1
|
Qin T, Zhang H, Zou Z. Unveiling cell-type-specific mode of evolution in comparative single-cell expression data. J Genet Genomics 2025:S1673-8527(25)00131-6. [PMID: 40345525 DOI: 10.1016/j.jgg.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
While methodology for determining the mode of evolution in coding sequences has been well established, evaluation of adaptation events in emerging types of phenotype data needs further development. Here we propose an analysis framework (expression variance decomposition, EVaDe) for comparative single-cell expression data based on phenotypic evolution theory. After decomposing the gene expression variance into separate components, we use two strategies to identify genes exhibiting large between-taxon expression divergence and small within-cell-type expression noise in certain cell types, attributing this pattern to putative adaptive evolution. In a dataset of primate prefrontal cortex, we find that such human-specific key genes enrich with neurodevelopment-related functions, while most other genes exhibit neutral evolution patterns. Specific neuron types are found to harbor more of these key genes than other cell types, thus likely to have experienced more extensive adaptation. Reassuringly, at molecular sequence level, the key genes are significantly associated with the rapidly evolving conserved non-coding elements. An additional case analysis comparing the naked mole-rat (NMR) with the mouse suggests that innate-immunity-related genes and cell types have undergone putative expression adaptation in NMR. Overall, the EVaDe framework may effectively probe adaptive evolution mode in single-cell expression data.
Collapse
Affiliation(s)
- Tian Qin
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hongjiu Zhang
- Microsoft Canada Development Centre, Vancouver, British Columbia, V5C 1G1, Canada
| | - Zhengting Zou
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
2
|
Mack KL, Landino NP, Tertyshnaia M, Longo TC, Vera SA, Crew LA, McDonald K, Phifer-Rixey M. Gene-by-environment Interactions and Adaptive Body Size Variation in Mice From the Americas. Mol Biol Evol 2025; 42:msaf078. [PMID: 40172935 PMCID: PMC12015161 DOI: 10.1093/molbev/msaf078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/14/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
The relationship between genotype and phenotype is often mediated by the environment. Moreover, gene-by-environment (GxE) interactions can contribute to variation in phenotypes and fitness. In the last 500 yr, house mice have invaded the Americas. Despite their short residence time, there is evidence of rapid climate adaptation, including shifts in body size and aspects of metabolism with latitude. Previous selection scans have identified candidate genes for metabolic adaptation. However, environmental variation in diet as well as GxE interactions likely impact body mass variation in wild populations. Here, we investigated the role of the environment and GxE interactions in shaping adaptive phenotypic variation. Using new locally adapted inbred strains from North and South America, we evaluated response to a high-fat diet, finding that sex, strain, diet, and the interaction between strain and diet contributed significantly to variation in body size. We also found that the transcriptional response to diet is largely strain-specific, indicating that GxE interactions affecting gene expression are pervasive. Next, we used crosses between strains from contrasting climates to characterize gene expression regulatory divergence on a standard diet and on a high-fat diet. We found that gene regulatory divergence is often condition-specific, particularly for trans-acting changes. Finally, we found evidence for lineage-specific selection on cis-regulatory variation involved in diverse processes, including lipid metabolism. Overlap with scans for selection identified candidate genes for environmental adaptation with diet-specific effects. Together, our results underscore the importance of environmental variation and GxE interactions in shaping adaptive variation in complex traits.
Collapse
Affiliation(s)
- Katya L Mack
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Nico P Landino
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | | | - Tiffany C Longo
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Sebastian A Vera
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Lilia A Crew
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Kristi McDonald
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
| | - Megan Phifer-Rixey
- Department of Biology, Monmouth University, West Long Branch, NJ, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Starr AL, Fraser HB. A general principle of neuronal evolution reveals a human-accelerated neuron type potentially underlying the high prevalence of autism in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.02.606407. [PMID: 39131279 PMCID: PMC11312593 DOI: 10.1101/2024.08.02.606407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The remarkable ability of a single genome sequence to encode a diverse collection of distinct cell types, including the thousands of cell types found in the mammalian brain, is a key characteristic of multicellular life. While it has been observed that some cell types are far more evolutionarily conserved than others, the factors driving these differences in evolutionary rate remain unknown. Here, we hypothesized that highly abundant neuronal cell types may be under greater selective constraint than rarer neuronal types, leading to variation in their rates of evolution. To test this, we leveraged recently published cross-species single-nucleus RNA-sequencing datasets from three distinct regions of the mammalian neocortex. We found a strikingly consistent relationship where more abundant neuronal subtypes show greater gene expression conservation between species, which replicated across three independent datasets covering >106 neurons from six species. Based on this principle, we discovered that the most abundant type of neocortical neurons-layer 2/3 intratelencephalic excitatory neurons-has evolved exceptionally quickly in the human lineage compared to other apes. Surprisingly, this accelerated evolution was accompanied by the dramatic down-regulation of autism-associated genes, which was likely driven by polygenic positive selection specific to the human lineage. In sum, we introduce a general principle governing neuronal evolution and suggest that the exceptionally high prevalence of autism in humans may be a direct result of natural selection for lower expression of a suite of genes that conferred a fitness benefit to our ancestors while also rendering an abundant class of neurons more sensitive to perturbation.
Collapse
Affiliation(s)
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Buglione M, Rivieccio E, Aceto S, Paturzo V, Biondi C, Fulgione D. The Domestication of Wild Boar Could Result in a Relaxed Selection for Maintaining Olfactory Capacity. Life (Basel) 2024; 14:1045. [PMID: 39202786 PMCID: PMC11355481 DOI: 10.3390/life14081045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Domesticated animals are artificially selected to exhibit desirable traits, however not all traits of domesticated animals are the result of deliberate selection. Loss of olfactory capacity in the domesticated pig (Sus scrofa domesticus) is one example. We used whole transcriptome analysis (RNA-Seq) to compare patterns of gene expression in the olfactory mucosa of the pig and two subspecies of wild boar (Sus scrofa), and investigate candidate genes that could be responsible for the loss of olfactory capacity. We identified hundreds of genes with reductions in transcript abundance in pig relative to wild boar as well as differences between the two subspecies of wild boar. These differences were detected mainly in genes involved in the formation and motility of villi, cilia and microtubules, functions associated with olfaction. In addition, differences were found in the abundances of transcripts of genes related to immune defenses, with the highest levels in continental wild boar subspecies. Overall, the loss of olfactory capacity in pigs appears to have been accompanied by reductions in the expression of candidate genes for olfaction. These changes could have resulted from unintentional selection for reduced olfactory capacity, relaxed selection for maintaining olfactory capacity, pleiotropic effects of genes under selection, or other non-selective processes. Our findings could be a cornerstone for future researches on wild boars, pigs, feral populations, and their evolutionary trajectories, aimed to provide tools to better calibrate species management as well as guidelines for breeders.
Collapse
Affiliation(s)
- Maria Buglione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.B.); (S.A.); (V.P.); (C.B.)
| | - Eleonora Rivieccio
- Department of Humanities Studies, University of Naples Federico II, 80133 Naples, Italy;
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.B.); (S.A.); (V.P.); (C.B.)
| | - Vincenzo Paturzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.B.); (S.A.); (V.P.); (C.B.)
| | - Carla Biondi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.B.); (S.A.); (V.P.); (C.B.)
| | - Domenico Fulgione
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.B.); (S.A.); (V.P.); (C.B.)
| |
Collapse
|
5
|
Wang B, Starr AL, Fraser HB. Cell-type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. eLife 2024; 12:RP89594. [PMID: 38358392 PMCID: PMC10942608 DOI: 10.7554/elife.89594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell-type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell-type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell-type-specific cis-regulatory changes. We find that cell-type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell-type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Hunter B Fraser
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
6
|
Pettie KP, Mumbach M, Lea AJ, Ayroles J, Chang HY, Kasowski M, Fraser HB. Chromatin activity identifies differential gene regulation across human ancestries. Genome Biol 2024; 25:21. [PMID: 38225662 PMCID: PMC10789071 DOI: 10.1186/s13059-024-03165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Current evidence suggests that cis-regulatory elements controlling gene expression may be the predominant target of natural selection in humans and other species. Detecting selection acting on these elements is critical to understanding evolution but remains challenging because we do not know which mutations will affect gene regulation. RESULTS To address this, we devise an approach to search for lineage-specific selection on three critical steps in transcriptional regulation: chromatin activity, transcription factor binding, and chromosomal looping. Applying this approach to lymphoblastoid cells from 831 individuals of either European or African descent, we find strong signals of differential chromatin activity linked to gene expression differences between ancestries in numerous contexts, but no evidence of functional differences in chromosomal looping. Moreover, we show that enhancers rather than promoters display the strongest signs of selection associated with sites of differential transcription factor binding. CONCLUSIONS Overall, our study indicates that some cis-regulatory adaptation may be more easily detected at the level of chromatin than DNA sequence. This work provides a vast resource of genomic interaction data from diverse human populations and establishes a novel selection test that will benefit future study of regulatory evolution in humans and other species.
Collapse
Affiliation(s)
- Kade P Pettie
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Maxwell Mumbach
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julien Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maya Kasowski
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Wang B, Starr AL, Fraser HB. Cell type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541747. [PMID: 37292820 PMCID: PMC10245923 DOI: 10.1101/2023.05.22.541747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell type-specific cis-regulatory changes. We find that cell type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
8
|
Starr AL, Gokhman D, Fraser HB. Accounting for cis-regulatory constraint prioritizes genes likely to affect species-specific traits. Genome Biol 2023; 24:11. [PMID: 36658652 PMCID: PMC9850818 DOI: 10.1186/s13059-023-02846-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Measuring allele-specific expression in interspecies hybrids is a powerful way to detect cis-regulatory changes underlying adaptation. However, it remains difficult to identify genes most likely to explain species-specific traits. Here, we outline a simple strategy that leverages population-scale allele-specific RNA-seq data to identify genes that show constrained cis-regulation within species yet show divergence between species. Applying this strategy to data from human-chimpanzee hybrid cortical organoids, we identify signatures of lineage-specific selection on genes related to saccharide metabolism, neurodegeneration, and primary cilia. We also highlight cis-regulatory divergence in CUX1 and EDNRB that may shape the trajectory of human brain development.
Collapse
Affiliation(s)
| | - David Gokhman
- Department of Biology, Stanford University, Stanford, CA, USA
- Present Address: Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Kiemel K, Gurke M, Paraskevopoulou S, Havenstein K, Weithoff G, Tiedemann R. Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species. Sci Rep 2022; 12:22626. [PMID: 36587065 PMCID: PMC9805463 DOI: 10.1038/s41598-022-27137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.
Collapse
Affiliation(s)
- K. Kiemel
- grid.11348.3f0000 0001 0942 1117Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Straße 24-25, 14476 Potsdam, Germany
| | - M. Gurke
- grid.422371.10000 0001 2293 9957Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany ,grid.7468.d0000 0001 2248 7639Department of Biology, Humboldt-University, Invalidenstraße 42, 10115 Berlin, Germany
| | - S. Paraskevopoulou
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Microbiology Group, Sölvegatan 35, 223 62 Lund, Sweden
| | - K. Havenstein
- grid.11348.3f0000 0001 0942 1117Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Straße 24-25, 14476 Potsdam, Germany
| | - G. Weithoff
- grid.11348.3f0000 0001 0942 1117Unit of Ecology and Ecosystem Modelling, Institute for Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - R. Tiedemann
- grid.11348.3f0000 0001 0942 1117Unit of Evolutionary Biology/Systematic Zoology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Li J, Sun K, Dai W, Leng H, Li A, Feng J. Extensive Adaptive Variation in Gene Expression within and between Closely Related Horseshoe Bats (Chiroptera, Rhinolophus) Revealed by Three Organs. Animals (Basel) 2022; 12:ani12233432. [PMID: 36496954 PMCID: PMC9741297 DOI: 10.3390/ani12233432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In the process of species differentiation and adaption, the relative influence of natural selection on gene expression variation often remains unclear (especially its impact on phenotypic divergence). In this study, we used differentially expressed genes from brain, cochlea, and liver samples collected from two species of bats to determine the gene expression variation forced by natural selection when comparing at the interspecific (Rhinolophus siamensis and R. episcopus episcopus) and the intraspecific (R. e. episcopus and R. episcopus spp.) levels. In both cases, gene expression variation was extensively adaptive (>66.0%) and mainly governed by directional selection, followed by stabilizing selection, and finally balancing selection. The expression variation related to acoustic signals (resting frequency, RF) and body size (forearm length, FA) was also widely governed by natural selection (>69.1%). Different functional patterns of RF- or FA-related adaptive expression variation were found between the two comparisons, which manifested as abundant immune-related regulations between subspecies (indicating a relationship between immune response and phenotypic adaption). Our study verifies the extensive adaptive expression variation between both species and subspecies and provides insight into the effects of natural selection on species differentiation and adaptation as well as phenotypic divergence at the expression level.
Collapse
Affiliation(s)
- Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
- Correspondence: (K.S.); (J.F.)
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (K.S.); (J.F.)
| |
Collapse
|
11
|
Fraser HB. Existing methods are effective at measuring natural selection on gene expression. Nat Ecol Evol 2022; 6:1836-1837. [PMID: 36344679 DOI: 10.1038/s41559-022-01889-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Price PD, Palmer Droguett DH, Taylor JA, Kim DW, Place ES, Rogers TF, Mank JE, Cooney CR, Wright AE. Reply to: Existing methods are effective at measuring natural selection on gene expression. Nat Ecol Evol 2022; 6:1838-1839. [PMID: 36344678 DOI: 10.1038/s41559-022-01916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Peter D Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Daniela H Palmer Droguett
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Jessica A Taylor
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dong W Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elsie S Place
- Development, Regeneration and Neurophysiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Thea F Rogers
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Judith E Mank
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Christopher R Cooney
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
13
|
The Genetic Basis of Gene Expression Divergence in Antennae of Two Closely Related Moth Species, Helicoverpa armigera and Helicoverpa assulta. Int J Mol Sci 2022; 23:ijms231710050. [PMID: 36077444 PMCID: PMC9456569 DOI: 10.3390/ijms231710050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The closely related species Helicoverpa armigera (H. armigera) and Helicoverpa assulta (H. assulta) have different host plant ranges and share two principal components of sex pheromones but with reversed ratios. The antennae are the main olfactory organ of insects and play a crucial role in host plant selection and mate seeking. However, the genetic basis for gene expression divergence in the antennae of the two species is unclear. We performed an allele-specific expression (ASE) analysis in the antennal transcriptomes of the two species and their F1 hybrids, examining the connection between gene expression divergence and phenotypic differences. The results show that the proportion of genes classified as all cis was higher than that of all trans in males and reversed in females. The contribution of regulatory patterns to gene expression divergence in males was less than that in females, which explained the functional differentiation of male and female antennae. Among the five groups of F1 hybrids, the fertile males from the cross of H. armigera female and H. assulta male had the lowest proportion of misexpressed genes, and the inferred regulatory patterns were more accurate. By using this group of F1 hybrids, we discovered that cis-related regulations play a crucial role in gene expression divergence of sex pheromone perception-related proteins. These results are helpful for understanding how specific changes in the gene expression of olfactory-related genes can contribute to rapid evolutionary changes in important olfactory traits in closely related moths.
Collapse
|
14
|
Abstract
Gene expression divergence through evolutionary processes is thought to be important for achieving programmed development in multicellular organisms. To test this premise in filamentous fungi, we investigated transcriptional profiles of 3,942 single-copy orthologous genes (SCOGs) in five related sordariomycete species that have morphologically diverged in the formation of their flask-shaped perithecia. We compared expression of the SCOGs to inferred gene expression levels of the most recent common ancestor of the five species, ranking genes from their largest increases to smallest increases in expression during perithecial development in each of the five species. We found that a large proportion of the genes that exhibited evolved increases in gene expression were important for normal perithecial development in Fusarium graminearum. Many of these genes were previously uncharacterized, encoding hypothetical proteins without any known functional protein domains. Interestingly, the developmental stages during which aberrant knockout phenotypes appeared largely coincided with the elevated expression of the deleted genes. In addition, we identified novel genes that affected normal perithecial development in Magnaporthe oryzae and Neurospora crassa, which were functionally and transcriptionally diverged from the orthologous counterparts in F. graminearum. Furthermore, comparative analysis of developmental transcriptomes and phylostratigraphic analysis suggested that genes encoding hypothetical proteins are generally young and transcriptionally divergent between related species. This study provides tangible evidence of shifts in gene expression that led to acquisition of novel function of orthologous genes in each lineage and demonstrates that several genes with hypothetical function are crucial for shaping multicellular fruiting bodies. IMPORTANCE The fungal class Sordariomycetes includes numerous important plant and animal pathogens. It also provides model systems for studying fungal fruiting body development, as its members develop fruiting bodies with a few well-characterized tissue types on common growth media and have rich genomic resources that enable comparative and functional analyses. To understand transcriptional divergence of key developmental genes between five related sordariomycete fungi, we performed targeted knockouts of genes inferred to have evolved significant upward shifts in expression. We found that many previously uncharacterized genes play indispensable roles at different stages of fruiting body development, which have undergone transcriptional activation in specific lineages. These novel genes are predicted to be phylogenetically young and tend to be involved in lineage- or species-specific function. Transcriptional activation of genes with unknown function seems to be more frequent than ever thought, which may be crucial for rapid adaption to changing environments for successful sexual reproduction.
Collapse
|
15
|
Quiver MH, Lachance J. Adaptive eQTLs reveal the evolutionary impacts of pleiotropy and tissue-specificity while contributing to health and disease. HGG ADVANCES 2022; 3:100083. [PMID: 35047867 PMCID: PMC8756519 DOI: 10.1016/j.xhgg.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Large numbers of expression quantitative trait loci (eQTLs) have recently been identified in humans, and many of these regulatory variants have large allele frequency differences between populations. Here, we conducted genome-wide scans of selection to identify adaptive eQTLs (i.e., eQTLs with large population branch statistics). We then tested if tissue pleiotropy affects whether eQTLs are more or less likely to be adaptive and identified tissues that have been key targets of positive selection during the last 100,000 years. Top adaptive eQTL outliers include rs1043809, rs66899053, and rs2814778 (a SNP that is associated with malaria resistance). We found that effect sizes of eQTLs were negatively correlated with population branch statistics and that adaptive eQTLs affect two-thirds as many tissues as do non-adaptive eQTLs. Because the tissue breadth of an eQTL can be viewed as a measure of pleiotropy, these results imply that pleiotropy inhibits adaptation. The proportion of eQTLs that are adaptive varies by tissue, and we found that eQTLs that regulate expression in testis, thyroid, blood, or sun-exposed skin are enriched for signatures of positive selection. By contrast, eQTLs that regulate expression in the cerebrum or female-specific tissues have a relative lack of adaptive outliers. Scans of selections also reveal that many adaptive eQTLs are closely linked to disease-associated loci. Taken together, our results indicate that eQTLs have played an important role in recent human evolution.
Collapse
Affiliation(s)
- Melanie H Quiver
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Kern AF, Yang GX, Khosla NM, Ang RML, Snyder MP, Fraser HB. Divergent patterns of selection on metabolite levels and gene expression. BMC Ecol Evol 2021; 21:185. [PMID: 34587900 PMCID: PMC8482673 DOI: 10.1186/s12862-021-01915-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Background Natural selection can act on multiple genes in the same pathway, leading to polygenic adaptation. For example, adaptive changes were found to down-regulate six genes involved in ergosterol biosynthesis—an essential pathway targeted by many antifungal drugs—in some strains of the yeast Saccharomyces cerevisiae. However, the impact of this polygenic adaptation on metabolite levels was unknown. Here, we performed targeted mass spectrometry to measure the levels of eight metabolites in this pathway in 74 yeast strains from a genetic cross. Results Through quantitative trait locus (QTL) mapping we identified 19 loci affecting ergosterol pathway metabolite levels, many of which overlap loci that also impact gene expression within the pathway. We then used the recently developed v-test, which identified selection acting upon three metabolite levels within the pathway, none of which were predictable from the gene expression adaptation. Conclusions These data showed that effects of selection on metabolite levels were complex and not predictable from gene expression data. This suggests that a deeper understanding of metabolism is necessary before we can understand the impacts of even relatively straightforward gene expression adaptations on metabolic pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01915-5.
Collapse
Affiliation(s)
| | | | - Neil M Khosla
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Roy Moh Lik Ang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Benowitz KM, Coleman JM, Allan CW, Matzkin LM. Contributions of cis- and trans-Regulatory Evolution to Transcriptomic Divergence across Populations in the Drosophila mojavensis Larval Brain. Genome Biol Evol 2021; 12:1407-1418. [PMID: 32653899 PMCID: PMC7495911 DOI: 10.1093/gbe/evaa145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Natural selection on gene expression was originally predicted to result primarily in cis- rather than trans-regulatory evolution, due to the expectation of reduced pleiotropy. Despite this, numerous studies have ascribed recent evolutionary divergence in gene expression predominantly to trans-regulation. Performing RNA-seq on single isofemale lines from genetically distinct populations of the cactophilic fly Drosophila mojavensis and their F1 hybrids, we recapitulated this pattern in both larval brains and whole bodies. However, we demonstrate that improving the measurement of brain expression divergence between populations by using seven additional genotypes considerably reduces the estimate of trans-regulatory contributions to expression evolution. We argue that the finding of trans-regulatory predominance can result from biases due to environmental variation in expression or other sources of noise, and that cis-regulation is likely a greater contributor to transcriptional evolution across D. mojavensis populations. Lastly, we merge these lines of data to identify several previously hypothesized and intriguing novel candidate genes, and suggest that the integration of regulatory and population-level transcriptomic data can provide useful filters for the identification of potentially adaptive genes.
Collapse
Affiliation(s)
| | - Joshua M Coleman
- Department of Entomology, University of Arizona.,Department of Biological Sciences, University of Alabama in Huntsville
| | | | - Luciano M Matzkin
- Department of Entomology, University of Arizona.,Department of Ecology and Evolutionary Biology, University of Arizona.,BIO5 Institute, University of Arizona
| |
Collapse
|
18
|
Weller CA, Tilk S, Rajpurohit S, Bergland AO. Accurate, ultra-low coverage genome reconstruction and association studies in Hybrid Swarm mapping populations. G3-GENES GENOMES GENETICS 2021; 11:6156828. [PMID: 33677482 PMCID: PMC8759814 DOI: 10.1093/g3journal/jkab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/19/2021] [Indexed: 11/27/2022]
Abstract
Genetic association studies seek to uncover the link between genotype and phenotype, and often utilize inbred reference panels as a replicable source of genetic variation. However, inbred reference panels can differ substantially from wild populations in their genotypic distribution, patterns of linkage-disequilibrium, and nucleotide diversity. As a result, associations discovered using inbred reference panels may not reflect the genetic basis of phenotypic variation in natural populations. To address this problem, we evaluated a mapping population design where dozens to hundreds of inbred lines are outbred for few generations, which we call the Hybrid Swarm. The Hybrid Swarm approach has likely remained underutilized relative to pre-sequenced inbred lines due to the costs of genome-wide genotyping. To reduce sequencing costs and make the Hybrid Swarm approach feasible, we developed a computational pipeline that reconstructs accurate whole genomes from ultra-low-coverage (0.05X) sequence data in Hybrid Swarm populations derived from ancestors with phased haplotypes. We evaluate reconstructions using genetic variation from the Drosophila Genetic Reference Panel as well as variation from neutral simulations. We compared the power and precision of Genome-Wide Association Studies using the Hybrid Swarm, inbred lines, recombinant inbred lines (RILs), and highly outbred populations across a range of allele frequencies, effect sizes, and genetic architectures. Our simulations show that these different mapping panels vary in their power and precision, largely depending on the architecture of the trait. The Hybrid Swam and RILs outperform inbred lines for quantitative traits, but not for monogenic ones. Taken together, our results demonstrate the feasibility of the Hybrid Swarm as a cost-effective method of fine-scale genetic mapping.
Collapse
Affiliation(s)
- Cory A Weller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Susanne Tilk
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Subhash Rajpurohit
- Department of Biological and Life Sciences, Ahmedabad University, Ahmedabad 380009, India
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
19
|
Agoglia RM, Sun D, Birey F, Yoon SJ, Miura Y, Sabatini K, Pașca SP, Fraser HB. Primate cell fusion disentangles gene regulatory divergence in neurodevelopment. Nature 2021; 592:421-427. [PMID: 33731928 PMCID: PMC8719633 DOI: 10.1038/s41586-021-03343-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022]
Abstract
Among primates, humans display a unique trajectory of development that is responsible for the many traits specific to our species. However, the inaccessibility of primary human and chimpanzee tissues has limited our ability to study human evolution. Comparative in vitro approaches using primate-derived induced pluripotent stem cells have begun to reveal species differences on the cellular and molecular levels1,2. In particular, brain organoids have emerged as a promising platform to study primate neural development in vitro3-5, although cross-species comparisons of organoids are complicated by differences in developmental timing and variability of differentiation6,7. Here we develop a new platform to address these limitations by fusing human and chimpanzee induced pluripotent stem cells to generate a panel of tetraploid hybrid stem cells. We applied this approach to study species divergence in cerebral cortical development by differentiating these cells into neural organoids. We found that hybrid organoids provide a controlled system for disentangling cis- and trans-acting gene-expression divergence across cell types and developmental stages, revealing a signature of selection on astrocyte-related genes. In addition, we identified an upregulation of the human somatostatin receptor 2 gene (SSTR2), which regulates neuronal calcium signalling and is associated with neuropsychiatric disorders8,9. We reveal a human-specific response to modulation of SSTR2 function in cortical neurons, underscoring the potential of this platform for elucidating the molecular basis of human evolution.
Collapse
Affiliation(s)
- Rachel M Agoglia
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Danqiong Sun
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuki Miura
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen Sabatini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Abstract
Of the many microbial species on earth, only a small number are able to thrive in humans and cause disease. Comparison of closely related pathogenic and nonpathogenic species can therefore be useful in identifying key features that contribute to virulence. We created interspecies hybrids between Candida albicans, a prevalent fungal pathogen of humans, and Candida dubliniensis, a close, but much less pathogenic, relative. By comparing genome-wide expression differences between the two genomes in the same cell, we surmised that since the two species diverged from a common ancestor, natural selection has acted upon the expression level of an ancient metabolic pathway, illustrating that pathogenicity traits can arise over evolutionary timescales through small expression changes in deeply conserved proteins. Candida albicans is the most common cause of systemic fungal infections in humans and is considerably more virulent than its closest known relative, Candida dubliniensis. To investigate this difference, we constructed interspecies hybrids and quantified mRNA levels produced from each genome in the hybrid. This approach systematically identified expression differences in orthologous genes arising from cis-regulatory sequence changes that accumulated since the two species last shared a common ancestor, some 10 million y ago. We documented many orthologous gene-expression differences between the two species, and we pursued one striking observation: All 15 genes coding for the enzymes of glycolysis showed higher expression from the C. albicans genome than the C. dubliniensis genome in the interspecies hybrid. This pattern requires evolutionary changes to have occurred at each gene; the fact that they all act in the same direction strongly indicates lineage-specific natural selection as the underlying cause. To test whether these expression differences contribute to virulence, we created a C. dubliniensis strain in which all 15 glycolysis genes were produced at modestly elevated levels and found that this strain had significantly increased virulence in the standard mouse model of systemic infection. These results indicate that small expression differences across a deeply conserved set of metabolism enzymes can play a significant role in the evolution of virulence in fungal pathogens.
Collapse
|
21
|
Cheng Z, Vermeulen M, Rollins-Green M, DeVeale B, Babak T. Cis-regulatory mutations with driver hallmarks in major cancers. iScience 2021; 24:102144. [PMID: 33665563 PMCID: PMC7903341 DOI: 10.1016/j.isci.2021.102144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/02/2020] [Accepted: 01/25/2021] [Indexed: 12/05/2022] Open
Abstract
Despite the recent availability of complete genome sequences of tumors from thousands of patients, isolating disease-causing (driver) non-coding mutations from the plethora of somatic variants remains challenging, and only a handful of validated examples exist. By integrating whole-genome sequencing, genetic data, and allele-specific gene expression from TCGA, we identified 320 somatic non-coding mutations that affect gene expression in cis (FDR<0.25). These mutations cluster into 47 cis-regulatory elements that modulate expression of their subject genes through diverse molecular mechanisms. We further show that these mutations have hallmark features of non-coding drivers; namely, that they preferentially disrupt transcription factor binding motifs, are associated with a selective advantage, increased oncogene expression and decreased tumor suppressor expression. Enrichment of functional non-coding somatic mutations predicts drivers Elevated variant allele frequencies are consistent with roles in tumorigenesis Putative non-coding drivers disrupt transcription factor binding motifs Predicted drivers associate with increased oncogene and decreased TSG expression
Collapse
Affiliation(s)
- Zhongshan Cheng
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael Vermeulen
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Brian DeVeale
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomas Babak
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
22
|
Human-chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nat Genet 2021; 53:467-476. [PMID: 33731941 PMCID: PMC8038968 DOI: 10.1038/s41588-021-00804-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for non-genetic confounding factors. We differentiated these cells into cranial neural crest cells (CNCCs), the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific 6-fold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.
Collapse
|
23
|
Reply to Zhang and Xu: Environment is indeed important in any phenotypic study. Proc Natl Acad Sci U S A 2021; 118:2022917118. [PMID: 33619106 DOI: 10.1073/pnas.2022917118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Wos G, Bohutínská M, Nosková J, Mandáková T, Kolář F. Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1211-1224. [PMID: 33258160 DOI: 10.1111/tpj.15105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Parallel adaptation results from the independent evolution of similar traits between closely related lineages and allows us to test to what extent evolution is repeatable. Similar gene expression changes are often detected but the identity of genes shaped by parallel selection and the causes of expression parallelism remain largely unknown. By comparing genomes and transcriptomes of four distinct foothill-alpine population pairs across four treatments, we addressed the genetic underpinnings, plasticity and functional consequences of gene expression parallelism in alpine adaptation. Seeds of eight populations of Arabidopsis arenosa were raised under four treatments that differed in temperature and irradiance, factors varying strongly with elevation. Parallelism in differential gene expression between the foothill and alpine ecotypes was quantified by RNA-seq in leaves of young plants. By manipulating temperature and irradiance, we also tested for parallelism in plasticity (i.e., gene-environment interaction, GEI). In spite of global non-parallel patterns transcriptome wide, we found significant parallelism in gene expression at the level of individual loci with an over-representation of genes involved in biotic stress response. In addition, we demonstrated significant parallelism in GEI, indicating a shared differential response of the originally foothill versus alpine populations to environmental variation across mountain regions. A fraction of genes showing expression parallelism also encompassed parallel outliers for genomic differentiation, with greater enrichment of such variants in cis-regulatory elements in some mountain regions. In summary, our results suggest frequent evolutionary repeatability in gene expression changes associated with the colonization of a challenging environment that combines constitutive expression differences and plastic interaction with the surrounding environment.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
| | - Magdalena Bohutínská
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| | - Jana Nosková
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
| | - Terezie Mandáková
- Central European Institute of Technology and Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Filip Kolář
- Department of Botany, Charles University, Prague, 128 01, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| |
Collapse
|
25
|
Pespeni MH, Moczek AP. Signals of selection beyond bottlenecks between exotic populations of the bull-headed dung beetle, Onthophagus taurus. Evol Dev 2021; 23:86-99. [PMID: 33522675 DOI: 10.1111/ede.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022]
Abstract
Colonization of new environments can lead to population bottlenecks and rapid phenotypic evolution that could be due to neutral and selective processes. Exotic populations of the bull-headed dung beetle (Onthophagus taurus) have differentiated in opposite directions from native beetles in male horn-to-body size allometry and female fecundity. Here we test for genetic and transcriptional differences among two exotic and one native O. taurus populations after three generations in common garden conditions. We sequenced RNA from 24 individuals for each of the three populations including both sexes, and spanning four developmental stages for the two exotic, differentiated populations. Identifying 270,400 high-quality single nucleotide polymorphisms, we revealed a strong signal of genetic differentiation between the three populations, and evidence of recent bottlenecks within and an excess of outlier loci between exotic populations. Differences in gene expression between populations were greatest in prepupae and early adult life stages, stages during which differences in male horn development and female fecundity manifest. Finally, genes differentially expressed between exotic populations also had greater genetic differentiation and performed functions related to chitin biosynthesis and nutrient sensing, possibly underlying allometry and fecundity trait divergences. Our results suggest that beyond bottlenecks, recent introductions have led to genetic and transcriptional differences in genes correlated with observed phenotypic differences.
Collapse
Affiliation(s)
- Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, Vermont, USA.,Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
26
|
Mugal CF, Wang M, Backström N, Wheatcroft D, Ålund M, Sémon M, McFarlane SE, Dutoit L, Qvarnström A, Ellegren H. Tissue-specific patterns of regulatory changes underlying gene expression differences among Ficedula flycatchers and their naturally occurring F 1 hybrids. Genome Res 2020; 30:1727-1739. [PMID: 33144405 PMCID: PMC7706733 DOI: 10.1101/gr.254508.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Mi Wang
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - David Wheatcroft
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marie Sémon
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,ENS de Lyon, Laboratory of Biology and Modelling of the Cell, Lyon University, 69364 Lyon Cedex 07, France
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
27
|
Abstract
Distinguishing which traits have evolved under natural selection, as opposed to neutral evolution, is a major goal of evolutionary biology. Several tests have been proposed to accomplish this, but these either rely on false assumptions or suffer from low power. Here, I introduce an approach to detecting selection that makes minimal assumptions and only requires phenotypic data from ∼10 individuals. The test compares the phenotypic difference between two populations to what would be expected by chance under neutral evolution, which can be estimated from the phenotypic distribution of an F2 cross between those populations. Simulations show that the test is robust to variation in the number of loci affecting the trait, the distribution of locus effect sizes, heritability, dominance, and epistasis. Comparing its performance to the QTL sign test-an existing test of selection that requires both genotype and phenotype data-the new test achieves comparable power with 50- to 100-fold fewer individuals (and no genotype data). Applying the test to empirical data spanning over a century shows strong directional selection in many crops, as well as on naturally selected traits such as head shape in Hawaiian Drosophila and skin color in humans. Applied to gene expression data, the test reveals that the strength of stabilizing selection acting on mRNA levels in a species is strongly associated with that species' effective population size. In sum, this test is applicable to phenotypic data from almost any genetic cross, allowing selection to be detected more easily and powerfully than previously possible.
Collapse
Affiliation(s)
- Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
28
|
Wang H, Sawai A, Toji N, Sugioka R, Shibata Y, Suzuki Y, Ji Y, Hayase S, Akama S, Sese J, Wada K. Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds. PLoS Biol 2019; 17:e3000476. [PMID: 31721761 PMCID: PMC6853299 DOI: 10.1371/journal.pbio.3000476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Learning of most motor skills is constrained in a species-specific manner. However, the proximate mechanisms underlying species-specific learned behaviors remain poorly understood. Songbirds acquire species-specific songs through learning, which is hypothesized to depend on species-specific patterns of gene expression in functionally specialized brain regions for vocal learning and production, called song nuclei. Here, we leveraged two closely related songbird species, zebra finch, owl finch, and their interspecific first-generation (F1) hybrids, to relate transcriptional regulatory divergence between species with the production of species-specific songs. We quantified genome-wide gene expression in both species and compared this with allele-specific expression in F1 hybrids to identify genes whose expression in song nuclei is regulated by species divergence in either cis- or trans-regulation. We found that divergence in transcriptional regulation altered the expression of approximately 10% of total transcribed genes and was linked to differential gene expression between the two species. Furthermore, trans-regulatory changes were more prevalent than cis-regulatory and were associated with synaptic formation and transmission in song nucleus RA, the avian analog of the mammalian laryngeal motor cortex. We identified brain-derived neurotrophic factor (BDNF) as an upstream mediator of trans-regulated genes in RA, with a significant correlation between individual variation in BDNF expression level and species-specific song phenotypes in F1 hybrids. This was supported by the fact that the pharmacological overactivation of BDNF receptors altered the expression of its trans-regulated genes in the RA, thus disrupting the learned song structures of adult zebra finch songs at the acoustic and sequence levels. These results demonstrate functional neurogenetic associations between divergence in region-specific transcriptional regulation and species-specific learned behaviors.
Collapse
Affiliation(s)
- Hongdi Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Azusa Sawai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Noriyuki Toji
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Rintaro Sugioka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuika Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yu Ji
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Satoru Akama
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Humanome Lab Inc., Tokyo, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
- Department of Biological Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Ravindran SP, Herrmann M, Cordellier M. Contrasting patterns of divergence at the regulatory and sequence level in European Daphnia galeata natural populations. Ecol Evol 2019; 9:2487-2504. [PMID: 30891195 PMCID: PMC6405927 DOI: 10.1002/ece3.4894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
Understanding the genetic basis of local adaptation has long been a focus of evolutionary biology. Recently, there has been increased interest in deciphering the evolutionary role of Daphnia's plasticity and the molecular mechanisms of local adaptation. Using transcriptome data, we assessed the differences in gene expression profiles and sequences in four European Daphnia galeata populations. In total, ~33% of 32,903 transcripts were differentially expressed between populations. Among 10,280 differentially expressed transcripts, 5,209 transcripts deviated from neutral expectations and their population-specific expression pattern is likely the result of local adaptation processes. Furthermore, a SNP analysis allowed inferring population structure and distribution of genetic variation. The population divergence at the sequence level was comparatively higher than the gene expression level by several orders of magnitude consistent with strong founder effects and lack of gene flow between populations. Using sequence homology, the candidate transcripts were annotated using a comparative genomics approach. Additionally, we also performed a weighted gene co-expression analysis to identify population-specific regulatory patterns of transcripts in D. galeata. Thus, we identified candidate transcriptomic regions for local adaptation in this key species of aquatic ecosystems in the absence of any laboratory-induced stressor.
Collapse
Affiliation(s)
| | - Maike Herrmann
- Department of Veterinary MedicinePaul‐Ehrlich‐InstitutLangenGermany
| | | |
Collapse
|
30
|
Combs PA, Fraser HB. Spatially varying cis-regulatory divergence in Drosophila embryos elucidates cis-regulatory logic. PLoS Genet 2018; 14:e1007631. [PMID: 30383747 PMCID: PMC6211617 DOI: 10.1371/journal.pgen.1007631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Spatial patterning of gene expression is a key process in development, yet how it evolves is still poorly understood. Both cis- and trans-acting changes could participate in complex interactions, so to isolate the cis-regulatory component of patterning evolution, we measured allele-specific spatial gene expression patterns in D. melanogaster × simulans hybrid embryos. RNA-seq of cryo-sectioned slices revealed 66 genes with strong spatially varying allele-specific expression. We found that hunchback, a major regulator of developmental patterning, had reduced expression of the D. simulans allele specifically in the anterior tip of hybrid embryos. Mathematical modeling of hunchback cis-regulation suggested a candidate transcription factor binding site variant, which we verified as causal using CRISPR-Cas9 genome editing. In sum, even comparing morphologically near-identical species we identified surprisingly extensive spatial variation in gene expression, suggesting not only that development is robust to many such changes, but also that natural selection may have ample raw material for evolving new body plans via changes in spatial patterning.
Collapse
Affiliation(s)
- Peter A. Combs
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
31
|
Affiliation(s)
- Sofie Y. N. Delbare
- Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Andrew G. Clark
- Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Albert E, Duboscq R, Latreille M, Santoni S, Beukers M, Bouchet JP, Bitton F, Gricourt J, Poncet C, Gautier V, Jiménez-Gómez JM, Rigaill G, Causse M. Allele-specific expression and genetic determinants of transcriptomic variations in response to mild water deficit in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:635-650. [PMID: 30079488 DOI: 10.1111/tpj.14057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Characterizing the natural diversity of gene expression across environments is an important step in understanding how genotype-by-environment interactions shape phenotypes. Here, we analyzed the impact of water deficit onto gene expression levels in tomato at the genome-wide scale. We sequenced the transcriptome of growing leaves and fruit pericarps at cell expansion stage in a cherry and a large fruited accession and their F1 hybrid grown under two watering regimes. Gene expression levels were steadily affected by the genotype and the watering regime. Whereas phenotypes showed mostly additive inheritance, ~80% of the genes displayed non-additive inheritance. By comparing allele-specific expression (ASE) in the F1 hybrid to the allelic expression in both parental lines, respectively, 3005 genes in leaf and 2857 genes in fruit deviated from 1:1 ratio independently of the watering regime. Among these genes, ~55% were controlled by cis factors, ~25% by trans factors and ~20% by a combination of both types of factors. A total of 328 genes in leaf and 113 in fruit exhibited significant ASE-by-watering regime interaction, among which ~80% presented trans-by-watering regime interaction, suggesting a response to water deficit mediated through a majority of trans-acting loci in tomato. We cross-validated the expression levels of 274 transcripts in fruit and leaves of 124 recombinant inbred lines (RILs) and identified 163 expression quantitative trait loci (eQTLs) mostly confirming the divergences identified by ASE. Combining phenotypic and expression data, we observed a complex network of variation between genes encoding enzymes involved in the sugar metabolism.
Collapse
Affiliation(s)
- Elise Albert
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Renaud Duboscq
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Muriel Latreille
- INRA, UMR1334, Amélioration génétique et Adaptation des Plantes, Montpellier SupAgro-INRA-IRD-UMII, 2 Place Pierre Viala, Montpellier, 34060, France
| | - Sylvain Santoni
- INRA, UMR1334, Amélioration génétique et Adaptation des Plantes, Montpellier SupAgro-INRA-IRD-UMII, 2 Place Pierre Viala, Montpellier, 34060, France
| | - Matthieu Beukers
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Jean-Paul Bouchet
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Fréderique Bitton
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Justine Gricourt
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Charles Poncet
- INRA, UMR1095, Génétique Diversité et Ecophysiologie des Céréales, 5 Chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - Véronique Gautier
- INRA, UMR1095, Génétique Diversité et Ecophysiologie des Céréales, 5 Chemin de Beaulieu, Clermont-Ferrand, 63039, France
| | - José M Jiménez-Gómez
- INRA, UMR1318, Institut Jean-Pierre Bourgin, AgroParisTech-INRA-CNRS, Route de Saint Cyr, Versailles, 78026, France
| | - Guillem Rigaill
- INRA, UMR8071, Laboratoire de Mathématiques et Modélisation d'Evry, Université d'Evry Val d'Essonne, ENSIIE-INRA-CNRS, Évry, 91037, France
| | - Mathilde Causse
- INRA, UR1052, Centre de Recherche PACA, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| |
Collapse
|
33
|
Fraser HB. Improving Estimates of Compensatory cis-trans Regulatory Divergence. Trends Genet 2018; 35:3-5. [PMID: 30270122 DOI: 10.1016/j.tig.2018.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022]
Abstract
Interspecific hybrids have played a key role in research on gene expression regulation. A growing number of studies have measured genome-wide allele-specific expression in hybrids and observed that cis-regulatory changes often oppose trans-acting changes affecting the same genes, suggesting stabilizing selection for compensatory changes. However, the most common method for estimating these effects is biased, producing artifactual patterns of compensatory evolution. Here I introduce a simple modification leveraging biological replicates that ameliorates the bias.
Collapse
Affiliation(s)
- Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA, USA; Lab website: https://web.stanford.edu/group/fraserlab/.
| |
Collapse
|
34
|
Sharon E, Chen SAA, Khosla NM, Smith JD, Pritchard JK, Fraser HB. Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell 2018; 175:544-557.e16. [PMID: 30245013 DOI: 10.1016/j.cell.2018.08.057] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/21/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022]
Abstract
A major challenge in genetics is to identify genetic variants driving natural phenotypic variation. However, current methods of genetic mapping have limited resolution. To address this challenge, we developed a CRISPR-Cas9-based high-throughput genome editing approach that can introduce thousands of specific genetic variants in a single experiment. This enabled us to study the fitness consequences of 16,006 natural genetic variants in yeast. We identified 572 variants with significant fitness differences in glucose media; these are highly enriched in promoters, particularly in transcription factor binding sites, while only 19.2% affect amino acid sequences. Strikingly, nearby variants nearly always favor the same parent's alleles, suggesting that lineage-specific selection is often driven by multiple clustered variants. In sum, our genome editing approach reveals the genetic architecture of fitness variation at single-base resolution and could be adapted to measure the effects of genome-wide genetic variation in any screen for cell survival or cell-sortable markers.
Collapse
Affiliation(s)
- Eilon Sharon
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Shi-An A Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Neil M Khosla
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Justin D Smith
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jonathan K Pritchard
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hunter B Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
35
|
Wang X, Chen Q, Wu Y, Lemmon ZH, Xu G, Huang C, Liang Y, Xu D, Li D, Doebley JF, Tian F. Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population. MOLECULAR PLANT 2018; 11:443-459. [PMID: 29275164 DOI: 10.1016/j.molp.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/21/2017] [Accepted: 12/11/2017] [Indexed: 05/18/2023]
Abstract
Gene expression regulation plays an important role in controlling plant phenotypes and adaptation. Here, we report a comprehensive assessment of gene expression variation through the transcriptome analyses of a large maize-teosinte experimental population. Genome-wide mapping identified 25 660 expression quantitative trait loci (eQTL) for 17 311 genes, capturing an unprecedented range of expression variation. We found that local eQTL were more frequently mapped to adjacent genes, displaying a mode of expression piggybacking, which consequently created co-regulated gene clusters. Genes within the co-regulated gene clusters tend to have relevant functions and shared chromatin modifications. Distant eQTL formed 125 significant distant eQTL hotspots with their targets significantly enriched in specific functional categories. By integrating different sources of information, we identified putative trans- regulators for a variety of metabolic pathways. We demonstrated that the bHLH transcription factor R1 and hexokinase HEX9 might act as crucial regulators for flavonoid biosynthesis and glycolysis, respectively. Moreover, we showed that domestication or improvement has significantly affected global gene expression, with many genes targeted by selection. Of particular interest, the Bx genes for benzoxazinoid biosynthesis may have undergone coordinated cis-regulatory divergence between maize and teosinte, and a transposon insertion that inactivates Bx12 was under strong selection as maize spread into temperate environments with a distinct herbivore community.
Collapse
Affiliation(s)
- Xufeng Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaoyao Wu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zachary H Lemmon
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Guanghui Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Cheng Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yameng Liang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dingyi Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dan Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Feng Tian
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
Li XC, Fay JC. Cis-Regulatory Divergence in Gene Expression between Two Thermally Divergent Yeast Species. Genome Biol Evol 2018; 9:1120-1129. [PMID: 28431042 PMCID: PMC5554586 DOI: 10.1093/gbe/evx072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
Gene regulation is a ubiquitous mechanism by which organisms respond to their environment. While organisms are often found to be adapted to the environments they experience, the role of gene regulation in environmental adaptation is not often known. In this study, we examine divergence in cis-regulatory effects between two Saccharomycesspecies, S. cerevisiaeand S. uvarum, that have substantially diverged in their thermal growth profile. We measured allele specific expression (ASE) in the species’ hybrid at three temperatures, the highest of which is lethal to S. uvarumbut not the hybrid or S. cerevisiae. We find that S. uvarumalleles can be expressed at the same level as S. cerevisiaealleles at high temperature and most cis-acting differences in gene expression are not dependent on temperature. While a small set of 136 genes show temperature-dependent ASE, we find no indication that signatures of directional cis-regulatory evolution are associated with temperature. Within promoter regions we find binding sites enriched upstream of temperature responsive genes, but only weak correlations between binding site and expression divergence. Our results indicate that temperature divergence between S. cerevisiaeand S. uvarumhas not caused widespread divergence in cis-regulatory activity, but point to a small subset of genes where the species’ alleles show differences in magnitude or opposite responses to temperature. The difficulty of explaining divergence in cis-regulatory sequences with models of transcription factor binding sites and nucleosome positioning highlights the importance of identifying mutations that underlie cis-regulatory divergence between species.
Collapse
Affiliation(s)
- Xueying C Li
- Molecular Genetics and Genomics Program, Division of Biological and Biomedical Sciences, Washington University, St. Louis, MO
| | - Justin C Fay
- Department of Genetics, Washington University, St. Louis, MO.,Center for Genome Sciences and System Biology, Washington University, St. Louis, MO
| |
Collapse
|
37
|
Mäkinen H, Sävilammi T, Papakostas S, Leder E, Vøllestad LA, Primmer CR. Modularity Facilitates Flexible Tuning of Plastic and Evolutionary Gene Expression Responses during Early Divergence. Genome Biol Evol 2018; 10:77-93. [PMID: 29293993 PMCID: PMC5758911 DOI: 10.1093/gbe/evx278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Gene expression changes have been recognized as important drivers of adaptation to changing environmental conditions. Little is known about the relative roles of plastic and evolutionary responses in complex gene expression networks during the early stages of divergence. Large gene expression data sets coupled with in silico methods for identifying coexpressed modules now enable systems genetics approaches also in nonmodel species for better understanding of gene expression responses during early divergence. Here, we combined gene coexpression analyses with population genetics to separate plastic and population (evolutionary) effects in expression networks using small salmonid populations as a model system. We show that plastic and population effects were highly variable among the six identified modules and that the plastic effects explained larger proportion of the total eigengene expression than population effects. A more detailed analysis of the population effects using a QST - FST comparison across 16,622 annotated transcripts revealed that gene expression followed neutral expectations within modules and at the global level. Furthermore, two modules showed enrichment for genes coding for early developmental traits that have been previously identified as important phenotypic traits in thermal responses in the same model system indicating that coexpression analysis can capture expression patterns underlying ecologically important traits. We suggest that module-specific responses may facilitate the flexible tuning of expression levels to local thermal conditions. Overall, our study indicates that plasticity and neutral evolution are the main drivers of gene expression variance in the early stages of thermal adaptation in this system.
Collapse
Affiliation(s)
| | | | | | - Erica Leder
- Department of Biology, University of Turku, Finland
- Natural History Museum, University of Oslo, Norway
| | - Leif A Vøllestad
- Center for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway
| | - Craig R Primmer
- Department of Biosciences, University of Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
38
|
High-resolution mapping of cis-regulatory variation in budding yeast. Proc Natl Acad Sci U S A 2017; 114:E10736-E10744. [PMID: 29183975 DOI: 10.1073/pnas.1717421114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic variants affecting gene-expression levels are a major source of phenotypic variation. The approximate locations of these variants can be mapped as expression quantitative trait loci (eQTLs); however, a major limitation of eQTLs is their low resolution, which precludes investigation of the causal variants and their molecular mechanisms. Here we report RNA-seq and full genome sequences for 85 diverse isolates of the yeast Saccharomyces cerevisiae-including wild, domesticated, and human clinical strains-which allowed us to perform eQTL mapping with 50-fold higher resolution than previously possible. In addition to variants in promoters, we uncovered an important role for variants in 3'UTRs, especially those affecting binding of the PUF family of RNA-binding proteins. The eQTLs are predominantly under negative selection, particularly those affecting essential genes and conserved genes. However, applying the sign test for lineage-specific selection revealed the polygenic up-regulation of dozens of biofilm suppressor genes in strains isolated from human patients, consistent with the key role of biofilms in fungal pathogenicity. In addition, a single variant in the promoter of a biofilm suppressor, NIT3, showed the strongest genome-wide association with clinical origin. Altogether, our results demonstrate the power of high-resolution eQTL mapping in understanding the molecular mechanisms of regulatory variation, as well as the natural selection acting on this variation that drives adaptation to environments, ranging from laboratories to vineyards to the human body.
Collapse
|
39
|
Li R, Xiong G, Yuan S, Wu Z, Miao Y, Weng P. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. World J Microbiol Biotechnol 2017; 33:206. [PMID: 29101531 DOI: 10.1007/s11274-017-2376-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 10/29/2017] [Indexed: 11/26/2022]
Abstract
Saccharomyces cerevisiae has been widely used for wine fermentation and bio-fuels production. A S. cerevisiae strain Sc131 isolated from tropical fruit shows good fermentation properties and ethanol tolerance, exhibiting significant potential in Chinese bayberry wine fermentation. In this study, RNA-sequence and RT-qPCR was used to investigate the transcriptome profile of Sc131 in response to ethanol stress. Scanning Electron Microscopy were carried out to observe surface morphology of yeast cells. Totally, 937 genes were identified differential expressed, including 587 up-regulated and 350 down-regulated genes, after 4-h ethanol stress (10% v/v). Transcriptomic analysis revealed that, most genes involved in regulating filamentous growth or pseudohyphal growth were significantly up-regulated in response to ethanol stress. The complex protein quality control machineries, Hsp90/Hsp70 and Hsp104/Hsp70/Hsp40 based chaperone system combining with ubiquitin-proteasome proteolytic pathway were both activated to recognize and degrade misfolding proteins. Genes related to biosynthesis and metabolism of two well-known stress-responsive substances trehalose and ergosterol were generally up-regulated, while genes associated with amino acids biosynthesis and metabolism processes were differentially expressed. Moreover, thiamine was also important in response to ethanol stress. This research may promote the potential applications of Sc131 in the fermentation of Chinese bayberry wine.
Collapse
Affiliation(s)
- Ruoyun Li
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Guotong Xiong
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Shukun Yuan
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China.
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yingjie Miao
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Peifang Weng
- Department of Food Science and Engineering, School of Marine Sciences, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
40
|
Nourmohammad A, Rambeau J, Held T, Kovacova V, Berg J, Lässig M. Adaptive Evolution of Gene Expression in Drosophila. Cell Rep 2017; 20:1385-1395. [DOI: 10.1016/j.celrep.2017.07.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/15/2017] [Accepted: 07/13/2017] [Indexed: 01/17/2023] Open
|
41
|
Trail F, Wang Z, Stefanko K, Cubba C, Townsend JP. The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi. PLoS Genet 2017; 13:e1006867. [PMID: 28704372 PMCID: PMC5509106 DOI: 10.1371/journal.pgen.1006867] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Changes in gene expression have been hypothesized to play an important role in the evolution of divergent morphologies. To test this hypothesis in a model system, we examined differences in fruiting body morphology of five filamentous fungi in the Sordariomycetes, culturing them in a common garden environment and profiling genome-wide gene expression at five developmental stages. We reconstructed ancestral gene expression phenotypes, identifying genes with the largest evolved increases in gene expression across development. Conducting knockouts and performing phenotypic analysis in two divergent species typically demonstrated altered fruiting body development in the species that had evolved increased expression. Our evolutionary approach to finding relevant genes proved far more efficient than other gene deletion studies targeting whole genomes or gene families. Combining gene expression measurements with knockout phenotypes facilitated the refinement of Bayesian networks of the genes underlying fruiting body development, regulation of which is one of the least understood processes of multicellular development.
Collapse
Affiliation(s)
- Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kayla Stefanko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Caitlyn Cubba
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America
| |
Collapse
|
42
|
Abstract
The study of allele-specific expression (ASE) in interspecific hybrids has played a central role in our understanding of a wide range of phenomena, including genomic imprinting, X-chromosome inactivation, and cis-regulatory evolution. However across the hundreds of studies of hybrid ASE, all have been restricted to sexually reproducing eukaryotes, leaving a major gap in our understanding of the genomic patterns of cis-regulatory evolution in prokaryotes. Here we introduce a method to generate stable hybrids between two species of halophilic archaea, and measure genome-wide ASE in these hybrids with RNA-seq. We found that over half of all genes have significant ASE, and that genes encoding kinases show evidence of lineage-specific selection on their cis-regulation. This pattern of polygenic selection suggested species-specific adaptation to low phosphate conditions, which we confirmed with growth experiments. Altogether, our work extends the study of ASE to archaea, and suggests that cis-regulation can evolve under polygenic lineage-specific selection in prokaryotes.
Collapse
|
43
|
Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora. Proc Natl Acad Sci U S A 2017; 114:1087-1092. [PMID: 28096395 DOI: 10.1073/pnas.1612561114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding the causes of cis-regulatory variation is a long-standing aim in evolutionary biology. Although cis-regulatory variation has long been considered important for adaptation, we still have a limited understanding of the selective importance and genomic determinants of standing cis-regulatory variation. To address these questions, we studied the prevalence, genomic determinants, and selective forces shaping cis-regulatory variation in the outcrossing plant Capsella grandiflora We first identified a set of 1,010 genes with common cis-regulatory variation using analyses of allele-specific expression (ASE). Population genomic analyses of whole-genome sequences from 32 individuals showed that genes with common cis-regulatory variation (i) are under weaker purifying selection and (ii) undergo less frequent positive selection than other genes. We further identified genomic determinants of cis-regulatory variation. Gene body methylation (gbM) was a major factor constraining cis-regulatory variation, whereas presence of nearby transposable elements (TEs) and tissue specificity of expression increased the odds of ASE. Our results suggest that most common cis-regulatory variation in C. grandiflora is under weak purifying selection, and that gene-specific functional constraints are more important for the maintenance of cis-regulatory variation than genome-scale variation in the intensity of selection. Our results agree with previous findings that suggest TE silencing affects nearby gene expression, and provide evidence for a link between gbM and cis-regulatory constraint, possibly reflecting greater dosage sensitivity of body-methylated genes. Given the extensive conservation of gbM in flowering plants, this suggests that gbM could be an important predictor of cis-regulatory variation in a wide range of plant species.
Collapse
|
44
|
Lovell JT, Schwartz S, Lowry DB, Shakirov EV, Bonnette JE, Weng X, Wang M, Johnson J, Sreedasyam A, Plott C, Jenkins J, Schmutz J, Juenger TE. Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial C4 grass. Genome Res 2016; 26:510-8. [PMID: 26953271 PMCID: PMC4817774 DOI: 10.1101/gr.198135.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/26/2016] [Indexed: 01/18/2023]
Abstract
Climatic adaptation is an example of a genotype-by-environment interaction (G×E) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression G×E are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C4 grass,Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit drought-responsive G×E. While less well-represented, we observe 1294 genes (7.8%) with transeffects.Trans-by-environment interactions are weaker and much less common than cis G×E, occurring in only 0.7% oft rans-regulated genes. Finally, gene expression heterosis is highly enriched in expression phenotypes with significant G×E. As such, modes of inheritance that drive heterosis, such as dominance or overdominance, may be common among G×E genes. Interestingly, motifs specific to drought-responsive transcription factors are highly enriched in the promoters of genes exhibiting G×E and transregulation, indicating that expression G×E and heterosis may result from the evolution of transcription factors or their binding sites.P. hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (Panicum virgatum). Accordingly, the results here not only aid in the discovery of the genetic mechanisms that underlie local adaptation but also provide a foundation to improve switchgrass yield under water-limited conditions.
Collapse
Affiliation(s)
- John T Lovell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Scott Schwartz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - David B Lowry
- Department of Plant Sciences, Michigan State University, East Lansing, Michigan 48824, USA
| | - Eugene V Shakirov
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 42008, Republic of Tatarstan, Russia
| | - Jason E Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mei Wang
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jenifer Johnson
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | - Christopher Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
45
|
Naranjo S, Smith JD, Artieri CG, Zhang M, Zhou Y, Palmer ME, Fraser HB. Dissecting the Genetic Basis of a Complex cis-Regulatory Adaptation. PLoS Genet 2015; 11:e1005751. [PMID: 26713447 PMCID: PMC4694769 DOI: 10.1371/journal.pgen.1005751] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022] Open
Abstract
Although single genes underlying several evolutionary adaptations have been identified, the genetic basis of complex, polygenic adaptations has been far more challenging to pinpoint. Here we report that the budding yeast Saccharomyces paradoxus has recently evolved resistance to citrinin, a naturally occurring mycotoxin. Applying a genome-wide test for selection on cis-regulation, we identified five genes involved in the citrinin response that are constitutively up-regulated in S. paradoxus. Four of these genes are necessary for resistance, and are also sufficient to increase the resistance of a sensitive strain when over-expressed. Moreover, cis-regulatory divergence in the promoters of these genes contributes to resistance, while exacting a cost in the absence of citrinin. Our results demonstrate how the subtle effects of individual regulatory elements can be combined, via natural selection, into a complex adaptation. Our approach can be applied to dissect the genetic basis of polygenic adaptations in a wide range of species.
Collapse
Affiliation(s)
- Santiago Naranjo
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Justin D. Smith
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Stanford Genome Technology Center, Stanford University, Stanford, California, United States of America
| | - Carlo G. Artieri
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Mian Zhang
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yiqi Zhou
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Michael E. Palmer
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Yang X, Zhao XG, Li CQ, Liu J, Qiu ZJ, Dong Y, Wang YZ. Distinct Regulatory Changes Underlying Differential Expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR Genes Associated with Petal Variations in Zygomorphic Flowers of Petrocosmea spp. of the Family Gesneriaceae. PLANT PHYSIOLOGY 2015; 169:2138-51. [PMID: 26351309 PMCID: PMC4634094 DOI: 10.1104/pp.15.01181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/04/2015] [Indexed: 05/08/2023]
Abstract
CYCLOIDEA (CYC)-like genes, belonging to the plant-specific TCP transcription factor family that is named after TEOSINTE BRANCHED1 (TB1) from maize (Zea mays), CYC from Antirrhinum majus, and the PROLIFERATING CELL FACTORS (PCF) from rice (Oryza sativa), have conserved dorsal identity function in patterning floral zygomorphy mainly through specific expression in dorsal petals of a flower. Their expression changes are usually related to morphological diversity of zygomorphic flowers. However, it is still a challenge to elucidate the molecular mechanism underlying their expression differentiation. It is also unknown whether CINCINNATA (CIN)-like TCP genes, locally controlling cell growth and proliferation, are involved in the evolution of floral zygomorphy. To address these questions, we selected two closely related species, i.e. Petrocosmea glabristoma and Petrocosmea sinensis, with distinct petal morphology to conduct expression, hybridization, mutant, and allele-specific expression analyses. The results show that the size change of the dorsal petals between the two species is mainly mediated by the expression differentiation of CYC1C and CYC1D, while the shape variation of all petals is related to the expression change of CIN1. In reciprocal F1 hybrids, the expression of CYC1C, CYC1D, and CIN1 conforms to an additive inheritance mode, consistent with the petal phenotypes of hybrids. Through allele-specific expression analyses, we find that the expression differentiation of these TCP genes is underlain by distinctly different types of regulatory changes. We suggest that highly redundant paralogs with identical expression patterns and interspecific expression differentiation may be controlled by remarkably different regulatory pathways because natural selection may favor different regulatory modifications rather than coding sequence changes of key developmental genes in generating morphological diversity.
Collapse
Affiliation(s)
- Xia Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.Y., X.-G.Z., C.-Q.L., J.L., Z.-J.Q., Y.D., Y.-Z.W.) andUniversity of Chinese Academy of Sciences, Beijing 100049, China (X.-G.Z., C.-Q.L., J.L., Y.-Z.W.)
| | - Xiao-Ge Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.Y., X.-G.Z., C.-Q.L., J.L., Z.-J.Q., Y.D., Y.-Z.W.) andUniversity of Chinese Academy of Sciences, Beijing 100049, China (X.-G.Z., C.-Q.L., J.L., Y.-Z.W.)
| | - Chao-Qun Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.Y., X.-G.Z., C.-Q.L., J.L., Z.-J.Q., Y.D., Y.-Z.W.) andUniversity of Chinese Academy of Sciences, Beijing 100049, China (X.-G.Z., C.-Q.L., J.L., Y.-Z.W.)
| | - Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.Y., X.-G.Z., C.-Q.L., J.L., Z.-J.Q., Y.D., Y.-Z.W.) andUniversity of Chinese Academy of Sciences, Beijing 100049, China (X.-G.Z., C.-Q.L., J.L., Y.-Z.W.)
| | - Zhi-Jing Qiu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.Y., X.-G.Z., C.-Q.L., J.L., Z.-J.Q., Y.D., Y.-Z.W.) andUniversity of Chinese Academy of Sciences, Beijing 100049, China (X.-G.Z., C.-Q.L., J.L., Y.-Z.W.)
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.Y., X.-G.Z., C.-Q.L., J.L., Z.-J.Q., Y.D., Y.-Z.W.) andUniversity of Chinese Academy of Sciences, Beijing 100049, China (X.-G.Z., C.-Q.L., J.L., Y.-Z.W.)
| | - Yin-Zheng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.Y., X.-G.Z., C.-Q.L., J.L., Z.-J.Q., Y.D., Y.-Z.W.) andUniversity of Chinese Academy of Sciences, Beijing 100049, China (X.-G.Z., C.-Q.L., J.L., Y.-Z.W.)
| |
Collapse
|
47
|
Angione C, Lió P. Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep 2015; 5:15147. [PMID: 26482106 PMCID: PMC4611489 DOI: 10.1038/srep15147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/14/2015] [Indexed: 01/22/2023] Open
Abstract
Bacterial phenotypic traits and lifestyles in response to diverse environmental conditions depend on changes in the internal molecular environment. However, predicting bacterial adaptability is still difficult outside of laboratory controlled conditions. Many molecular levels can contribute to the adaptation to a changing environment: pathway structure, codon usage, metabolism. To measure adaptability to changing environmental conditions and over time, we develop a multi-omic model of Escherichia coli that accounts for metabolism, gene expression and codon usage at both transcription and translation levels. After the integration of multiple omics into the model, we propose a multiobjective optimization algorithm to find the allowable and optimal metabolic phenotypes through concurrent maximization or minimization of multiple metabolic markers. In the condition space, we propose Pareto hypervolume and spectral analysis as estimators of short term multi-omic (transcriptomic and metabolic) evolution, thus enabling comparative analysis of metabolic conditions. We therefore compare, evaluate and cluster different experimental conditions, models and bacterial strains according to their metabolic response in a multidimensional objective space, rather than in the original space of microarray data. We finally validate our methods on a phenomics dataset of growth conditions. Our framework, named METRADE, is freely available as a MATLAB toolbox.
Collapse
Affiliation(s)
| | - Pietro Lió
- Computer Laboratory - University of Cambridge, UK
| |
Collapse
|
48
|
Skelly DA, Magwene PM. Population perspectives on functional genomic variation in yeast. Brief Funct Genomics 2015; 15:138-46. [PMID: 26467711 DOI: 10.1093/bfgp/elv044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in high-throughput sequencing have facilitated large-scale surveys of genomic variation in the budding yeast,Saccharomyces cerevisiae These surveys have revealed extensive sequence variation between yeast strains. However, much less is known about how such variation influences the amount and nature of variation for functional genomic traits within and between yeast lineages. We review population-level studies of functional genomic variation, with a particular focus on how population functional genomic approaches can provide insights into both genome function and the evolutionary process. Although variation in functional genomics phenotypes is pervasive, our understanding of the consequences of this variation, either in physiological or evolutionary terms, is still rudimentary and thus motivates increased attention to appropriate null models. To date, much of the focus of population functional genomic studies has been on gene expression variation, but other functional genomic data types are just as likely to reveal important insights at the population level, suggesting a pressing need for more studies that go beyond transcription. Finally, we discuss how a population functional genomic perspective can be a powerful approach for developing a mechanistic understanding of the processes that link genomic variation to organismal phenotypes through gene networks.
Collapse
|
49
|
Stahl BA, Gross JB, Speiser DI, Oakley TH, Patel NH, Gould DB, Protas ME. A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus. PLoS One 2015; 10:e0140484. [PMID: 26462237 PMCID: PMC4604090 DOI: 10.1371/journal.pone.0140484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022] Open
Abstract
Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual), and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment.
Collapse
Affiliation(s)
- Bethany A. Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, United States of America
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Daniel I. Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States of America
| | - Todd H. Oakley
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, United States of America
| | - Nipam H. Patel
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | - Douglas B. Gould
- Departments of Ophthalmology and Anatomy, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA, United States of America
| | - Meredith E. Protas
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, United States of America
- * E-mail:
| |
Collapse
|
50
|
Guo J, Liu R, Huang L, Zheng XM, Liu PL, Du YS, Cai Z, Zhou L, Wei XH, Zhang FM, Ge S. Widespread and Adaptive Alterations in Genome-Wide Gene Expression Associated with Ecological Divergence of Two Oryza Species. Mol Biol Evol 2015; 33:62-78. [PMID: 26362653 DOI: 10.1093/molbev/msv196] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ecological speciation is a common mechanism by which new species arise. Despite great efforts, the role of gene expression in ecological divergence and speciation is poorly understood. Here, we conducted a genome-wide gene expression investigation of two Oryza species that are evolutionarily young and distinct in ecology and morphology. Using digital gene expression technology and the paired-end RNA sequencing method, we obtained 21,415 expressed genes across three reproduction-related tissues. Of them, approximately 8% (1,717) differed significantly in expression levels between the two species and these differentially expressed genes are randomly distributed across the genome. Moreover, 62% (1,064) of the differentially expressed genes exhibited a signature of directional selection in at least one species. Importantly, the genes with differential expression between species evolved more rapidly at the 5' flanking sequences than the genes without differential expression relative to coding sequences, suggesting that cis-regulatory changes are likely adaptive and play an important role in the ecological divergence of the two species. Finally, we showed evidence of significant differentiation between species in phenotype traits and observed that genes with differential expression were overrepresented with functional terms involving phenotypic and ecological differentiation between the two species, including reproduction- and stress-related characteristics. Our findings demonstrate that ecological speciation is associated with widespread and adaptive alterations in genome-wide gene expression and provide new insights into the importance of regulatory evolution in ecological speciation in plants.
Collapse
Affiliation(s)
- Jie Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ping-Li Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yu-Su Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Hua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|