1
|
Ben Romdhane W, Ben Saad R, Guiderdoni E, Ali AAM, Tarroum M, Al-Doss A, Hassairi A. De novo, high-quality assembly and annotation of the halophyte grass Aeluropus littoralis draft genome and identification of A20/AN1 zinc finger protein family. BMC PLANT BIOLOGY 2025; 25:556. [PMID: 40295936 PMCID: PMC12039208 DOI: 10.1186/s12870-025-06610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Aeluropus littoralis is considered a valuable natural forage plant for ruminant livestock and is highly tolerant to extreme abiotic stresses, especially salinity, drought, and heat. It is a monocotyledonous halophyte, has salt glands, performs C4-type photosynthesis and has a close genetic relationship with cereal crops. Moreover, previous studies have shown its huge potential as a reservoir of genes and promoters to understand and improve abiotic stress tolerance in crops. RESULTS The sequencing and hybrid assembly of the A. littoralis genome (2n = 2X = 20) using short and long reads from the BGISeq-500 and PacBio high-fidelity (HiFi) sequencing platforms, respectively. Using the k-mer analysis method, the haploid genome size of A. littoralis was estimated to be 360 Mb (with a heterozygosity rate of 1.88%). The hybrid assembled genome included 4,078 contigs with a GC content of 44% and covered 348 Mb. The longest contig and the N50 values were 5.1 Mb and 133.77 kb, respectively. The Benchmarking Universal Single Copy Ortholog (BUSCO) value was 91.1%, indicating good integrity of the assembled genome. The discovered repetitive elements accounted for 90.6 Mb, representing 26.03% of the total genome, and included a significant component of transposable elements (11.48%, ~40 Mb). Using a homology-based approach, 35,147 genes were predicted from the genome assembly. We next focused our analysis on the zinc-finger A20/AN1 gene family, a member of which (AlSAP) was previously shown to confer increased tolerance to osmotic and salt stresses when it was over-expressed in tobacco, wheat, and rice. Here, we identified the complete set of members of this family in the Aeluropus littoralis genome, thereby laying the foundation for their future functional analysis in cereal crops. In addition, the expression patterns of four novel genes from this family were analyzed by qPCR. CONCLUSION This resource and our findings will contribute to improve the current understanding of salinity tolerance in halophytes while providing useful genes and allelic variation to improve salinity and drought tolerance in cereals through genetic engineering and gene editing, respectively.
Collapse
Affiliation(s)
- Walid Ben Romdhane
- King Saud University, College of Food and Agricultural Sciences, Plant Production Department, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| | - Rania Ben Saad
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P 1177, Sfax, 3018, Tunisia
| | - Emmanuel Guiderdoni
- University of, -Institut Agro-University of Montpellier, Montpellier, CIRAD-INRAE, Montpellier, France
| | - Ahmed Abdelrahim Mohamed Ali
- King Saud University, College of Food and Agricultural Sciences, Plant Production Department, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohamed Tarroum
- King Saud University, College of Food and Agricultural Sciences, Plant Production Department, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Abdullah Al-Doss
- King Saud University, College of Food and Agricultural Sciences, Plant Production Department, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Afif Hassairi
- King Saud University, College of Food and Agricultural Sciences, Plant Production Department, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, B.P 1177, Sfax, 3018, Tunisia.
| |
Collapse
|
2
|
Mohammadi MA, Wang Y, Zhang C, Ma H, Sun J, Wang L, Niu X, Wang G, Zheng P, Wang L, Wang S, Qin Y, Cheng Y. Heterologous overexpression of the Suaeda glauca stress-associated protein (SAP) family genes enhanced salt tolerance in Arabidopsis transgenic lines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109868. [PMID: 40245556 DOI: 10.1016/j.plaphy.2025.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Stress-associated proteins (SAPs), characterized by zinc finger domains, play a crucial role in regulating plant responses to various stresses. These proteins modulate stress-related gene expression and are integral to enhancing plant immunity, development, cell proliferation, and hormone regulation. In this study, we conducted a genome-wide analysis of the SAP gene family in Suaeda glauca (S. glauca), identifying 15 SAP genes encoding A20/AN1 zinc finger proteins. Functional analyses of three candidate genes under salinity stress were performed, examining phenotypic and physiological responses to better understand their role in stress tolerance. Sequence alignment, conserved domain analysis, and gene structure analysis revealed high conservation among S. glauca SAPs. Phylogenetic analysis identified two major groups within the gene family, providing insights into their evolutionary relationships. Transcription profiling analysis demonstrated significant expression of most SAP genes in response to salt stress, with qPCR validation confirming the upregulation of specific genes. Notably, transgenic Arabidopsis lines heterologously overexpressing the candidate genes SgSAP4, SgSAP5, and SgSAP7 demonstrated enhanced tolerance to salinity stress. This was evident from improved seed germination, root elongation, and reduced levels of stress markers, including malondialdehyde and free proline, compared to wild-type plants. These findings highlight the potential of these SAP genes in breeding programs aimed at improving salinity tolerance in crops.
Collapse
Affiliation(s)
- Mohammad Aqa Mohammadi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yining Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Chunyin Zhang
- Yancheng Lvyuan Salt Soil Agricultural Technology Co. Ltd., Yancheng, Jiangsu, 224051, China
| | - Haifeng Ma
- Desertification Combating Centre of Bayannur, Bayannur, Inner Mongolia, 015000, China
| | - Jin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoping Niu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, Jiangsu, 224051, China
| | - Ping Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lichen Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Horticulture, College of Plant Protection, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Center for Genomics, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
3
|
Fan G, Yu Y, Zhang X, Jiang J, Wang S, Zhou B, Jiang T. Comprehensive analysis of the stress associated protein (SAP) family and the function of PagSAP9 from Populus alba × P. glandulosa in salt stress. PHYTOCHEMISTRY 2025; 232:114367. [PMID: 39701200 DOI: 10.1016/j.phytochem.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Poplar tree growth is frequently hindered by environmental stressors, particularly soil salinization. Enhancing salt tolerance is essential for improving their adaptability and biomass under these conditions. The Stress-Associated Protein (SAP) family, characterized by A20/AN1 zinc finger domains, plays a crucial role in plants' tolerance to abiotic stress. However, functional investigations on SAP proteins in poplar are limited. In our study, we identified 19 SAP members in poplar, distributed unevenly across ten chromosomes and classified them into two major groups based on phylogenetic relationship and structure characteristics. Notably, only three segmental duplications were found, while no tandem duplications were detected. The PagSAP9 gene from Populus alba x P. glandulosa, featured both A20 and AN1 domains, was successfully characterized and localized to both cytoplasm and nucleus. It was predominantly expressed in roots and leaves and showed significantly upregulation under salt stress. And the overexpressing PagSAP9 transgenic poplars enhanced the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), alongside reduced malondialdehyde (MDA) content. Additionally, DAB and NBT histological stainings further confirmed the positive effects of PagSAP9 gene. Collectively, these findings highlight the potential of the PagSAP9 gene to improve salt tolerance in poplar, emphasizing the broader applicability of SAP genes in plant stress resistance and providing valuable genetic resources for developing resilient plant varieties.
Collapse
Affiliation(s)
- Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yingying Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
4
|
Jiang W, Shi Y, Du Z, Zhou Y, Wu L, Chen J, Huang Y, Wu L, Liang Y, Zhang Z, Kumar V, Chen Z, Li D, Huang J. Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109451. [PMID: 39854789 DOI: 10.1016/j.plaphy.2024.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice. The expression level of OsSAP17 was induced under drought, salt stress and ABA treatment. Subcellular localization analysis revealed that the OsSAP17 protein was distributed in both the cytoplasm and nucleus. The ectopic expression of OsSAP17 significantly increased the capacity to withstand drought and salt stress in both transgenic yeast and Arabidopsis. Additionally, the ectopic expression of OsSAP17 led to notable changes in the expression of Arabidopsis ABA-related genes, including AtNCED3, AtABA2, and AtSnRK2.2. These results indicated that OsSAP17 was able to positively regulate drought and salt tolerance in plants. The insights from this study provided a fundamental understanding of the role of OsSAP17 in abiotic stress response mechanisms and were potentially valuable for breeding crops with enhanced stress tolerance.
Collapse
Affiliation(s)
- Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; College of Resources, Sichuan Agricultural University, Sichuan, 611130, China
| | - Zhiye Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yingxu Zhou
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Zhi Chen
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Deqiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China.
| |
Collapse
|
5
|
Hu Z, Ren X, Yu B, Zhu X, Hou J, Li Y, Jiang X, Yang J, Xiang S, Li J, Hu X, Li X, Yi Y, Hu R, Huang X. NtSAP9 confers freezing tolerance in Nicotiana tabacum plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109334. [PMID: 39616799 DOI: 10.1016/j.plaphy.2024.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 02/05/2025]
Abstract
Abiotic stresses, such as extreme temperatures, drought, and salinity, significantly affect plant growth and productivity. Among these, cold stress is particularly detrimental, impairing cellular processes and leading to reduced crop yields. In recent years, stress-associated proteins (SAPs) containing A20 and AN1 zinc-finger domains have emerged as crucial regulators in plant stress responses. However, the functions of SAPs in tobacco plants remain unclear. Here, we isolated Nicotiana tabacum SAP9 (NtSAP9), whose expression was induced by cold treatment, based on RNA-sequences data. Knock down of NtSAP9 expression reduced freezing tolerance, while overexpression conferred freezing tolerance in transgenic tobacco plants, as indicated by relative electrolytic leakage and photosystem II photochemical efficiency. Untargeted metabolomics via liquid chromatography-tandem mass spectrometry revealed distinct metabolic profiles between WT and NtSAP9-overexpressing tobacco plants under normal and low temperature conditions. Upregulation of amino acids like D-Glutamine, DL-Glutamine, and O-Acetyl-L-serine suggests NtSAP9 enhances cold tolerance. Further expression analysis by quantitative real-time PCR indicated that NtSAP9 participates in cold stress response possibly through amino acid synthesis-related genes expression, such as glutamine synthetase and glutamate dehydrogenase. These findings improve our understanding of SAP proteins in tobacco's response to cold stress.
Collapse
Affiliation(s)
- Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Xiaomin Ren
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Bei Yu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Xianxin Zhu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianlin Hou
- Chenzhou Tobacco Company, Chenzhou, Hunan, 423000, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Xizhen Jiang
- Guangdong Tobacco Shaoguan City Co., Ltd, Shaoguan, 512026, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Shipeng Xiang
- Changsha Tobacco Company, Changsha, Hunan, 410007, China
| | - Jinjie Li
- Changsha Tobacco Company, Changsha, Hunan, 410007, China
| | - Xutong Hu
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, 410021, China
| | - Ying Yi
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China.
| | - Xuebing Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
6
|
Peng Z, Rehman A, Jiang X, Tian C, Wang Z, Li H, Wang X, Ahmad A, Azhar MT, Du X, He S. Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109406. [PMID: 39700916 DOI: 10.1016/j.plaphy.2024.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Owing to the scarcity of cultivable land in China, the agricultural sector is primarily focused on grain and oil crops. Simultaneously, the cultivation of cotton has gradually shifted towards regions characterized by elevated soil salinity levels. Additionally, the mechanism behind cotton's ability to tolerate salt remains elusive. In this study, we identified the Z9807 genotype as highly tolerant to salt stress, exhibiting superior leaf wilting resistance, antioxidant activity, catalase activity, K+/Na+ ratio, and growth compared to the salt-sensitive ZJ0102. Comparative transcriptome analysis revealed marked differences in salt stress responses between Z9807 and ZJ0102. This study identified a considerable number of differentially expressed genes associated with salt tolerance across multiple time points. By integration of QTL and GWAS mapping data, we successfully identified 621 candidate genes associated with salt tolerance. Weighted gene correlation network analysis exhibited three co-expression modules related to salt-tolerant Z9807 samples, ultimately identifying 15 core salt-tolerant candidate genes. We also conducted in-depth research on the salt tolerance of the stress-associated protein (SAP) GhSAP6 (GhSAP6_At and GhSAP6_Dt homologs). Results revealed that these candidate genes may inhibit salt tolerance through Virus-Induced Gene Silencing (VIGS) and transgenic overexpression assays conducted in Arabidopsis thaliana. Furthermore, we used yeast two-hybrid and luciferase assay experiments to confirm the ubiquitin degradation pathway between selected interacting proteins and verified the interaction with RAD23C. This study will provide new insights into the mechanisms related to salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuran Jiang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Adeel Ahmad
- Central Cotton Research Institute, Pakistan Central Cotton Committee, Multan, 60000, Pakistan
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| |
Collapse
|
7
|
Yu Y, Zhang L, Wu Y, Hu H, Jia J, Wu J, Li C. Genome-wide identification of SAP family genes and characterization of TaSAP6-A1 to improve Cd tolerance in Triticum aestivum L. Int J Biol Macromol 2025; 284:137415. [PMID: 39532171 DOI: 10.1016/j.ijbiomac.2024.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Stress Associated Proteins (SAPs) contain A20/AN1 zinc finger domains and, have been proposed to function in various physiological processes such as cold, salinity, drought, heavy metals, damage, and flooding resistance in plants. Here, a total of 131 SAP genes were identified, including T. aestivum (60), T. urartu (10), Ae. Tauschii (16), T. dicoccoides (13), O. sativa (18), and A. thaliana (14). A phylogenetic analysis revealed that the SAPs are clustered into two subfamilies. The TaSAP genes in the collinear region comprised 34 pairs of duplicated genes formed through segmental duplication events. Overexpressing TaSAP6-A1 in wheat enhanced Cd tolerance, whereas knock-down of this gene increased Cd sensitivity. Yeast two-hybrid (Y2H) and bimolecular fluorescent complementation assays (BiFC) demonstrated interaction between TaSAP6-A1 and phenylalanine ammonia-lyase (TaPAL), the first enzyme in the phenylpropanoid pathway. This study provides a valuable reference for further investigations into the functional and molecular mechanisms of the SAP gene family.
Collapse
Affiliation(s)
- Yongang Yu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China; Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lei Zhang
- College of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanxia Wu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Jishen Jia
- College of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, China; Henan Engineering and Technology Research Center of Digital Agriculture Henan Institute of Science and Technology, Xinxiang, China
| | - Jianyu Wu
- Henan Agricultural University, Zhengzhou 450000, China.
| | - Chengwei Li
- Henan Agricultural University, Zhengzhou 450000, China.
| |
Collapse
|
8
|
Moine A, Chitarra W, Nerva L, Agliassa C, Gambino G, Secchi F, Pagliarani C, Boccacci P. Grafting with non-suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments. PHYSIOLOGIA PLANTARUM 2024; 176:e70003. [PMID: 39658794 PMCID: PMC11632140 DOI: 10.1111/ppl.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock-mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the 'San Giovanni' cultivar (SG), the non-suckering rootstock 'Dundee' (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well-irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with 'Dundee' rootstock positively affected the ability of 'San Giovanni' plants to endure drought by increasing their intrinsic water use efficiency and facilitating post-rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non-suckering rootstocks could therefore represent a promising and environmentally-friendly strategy for improving the adaptability of hazelnut to water deficit.
Collapse
Affiliation(s)
- Amedeo Moine
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Walter Chitarra
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
- Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE)Conegliano (TV)Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
- Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE)Conegliano (TV)Italy
| | - Chiara Agliassa
- Department of AgriculturalForest and Food Sciences – University of Torino (DISAFA‐UNITO)Grugliasco (TO)Italy
- Present address:
Green Has Italia S.p.A.Canale (CN)Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Francesca Secchi
- Department of AgriculturalForest and Food Sciences – University of Torino (DISAFA‐UNITO)Grugliasco (TO)Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| |
Collapse
|
9
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
10
|
Lv B, Deng H, Wei J, Feng Q, Liu B, Zuo A, Bai Y, Liu J, Dong J, Ma P. SmJAZs-SmbHLH37/SmERF73-SmSAP4 module mediates jasmonic acid signaling to balance biosynthesis of medicinal metabolites and salt tolerance in Salvia miltiorrhiza. THE NEW PHYTOLOGIST 2024; 244:1450-1466. [PMID: 39262232 DOI: 10.1111/nph.20110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Salvia miltiorrhiza holds significant importance in traditional Chinese medicine. Stress-associated proteins (SAP), identified by A20/AN1 zinc finger structural domains, play crucial roles in regulating plant growth, development, resistance to biotic and abiotic stress, and hormone responses. Herein, we conducted a genome-wide identification of the SAP gene family in S. miltiorrhiza. The expression analysis revealed a significant upregulation of SmSAP4 under methyl jasmonate (MeJA) and salt stress. Overexpressing SmSAP4 in S. miltiorrhiza hairy roots increased tanshinones content while decreasing salvianolic acids content, while RNAi-silencing SmSAP4 had the opposite effect. SmSAP4 overexpression in both Arabidopsis thaliana and S. miltiorrhiza hairy roots decreased their salt stress tolerance, accompanied by increased activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a hindered ability to maintain the Na+ : K+ ratio. Further investigations demonstrated that MeJA alleviated the inhibitory effect of SmJAZ3 on SmSAP4 activation by SmbHLH37 and SmERF73. However, MeJA did not affect the inhibition of SmSAP4 activation by SmJAZ8 through SmbHLH37. In summary, our research reveals that SmSAP4 negatively regulates the accumulation of salvianic acid through the SmJAZs-SmbHLH37/SmERF73-SmSAP4 module and positively impacting the accumulation of tanshinones. Additionally, it functions as a negative regulator under salt stress.
Collapse
Affiliation(s)
- Bingbing Lv
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Huaiyu Deng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jia Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Qiaoqiao Feng
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Bo Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Anqi Zuo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yichen Bai
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
11
|
Bae Y, Lim CW, Lee SC. Pepper RING-Type E3 Ligase CaFIRF1 Negatively Regulates the Protein Stability of Pepper Stress-Associated Protein, CaSAP14, in the Dehydration Stress Response. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39267466 DOI: 10.1111/pce.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
As part of the cellular stress response in plants, the ubiquitin-proteasome system (UPS) plays a crucial role in regulating the protein stability of stress-related transcription factors. Previous study has indicated that CaSAP14 is functionally involved in enhancing pepper plant tolerance to dehydration stress by modulating the expression of downstream genes. However, the comprehensive regulatory mechanism underlying CaSAP14 remains incompletely understood. Here, we identified a RING-type E3 ligase, CaFIRF1, which interacts with and ubiquitinates CaSAP14. Pepper plants with silenced CaFIRF1 exhibited a dehydration-tolerant phenotype when subjected to dehydration stress, while overexpression of CaFIRF1 in pepper and Arabidopsis resulted in reduced dehydration tolerance. Co-silencing of CaFIRF1 and CaSAP14 in pepper increased sensitivity to dehydration, suggesting that CaFIRF1 acts upstream of CaSAP14. A cell-free degradation analysis demonstrated that silencing of CaFIRF1 led to decreased CaSAP14 protein degradation, implicating CaFIRF1 in the regulation of CaSAP14 protein via the 26S proteasomal degradation pathway. Our findings suggest a mechanism by which CaFIRF1 mediates the ubiquitin-dependent proteasomal degradation of CaSAP14, thereby influencing the response of pepper plants to dehydration stress.
Collapse
Affiliation(s)
- Yeongil Bae
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
12
|
Su Y, Chen YL, Wu YL, Fan XW, Li YZ. Three cassava A20/AN1 family genes, Metip3 (5, and 7), can bestow on tolerance of plants to multiple abiotic stresses but show functional convergence and divergence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112163. [PMID: 38880339 DOI: 10.1016/j.plantsci.2024.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
A20/AN1 zinc-finger domain-containing genes are very promising candidates in improving plant tolerance to abiotic stresses, but considerably less is known about functions and mechanisms for many of them. In this study, Metip3 (5, and 7), cassava (Manihot esculenta) A20/AN1 genes carrying one A20 domain and one AN1 domain, were functionally characterized at different layers. Metip3 (5, and 7) proteins were all located in the nucleus. No interactions were found between these three proteins. Metip3 (5, and 7)-expressing Arabidopsis was more tolerant to multiple abiotic stresses by Na, Cd, Mn, Al, drought, high temperature, and low temperature. Metip3- and Metip5-expressing Arabidopsis was sensitive to Cu stress, while Metip7-expressing Arabidopsis was insensitive. The H2O2 production significantly decreased in all transgenic Arabidopsis, however, O2·- production significantly decreased in Metip3- and Metip5-expressing Arabidopsis but did not significantly changed in Metip7-expressing Arabidopsis under drought. Metip3 (5, and 7) expression-silenced cassava showed the decreased tolerance to drought and NaCl, presented significant decreases in superoxide dismutase and catalase activities and proline content, and displayed a significant increase in malondialdehyde content under drought. Taken together with transcriptome sequencing analysis, it is suggested that Metip5 gene can not only affect signal transduction related to plant hormone, mitogen activated protein kinases, and starch and sucrose metabolism, DRE-binding transcription factors, and antioxidants, conferring the drought tolerance, but also might deliver the signals from DREB2A INTERACTING PROTEIN1, E3 ubiquitin-protein ligases to proteasome, leading to the drought intolerance. The results are informative not only for further study on evolution of A20/AN1 genes but also for development of climate resilient crops.
Collapse
Affiliation(s)
- Ying Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yu-Lan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan-Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
13
|
Vashisth V, Sharma G, Giri J, Sharma AK, Tyagi AK. Rice A20/AN1 protein, OsSAP10, confers water-deficit stress tolerance via proteasome pathway and positive regulation of ABA signaling in Arabidopsis. PLANT CELL REPORTS 2024; 43:215. [PMID: 39138747 DOI: 10.1007/s00299-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Overexpression of rice A20/AN1 zinc-finger protein, OsSAP10, improves water-deficit stress tolerance in Arabidopsis via interaction with multiple proteins. Stress-associated proteins (SAPs) constitute a class of A20/AN1 zinc-finger domain containing proteins and their genes are induced in response to multiple abiotic stresses. The role of certain SAP genes in conferring abiotic stress tolerance is well established, but their mechanism of action is poorly understood. To improve our understanding of SAP gene functions, OsSAP10, a stress-inducible rice gene, was chosen for the functional and molecular characterization. To elucidate its role in water-deficit stress (WDS) response, we aimed to functionally characterize its roles in transgenic Arabidopsis, overexpressing OsSAP10. OsSAP10 transgenics showed improved tolerance to water-deficit stress at seed germination, seedling and mature plant stages. At physiological and biochemical levels, OsSAP10 transgenics exhibited a higher survival rate, increased relative water content, high osmolyte accumulation (proline and soluble sugar), reduced water loss, low ROS production, low MDA content and protected yield loss under WDS relative to wild type (WT). Moreover, transgenics were hypersensitive to ABA treatment with enhanced ABA signaling and stress-responsive genes expression. The protein-protein interaction studies revealed that OsSAP10 interacts with proteins involved in proteasomal pathway, such as OsRAD23, polyubiquitin and with negative and positive regulators of stress signaling, i.e., OsMBP1.2, OsDRIP2, OsSCP and OsAMTR1. The A20 domain was found to be crucial for most interactions but insufficient for all interactions tested. Overall, our investigations suggest that OsSAP10 is an important candidate for improving water-deficit stress tolerance in plants, and positively regulates ABA and WDS signaling via protein-protein interactions and modulation of endogenous genes expression in ABA-dependent manner.
Collapse
Affiliation(s)
- Vishal Vashisth
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gunjan Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
14
|
Ben Romdhane W, Al-Ashkar I, Ibrahim A, Sallam M, Al-Doss A, Hassairi A. Aeluropus littoralis stress-associated protein promotes water deficit resilience in engineered durum wheat. Heliyon 2024; 10:e30933. [PMID: 38765027 PMCID: PMC11097078 DOI: 10.1016/j.heliyon.2024.e30933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
Global climate change-related water deficit negatively affect the growth, development and yield performance of multiple cereal crops, including durum wheat. Therefore, the improvement of water-deficit stress tolerance in durum wheat varieties in arid and semiarid areas has become imperative for food security. Herein, we evaluated the water deficiency resilience potential of two marker-free transgenic durum wheat lines (AlSAP-lines: K9.3 and K21.3) under well-watered and water-deficit stress conditions at both physiological and agronomic levels. These two lines overexpressed the AlSAP gene, isolated from the halophyte grass Aeluropus littoralis, encoding a stress-associated zinc finger protein containing the A20/AN1 domains. Under well-watered conditions, the wild-type (WT) and both AlSAP-lines displayed comparable performance concerning all the evaluated parameters. Ectopic transgene expression exerted no adverse effects on growth and yield performance of the durum wheat plants. Under water-deficit conditions, no significant differences in the plant height, leaf number, spike length, and spikelet number were observed between AlSAP-lines and WT plants. However, compared to WT, the AlSAP-lines exhibited greater dry matter production, greater flag leaf area, improved net photosynthetic rate, stomatal conductance, and water use efficiency. Notably, the AlSAP-lines displayed 25 % higher grain yield (GY) than the WT plants under water-deficit conditions. The RT-qPCR-based selected stress-related gene (TdDREB1, TdLEA, TdAPX1, and TdBlt101-2) expression analyses indicated stress-related genes enhancement in AlSAP-durum wheat plants under both well-watered and water-deficit conditions, potentially related to the water-deficit resilience. Collectively, our findings support that the ectopic AlSAP expression in durum wheat lines enhances water-deficit resilience ability, thereby potentially compensate for the GY loss in arid and semi-arid regions.
Collapse
Affiliation(s)
- Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Ibrahim Al-Ashkar
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Abdullah Ibrahim
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Mohammed Sallam
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | - Afif Hassairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Hu G, Wang B, Jia P, Wu P, Lu C, Xu Y, Shi L, Zhang F, Zhong N, Chen A, Wu J. The cotton miR530-SAP6 module activated by systemic acquired resistance mediates plant defense against Verticillium dahliae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111647. [PMID: 36806608 DOI: 10.1016/j.plantsci.2023.111647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Many cotton miRNAs in root responding to Verticillium dahliae infection have been identified. Conversely, the miRNAs in leaf distantly responding to this fungal infection from roots via systemic acquired resistance (SAR) remain to be explored. Here, we constructed two groups of leaf sRNA libraries in cotton treated with V. dahliae via root-dipped method at 7- and 10-day post inoculation. Analysis of high-throughput sRNA sequencing identified 75 known and 379 novel miRNAs, of which 41 miRNAs significantly differentially expressed in fungal treatment plant leaves compared to the mock treatment at two time points. Then we characterized the cotton miR530-SAP6 module as a representative in the distant response to V. dahliae infection in roots. Based on degradome data and a luciferase (LUC) fusion reporter analysis, ghr-miR530 directedly cleaved GhSAP6 mRNA during the post-transcriptional process. Silencing of ghr-miR530 increased plant defense to this fungus, while its overexpression attenuated plant resistance. In link with ghr-miR530 function, the knockdown of GhSAP6 also decreased the plant resistance, resulting from down-regulation of SA-relative gene expression including GhNPR1 and GhPR1. In all, these results demonstrated that there are numerous miRNAs in leaf distantly responding to V. dahliae infection in roots mediate plant immunity.
Collapse
Affiliation(s)
- Guang Hu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bingting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengzhe Lu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunjiao Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linfang Shi
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiyan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Naiqin Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Aimin Chen
- The Key Laboratory for the Creation of Cotton Varieties in the Northwest, Ministry of Agriculture and Rural Affairs, Join Hope Seeds Co. Ltd., Changji, Xinjiang 831100, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
16
|
Lin C, Huang Q, Liu Z, Brown SE, Chen Q, Li Y, Dong Y, Wu H, Mao Z. AoSAP8-P encoding A20 and/or AN1 type zinc finger protein in asparagus officinalis L. Improving stress tolerance in transgenic Nicotiana sylvestris. Gene 2023; 862:147284. [PMID: 36781027 DOI: 10.1016/j.gene.2023.147284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
The full length CDS of an A20 and AN1 type zinc finger gene (named AoSAP8-P), located nearby the male specific Y chromosome (MSY) region of Asparagus officinalis (garden asparagus) was amplified by RT-PCR from purple passion. This gene, predicted as the stress associated protein (SAPs) gene families, encodes 172 amino acids with multiple cis elements including light, stress response box, MYB and ERF binding sites on its promoter. To analyze its function, the gene expression of different organs in different asparagus gender were analyzed and the overexpressed transgenic Nicotiana sylvestris lines were generated. The results showed the gene was highly expressed in both flower and root of male garden asparagus; the germination rate of seeds of the T2 transgenic lines (T2-5-4 and T2-7-1) under the stress conditions of 125 mM NaCl and 150 mM mannitol were significantly higher than the wild type (WT) respectively. When the potted T2-5-4, T2-7-1 lines and WT were subjected to drought stress for 24 days and the leaf discs immerged into 20 % PEG6000 and 300 mM NaCl solution for 48 h respectively, the T2-5-4 and T2-7-1 with AoSAP8-P expression showed stronger drought, salt and osmotic stress tolerance. When compared, the effects of AoSAP8-P overexpression on productive development showed that the flowering time of transgenic lines, were ∼ 9 day earlier with larger but fewer pollens than its WT counterparts. However, there were no significant differences in anthers, stigmas and pollen viability between the transgenic lines and WT. Our results suggested that, the AoSAP8-P gene plays a role in improving the stress resistance and shortening seeds generation time for perianal survival during the growth and development of garden asparagus.
Collapse
Affiliation(s)
- Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Qiuqiu Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Qing Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yumei Dong
- Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
17
|
Bae Y, Lim CW, Lee SC. Pepper stress-associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid-dependent osmotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:357-374. [PMID: 36458345 DOI: 10.1111/tpj.16052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a prominent role in various abiotic stress responses of plants. In the ABA-dependent osmotic stress response, SnRK2.6, one of the subclass III SnRK2 kinases, has been identified as playing a key role by phosphorylating and activating downstream genes. Although several modulatory proteins have been reported to be phosphorylated by SnRK2.6, the identities of the full spectrum of downstream targets have yet to be sufficiently established. In this study, we identified CaSAP14, a stress-associated protein in pepper (Capsicum annuum), as a downstream target of CaSnRK2.6. We elucidated the physical interaction between SnRK2.6 and CaSAP14, both in vitro and in vivo, and accordingly identified a C-terminal C2H2-type zinc finger domain of CaSAP14 as being important for their interaction. CaSAP14-silenced pepper plants showed dehydration- and high salt-sensitive phenotypes, whereas overexpression of CaSAP14 in Arabidopsis conferred tolerance to dehydration, high salinity, and mannitol treatment, with plants showing ABA-hypersensitive phenotypes. Furthermore, an in-gel kinase assay revealed that CaSnRK2.6 phosphorylates CaSAP14 in response to exogenous ABA, dehydration, and high-salinity stress. Collectively, these findings suggest that CaSAP14 is a direct substrate of CaSnRK2.6 and positively modulates dehydration- and high salinity-induced osmotic stress responses.
Collapse
Affiliation(s)
- Yeongil Bae
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| |
Collapse
|
18
|
Genome-Wide Identification and Characterisation of Stress-Associated Protein Gene Family to Biotic and Abiotic Stresses of Grapevine. Pathogens 2022; 11:pathogens11121426. [PMID: 36558760 PMCID: PMC9784323 DOI: 10.3390/pathogens11121426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Grapevine is one of the earliest domesticated fruit crops and prized for its table fruits and wine worldwide. However, the concurrence of a number of biotic/abiotic stresses affects their yield. Stress-associated proteins (SAPs) play important roles in response to both biotic and abiotic stresses in plants. Despite the growing number of studies on the genomic organisation of SAP gene family in various species, little is known about this family in grapevines (Vitis vinifera L.). In this study, a total of 15 genes encoding proteins possessing A20/AN1 zinc-finger were identified based on the analysis of several genomic and proteomic grapevine databases. According to their structural and phylogenetics features, the identified SAPs were classified into three main groups. Results from sequence alignments, phylogenetics, genomics structure and conserved domains indicated that grapevine SAPs are highly and structurally conserved. In order to shed light on their regulatory roles in growth and development, as well as the responses to biotic/abiotic stresses in grapevine, the expression profiles of SAPs were examined in publicly available microarray data. Bioinformatics analysis revealed distinct temporal and spatial expression patterns of SAPs in various tissues, organs and developmental stages, as well as in response to biotic/abiotic stresses. This study provides insight into the evolution of SAP genes in grapevine and may aid in efforts for further functional identification of A20/AN1-type proteins in the signalling cross-talking induced by biotic/abiotic stresses.
Collapse
|
19
|
Identification and Analysis of Stress-Associated Proteins (SAPs) Protein Family and Drought Tolerance of ZmSAP8 in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232214109. [PMID: 36430587 PMCID: PMC9696418 DOI: 10.3390/ijms232214109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Stress-associated proteins (SAPs), a class of A20/AN1 zinc finger proteins, play vital roles in plant stress response. However, investigation of SAPs in maize has been very limited. Herein, to better trace the evolutionary history of SAPs in maize and plants, 415 SAPs were identified in 33 plant species and four species of other kingdoms. Moreover, gene duplication mode exploration showed whole genome duplication contributed largely to SAP gene expansion in angiosperms. Phylogeny reconstruction was performed with all identified SAPs by the maximum likelihood (ML) method and the SAPs were divided into five clades. SAPs within the same clades showed conserved domain composition. Focusing on maize, nine ZmSAPs were identified. Further promoter cis-elements and stress-induced expression pattern analysis of ZmSAPs indicated that ZmSAP8 was a promising candidate in response to drought stress, which was the only AN1-AN1-C2H2-C2H2 type SAP in maize and belonged to clade I. Additionally, ZmSAP8 was located in the nucleus and had no transactivation activity in yeast. Overexpressing ZmSAP8 enhanced the tolerance to drought stress in Arabidopsis thaliana, with higher seed germination and longer root length. Our results should benefit the further functional characterization of ZmSAPs.
Collapse
|
20
|
Comprehensive Identification and Functional Analysis of Stress-Associated Protein (SAP) Genes in Osmotic Stress in Maize. Int J Mol Sci 2022; 23:ijms232214010. [PMID: 36430489 PMCID: PMC9692755 DOI: 10.3390/ijms232214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Stress-associated proteins (SAPs) are a kind of zinc finger protein with an A20/AN1 domain and contribute to plants' adaption to various abiotic and biological stimuli. However, little is known about the SAP genes in maize (Zea mays L.). In the present study, the SAP genes were identified from the maize genome. Subsequently, the protein properties, gene structure and duplication, chromosomal location, and cis-acting elements were analyzed by bioinformatic methods. Finally, their expression profiles under osmotic stresses, including drought and salinity, as well as ABA, and overexpression in Saccharomyces cerevisiae W303a cells, were performed to uncover the potential function. The results showed that a total of 10 SAP genes were identified and named ZmSAP1 to ZmSAP10 in maize, which was unevenly distributed on six of the ten maize chromosomes. The ZmSAP1, ZmSAP4, ZmSAP5, ZmSAP6, ZmSAP7, ZmSAP8 and ZmSAP10 had an A20 domain at N terminus and AN1 domain at C terminus, respectively. Only ZmSAP2 possessed a single AN1 domain at the N terminus. ZmSAP3 and ZmSAP9 both contained two AN1 domains without an A20 domain. Most ZmSAP genes lost introns and had abundant stress- and hormone-responsive cis-elements in their promoter region. The results of quantitative real-time PCR showed that all ZmSAP genes were regulated by drought and saline stresses, as well as ABA induction. Moreover, heterologous expression of ZmSAP2 and ZmSAP7 significantly improved the saline tolerance of yeast cells. The study provides insights into further underlying the function of ZmSAPs in regulating stress response in maize.
Collapse
|
21
|
Ben Hsouna A, Michalak M, Kukula-Koch W, Ben Saad R, ben Romdhane W, Zeljković SĆ, Mnif W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022; 12:1583. [PMID: 36358933 PMCID: PMC9687265 DOI: 10.3390/biom12111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir-Tunisia, Monastir 5000, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Walid ben Romdhane
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| |
Collapse
|
22
|
Fujita K, Yoshihara R, Hirota M, Goto J, Sonoda C, Inui H. A20/AN1 zinc-finger proteins positively regulate major latex-like proteins, transporting factors toward dioxin-like compounds in Cucurbita pepo. CHEMOSPHERE 2022; 305:135536. [PMID: 35772518 DOI: 10.1016/j.chemosphere.2022.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The Cucurbitaceae family accumulates dioxin-like compounds in its fruits. We previously showed that A20/AN1 zinc finger protein (ZFP) genes were highly expressed in the zucchini (Cucurbita pepo) subspecies pepo, which accumulates dioxin-like compounds at high concentrations. Transgenic tobacco (Nicotiana tabacum) plants overexpressing A20/AN1 ZFP genes show accumulation of dioxin-like compounds in their upper parts. However, the mechanisms underlying the accumulation of dioxin-like compounds regulated by the A20/AN1 ZFPs remain unclear. Here, we show that A20/AN1 ZFPs positively regulate the expression of the major latex-like protein (MLP) and its homolog genes in N. tabacum and C. pepo. MLPs are involved in the transport of dioxin-like compounds from the roots to the upper parts of C. pepo. Overexpression of A20/AN1 ZFP genes in N. tabacum leads to the upregulation of pathogenesis-related protein class-10 genes with the binding ability toward dioxin-like compounds. Our results demonstrated that A20/AN1 ZFPs upregulate MLP and its homolog genes in N. tabacum and C. pepo, resulting in the accumulation of dioxin-like compounds.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Ryouhei Yoshihara
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Matashi Hirota
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Junya Goto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Chihiro Sonoda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
23
|
Genome-Wide Identification of the A20/AN1 Zinc Finger Protein Family Genes in Ipomoea batatas and Its Two Relatives and Function Analysis of IbSAP16 in Salinity Tolerance. Int J Mol Sci 2022; 23:ijms231911551. [PMID: 36232853 PMCID: PMC9570247 DOI: 10.3390/ijms231911551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Stress-associated protein (SAP) genes—encoding A20/AN1 zinc-finger domain-containing proteins—play pivotal roles in regulating stress responses, growth, and development in plants. They are considered suitable candidates to improve abiotic stress tolerance in plants. However, the SAP gene family in sweetpotato (Ipomoea batatas) and its relatives is yet to be investigated. In this study, 20 SAPs in sweetpotato, and 23 and 26 SAPs in its wild diploid relatives Ipomoea triloba and Ipomoea trifida were identified. The chromosome locations, gene structures, protein physiological properties, conserved domains, and phylogenetic relationships of these SAPs were analyzed systematically. Binding motif analysis of IbSAPs indicated that hormone and stress responsive cis-acting elements were distributed in their promoters. RT-qPCR or RNA-seq data revealed that the expression patterns of IbSAP, ItbSAP, and ItfSAP genes varied in different organs and responded to salinity, drought, or ABA (abscisic acid) treatments differently. Moreover, we found that IbSAP16 driven by the 35 S promoter conferred salinity tolerance in transgenic Arabidopsis. These results provided a genome-wide characterization of SAP genes in sweetpotato and its two relatives and suggested that IbSAP16 is involved in salinity stress responses. Our research laid the groundwork for studying SAP-mediated stress response mechanisms in sweetpotato.
Collapse
|
24
|
Jalal A, Ali Q, Manghwar H, Zhu D. Identification, Phylogeny, Divergence, Structure, and Expression Analysis of A20/AN1 Zinc Finger Domain Containing Stress-Associated Proteins (SAPs) Genes in Jatropha curcas L. Genes (Basel) 2022; 13:1766. [PMID: 36292651 PMCID: PMC9601316 DOI: 10.3390/genes13101766] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Jatropha is a small woody perennial biofuel-producing shrub. Stress-associated proteins (SAPs) are novel stress regulatory zinc-finger proteins and are mainly associated with tolerance against various environmental abiotic stresses in Jatropha. In the present study, the JcSAP gene family were analyzed comprehensively in Jatropha curcas and 11 JcSAP genes were identified. Phylogenetic analysis classified the JcSAP genes into four groups based on sequence similarity, similar gene structure features, conserved A20 and/or AN1 domains, and their responsive motifs. Moreover, the divergence analysis further evaluated the evolutionary aspects of the JcSAP genes with the predicted time of divergence from 9.1 to 40 MYA. Furthermore, a diverse range of cis-elements including light-responsive elements, hormone-responsive elements, and stress-responsive elements were detected in the promoter region of JcSAP genes while the miRNA target sites predicted the regulation of JcSAP genes via a candid miRNA mediated post-transcriptional regulatory network. In addition, the expression profiles of JcSAP genes in different tissues under stress treatment indicated that many JcSAP genes play functional developmental roles in different tissues, and exhibit significant differential expression under stress treatment. These results collectively laid a foundation for the functional diversification of JcSAP genes.
Collapse
Affiliation(s)
- Abdul Jalal
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Zhang H, Gong Y, Sun P, Chen S, Ma C. Genome-wide identification of CBF genes and their responses to cold acclimation in Taraxacum kok-saghyz. PeerJ 2022; 10:e13429. [PMID: 35582615 PMCID: PMC9107785 DOI: 10.7717/peerj.13429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
C-repeat binding factors (CBFs) are transcription factors that are known to play important roles in plant cold acclimation. They are highly conserved in most higher plants. Taraxacum kok-saghyz (TKS) is an herb native to China and Kazakhstan and is well-known for its production of rubber silk with industrial and economic value. To understand cold acclimation mechanisms, we conducted a genome-wide discovery of the CBF family genes in TKS and revealed ten CBF genes. A bioinformatic analysis of the CBF genes was carried out to analyze the phylogenetic relationship, protein conservative motifs, protein physicochemical properties, gene structure, promoter cis-acting elements, and the gene expression patterns under cold acclimation and control conditions. It was found that most of these genes were highly responsive at the late stage of cold acclimation, indicating that they play important roles in the cold acclimation processes of TKS. This study provides a theoretical basis for the study of the molecular functions of the CBF gene family in TKS, and a useful guidance for the genetic improvement of the cold tolerance traits of TKS and other plants, including crops.
Collapse
Affiliation(s)
- Haifeng Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Peilin Sun
- Key Laboratory of Nuclear Technology Application, Heilongjiang Institute of Atomic Energy, Harbin, China
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
26
|
Li M, Zhang H, He D, Damaris RN, Yang P. A stress-associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on OsKO2. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2420-2433. [PMID: 35084453 DOI: 10.1093/jxb/erac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Gibberellic acid (GA) is a vital phytohormone for plant growth and development. GA biosynthesis is a complex pathway regulated by various transcription factors. Here we report a stress-associated protein 8 (OsSAP8), negatively involved in GA biosynthesis. Overexpression of OsSAP8 in rice resulted in a semi-dwarfism phenotype and reduced endogenous GA3 content. In contrast, an OsSAP8 knockout mutant exhibited higher endogenous GA3 content and slightly increased plant height. Sub-cellular localization analysis of OsSAP8 showed that it could enter the nucleus. Based on electrophoretic mobility shift assay and yeast one hybrid experiments, OsSAP8 was found to bind to the cis-acting regulatory element GADOWNAT of ent-kaurene oxidases (KO2, KO3, KO5). The results from dual-luciferase reporter assays showed that OsSAP8 does not activate LUC reporter gene expression. However, it could interact with basic leucine zipper 58 (OsbZIP58), which has strong transcriptional activation potential on OsKO2. Moreover, the interaction between OsSAP8, rice lesion simulating disease 1-like 1 (OsLOL1), and OsbZIP58 could reduce the promotive effect of transcription factor OsbZIP58 on OsKO2. These results provide some new insights on the regulation of GA biosynthesis in rice.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
27
|
Identification and Expression Analysis of Zinc Finger A20/AN1 Stress-Associated Genes SmSAP Responding to Abiotic Stress in Eggplant. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stress-associated proteins (SAP), a class of zinc-finger proteins, have been identified as novel stress regulatory proteins in stress responses. However, SAP genes in eggplant (SmSAP) have been little reported. It has important significance in identifying SAP members, understanding the molecular mechanisms underlying stress responses, and tolerance. We performed a comprehensive study of the A20/AN1 domains, motifs, gene structures, phylogenetic relationships, chromosomal locations, gene replications, collinearity, cis-acting elements, and expression pattern responses to various abiotic stresses. Twenty-one SAP genes were identified in eggplant (SmSAP) and were localized on 10 chromosomes. A phylogenetic analysis revealed that most of the SmSAP proteins showed a high homology with the tomato SAP members, and 21 members were divided into four groups based on the homology of the SAP members in eggplant, tomato, rice, and Arabidopsis. Further analysis revealed that SmSAP proteins contain the characteristic A20/AN1 domains, the A20 domain composed of motif 2 (ILCINNCGFFGSPATMNLCSKCYKDMJLK). Four pairs of tandem duplications were found in eggplant, and 10 SmSAP genes had collinearity with SAP genes from Arabidopsis, potato, or tomato, but only four SmSAP genes were collinear with SAP genes in the three species mentioned above. Moreover, the promoters of SmSAP genes were predicted to contain many cis-acting elements that respond to abiotic stress and hormones. A qRT-PCR analysis of the four selected SmSAP genes exhibited diverse expression levels in response to various environmental stresses. These results provided a comprehensive analysis of the SmSAP genes and lay a solid foundation for improving the understanding of the functional diversification of SAP genes under various environmental stresses in eggplant.
Collapse
|
28
|
Chang L, Tzean Y, Hsin KT, Lin CY, Wang CN, Yeh HH. Stress associated proteins coordinate the activation of comprehensive antiviral immunity in Phalaenopsis orchids. THE NEW PHYTOLOGIST 2022; 233:145-155. [PMID: 34614215 DOI: 10.1111/nph.17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Viruses cause severe damage on crops, and identification of key gene(s) that can comprehensively activate antiviral immunity will provide insights for designing effective antiviral strategies. Salicylic acid (SA)-mediated antiviral immunity and RNA interference (RNAi) are two independently discovered antiviral pathways. Previously, we identified the orchid stress-associated protein (SAP), Pha13, which serves as a hub in SA-mediated antiviral immunity. As SAPs exist as a protein family, whether duplicated SAPs have redundant or distinctive functions in antiviral immunity remains elusive. We performed functional assays on orchid Pha21, a homolog of Pha13, using transient and transgenic approaches on orchid, Arabidopsis and Nicotiana benthamiana to overexpress and/or silence Pha21. The SA treatment induced the expression of both Pha13 and Pha21, whereas Pha21 was found to play a key role in the initiation of the RNAi pathway in Phalaenopsis orchids. We demonstrated that Pha21-mediated antiviral immunity and enhancement of the RNAi pathway is conserved between dicotyledons and monocotyledons. We provide new insight that orchid SAPs confer distinctive functions to coordinate both SA-signaling and RNAi for comprehensive activation of antiviral immunity, and this information will help us develop antiviral strategies on crops.
Collapse
Affiliation(s)
- Li Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Ting Hsin
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Ying Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Neng Wang
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
29
|
Fatima S, Zafar Z, Gul A, Bhatti MF. Genome-Wide Identification of Stress-Associated Proteins (SAPs) Encoding A20/AN1 Zinc Finger in Almond ( Prunus dulcis) and Their Differential Expression during Fruit Development. PLANTS (BASEL, SWITZERLAND) 2021; 11:117. [PMID: 35009120 PMCID: PMC8747467 DOI: 10.3390/plants11010117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Stress-associated proteins (SAPs) are zinc finger proteins involved in the regulation of various stresses in a variety of plant species. A total of nine PdSAP genes were identified in Prunus dulcis. Phylogenetic and synteny analyses were performed to analyze the homology and evolutionary relationship of PdSAP genes. The functions of PdSAP genes were assessed by further analyses, including cis-regulatory elements, gene duplication, gene ontology, gene structure, subcellular localization, and motif pattern. This study found that PdSAP genes were unevenly distributed on chromosomes 2, 3, 6, and 7. Phylogenetic analysis of PdSAP genes with Arabidopsis thaliana and Oryza sativa suggested that six subgroups have a similar pattern of AN1 and A20 domains in each subgroup. PdSAP genes lacked duplicated blocks. The majority of PdSAP genes were localized in the nucleus region. Three hormonal and five stress cis-regulatory elements were found in the upstream promoter region of the PdSAP gene family. RNA-seq analysis revealed differential gene expression of PdSAP genes at days 12, 17, 22, 27, 32, and 37 of fruitlet development after flowering. This study identifies the SAP genes in P. dulcis and also provides insights into the expression of PdSAP genes in abnormal fruitlets with diapause atrophic growth at various developmental stages.
Collapse
|
30
|
Bae Y, Lim CW, Lee SC. Differential Functions of Pepper Stress-Associated Proteins in Response to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:756068. [PMID: 34956259 PMCID: PMC8702622 DOI: 10.3389/fpls.2021.756068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Stress-associated proteins (SAPs), a group of zinc-finger-type proteins, have been identified as novel regulators of plant abiotic and biotic stresses. However, although they have been discovered in different plant species, their precise functional roles remain unclear. Here, we identified 14 SAP subfamily genes in the pepper genome. An investigation of the promoter regions of these genes for cis-regulatory elements associated with abiotic stress responses revealed the presence of multiple stress-related elements. Domain and phylogenetic analyses using the corresponding protein sequences revealed that the CaSAP genes can be classified into six groups (I-VI) and sorted into two broad types. Expression levels of the CaSAP genes were found to be differentially induced by low temperature, the dehydration stress, or exogenous abscisic acid. Group II and IV genes were highly induced by the low temperature and dehydration treatments, respectively. Moreover, subcellular localization analysis indicated that the proteins in these two groups are distributed in the nucleus, cytoplasm, and plasma membrane. Among the pepper plants silenced with the three identified group II CaSAP genes, the CA02g10410-silenced plants showed tolerance to low temperature, whereas the CA03g17080-silenced plants were found to have temperature-sensitive phenotypes. Interestingly, group IV CaSAP-silenced pepper plants showed drought-tolerant phenotypes. These findings contribute to a preliminary characterization of CaSAP genes and provide directions for future research on the biological role of CaSAPs in response to different abiotic stresses.
Collapse
|
31
|
Baidyussen A, Jatayev S, Khassanova G, Amantayev B, Sereda G, Sereda S, Gupta NK, Gupta S, Schramm C, Anderson P, Jenkins CLD, Soole KL, Langridge P, Shavrukov Y. Expression of Specific Alleles of Zinc-Finger Transcription Factors, HvSAP8 and HvSAP16, and Corresponding SNP Markers, Are Associated with Drought Tolerance in Barley Populations. Int J Mol Sci 2021; 22:12156. [PMID: 34830037 PMCID: PMC8617764 DOI: 10.3390/ijms222212156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Two genes, HvSAP8 and HvSAP16, encoding Zinc-finger proteins, were identified earlier as active in barley plants. Based on bioinformatics and sequencing analysis, six SNPs were found in the promoter regions of HvSAP8 and one in HvSAP16, among parents of two barley segregating populations, Granal × Baisheshek and Natali × Auksiniai-2. ASQ and Amplifluor markers were developed for HvSAP8 and HvSAP16, one SNP in each gene, and in each of two populations, showing simple Mendelian segregation. Plants of F6 selected breeding lines and parents were evaluated in a soil-based drought screen, revealing differential expression of HvSAP8 and HvSAP16 corresponding with the stress. After almost doubling expression during the early stages of stress, HvSAP8 returned to pre-stress level or was strongly down-regulated in plants with Granal or Baisheshek genotypes, respectively. For HvSAP16 under drought conditions, a high expression level was followed by either a return to original levels or strong down-regulation in plants with Natali or Auksiniai-2 genotypes, respectively. Grain yield in the same breeding lines and parents grown under moderate drought was strongly associated with their HvSAP8 and HvSAP16 genotypes. Additionally, Granal and Natali genotypes with specific alleles at HvSAP8 and HvSAP16 were associated with improved performance under drought via higher 1000 grain weight and more shoots per plant, respectively.
Collapse
Affiliation(s)
- Akmaral Baidyussen
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Bekzak Amantayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan 010000, Kazakhstan; (A.B.); (S.J.); (G.K.); (B.A.)
| | - Grigory Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda Region 100435, Kazakhstan; (G.S.); (S.S.)
| | - Sergey Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda Region 100435, Kazakhstan; (G.S.); (S.S.)
| | - Narendra K. Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303 329, India; (N.K.G.); (S.G.)
| | - Sunita Gupta
- Department of Plant Physiology, SKN Agriculture University, Jobner 303 329, India; (N.K.G.); (S.G.)
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Peter Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| | - Peter Langridge
- Wheat Initiative, Julius-Kühn-Institute, 14195 Berlin, Germany;
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5005, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia; (C.S.); (P.A.); (C.L.D.J.); (K.L.S.)
| |
Collapse
|
32
|
Gómez-Ocampo G, Ploschuk EL, Mantese A, Crocco CD, Botto JF. BBX21 reduces abscisic acid sensitivity, mesophyll conductance and chloroplast electron transport capacity to increase photosynthesis and water use efficiency in potato plants cultivated under moderated drought. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1131-1144. [PMID: 34606658 DOI: 10.1111/tpj.15499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/11/2021] [Indexed: 05/14/2023]
Abstract
The B-box (BBX) proteins are zinc-finger transcription factors with a key role in growth and developmental regulatory networks mediated by light. AtBBX21 overexpressing (BBX21-OE) potato (Solanum tuberosum) plants, cultivated in optimal water conditions, have a higher photosynthesis rate and stomatal conductance without penalty in water use efficiency (WUE) and with a higher tuber yield. In this work, we cultivated potato plants in two water regimes: 100 and 35% field capacity of water restriction that imposed leaf water potentials between -0.3 and -1.2 MPa for vegetative and tuber growth during 14 or 28 days, respectively. We found that 42-day-old plants of BBX21-OE were more tolerant to water restriction with higher levels of chlorophylls and tuber yield than wild-type spunta (WT) plants. In addition, the BBX21-OE lines showed higher photosynthesis rates and WUE under water restriction during the morning. Mechanistically, we found that BBX21-OE lines were more tolerant to moderated drought by enhancing mesophyll conductance (gm ) and maximum capacity of electron transport (Jmax ), and by reducing abscisic acid (ABA) sensitivity in plant tissues. By RNA-seq analysis, we found 204 genes whose expression decreased by drought in WT plants and expressed independently of the water condition in BBX21-OE lines as SAP12, MYB73, EGYP1, TIP2-1 and DREB2A, and expressions were confirmed by quantitative polymerase chain reaction. These results suggest that BBX21 interplays with the ABA and growth signaling networks, improving the photosynthetic behavior in suboptimal water conditions with an increase in potato tuber yield.
Collapse
Affiliation(s)
- Gabriel Gómez-Ocampo
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Edmundo L Ploschuk
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Anita Mantese
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Carlos D Crocco
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Javier F Botto
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
33
|
Hafeez MN, Khan MA, Sarwar B, Hassan S, Ali Q, Husnain T, Rashid B. Mutant Gossypium universal stress protein-2 (GUSP-2) gene confers resistance to various abiotic stresses in E. coli BL-21 and CIM-496-Gossypium hirsutum. Sci Rep 2021; 11:20466. [PMID: 34650178 PMCID: PMC8516947 DOI: 10.1038/s41598-021-99900-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Gossypium arboreum is considered a rich source of stress-responsive genes and the EST database revealed that most of its genes are uncharacterized. The full-length Gossypium universal stress protein-2 (GUSP-2) gene (510 bp) was cloned in E. coli and Gossypium hirsutum, characterized and point mutated at three positions, 352–354, Lysine to proline (M1-usp-2) & 214–216, aspartic acid to serine (M2-usp-2) & 145–147, Lysine to Threonine (M3-usp-2) to study its role in abiotic stress tolerance. It was found that heterologous expression of one mutant (M1-usp-2) provided enhanced tolerance against salt and osmotic stresses, recombinant cells have higher growth up to 10-5dilution in spot assay as compared to cells expressing W-usp-2 (wild type GUSP-2), M2-usp-2 and M3-usp-2 genes. M1-usp-2 gene transcript profiling exhibited significant expression (8.7 fold) in CIM-496-Gossypium hirsutum transgenic plants and enhance drought tolerance. However, little tolerance against heat and cold stresses in bacterial cells was observed. The results from our study concluded that the activity of GUSP-2 was enhanced in M1-usp-2 but wipe out in M2-usp-2 and M3-usp-2 response remained almost parallel to W-usp-2. Further, it was predicted through in silico analysis that M1-usp-2, W-usp-2 and M3-usp-2 may be directly involved in stress tolerance or function as a signaling molecule to activate the stress adaptive mechanism. However, further investigation will be required to ascertain its role in the adaptive mechanism of stress tolerance.
Collapse
Affiliation(s)
- Muhammad Nadeem Hafeez
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan. .,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland. .,School of PhD Program in Cellular and Molecular Biotechnology, University of Teramo, Teramo, Italy. .,Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Chieti, Italy.
| | - Mohsin Ahmad Khan
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Bilal Sarwar
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Sameera Hassan
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Qurban Ali
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan. .,Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan.
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Bushra Rashid
- Centre of Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| |
Collapse
|
34
|
Kazerooni EA, Al-Sadi AM, Kim ID, Imran M, Lee IJ. Ampelopsin Confers Endurance and Rehabilitation Mechanisms in Glycine max cv. Sowonkong under Multiple Abiotic Stresses. Int J Mol Sci 2021; 22:10943. [PMID: 34681604 PMCID: PMC8536110 DOI: 10.3390/ijms222010943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
The present investigation aims to perceive the effect of exogenous ampelopsin treatment on salinity and heavy metal damaged soybean seedlings (Glycine max L.) in terms of physiochemical and molecular responses. Screening of numerous ampelopsin concentrations (0, 0.1, 1, 5, 10 and 25 μM) on soybean seedling growth indicated that the 1 μM concentration displayed an increase in agronomic traits. The study also determined how ampelopsin application could recover salinity and heavy metal damaged plants. Soybean seedlings were irrigated with water, 1.5% NaCl or 3 mM chosen heavy metals for 12 days. Our results showed that the application of ampelopsin raised survival of the 45-day old salinity and heavy metal stressed soybean plants. The ampelopsin treated plants sustained high chlorophyll, protein, amino acid, fatty acid, salicylic acid, sugar, antioxidant activities and proline contents, and displayed low hydrogen peroxide, lipid metabolism, and abscisic acid contents under unfavorable status. A gene expression survey revealed that ampelopsin application led to the improved expression of GmNAC109, GmFDL19, GmFAD3, GmAPX, GmWRKY12, GmWRKY142, and GmSAP16 genes, and reduced the expression of the GmERF75 gene. This study suggests irrigation with ampelopsin can alleviate plant damage and improve plant yield under stress conditions, especially those including salinity and heavy metals.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (E.A.K.); (I.-D.K.); (M.I.)
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman;
| | - Il-Doo Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (E.A.K.); (I.-D.K.); (M.I.)
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (E.A.K.); (I.-D.K.); (M.I.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (E.A.K.); (I.-D.K.); (M.I.)
| |
Collapse
|
35
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Giri J, Parida SK, Raghuvanshi S, Tyagi AK. Emerging Molecular Strategies for Improving Rice Drought Tolerance. Curr Genomics 2021; 22:16-25. [PMID: 34045921 PMCID: PMC8142347 DOI: 10.2174/1389202921999201231205024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Rice occupies a pre-eminent position as a food crop in the world. Its production, how- ever, entails up to 3000 liters of water per kilogram of grain produced. Such high demand makes rice prone to drought easily. Sustainable rice cultivation with limited water resources requires the deployment of a suitable strategy for better water use efficiency and improved drought tolerance. Several drought-related genes have been evaluated in rice for their mode of action in conferring drought tolerance. Manipulation of components of abscisic acid signal transduction, stomatal density, deposition of cuticular wax, and protein modification pathways are emerging as priority targets. Gene reprogramming by microRNAs is also being explored to achieve drought tolerance. Genetically dissected Quantitative Trait Loci (QTLs) and their constituent genes are being deployed to develop drought-tolerant rice varieties. Progressive research and challenges include a better understanding of crucial components of drought response and search for new targets and the deployment of improved varieties in the field.
Collapse
Affiliation(s)
- Jitender Giri
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Swarup K Parida
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Saurabh Raghuvanshi
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Akhilesh K Tyagi
- 1National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; 2Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
37
|
Wang Z, Kuang J, Han B, Chen S, Liu A. Genomic characterization and expression profiles of stress-associated proteins (SAPs) in castor bean ( Ricinus communis). PLANT DIVERSITY 2021; 43:152-162. [PMID: 33997548 PMCID: PMC8103421 DOI: 10.1016/j.pld.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Stress-associated proteins (SAPs) are known as response factors to multiple abiotic and biotic stresses in plants. However, the potential physiological and molecular functions of SAPs remain largely unclear. Castor bean (Ricinus communis L.) is one of the most economically valuable non-edible woody oilseed crops, able to be widely cultivated in marginal lands worldwide because of its broad adaptive capacity to soil and climate conditions. Whether SAPs in castor bean plays a key role in adapting diverse soil conditions and stresses remains unknown. In this study, we used the castor bean genome to identify and characterize nine castor bean SAP genes (RcSAP). Structural analysis showed that castor bean SAP gene structures and functional domain types vary greatly, differing in intron number, protein sequence, and functional domain type. Notably, the AN1-C2H2-C2H2 zinc finger domain within RcSAP9 has not been often observed in other plant families. High throughput RNA-seq data showed that castor bean SAP gene profiles varied among different tissues. In addition, castor bean SAP gene expression varied in response to different stresses, including salt, drought, heat, cold and ABA and MeJA, suggesting that the transcriptional regulation of castor bean SAP genes might operate independently of each other, and at least partially independent from ABA and MeJA signal pathways. Cis-element analyses for each castor bean SAP gene showed that no common cis-elements are shared across the nine castor bean SAP genes. Castor bean SAPs were localized to different regions of cells, including the cytoplasm, nucleus, and cytomembrane. This study provides a comprehensive profile of castor bean SAP genes that advances our understanding of their potential physiological and molecular functions in regulating growth and development and their responses to different abiotic stresses.
Collapse
Affiliation(s)
- Zaiqing Wang
- College of Life Sciences, Yunnan University, Kunming, 650091, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingge Kuang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Bing Han
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Suiyun Chen
- College of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
38
|
Li W, Wang Y, Li R, Chang X, Yuan X, Jing R. Cloning and Characterization of TaSAP7-A, a Member of the Stress-Associated Protein Family in Common Wheat. FRONTIERS IN PLANT SCIENCE 2021; 12:609351. [PMID: 33828570 PMCID: PMC8020846 DOI: 10.3389/fpls.2021.609351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Stress association proteins (SAPs) are A20/AN1 zinc-finger domain proteins, which play important roles in plant adaptation to abiotic stress and plant development. The functions of SAPs in some plants were reported, but little is known about it in wheat (Triticum aestivum L.). In this study, we characterized a novel 2AN1-type stress association protein gene TaSAP7-A, which was mapped to chromosome 5A in wheat. Subcellular localization indicated that TaSAP7-A was distributed in the nucleus and cytoplasm. Unlike previously known A20/AN1-type SAP genes, TaSAP7-A was negatively regulated to abiotic stress tolerance. Overexpressing TaSAP7-A Arabidopsis lines were hypersensitive to ABA, osmotic and salt stress at germination stage and post-germination stage. Overexpression of TaSAP7-A Arabidopsis plants accelerated the detached leaves' chlorophyll degradation. Association analysis of TaSAP7-A haplotypes and agronomic traits showed that Hap-5A-2 was significantly associated with higher chlorophyll content at jointing stage and grain-filling stage. These results jointly revealed that TaSAP7-A is related to the chlorophyll content in the leaves of Arabidopsis and wheat. Both in vivo and in vitro experiments demonstrated that TaSAP7-A interacted with TaS10B, which was the component of regulatory subunit in 26S proteasome. In general, TaSAP7-A was a regulator of chlorophyll content, and favorable haplotypes should be helpful for improving plant chlorophyll content and grain yield of wheat.
Collapse
Affiliation(s)
- Wenlu Li
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Yixue Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Jinzhong, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Baidyussen A, Aldammas M, Kurishbayev A, Myrzabaeva M, Zhubatkanov A, Sereda G, Porkhun R, Sereda S, Jatayev S, Langridge P, Schramm C, Jenkins CLD, Soole KL, Shavrukov Y. Identification, gene expression and genetic polymorphism of zinc finger A20/AN1 stress-associated genes, HvSAP, in salt stressed barley from Kazakhstan. BMC PLANT BIOLOGY 2020; 20:156. [PMID: 33050881 PMCID: PMC7556924 DOI: 10.1186/s12870-020-02332-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/06/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND A family of genes designated as the Zinc finger A20/AN1 Transcription factors encoding stress-associated proteins (SAP) are well described in Arabidopsis and rice, and include 14 AtSAP and 18 OsSAP genes that are associated with variable tolerances to multiple abiotic stresses. The SAP gene family displays a great diversity in its structure and across different plant species. The aim of this study was to identify all HvSAP genes in barley (Hordeum vulgare L.), to analyse the expression of selected genes in response to salinity in barley leaves and develop SNP marker for HvSAP12 to evaluate the association between genotypes of barley plants and their grain yield in field trials. RESULTS In our study, 17 HvSAP genes were identified in barley, which were strongly homologous to rice genes. Five genes, HvSAP5, HvSAP6, HvSAP11, HvSAP12 and HvSAP15, were found to be highly expressed in leaves of barley plants in response to salt stress in hydroponics compared to controls, using both semi-quantitative RT-PCR and qPCR analyses. The Amplifluor-like SNP marker KATU-B30 was developed and used for HvSAP12 genotyping. A strong association (R2 = 0.85) was found between KATU-B30 and grain yield production per plant of 50 F3 breeding lines originating from the cross Granal × Baisheshek in field trials with drought and low to moderate salinity in Northern and Central Kazakhstan. CONCLUSIONS A group of HvSAP genes, and HvSAP12 in particular, play an important role in the tolerance of barley plants to salinity and drought, and is associated with higher grain yield in field trials. Marker-assisted selection with SNP marker KATU-B30 can be applied in barley breeding to improve grain yield production under conditions of abiotic stress.
Collapse
Affiliation(s)
- Akmaral Baidyussen
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Maryam Aldammas
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Malika Myrzabaeva
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Askar Zhubatkanov
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Grigory Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda, Kazakhstan
| | - Raisa Porkhun
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda, Kazakhstan
| | - Sergey Sereda
- A.F. Khristenko Karaganda Agricultural Experimental Station, Karaganda, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan.
| | | | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L D Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
40
|
Ben Saad R, Ben Romdhane W, Zouari N, Ben Hsouna A, Harbaoui M, Brini F, Ghneim-Herrera T. Characterization of a novel LmSAP gene promoter from Lobularia maritima: Tissue specificity and environmental stress responsiveness. PLoS One 2020; 15:e0236943. [PMID: 32735612 PMCID: PMC7394455 DOI: 10.1371/journal.pone.0236943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 12/03/2022] Open
Abstract
Halophyte Lobularia maritima LmSAP encodes an A20AN1 zinc-finger stress-associated protein which expression is up-regulated by abiotic stresses and heavy metals in transgenic tobacco. To deepen our understanding of LmSAP function, we isolated a 1,147 bp genomic fragment upstream of LmSAP coding sequence designated as PrLmSAP. In silico analyses of PrLmSAP revealed the presence of consensus CAAT and TATA boxes and cis-regulatory elements required for abiotic stress, phytohormones, pathogen, and wound responses, and also for tissue-specific expression. The PrLmSAP sequence was fused to the β-glucuronidase (gusA) reporter gene and transferred to rice. Histochemical GUS staining showed a pattern of tissue-specific expression in transgenic rice, with staining observed in roots, coleoptiles, leaves, stems and floral organs but not in seeds or in the root elongation zone. Wounding strongly stimulated GUS accumulation in leaves and stems. Interestingly, we observed a high stimulation of the promoter activity when rice seedlings were exposed to NaCl, PEG, ABA, MeJA, GA, cold, and heavy metals (Al3+, Cd2+, Cu2+ and Zn2+). These results suggest that the LmSAP promoter can be a convenient tool for stress-inducible gene expression and is a potential candidate for crop genetic engineering.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | |
Collapse
|
41
|
Ben Saad R, Ben Romdhane W, Mihoubi W, Ben Hsouna A, Brini F. A Lobularia maritima LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions. PLoS One 2020; 15:e0233420. [PMID: 32428039 PMCID: PMC7237032 DOI: 10.1371/journal.pone.0233420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023] Open
Abstract
Stress-associated proteins (SAPs) are favorable targets to improve stress tolerance in plants, owing to their roles in developmental processes and stress responses. However, the role of SAPs and the molecular mechanisms by which they regulate plant stress responses remain poorly understood. Previously, it was reported that LmSAP expression was upregulated by various abiotic stressors in Lobularia maritima, and that transgenic tobacco lines with constitutively expressed LmSAPΔA20 and LmSAPΔA20-ΔAN1 showed dwarf phenotypes due to the deficiency of cell elongation under salt and osmotic stresses. In this study, we examined the function of A20 domain in the GA pathway in response to abiotic stresses. Transient expression of acGFP-LmSAPΔA20 and acGFP-LmSAPΔA20-ΔAN1 in onion epidermal cells demonstrated that these fused proteins were localized in the nucleo–cytoplasm. However, the truncated form acGFP-LmSAPΔAN1 was localized in the nucleus. Moreover, comparison of native and truncated LmSAP showed dramatic structural changes caused by the deletion of the A20 domain, leading to loss of function and localization. Interestingly, overexpression LmSAP and truncated LmSAPΔAN1 led to up-regulation of GA biosynthetic genes and increased total gibberellins (GAs) content, corresponding with accelerated development in transgenic tobacco plants. Moreover, the dwarf phenotype of the transgenic lines that express LmSAPΔA20 and LmSAPΔA20-ΔAN1 under stress conditions was fully restored by the application of exogenous GA3. These findings improve our understanding of the role of LmSAP in regulating GA homeostasis, which is important for regulating plant development under abiotic stress conditions.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- * E-mail:
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wafa Mihoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
42
|
Lai W, Zhou Y, Pan R, Liao L, He J, Liu H, Yang Y, Liu S. Identification and Expression Analysis of Stress-Associated Proteins (SAPs) Containing A20/AN1 Zinc Finger in Cucumber. PLANTS (BASEL, SWITZERLAND) 2020; 9:E400. [PMID: 32213813 PMCID: PMC7154871 DOI: 10.3390/plants9030400] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/01/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Stress-associated proteins (SAPs) are a class of zinc finger proteins that confer tolerance to a variety of abiotic and biotic stresses in diverse plant species. However, in cucumber (Cucumis sativus L.), very little is known about the roles of SAP gene family members in regulating plant growth, development, and stress responses. In this study, a total of 12 SAP genes (named as CsSAP1-CsSAP12) were identified in the cucumber genome, which were unevenly distributed on six chromosomes. Gene duplication analysis detected one tandem duplication and two segmental duplication events. Phylogenetic analysis of SAP proteins from cucumber and other plants suggested that they could be divided into seven groups (sub-families), and proteins in the same group generally had the same arrangement of AN1 (ZnF-AN1) and A20 (ZnF-A20) domains. Most of the CsSAP genes were intronless and harbored a number of stress- and hormone-responsive cis-elements in their promoter regions. Tissue expression analysis showed that the CsSAP genes had a broad spectrum of expression in different tissues, and some of them displayed remarkable alteration in expression during fruit development. RT-qPCR results indicated that all the selected CsSAP genes displayed transcriptional responses to cold, drought, and salt stresses. These results enable the first comprehensive description of the SAP gene family in cucumber and lay a solid foundation for future research on the biological functions of CsSAP genes.
Collapse
Affiliation(s)
- Wei Lai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rao Pan
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liting Liao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Juncheng He
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haoju Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingui Yang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiqiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
43
|
Cocozza C, Brilli F, Miozzi L, Pignattelli S, Rotunno S, Brunetti C, Giordano C, Pollastri S, Centritto M, Accotto GP, Tognetti R, Loreto F. Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110260. [PMID: 31623790 DOI: 10.1016/j.plantsci.2019.110260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The potential of Arundo donax to grow in degraded soils, characterized by excess of salinity (Na+), and phosphorus deficiency (-P) or excess (+P) also coupled with salinity (+NaP), was investigated by combining in vivo plant phenotyping, quantification of metabolites and ultrastructural imaging of leaves with a transcriptome-wide screening. Photosynthesis and growth were impaired by + Na, -P and + NaP. While + Na caused stomatal closure, enhanced biosynthesis of carotenoids, sucrose and isoprene and impaired anatomy of cell walls, +P negatively affected starch production and isoprene emission, and damaged chloroplasts. Finally, +NaP largely inhibited photosynthesis due to stomatal limitations, increased sugar content, induced/repressed a number of genes 10 time higher with respect to + P and + Na, and caused appearance of numerous and large plastoglobules and starch granules in chloroplasts. Our results show that A. donax is sensitive to unbalances of soil ion content, despite activation of defensive mechanisms that enhance plant resilience, growth and biomass production of A. donax under these conditions.
Collapse
Affiliation(s)
- Claudia Cocozza
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; Department of Agriculture, Food, Environment and Forestry, Via San Bonaventura 13, 50145 Florence, Italy.
| | - Federico Brilli
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Laura Miozzi
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy
| | - Sara Pignattelli
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Silvia Rotunno
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy; Department of Biosciences and Territory, University of Molise, contrada Fonte Lappone, 86090 Pesche, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for BioEconomy (IBE), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Cristiana Giordano
- National Research Council of Italy, Institute for BioEconomy (IBE), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Susanna Pollastri
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Gian Paolo Accotto
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy
| | - Roberto Tognetti
- Department of Agriculture, Environment and Food Sciences, University of Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy; The EFI Project Centre on Mountain Forests (MOUNTFOR), Edmund Mach Foundation, 38010 San Michele all'Adige, Italy
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology, Agriculture, and Food Sciences, Piazzale Aldo Moro 7, Roma, Italy; Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
44
|
Mustafin ZS, Zamyatin VI, Konstantinov DK, Doroshkov AV, Lashin SA, Afonnikov DA. Phylostratigraphic Analysis Shows the Earliest Origination of the Abiotic Stress Associated Genes in A. thaliana. Genes (Basel) 2019; 10:genes10120963. [PMID: 31766757 PMCID: PMC6947294 DOI: 10.3390/genes10120963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
Plants constantly fight with stressful factors as high or low temperature, drought, soil salinity and flooding. Plants have evolved a set of stress response mechanisms, which involve physiological and biochemical changes that result in adaptive or morphological changes. At a molecular level, stress response in plants is performed by genetic networks, which also undergo changes in the process of evolution. The study of the network structure and evolution may highlight mechanisms of plants adaptation to adverse conditions, as well as their response to stresses and help in discovery and functional characterization of the stress-related genes. We performed an analysis of Arabidopsis thaliana genes associated with several types of abiotic stresses (heat, cold, water-related, light, osmotic, salt, and oxidative) at the network level using a phylostratigraphic approach. Our results show that a substantial fraction of genes associated with various types of abiotic stress is of ancient origin and evolves under strong purifying selection. The interaction networks of genes associated with stress response have a modular structure with a regulatory component being one of the largest for five of seven stress types. We demonstrated a positive relationship between the number of interactions of gene in the stress gene network and its age. Moreover, genes of the same age tend to be connected in stress gene networks. We also demonstrated that old stress-related genes usually participate in the response for various types of stress and are involved in numerous biological processes unrelated to stress. Our results demonstrate that the stress response genes represent the ancient and one of the fundamental molecular systems in plants.
Collapse
Affiliation(s)
- Zakhar S. Mustafin
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir I. Zamyatin
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
| | - Dmitrii K. Konstantinov
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
| | - Aleksej V. Doroshkov
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
| | - Sergey A. Lashin
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
- Correspondence: (S.A.L.); (D.A.A.); Tel.: +7-383-363-49-63 (D.A.A.)
| | - Dmitry A. Afonnikov
- The Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences (IC & G SB RAS), 630090 Novosibirsk, Russia; (Z.S.M.); (V.I.Z.); (D.K.K.); (A.V.D.)
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University (NSU), 630090 Novosibirsk, Russia
- Correspondence: (S.A.L.); (D.A.A.); Tel.: +7-383-363-49-63 (D.A.A.)
| |
Collapse
|
45
|
Liu M, He X, Feng T, Zhuo R, Qiu W, Han X, Qiao G, Zhang D. cDNA Library for Mining Functional Genes in Sedum alfredii Hance Related to Cadmium Tolerance and Characterization of the Roles of a Novel SaCTP2 Gene in Enhancing Cadmium Hyperaccumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10926-10940. [PMID: 31449747 DOI: 10.1021/acs.est.9b03237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination presents serious threats to living organisms. Functional genes related to cadmium (Cd) hypertolerance or hyperaccumulation must be explored to enhance phytoremediation. Sedum alfredii Hance is a Zn/Cd cohyperaccumulator exhibiting abundant genes associated with Cd hypertolerance. Here, we developed a method for screening genes related to Cd tolerance by expressing a cDNA-library for S. alfredii Hance. Yeast functional complementation validated 42 of 48 full-length genes involved in Cd tolerance, and the majority of them were strongly induced in roots and exhibited diverse expression profiles across tissues. Coexpression network analysis suggested that 15 hub genes were connected with genes involved in metabolic processes, response to stimuli, and metal transporter and antioxidant activity. The functions of a novel SaCTP2 gene were validated by heterologous expression in Arabidopsis, responsible for retarding chlorophyll content decrease, maintaining membrane integrity, promoting reactive oxygen species (ROS) scavenger activities, and reducing ROS levels. Our findings suggest a highly complex network of genes related to Cd hypertolerance in S. alfredii Hance, accomplished via the antioxidant system, defense genes induction, and the calcium signaling pathway. The proposed cDNA-library method is an effective approach for mining candidate genes associated with Cd hypertolerance to develop genetically engineered plants for use in phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
- School of Basic Medical Sciences , Zhejiang Chinese Medical University , Hangzhou 310053 , People's Republic of China
| | - Xuelian He
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Tongyu Feng
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
46
|
Ben Saad R, Safi H, Ben Hsouna A, Brini F, Ben Romdhane W. Functional domain analysis of LmSAP protein reveals the crucial role of the zinc-finger A20 domain in abiotic stress tolerance. PROTOPLASMA 2019; 256:1333-1344. [PMID: 31062172 DOI: 10.1007/s00709-019-01390-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 05/13/2023]
Abstract
Stress-associated proteins (SAPs), such as A20/AN1 zinc-finger domain-containing proteins, have emerged as a novel class of proteins involved in abiotic stress signaling, and they are important candidates for preventing the loss of yield caused by exposure to environmental stresses. In a previous report, it was found that the ectopic-expression of Lobularia maritima stress-associated protein, LmSAP, conferred tolerance to abiotic and heavy metal stresses in transgenic tobacco plants. This study aimed to investigate the functions of the A20 and AN1 domains of LmSAP in salt and osmotic stress tolerance. To this end, in addition to the full-length LmSAP gene, we have generated three LmSAP-truncated forms (LmSAPΔA20, LmSAPΔAN1, and LmSAPΔA20-ΔAN1). Heterologous expression in Saccharomyces cerevisiae of different truncated forms of LmSAP revealed that the A20 domain is essential to increase cell tolerance to salt, ionic, and osmotic stresses. Transgenic tobacco plants overexpressing LmSAP and LmSAPΔAN1 constructs exhibited higher tolerance to salt and osmotic stresses in comparison to the non-transgenic plants (NT) and lines transformed with LmSAPΔA20 and LmSAPΔA20-ΔAN1 constructs. Similarly, transgenic plants overexpressing the full-length LmSAP gene and LmSAPΔAN1 truncated domain maintained higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) enzymatic activities due to the high expression levels of the genes encoding these key antioxidant enzymes, MnSOD, POD, and CAT1, as well as accumulated lower levels of malondialdehyde (MDA) under salt and osmotic stresses compared to NT and LmSAPΔA20 and LmSAPΔA20-ΔAN1 forms. These findings provide insights into the pivotal role of A20 and AN1 domains of LmSAP protein in salt and osmotic stress tolerance.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Hela Safi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
47
|
Transcriptome analysis and codominant markers development in caper, a drought tolerant orphan crop with medicinal value. Sci Rep 2019; 9:10411. [PMID: 31320697 PMCID: PMC6639398 DOI: 10.1038/s41598-019-46613-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023] Open
Abstract
Caper (Capparis spinosa L.) is a xerophytic shrub cultivated for its flower buds and fruits, used as food and for their medicinal properties. Breeding programs and even proper taxonomic classification of the genus Capparis has been hampered so far by the lack of reliable genetic information and molecular markers. Here, we present the first genomic resource for C. spinosa, generated by transcriptomic approach and de novo assembly. The sequencing effort produced nearly 80 million clean reads assembled into 124,723 unitranscripts. Careful annotation and comparison with public databases revealed homologs to genes with a key role in important metabolic pathways linked to abiotic stress tolerance and bio-compounds production, such purine, thiamine and phenylpropanoid biosynthesis, α-linolenic acid and lipid metabolism. Additionally, a panel of genes involved in stomatal development/distribution and encoding for Stress Associated Proteins (SAPs) was also identified. We also used the transcriptomic data to uncover novel molecular markers for caper. Out of 50 SSRs tested, 14 proved polymorphic and represent the first set of SSR markers for the genus Capparis. This transcriptome will be an important contribution to future studies and breeding programs for this orphan crop, aiding to the development of improved varieties to sustain agriculture in arid conditions.
Collapse
|
48
|
Stress associated protein from Lobularia maritima: Heterologous expression, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in beef meat. Int J Biol Macromol 2019; 132:888-896. [DOI: 10.1016/j.ijbiomac.2019.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022]
|
49
|
Liu S, Wang J, Jiang S, Wang H, Gao Y, Zhang H, Li D, Song F. Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. MOLECULAR PLANT PATHOLOGY 2019; 20:815-830. [PMID: 30907488 PMCID: PMC6637894 DOI: 10.1111/mpp.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tomato stress-associated proteins (SAPs) belong to A20/AN1 zinc finger protein family, some of which have been shown to play important roles in plant stress responses. However, little is known about the functions and underlying molecular mechanisms of SAPs in plant immune responses. In the present study, we reported the function of tomato SlSAP3 in immunity to Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlSAP3 attenuated while overexpression of SlSAP3 in transgenic tomato increased immunity to Pst DC3000, accompanied with reduced and increased Pst DC3000-induced expression of SA signalling and defence genes, respectively. Flg22-induced reactive oxygen species (ROS) burst and expression of PAMP-triggered immunity (PTI) marker genes SlPTI5 and SlLRR22 were strengthened in SlSAP3-OE plants but were weakened in SlSAP3-silenced plants. SlSAP3 interacted with two SlBOBs and the A20 domain in SlSAP3 is critical for the SlSAP3-SlBOB1 interaction. Silencing of SlBOB1 and co-silencing of all three SlBOB genes conferred increased resistance to Pst DC3000, accompanied with increased Pst DC3000-induced expression of SA signalling and defence genes. These data demonstrate that SlSAP3 acts as a positive regulator of immunity against Pst DC3000 in tomato through the SA signalling and that SlSAP3 may exert its function in immunity by interacting with other proteins such as SlBOBs, which act as negative regulators of immunity against Pst DC3000 in tomato.
Collapse
Affiliation(s)
- Shixia Liu
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Jiali Wang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Siyu Jiang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
- College of Life ScienceTaizhou UniversityTaizhouZhejiang318000China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
50
|
Priya M, Dhanker OP, Siddique KHM, HanumanthaRao B, Nair RM, Pandey S, Singh S, Varshney RK, Prasad PVV, Nayyar H. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1607-1638. [PMID: 30941464 DOI: 10.1007/s00122-019-03331-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
We describe here the recent developments about the involvement of diverse stress-related proteins in sensing, signaling, and defending the cells in plants in response to drought or/and heat stress. In the current era of global climate drift, plant growth and productivity are often limited by various environmental stresses, especially drought and heat. Adaptation to abiotic stress is a multigenic process involving maintenance of homeostasis for proper survival under adverse environment. It has been widely observed that a series of proteins respond to heat and drought conditions at both transcriptional and translational levels. The proteins are involved in various signaling events, act as key transcriptional activators and saviors of plants under extreme environments. A detailed insight about the functional aspects of diverse stress-responsive proteins may assist in unraveling various stress resilience mechanisms in plants. Furthermore, by identifying the metabolic proteins associated with drought and heat tolerance, tolerant varieties can be produced through transgenic/recombinant technologies. A large number of regulatory and functional stress-associated proteins are reported to participate in response to heat and drought stresses, such as protein kinases, phosphatases, transcription factors, and late embryogenesis abundant proteins, dehydrins, osmotins, and heat shock proteins, which may be similar or unique to stress treatments. Few studies have revealed that cellular response to combined drought and heat stresses is distinctive, compared to their individual treatments. In this review, we would mainly focus on the new developments about various stress sensors and receptors, transcription factors, chaperones, and stress-associated proteins involved in drought or/and heat stresses, and their possible role in augmenting stress tolerance in crops.
Collapse
Affiliation(s)
- Manu Priya
- Department of Botany, Panjab University, Chandigarh, India
| | - Om P Dhanker
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | | | | | - Sarita Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Sadhana Singh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|