1
|
Patra S, Chakraborty D, Verma VK, Pande R, Sangma RHC, Chakraborty M, Layek J, Hazarika S. Influence of shifting thermal regimes on tomato fruit borer, Helicoverpa armigera (Hubner) in the Eastern Himalaya: implications for pest management strategies. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2241-2251. [PMID: 39136711 DOI: 10.1007/s00484-024-02741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/29/2024]
Abstract
Climate change, particularly temperature fluctuations, profoundly impacts pest populations. This study focuses on the tomato, a crucial commercial crop in the Eastern Himalayan Region of India. The study examined the impact of varying thermal regimes on tomato fruit borers. Field experiments were conducted at three locations, with altitudes ranging from < 500 to > 1500 m. At lower altitudes, fruit borer incidence commenced earlier (5th - 18th March) and peaked higher (1.47 ± 0.34 to 1.73 ± 0.37 larvae/plant), causing more damage (26-29%) as compared to the highest location (~ 9%). The generalized linear mixed model (GLMM) analysis indicated that maximum temperature had significant positive impacts on the H. armigera incidence and fruit damage. Climatic datasets indicate an increase in the temperature of the region during the tomato growing season, thereby increasing the risk of fruit borer impact. As an adaptation option, we evaluated eight different tomato varieties/genotypes and studied biochemical parameters to understand their tolerance. Results showed a strong positive association of fruit borer incidence with total soluble solids whereas negative association with acidity. Cherry tomato (7.62%) and MT-2 (10.04%) had relatively lower fruit damage; MT-3 (50.92 t/ha) and MT-2 (50.57 t/ha) consistently yielded the highest across all locations. Hence, the selection of appropriate genotypes and the development of varieties with suitable characteristics hold the key to fruit borer management. This insight is crucial for developing effective pest management strategies and ensuring sustainable agricultural practices in the region.
Collapse
Affiliation(s)
- Sandip Patra
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Debasish Chakraborty
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India.
| | - V K Verma
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Rachna Pande
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, 440010, India
| | - Rumki H Ch Sangma
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Mahasweta Chakraborty
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - Jayanta Layek
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| | - S Hazarika
- ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, 793103, India
| |
Collapse
|
2
|
Mellidou I, Kanellis AK. Revisiting the role of ascorbate oxidase in plant systems. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2740-2753. [PMID: 38366668 PMCID: PMC11794944 DOI: 10.1093/jxb/erae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Ascorbic acid (AsA) plays an indispensable role in plants, serving as both an antioxidant and a master regulator of the cellular redox balance. Ascorbate oxidase (AO) is a blue copper oxidase that is responsible for the oxidation of AsA with the concomitant production of water. For many decades, AO was erroneously postulated as an enzyme without any obvious advantage, as it decreases the AsA pool size and thus is expected to weaken plant stress resistance. It was only a decade ago that this perspective shifted towards the fundamental role of AO in orchestrating both AsA and oxygen levels by influencing the overall redox balance in the extracellular matrix. Consistent with its localization in the apoplast, AO is involved in cell expansion, division, resource allocation, and overall plant yield. An increasing number of transgenic studies has demonstrated that AO can also facilitate communication between the surrounding environment and the cell, as its gene expression is highly responsive to factors such as hormonal signaling, oxidative stress, and mechanical injury. This review aims to describe the multiple functions of AO in plant growth, development, and stress resilience, and explore any additional roles the enzyme might have in fruits during the course of ripening.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization ELGO-DIMITRA, 57001 Thessaloniki, Greece
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
3
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
4
|
Unique metabolism of different glucosinolates in larvae and adults of a leaf beetle specialised on Brassicaceae. Sci Rep 2022; 12:10905. [PMID: 35764778 PMCID: PMC9240079 DOI: 10.1038/s41598-022-14636-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/09/2022] [Indexed: 01/12/2023] Open
Abstract
Brassicaceae plants contain glucosinolates, which are hydrolysed by myrosinases to toxic products such as isothiocyanates and nitriles, acting as defences. Herbivores have evolved various detoxification strategies, which are reviewed here. Larvae of Phaedon cochleariae (Coleoptera: Chrysomelidae) metabolise hydrolysis products of benzenic glucosinolates by conjugation with aspartic acid. In this study, we investigated whether P. cochleariae uses the same metabolic pathway for structurally different glucosinolates, whether the metabolism differs between adults and larvae and which hydrolysis products are formed as intermediates. Feeding experiments were performed with leaves of watercress (Nasturtium officinale, Brassicaceae) and pea (Pisum sativum, non-Brassicaceae), to which glucosinolates with structurally different side chains (benzenic, indole or aliphatic) or their hydrolysis products were applied. Samples were analysed by UHPLC-QTOF-MS/MS or TD–GC–MS. The same aspartic acid conjugates as previously identified in larvae were also detected as major metabolites of benzenic glucosinolates in adults. Indol-3-ylmethyl glucosinolate was mainly metabolised to N-(1H-indol-3-ylcarbonyl) glutamic acid in adults and larvae, while the metabolism of 2-propenyl glucosinolate remains unclear. The metabolism may thus proceed primarily via isothiocyanates rather than via nitriles, while the hydrolysis occurs independently of plant myrosinases. A detoxification by conjugation with these amino acids is not yet known from other Brassicaceae-feeders.
Collapse
|
5
|
Ward R, Coffey M, Kavanagh K. Proteomic analysis of summer and winter Apis mellifera workers shows reduced protein abundance in winter samples. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104397. [PMID: 35537525 DOI: 10.1016/j.jinsphys.2022.104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
Apis mellifera workers display two stages; short lived summer bees that engage in nursing, hive maintenance and foraging, and long lived winter bees (diutinus bees) which remain within the hive and are essential for thermoregulation and rearing the next generation of bees in spring before dying. Label free quantitative proteomic analysis was conducted on A. mellifera workers sampled in June and December to compare the proteomes of summer and winter bees. Proteomic analysis was performed on head, abdominal and venom sac samples and revealed an elevated level of protein abundance in summer bees. Head and abdominal samples displayed an increased abundance in cuticular proteins in summer samples whereas an increase in xenobiotic proteins was observed in winter samples. Several carbohydrate metabolism pathways which have been linked to energy production and longevity in insects were increased in abundance in winter samples in comparison to summer samples. Proteomic analysis of the venom sacs of summer samples showed an increased abundance of bee venom associated proteins in comparison to winter workers. These data provides an insight into the adaptions of A. mellifera workers in summer and winter and may aid in future treatment and disease studies on honeybee colonies. Data are available via ProteomeXchange with identifier PXD030483.
Collapse
Affiliation(s)
- Rachel Ward
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mary Coffey
- Plant Health Laboratories, Plant Science Division (Bee Health), Department of Agriculture, Celbridge, Co Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
6
|
Fullerenol changes metabolite responses differently depending on the iron status of cucumber plants. PLoS One 2021; 16:e0251396. [PMID: 33999962 PMCID: PMC8128279 DOI: 10.1371/journal.pone.0251396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
The unique properties of carbon-based nanomaterials, including fullerenol, have attracted great interest in agricultural and environmental applications. Iron (Fe) is an essential micronutrient for major metabolic processes, for which a shortage causes chlorosis and reduces the yield of many crops cultivated worldwide. In the current study, the metabolic responses of Cucumis sativus (a Strategy I plant) to fullerenol treatments were investigated depending on the Fe status of plants. Cucumber plants were grown hydroponically, either with [+FeII (ferrous) and +FeIII (ferric)] or in Fe-free (-FeII and -FeIII) nutrient solution, with (+F) or without (-F) a fullerenol supply. Iron species-dependent effects were observed in either Fe-fed or Fe-starved plants, with alteration of metabolites involved in the metabolism of carbohydrates, amino acids, organic acids, lipophilic compounds. Metabolic perturbations triggered by fullerenol in the FeIII-treated plants were in the opposite kind from those in the FeII-treated plants. Whereas in the FeIII-fed plants, fullerenol activated the metabolisation of carbohydrates and amino acids, in the FeII-fed plants, fullerenol activated the metabolisation of lipophilic compounds and repressed the metabolisation of carbohydrates and amino acids. In FeIII-deficient plants, fullerenol stimulated the metabolism of C3 carboxylates and lipophilic compounds while repressing the metabolism of amino acids, hexoses and dicarboxylates, while in FeII-deficient plants, activations of the metabolism of amino acids and dicarboxylates and repression of sterol metabolism by fullerenol were observed. The results indicated that the valence state of Fe sources is of importance for re-programming metabolome responses in cucumber to fullerenol either in Fe-sufficient or Fe-deficient conditions. These investigations are significant for understanding fullerenol interactions and risk assessment in plants with different Fe statuses.
Collapse
|
7
|
Hou M, Dai TM, Liang XY, Zhang SX, Cui WZ, Qiu JF, Sima YH, Cui WZ, Xu SQ. Bombyx mori can synthesize ascorbic acid through the l-gulose pathway to varying degrees depending on developmental stage. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:e21783. [PMID: 33719082 DOI: 10.1002/arch.21783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Vitamin C (VC) is an essential nutrient for many animals. However, whether insects, including Bombyx mori, can synthesize VC remains unclear. In this article, the optimized HPLC method was used to determine the content of l-ascorbic acid (AsA) in silkworm eggs, larvae and pupae, and the activity of l-gulono-1,4-lactone oxidase (GULO), a key enzyme in VC synthesis. The RNA interference method was used to determine the effect of the BmGulo-like gene on embryonic development and GULO activity in the pupal fat body. The AsA content increased significantly during E144 h-E168 h in the late embryonic stage and P48 h-P144 h in the middle-late pupal stage, in which exogenous VC was not ingested. Furthermore, the body AsA content in larvae fed VC-free feed also increased with larval stage. The GULO enzymatic activity was present in eggs and the fat bodies of larvae and pupae, even when the larvae were reared with fresh mulberry leaves. Moreover, the activity was higher in the later embryonic stages (E144 h-E168 h) and the early pupal stage (before P24 h). The GULO activity in the pupal fat body dramatically decreased when the screened BmGulo-like gene (BGIBMGA005735) was knocked down with small interfering RNA; in addition, the survival rate and hatching rate of eggs significantly decreased 21% and 44%, respectively, and embryonic development was delayed. Thus, Bombyx mori can synthesize AsA through the l-gulose pathway, albeit with low activity, and this synthesis ability varies with developmental stages.
Collapse
Affiliation(s)
- Man Hou
- College of Forestry, Shandong Agricultural University, Taian, Shandong, China
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Xin-Yin Liang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Sheng-Xiang Zhang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| | - Wei-Zheng Cui
- College of Forestry, Shandong Agricultural University, Taian, Shandong, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
8
|
Girón-Calva PS, Lopez C, Albacete A, Albajes R, Christou P, Eizaguirre M. β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis). PLoS One 2021; 16:e0246696. [PMID: 33591990 PMCID: PMC7886157 DOI: 10.1371/journal.pone.0246696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/23/2021] [Indexed: 11/18/2022] Open
Abstract
Maize with enhanced β-carotene production was engineered to counteract pervasive vitamin A deficiency in developing countries. Second-generation biofortified crops are being developed with additional traits that confer pest resistance. These include crops that can produce Bacillus thuringiensis Berliner (Bt) insecticidal proteins. Currently, it is unknown whether β-carotene can confer fitness benefits through to insect pests, specifically through altering Ostrinia nubilalis foraging behaviour or development in the presence of Bt insecticidal toxin. Therefore the effects of dietary β-carotene plus Bt insecticidal protein on feeding behaviour, mortality, and physiology in early and late instars of O. nubilalis larvae were investigated. The results of two-choice experiments showed that irrespective of β-carotene presence, at day five 68%-90% of neonates and 69%-77% of fifth-instar larvae avoided diets with Cry1A protein. Over 65% of neonate larvae preferred to feed on diets with β-carotene alone compared to 39% of fifth-instar larvae. Higher mortality (65%-97%) in neonates fed diets supplemented with β-carotene alone and in combination with Bt protein was found, whereas <36% mortality was observed when fed diets without supplemented β-carotene or Bt protein. Diets with both β-carotene and Bt protein extended 25 days the larval developmental duration from neonate to fifth instar (compared to Bt diets) but did not impair larval or pupal weight. Juvenile hormone and 20-hydroxyecdysone regulate insect development and their levels were at least 3-fold higher in larvae fed diets with β-carotene for 3 days. Overall, these results suggest that the effects of β-carotene and Bt protein on O. nubilalis is dependent on larval developmental stage. This study is one of the first that provides insight on how the interaction of novel traits may modulate crop susceptibility to insect pests. This understanding will in turn inform the development of crop protection strategies with greater efficacy.
Collapse
Affiliation(s)
- Patricia Sarai Girón-Calva
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Carmen Lopez
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Alfonso Albacete
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - Ramon Albajes
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Matilde Eizaguirre
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
- * E-mail:
| |
Collapse
|
9
|
Murad NF, Silva-Brandão KL, Brandão MM. Mechanisms behind polyphagia in a pest insect: Responses of Spodoptera frugiperda (J.E. Smith) strains to preferential and alternative larval host plants assessed with gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194687. [PMID: 33561559 DOI: 10.1016/j.bbagrm.2021.194687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
A dataset of gene expression from Spodoptera frugiperda, a highly generalist pest moth, was used to understand how gene regulation is related to larval host plant preference. Transcriptomic data of corn and rice strains of S. frugiperda larvae, reared on different diets, were analysed with three different approaches of gene network inference, namely co-expression, weighted co-expression and Bayesian networks, since each methodology provides a different visualization of the data. Using these approaches, it was possible to identify two loosely interconnected co-expression networks, one of them responsible for fast response to herbivory and anti-herbivory mechanisms and the other related to housekeeping genes, which present slower response to environmental variations. Integrating different levels of information such as gene expression patterns, gene assembly, transcriptomics, relationship among genes and phenotypes, functional relationships, among other information, enabled a wider visualization of S. frugiperda response to diet stimuli. The biological properties in the proposed networks are here described and discussed, as well as patterns of gene expression related to larval performance attributes.
Collapse
Affiliation(s)
- Natália Faraj Murad
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001. CEP 09210-580 Santo André, SP, Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil.
| |
Collapse
|
10
|
Gou Y, Quandahor P, Zhang K, Guo S, Zhang Q, Liu C, Coulter JA. Artificial Diet Influences Population Growth of the Root Maggot Bradysia impatiens (Diptera: Sciaridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5933138. [PMID: 33080018 PMCID: PMC7751181 DOI: 10.1093/jisesa/ieaa123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 06/11/2023]
Abstract
In order to investigate the effects of artificial diets on the population growth of root maggot Bradysia impatiens, its population growth parameters were assayed on eight artificial diets (Diet 1, D2, D3, D4, D5, D6, D7, and D8). Results showed that developmental duration from egg to pupa was successfully completed on all eight artificial diets. However, the egg to pupal duration was shortest, while the survival rate of four insect stages was lowest when B. impatiens was reared on D1. When B. impatiens was reared on D7 and D8, the survival rate, female longevity, and female oviposition were higher than those reared on other diets. When B. impatiens was reared on D7, the intrinsic rate of increase (rm = 0.19/d), net reproductive rate (R0 = 39.88 offspring per individual), and finite rate of increase (λ = 1.21/d) were higher for its population growth with shorter generation time (T = 19.49 d) and doubling time (Dt = 3.67 d). The findings indicate that the D7 artificial diet is more appropriate for the biological parameters of B. impatiens and can be used an indoor breeding food for population expansion as well as further research. We propose that vitamin C supplement added to the D7 is critical for the improvement of the B. impatiens growth.
Collapse
Affiliation(s)
- Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Peter Quandahor
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Kexin Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Sufan Guo
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Qiangyan Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu Province, P. R. China
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN
| |
Collapse
|
11
|
Michalczyk M, Fiutak G, Tarko T. Effect of hot water treatment of seeds on quality indicators of alfalfa sprouts. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Kovalikova Z, Kubes J, Skalicky M, Kuchtickova N, Maskova L, Tuma J, Vachova P, Hejnak V. Changes in Content of Polyphenols and Ascorbic Acid in Leaves of White Cabbage after Pest Infestation. Molecules 2019; 24:molecules24142622. [PMID: 31323864 PMCID: PMC6680958 DOI: 10.3390/molecules24142622] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022] Open
Abstract
Crops, such as white cabbage (Brassica oleracea L. var. capitata (L.) f. alba), are often infested by herbivorous insects that consume the leaves directly or lay eggs with subsequent injury by caterpillars. The plants can produce various defensive metabolites or free radicals that repel the insects to avert further damage. To study the production and effects of these compounds, large white cabbage butterflies, Pieris brassicae and flea beetles, Phyllotreta nemorum, were captured in a cabbage field and applied to plants cultivated in the lab. After insect infestation, leaves were collected and UV/Vis spectrophotometry and HPLC used to determine the content of stress molecules (superoxide), primary metabolites (amino acids), and secondary metabolites (phenolic acids and flavonoids). The highest level of superoxide was measured in plants exposed to fifty flea beetles. These plants also manifested a higher content of phenylalanine, a substrate for the synthesis of phenolic compounds, and in activation of total phenolics and flavonoid production. The levels of specific phenolic acids and flavonoids had higher variability when the dominant increase was in the flavonoid, quercetin. The leaves after flea beetle attack also showed an increase in ascorbic acid which is an important nutrient of cabbage.
Collapse
Affiliation(s)
- Zuzana Kovalikova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
| | - Jan Kubes
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic.
| | - Nikola Kuchtickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lucie Maskova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jiri Tuma
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|
13
|
Hubbard CJ, Li B, McMinn R, Brock MT, Maignien L, Ewers BE, Kliebenstein D, Weinig C. The effect of rhizosphere microbes outweighs host plant genetics in reducing insect herbivory. Mol Ecol 2019; 28:1801-1811. [DOI: 10.1111/mec.14989] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Charley J. Hubbard
- Department of Botany University of Wyoming Laramie Wyoming
- Program in Ecology University of Wyoming Laramie Wyoming
| | - Baohua Li
- Plant Sciences University of California, Davis Davis California
| | - Robby McMinn
- Department of Botany University of Wyoming Laramie Wyoming
- Program in Ecology University of Wyoming Laramie Wyoming
| | | | - Lois Maignien
- Marine Biological Laboratory Josephine Bay Paul Center Woods Hole Massachusetts
- Laboratory of Microbiology of Extreme Environments, UMR 6197 Institut Européen de la Mer, Université de Bretagne Occidentale Plouzane France
| | - Brent E. Ewers
- Department of Botany University of Wyoming Laramie Wyoming
- Program in Ecology University of Wyoming Laramie Wyoming
| | | | - Cynthia Weinig
- Department of Botany University of Wyoming Laramie Wyoming
- Program in Ecology University of Wyoming Laramie Wyoming
- Department of Molecular Biology University of Wyoming Laramie Wyoming
| |
Collapse
|
14
|
Telesnicki MC, Martínez-Ghersa MA, Ghersa CM. Plant oxidative status under ozone pollution as predictor for aphid population growth: The case of Metopolophium dirhodum (Hemiptera: Aphididae) in Triticum aestivum (Poales: Poaceae). BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Bohn MO, Marroquin JJ, Flint-Garcia S, Dashiell K, Willmot DB, Hibbard BE. Quantitative Trait Loci Mapping of Western Corn Rootworm (Coleoptera: Chrysomelidae) Host Plant Resistance in Two Populations of Doubled Haploid Lines in Maize (Zea mays L.). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:435-444. [PMID: 29228374 DOI: 10.1093/jee/tox310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Over the last 70 yr, more than 12,000 maize accessions have been screened for their level of resistance to western corn rootworm, Diabrotica virgifera virgifera (LeConte; Coleoptera: Chrysomelidae), larval feeding. Less than 1% of this germplasm was selected for initiating recurrent selection or other breeding programs. Selected genotypes were mostly characterized by large root systems and superior root regrowth after root damage caused by western corn rootworm larvae. However, no hybrids claiming native (i.e., host plant) resistance to western corn rootworm larval feeding are currently commercially available. We investigated the genetic basis of western corn rootworm resistance in maize materials with improved levels of resistance using linkage disequilibrium mapping approaches. Two populations of topcrossed doubled haploid maize lines (DHLs) derived from crosses between resistant and susceptible maize lines were evaluated for their level of resistance in three to four different environments. For each DHL topcross an average root damage score was estimated and used for quantitative trait loci (QTL) analysis. We found genomic regions contributing to western corn rootworm resistance on all maize chromosomes, except for chromosome 4. Models fitting all QTL simultaneously explained about 30 to 50% of the genotypic variance for root damage scores in both mapping populations. Our findings confirm the complex genetic structure of host plant resistance against western corn rootworm larval feeding in maize. Interestingly, three of these QTL regions also carry genes involved in ascorbate biosynthesis, a key compound we hypothesize is involved in the expression of western corn rootworm resistance.
Collapse
Affiliation(s)
- Martin O Bohn
- Department of Crop Sciences, University of Illinois, Urbana, IL
| | | | - Sherry Flint-Garcia
- United States Department of Agriculture-Agricultural Research Service Plant Genetics Research Unit, Columbia, MO
| | - Kenton Dashiell
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | | | - Bruce E Hibbard
- United States Department of Agriculture-Agricultural Research Service Plant Genetics Research Unit, Columbia, MO
| |
Collapse
|
16
|
Sytykiewicz H. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings. Int J Mol Sci 2016; 17:268. [PMID: 26907270 PMCID: PMC4813132 DOI: 10.3390/ijms17030268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/27/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Department of Biochemistry and Molecular Biology, Siedlce University of Natural Sciences and Humanities, Prusa 12, 08-110 Siedlce, Poland.
| |
Collapse
|
17
|
Cruz D, Eizaguirre M. Do Sesamia nonagrioides (Lepidoptera; Noctuidae) gravid females discriminate between Bt or multivitamin corn varieties? Role of olfactory and visual cues. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev018. [PMID: 25843586 PMCID: PMC4535468 DOI: 10.1093/jisesa/iev018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
The Mediterranean corn borer, Sesamia nonagrioides Lefèbvre, is a key pest of corn and a main target of Bacillus thuringiensis (Bt) corn in Northeast Spain. Trends for future biotechnology crops indicate that Bt, non-Bt, and stacked corn varieties with metabolic pathways for vitamin-increased traits could coexist in same region. Knowledge of the oviposition response of gravid females of S. nonagrioides to these different varieties could be extremely important for managing strategies aimed for delaying resistance development. In dual-choice assays, we examined the host preference of gravid females of S. nonagrioides for four corn varieties: a new transgenic corn with increased vitamin levels, its near isogenic counterpart (M37W), a Bt corn plant, and its near isogenic counterpart. Olfactory cues were the predominant ones when gravid females looked for a suitable host to lay eggs, and no synergistic effects were observed when both visual and olfactory cues were present. When the plant was visible, the females preferred the odors emitted by the nontransgenic to its multivitamin transgenic counterpart and when they only could detect the volatiles they also preferred the nontransgenic M37W variety to the Bt corn variety. If gravid females are less attracted to corn with an increased level of vitamins, this could impact insect resistance management and the value of refuge plants, if such traits are stacked with an insect resistance trait.
Collapse
Affiliation(s)
- Diego Cruz
- Department of Crop and Forest Sciences, Agrotecnio Center, University of Lleida, RoviraRoure 191, 25198 Lleida, Spain
| | - Matilde Eizaguirre
- Department of Crop and Forest Sciences, Agrotecnio Center, University of Lleida, RoviraRoure 191, 25198 Lleida, Spain
| |
Collapse
|
18
|
Peng Z, Dittmer NT, Lang M, Brummett LM, Braun CL, Davis LC, Kanost MR, Gorman MJ. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 59:58-71. [PMID: 25701385 PMCID: PMC4387078 DOI: 10.1016/j.ibmb.2015.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 06/01/2023]
Abstract
Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.
Collapse
Affiliation(s)
- Zeyu Peng
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Minglin Lang
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Lisa M Brummett
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Caroline L Braun
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Lawrence C Davis
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| | - Maureen J Gorman
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
19
|
Zebelo SA, Maffei ME. Role of early signalling events in plant-insect interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:435-48. [PMID: 25429000 DOI: 10.1093/jxb/eru480] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The response of plants to the stress caused by herbivores involves several different defence mechanisms. These responses begin at the plant cell plasma membrane, where insect herbivores interact physically by causing mechanical damage and chemically by introducing elicitors or by triggering plant-derived signalling molecules. The earliest plant responses to herbivore contact are represented by ion flux unbalances generated in the plant cell plasma membrane at the damaged site. Differences in the charge distribution generate plasma transmembrane potential (V m) variation, the first event, which eventually leads to the initiation of signal transduction pathways and gene expression. Calcium signalling and the generation of reactive oxygen and nitrogen species are early events closely related to V m variations. This review provides an update on recent developments and advances in plant early signalling in response to herbivory, with particular emphasis on the electrophysiological variations of the plasma membrane potential, calcium signalling, cation channel activity, production of reactive oxygen and nitrogen species, and formation of a systemically moving signal from wounded tissues. The roles of calcium-dependent protein kinases and calcineurin signalling are also discussed.
Collapse
Affiliation(s)
- Simon A Zebelo
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn 36849, AL, USA
| | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, Innovation Centre, University of Turin, Via Quarello 15/A, Turin 10135, Italy
| |
Collapse
|
20
|
Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A. Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2013; 49:643-655. [PMID: 25767369 PMCID: PMC4354779 DOI: 10.1007/s11627-013-9568-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
l-Ascorbic acid (vitamin C) is an abundant metabolite in plant cells and tissues. Ascorbate functions as an antioxidant, as an enzyme cofactor, and plays essential roles in multiple physiological processes including photosynthesis, photoprotection, control of cell cycle and cell elongation, and modulation of flowering time, gene regulation, and senescence. The importance of this key molecule in regulating whole plant morphology, cell structure, and plant development has been clearly established via characterization of low vitamin C mutants of Arabidopsis, potato, tobacco, tomato, and rice. However, the consequences of elevating ascorbate content in plant growth and development are poorly understood. Here we demonstrate that Arabidopsis lines over-expressing a myo-inositol oxygenase or an l-gulono-1,4-lactone oxidase, containing elevated ascorbate, display enhanced growth and biomass accumulation of both aerial and root tissues. To our knowledge this is the first study demonstrating such a marked positive effect in plant growth in lines engineered to contain elevated vitamin C content. In addition, we present evidence showing that these lines are tolerant to a wide range of abiotic stresses including salt, cold, and heat. Total ascorbate content of the transgenic lines remained higher than those of controls under the abiotic stresses tested. Interestingly, exposure to pyrene, a polycyclic aromatic hydrocarbon and known inducer of oxidative stress in plants, leads to stunted growth of the aerial tissue, reduction in the number of root hairs, and inhibition of leaf expansion in wild type plants, while these symptoms are less severe in the over-expressers. Our results indicate the potential of this metabolic engineering strategy to develop crops with enhanced biomass, abiotic stress tolerance, and phytoremediation capabilities.
Collapse
Affiliation(s)
- Katherine A Lisko
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Raquel Torres
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Rodney S Harris
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
| | - Melinda Belisle
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280, USA
| | - Martha M Vaughan
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Berangère Jullian
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Boris I Chevone
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Pedro Mendes
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Craig L Nessler
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, P.O. Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 419, State University, AR 72467, USA
| |
Collapse
|
21
|
|
22
|
Kerchev PI, Fenton B, Foyer CH, Hancock RD. Infestation of potato (Solanum tuberosum L.) by the peach-potato aphid (Myzus persicae Sulzer) alters cellular redox status and is influenced by ascorbate. PLANT, CELL & ENVIRONMENT 2012; 35:430-40. [PMID: 21736590 DOI: 10.1111/j.1365-3040.2011.02395.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The peach-potato aphid (Myzus persicae Sulzer) is a major pest of potato (Solanum tuberosum L.) but the molecular characterization of this interaction particularly with regard to oxidants and antioxidants remains to be undertaken. Aphid colonies reared on potato leaves containing high ascorbate were twice the size of those grown on leaves with low ascorbate. Infestation-dependent decreases in the abundance of key transcripts such as chloroplastic FeSOD, peroxisomal catalase 2, PR1 and JAZ1 preceded detectable leaf H(2)O(2) or polyphenol accumulation. The leaf glutathione pool was increased 48 h after infestation, but the amount of ascorbate was unchanged. The ascorbate/dehydroacorbate (DHA) ratio was lower at 48 h but the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unchanged. While DHA reductase and GSSG reductase activities were unaffected by aphid feeding, non-specific peroxidase activities were enhanced 48 h following aphid infestation. Brown ethanol-insoluble deposits were observed close to leaf veins following aphid infestation. Taken together, the results demonstrate that high ascorbate favours aphid colony expansion and that perturbations in the leaf antioxidant system are intrinsic to the potato leaf response to aphids. Moreover, these changes together with the induction of hormone-related transcripts precede the deposition of defence-associated oxidized polyphenols along the stylet track.
Collapse
|
23
|
Kerchev PI, Fenton B, Foyer CH, Hancock RD. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. PLANT, CELL & ENVIRONMENT 2012; 35:441-53. [PMID: 21752032 DOI: 10.1111/j.1365-3040.2011.02399.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under herbivore attack plants mount a defence response characterized by the accumulation of secondary metabolites and inhibitory proteins. Significant changes are observed in the transcriptional profiles of genes encoding enzymes of primary metabolism. Such changes have often been interpreted in terms of a requirement for an increased investment of resources to 'fuel' the synthesis of secondary metabolites. While enhanced secondary metabolism undoubtedly exerts an influence on primary metabolism, accumulating evidence suggests that rather than stimulating photosynthesis insect herbivory reduces photosynthetic carbon fixation and this response occurs by a re-programming of gene expression. Within this context, reactive oxygen species (ROS) and reductant/oxidant (redox) signalling play a central role. Accumulating evidence suggests that ROS signalling pathways are closely interwoven with hormone-signalling pathways in plant-insect interactions. Here we consider how insect infestation impacts on the stress signalling network through effects on ROS and cellular redox metabolism with particular emphasis on the roles of ROS in the plant responses to phloem-feeding insects.
Collapse
Affiliation(s)
- Pavel I Kerchev
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | |
Collapse
|
24
|
Kanawati B, von Saint Paul V, Herrmann C, Schäffner AR, Schmitt-Kopplin P. Mass spectrometric stereoisomeric differentiation between α- and β-ascorbic acid 2-O-glucosides. Experimental and density functional theory study. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:806-814. [PMID: 21337643 DOI: 10.1002/rcm.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
L-Ascorbic acid and two distinct anomers, namely the α-D-glucopyranosyl and β-D-glucopyranosyl-(1→2)-L-ascorbic acid (stereoisomers), were studied within the scope of collision-induced dissociation (CID) experiments, performed by linear ion acceleration and collision with argon atoms inside a hexapole quadrupole hexapole ion beam guide, which is coupled to an ion cyclotron resonance (ICR) cell with a 12 Tesla magnet for high-resolution measurements. Loss of C(2)H(4)O(2) neutral from the [M-H](-) anion of L-ascorbic acid was observed. Density functional theory (DFT) calculations on the 6-311+G(2d,p)//6-31+G(d) level of theory reveal a new concerted mechanism for an intramolecular gas-phase rearrangement, through which the observed ejected neutral C(2)H(4)O(2) can take place. A similar rearrangement also occurs in the case of α- and β-D-glucopyranosyl-(1→2)-L-ascorbic acid. For the α isomer, only homolytic glycoside fragmentation was observed. For the β isomer, both homolytic and heterolytic glycoside cleavages were possible. The mechanisms behind all observed fragmentation pathways were fully understood by the implementation of accurate DFT calculations. Stereoisomeric differentiation between α and β isomers of the L-ascorbic acid-2-O-glucoside could be revealed by tandem mass spectrometry (MS/MS) experiments and were explained theoretically.
Collapse
Affiliation(s)
- Basem Kanawati
- Institute of Ecological Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | | | | | | | | |
Collapse
|