed from an average slope of 0.196 (MΦ only) to an average slope of 0.827 (MΦ labeled with GNR) (P<0.001 for both cases). The combination of FCM and DR measurements provides a potential novel, highly sensitive, and noninvasive method for the identification of atherosclerotic vulnerable plaques, aimed to develop a potential tool for in vivo tracking.
Collapse
Affiliation(s)
- Rinat Ankri
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Susanne Melzer
- Research Department of Pediatric Cardiology, Heart Centre Leipzig GmbH, Germany ; Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| | - Attila Tarnok
- Research Department of Pediatric Cardiology, Heart Centre Leipzig GmbH, Germany ; Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Leipzig, Germany
| | - Dror Fixler
- Faculty of Engineering, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
16
|
Golbach LA, Philippi JG, Cuppen JJ, Savelkoul HF, Verburg-van Kemenade BL. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields. Bioelectromagnetics 2015; 36:430-43. [DOI: 10.1002/bem.21924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Lieke A. Golbach
- Cell Biology and Immunology Group; Wageningen University; The Netherlands
| | - John G.M. Philippi
- Lab of Biophysics and Wageningen NMR Centre; Wageningen University; The Netherlands
| | | | | | | |
Collapse
|