1
|
Inagaki S, Yuasa T, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Koizumi N, Okumura N. TCF4 expansion-associated loss of FN1 intron retention drives extracellular matrix accumulation in Fuchs endothelial corneal dystrophy. Exp Eye Res 2025; 255:110398. [PMID: 40268158 DOI: 10.1016/j.exer.2025.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Fuchs endothelial corneal dystrophy (FECD), which is characterized by excessive extracellular matrix (ECM) accumulation and corneal endothelial cell degeneration, has trinucleotide repeat expansion in TCF4 as a major genetic risk factor. While aberrant splicing has been implicated in FECD pathogenesis, the mechanistic link between splicing abnormalities and disease-specific features remains unclear. Here, we investigated the intron retention (IR) patterns in corneal endothelial cells from FECD patients with TCF4 expansion. Initial RNA-Seq analysis using rMATS identified 486 upregulated and 89 downregulated IR events in expansion-positive FECD compared to controls. Subsequent analysis with the more stringent IRFinder algorithm revealed 10 upregulated IR events distributed across nine genes and, notably, 6 downregulated events exclusively localized within FN1, a major component of corneal guttae. While DEXSeq analysis showed reduced expression across FN1 gene regions in FECD samples, subsequent qPCR validation in an independent cohort demonstrated significantly elevated FN1 expression in both expansion-positive and expansion-negative FECD samples compared to controls. This paradoxical finding suggests that the loss of normal IR-mediated regulation may contribute to pathological FN1 overexpression in FECD. Gene ontology analysis of IR-associated genes revealed enrichment in RNA splicing and ECM-related pathways, supporting a role for IR in disease pathogenesis. Our findings reveal an association between TCF4 expansion and reduced FN1 intron retention, which correlates with ECM accumulation, suggesting a potential link between RNA processing alterations and hallmark features of FECD. These results suggest that targeting IR-mediated regulation could represent a therapeutic strategy for preventing disease progression.
Collapse
Affiliation(s)
- Soichiro Inagaki
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan.
| |
Collapse
|
2
|
Tang X, Xia X, Liu Y, Hong X, Huang Y, Li G, Liang Y, Wang X, Pang H, Yang Y. Alternative splicing fine-tunes prey shift of Coccinellini lady beetles to non-target insect. BMC Genomics 2025; 26:472. [PMID: 40355858 PMCID: PMC12067713 DOI: 10.1186/s12864-025-11641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Coccinellini lady beetles have been applied as biological control agent of aphids, however, not all of these species are obligately aphidophagous. Thus, a comprehensive understanding of the molecular mechanisms behind predaceous specificity of Coccinellini lady beetles can provide important clues for evaluating their performance and ecological risk assessment in biological control. Post-transcriptional regulations act a key role in shaping organisms' rapid adaptation to changing environment, yet, little is known about their role in the acclimation of Coccinellini lady beetles to non-target preys. RESULTS In this study, we conducted a genome-wide investigation to alternative splicing (AS) dynamics in three Coccinellini species Propylea japonica, Coccinella septempunctata and Harmonia axyridis in response to feeding shift from natural prey bean aphids (Megoura japonica) to non-target insect citrus mealybugs (Planococcus citri). Compared to aphid-feeding, all three lady beetles were subject to substantial splicing changes when preying on mealybugs. Most of these differentially spliced genes (DSGs) were not differentially expressed, and regulated different pathways from differentially expressed genes, indicating the functionally nonredundant role of AS. The DSGs were primarily associated with energy derivation, organ formation and development, chemosensation and immune responses, which may promote tolerance of lady beetles to nutrient deprivation and pathogen challenges induced by prey shift. The lady beetles feeding on mealybugs moreover downregulated the generation of splicing products containing premature termination codons (PTCs) for the genes involved in energy derivation and stimulus responses, to fine-tune their protein expression and rationalize energy allocation. CONCLUSION These findings unraveled the functional significance of AS reprogramming in modulating acclimation of Coccinellini lady beetles to prey shift from aphids to non-target insects and provided new genetic clues for evaluating their ecological safety as biological control agents.
Collapse
Affiliation(s)
- Xuefei Tang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xinhui Xia
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuqi Liu
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiyao Hong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yuhao Huang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guannan Li
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuansen Liang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xueqing Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hong Pang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Yuchen Yang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
3
|
Tan K, Sebat J, Wilkinson M. Cell type- and factor-specific nonsense-mediated RNA decay. Nucleic Acids Res 2025; 53:gkaf395. [PMID: 40366162 PMCID: PMC12076418 DOI: 10.1093/nar/gkaf395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that influences several biological processes. Specific features in messenger RNAs (mRNAs) have been found to trigger decay by NMD, leading to the assumption that NMD sensitivity is an intrinsic quality of a given transcript. Here, we provide evidence that, instead, an overriding factor dictating NMD sensitivity is the cell environment. Using several genome-wide techniques to detect NMD-target mRNAs, we find that hundreds of mRNAs are sensitized to NMD as human embryonic stem cells progress to form neural progenitor cells. Another class of mRNAs escape from NMD during this developmental progression. We show that the differential sensitivity to NMD extends to in vivo scenarios, and that the RNA-binding protein, HNRNPL, has a role in cell type-specific NMD. We also addressed another issue in the field-whether NMD factors are core or branch-specific in their action. Surprisingly, we found that UPF3B, an NMD factor critical for the nervous system, shares only 30% of NMD-target transcripts with the core NMD factor UPF2. Together, our findings have implications for how NMD is defined and measured, how NMD acts in different biological contexts, and how different NMD branches influence human diseases.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Jonathan Sebat
- Department of Psychiatry, Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
4
|
Roy P, Gujarati S, Gupta P, Gupta I, Mahapatra T, Gupta D, Kochar SK, Kochar DK, Das A. A tale of two parasites: a glimpse into the RNA methylome of patient-derived Plasmodium falciparum and Plasmodium vivax isolates. Malar J 2025; 24:139. [PMID: 40316999 PMCID: PMC12046715 DOI: 10.1186/s12936-025-05376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Understanding the molecular mechanisms of the malarial parasites in hosts is crucial for developing effective treatments. Epitranscriptomic research on pathogens has unveiled the significance of RNA methylation in gene regulation and pathogenesis. This is the first report investigating methylation signatures and alternative splicing events using Nanopore Direct RNA Sequencing to single-base resolution in Plasmodium falciparum and Plasmodium vivax clinical isolates with hepatic dysfunction complications. METHODS Direct RNA Sequencing using Nanopore from clinical isolates of P. falciparum and P. vivax showing hepatic dysfunction manifestation was performed. Subsequently, transcriptome reconstruction using FLAIR and transcript classification using SQANTI3, followed by methylation detection using CHEUI and m6Anet to identify N6-methyladenosine (m6A) and 5-methylcytosine (m5C) methylation signatures, was done. The alternative splicing events from both the datasets were documented. RESULTS The reference genome of Plasmodium reports > 5000 genes out of which ~ 50% was identified as expressed in the two sequenced isolates, including novel isoforms and intergenic transcripts, highlighting extensive transcriptome diversity. The distinct RNA methylation profiles of m6A and m5C from the expressed transcripts were observed in sense, Natural Antisense Transcripts (NATs) and intergenic categories hinting at species-specific regulatory mechanisms. Dual modification events were observed in a significant number of transcripts in both the parasites. Modified transcripts originating from apicoplast and mitochondrial genomes have also been detected. These modifications are unevenly present in the annotated regions of the mRNA, potentially influencing mRNA export and translation. Several splicing events were observed, with alternative 3' and 5' end splicing predominating in the datasets suggesting differences in translational kinetics and possible protein characteristics in these disease conditions. CONCLUSION The data shows the presence of modified sense, NATs and alternatively spliced transcripts. These phenomena together suggest the presence of multiple regulatory layers which decides the post-translational proteome of the parasites in particular disease conditions. Studies like these will help to decipher the post-translational environments of malaria parasites in vivo and elucidate their inherent proteome plasticity, thus allowing the conceptualization of novel strategies for interventions.
Collapse
Affiliation(s)
- Priyanka Roy
- Molecular Parasitology and Systems Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Sukriti Gujarati
- Molecular Parasitology and Systems Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Pallavi Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT), New Delhi, India
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), St Lucia, Brisbane, QLD, Australia
- University of Queensland - IIT Delhi Research Academy, New Delhi, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT), New Delhi, India
| | - Tanmaya Mahapatra
- Department of Computer Science & Information Systems, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | | | - Ashis Das
- Molecular Parasitology and Systems Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
5
|
Cao L, Jia K, Van Tine BA, Yu Y, Peng Y, Chen X, Pan Q, Yang W, Zhang Z, Shao Z, Wu W. KPNA2 promotes osteosarcoma progression by regulating the alternative splicing of DDX3X mediated by YBX1. Oncogene 2025:10.1038/s41388-025-03375-3. [PMID: 40216969 DOI: 10.1038/s41388-025-03375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Osteosarcoma (OS) is a rapidly progressive primary malignant bone tumor that occurs in children and adolescents aged between 15 and 19 years and adults aged over 60 years. As alternative splicing (AS) changes caused by abnormal splicing factors contribute to tumor progression, gene expression and AS analyses were performed on 44 osteosarcoma patients to create a genome-wide co-expression network of RNA-binding proteins (RBPs), AS events, and AS genes. A gain- or loss-of-function osteosarcoma cell model was established, and an interactive network analysis and enrichment analysis were performed. Karyopherin Subunit Alpha 2 (KPNA2) negatively correlated with patient survival. KPNA2 transports splicing factor Y-box Binding Protein 1 (YBX1) into the nucleus and YBX1 accelerates the degradation of the ATP-dependent RNA helicase DDX3X (DDX3X) through the nonsense-mediated decay (NMD) pathway to promote intron retention of the DDX3X gene, thus reducing DDX3X protein levels. KPNA2/YBX1 axis regulates the stability of DDX3X mRNA and cell cycle progression. KPNA2/YBX1/DDX3X axis might be potential targets for inhibiting disease progression and improving OS patient survival. It integrates AS control of DDX3X into the progression of OS and represents a potential prognostic biomarker and therapeutic target for OS therapy.
Collapse
Affiliation(s)
- Li Cao
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ke Jia
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - B A Van Tine
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yihan Yu
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yizhong Peng
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xuanzuo Chen
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qing Pan
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wenbo Yang
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhicai Zhang
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Zengwu Shao
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Wei Wu
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
6
|
Kalra S, Coolon JD. Decoding RAP1 's Role in Yeast mRNA Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647307. [PMID: 40291741 PMCID: PMC12026737 DOI: 10.1101/2025.04.04.647307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Messenger RNA (mRNA) splicing is a fundamental and tightly regulated process in eukaryotes, where the spliceosome removes non-coding sequences from pre-mRNA to produce mature mRNA for protein translation. Alternative splicing enables the generation of multiple RNA isoforms and protein products from a single gene, regulating both isoform diversity and abundance. While splicing is widespread in eukaryotes, only ∼3% of genes in Saccharomyces cerevisiae undergo splicing, with most containing a single intron. However, intron-containing genes, primarily ribosomal protein genes, are highly expressed and constitute about one-third of the total mRNA pool. These genes are transcriptionally regulated by Repressor Activator Protein 1 ( RAP1 ), prompting us to investigate whether RAP1 influences mRNA splicing. Using RNA sequencing, we identified a novel role for RAP1 in alternative splicing, particularly in intron retention (IR) while minor effects were observed on alternative 3' and 5' splice site usage. Many IR-containing transcripts introduced premature termination codons, likely leading to degradation via nonsense-mediated decay (NMD). Consistent with previous literature, genes with predicted NMD in our study also had reduced overall expression levels suggesting that RAP1 plays an important role in this understudied mechanism of gene expression regulation.
Collapse
|
7
|
Baliga N, Stankiewicz K, Valenzuela J, Turkarslan S, Wu WJ, Gomez-Campo K, Locatelli N, Conn T, Radice V, Parker K, Alderdice R, Bay L, Voolstra C, Barshis D, Baums I. Alternative splicing in a coral during heat stress acclimation and recovery. RESEARCH SQUARE 2025:rs.3.rs-6025431. [PMID: 40235473 PMCID: PMC11998799 DOI: 10.21203/rs.3.rs-6025431/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Climate change has caused drastic declines in corals. As sessile organisms, corals acclimate to environmental shifts through genome-wide changes in gene expression, epigenetic modifications, and alterations in microbiome composition. However, alternative splicing (AS), a conserved mechanism of stress response in many organisms, has been under-explored in corals. Using short-term acute thermal stress assays, we investigated patterns of AS in the scleractinian coral Acropora cervicornis during response to low (33°C), medium (35°C), and high (37°C) heat stress and subsequent overnight recovery. Our findings demonstrate reproducible dynamic shifts in AS of at least 40 percent of all genes during response to heat treatment and the recovery phase. The relative proportion of AS increased in response to heat stress and was primarily dominated by intron retention in specific classes of transcripts, including those related to splicing regulation itself. While AS returned to baseline levels post-exposure to low heat, AS persisted even after reprieve from higher levels of heat stress, which was associated with irreversible loss of photosynthetic efficiency of the symbiont. Our findings demonstrate that, although animals, corals are more plant-like in their likely usage of AS for regulating thermal stress response and recovery.
Collapse
|
8
|
Webster CP, Hall B, Crossley OM, Dauletalina D, King M, Lin YH, Castelli LM, Yang ZL, Coldicott I, Kyrgiou-Balli E, Higginbottom A, Ferraiuolo L, De Vos KJ, Hautbergue GM, Shaw PJ, West RJ, Azzouz M. RuvBL1/2 reduce toxic dipeptide repeat protein burden in multiple models of C9orf72-ALS/FTD. Life Sci Alliance 2025; 8:e202402757. [PMID: 39638345 PMCID: PMC11629685 DOI: 10.26508/lsa.202402757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
A G4C2 hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Bidirectional transcription and subsequent repeat-associated non-AUG (RAN) translation of sense and antisense transcripts leads to the formation of five dipeptide repeat (DPR) proteins. These DPRs are toxic in a wide range of cell and animal models. Therefore, decreasing RAN-DPRs may be of therapeutic benefit in the context of C9ALS/FTD. In this study, we found that C9ALS/FTD patients have reduced expression of the AAA+ family members RuvBL1 and RuvBL2, which have both been implicated in aggregate clearance. We report that overexpression of RuvBL1, but to a greater extent RuvBL2, reduced C9orf72-associated DPRs in a range of in vitro systems including cell lines, primary neurons from the C9-500 transgenic mouse model, and patient-derived iPSC motor neurons. In vivo, we further demonstrated that RuvBL2 overexpression and consequent DPR reduction in our Drosophila model was sufficient to rescue a number of DPR-related motor phenotypes. Thus, modulating RuvBL levels to reduce DPRs may be of therapeutic potential in C9ALS/FTD.
Collapse
Affiliation(s)
- Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Bradley Hall
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Olivia M Crossley
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Dana Dauletalina
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Marianne King
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Zih-Liang Yang
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ergita Kyrgiou-Balli
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Ryan Jh West
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Division of Neuroscience, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Gene Therapy Innovation and Manufacturing Centre (GTIMC), Division of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues, age and disease. Nat Commun 2025; 16:1068. [PMID: 39870615 PMCID: PMC11772838 DOI: 10.1038/s41467-024-55607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/17/2024] [Indexed: 01/29/2025] Open
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigate splicing accuracy using RNA-sequencing data from >14k control samples and 40 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that splicing inaccuracies occur at different rates across introns and tissues and are affected by the abundance of core components of the spliceosome assembly and its regulators. We find that age is positively correlated with a global decline in splicing fidelity, mostly affecting genes implicated in neurodegenerative diseases. We find support for the latter by observing a genome-wide increase in splicing inaccuracies in samples affected with Alzheimer's disease as compared to neurologically normal individuals. In this work, we provide an in-depth characterisation of splicing accuracy, with implications for our understanding of the role of inaccuracies in ageing and neurodegenerative disorders.
Collapse
Affiliation(s)
- S García-Ruiz
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - E K Gustavsson
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - M Grant-Peters
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A Fairbrother-Browne
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - J W Brenton
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A L Gil-Martínez
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - M Ryten
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
10
|
Shen CL, Tsai YY, Chou SJ, Chang YM, Tarn WY. RBM4-mediated intron excision of Hsf1 induces BDNF for cerebellar foliation. Commun Biol 2024; 7:1712. [PMID: 39738787 DOI: 10.1038/s42003-024-07328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in brain development and neural function. Constitutive knockout of the splicing regulator RBM4 reduces BDNF expression in the developing brain and causes cerebellar hypoplasia, an autism-like feature. Here, we show that Rbm4 knockout induced intron 6 retention of Hsf1, leading to downregulation of HSF1 protein and its downstream target BDNF. RBM4-mediated Hsf1 intron excision regulated BDNF expression in cultured granule cells. Ectopic expression of HSF1 restored cerebellar foliation and motor learning of Rbm4-knockout mice, indicating a critical role for RBM4-HSF1-BDNF in cerebellar foliation. Moreover, N-methyl-D-aspartate receptor (NMDAR) signaling promoted the expression and nuclear translocation of RBM4, and hence increased the expression of both HSF and BDNF. A short CU-rich motif was responsible for NMDAR- and RBM4-mediated intron excision. Finally, RBM4 and polypyrimidine tract binding (PTB) proteins play antagonistic roles in intron excision, suggesting a role for splicing regulation in BDNF expression.
Collapse
Affiliation(s)
- Chiu-Lun Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Young Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Columbia University in the City of New York, New York, USA
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
Tilk S, Frydman J, Curtis C, Petrov DA. Cancers adapt to their mutational load by buffering protein misfolding stress. eLife 2024; 12:RP87301. [PMID: 39585785 PMCID: PMC11588338 DOI: 10.7554/elife.87301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
In asexual populations that don't undergo recombination, such as cancer, deleterious mutations are expected to accrue readily due to genome-wide linkage between mutations. Despite this mutational load of often thousands of deleterious mutations, many tumors thrive. How tumors survive the damaging consequences of this mutational load is not well understood. Here, we investigate the functional consequences of mutational load in 10,295 human tumors by quantifying their phenotypic response through changes in gene expression. Using a generalized linear mixed model (GLMM), we find that high mutational load tumors up-regulate proteostasis machinery related to the mitigation and prevention of protein misfolding. We replicate these expression responses in cancer cell lines and show that the viability in high mutational load cancer cells is strongly dependent on complexes that degrade and refold proteins. This indicates that the upregulation of proteostasis machinery is causally important for high mutational burden tumors and uncovers new therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Susanne Tilk
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Judith Frydman
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of MedicineStanfordUnited States
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford University School of MedicineStanfordUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
- Stanford Cancer Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
12
|
Zhao P, Ma X, Ren J, Zhang L, Min Y, Li C, Lu Y, Ma Y, Hou M, Jia H. Variations in HBA gene contribute to high-altitude hypoxia adaptation via affected O 2 transfer in Tibetan sheep. Front Zool 2024; 21:30. [PMID: 39574157 PMCID: PMC11583380 DOI: 10.1186/s12983-024-00551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Tibetan sheep are indigenous to the Qinghai-Xizang Plateau. Owing to the harsh hypoxic environment in this plateau, the hemoglobin (Hb) protein in Tibetan sheep has undergone adaptive changes over time. Hb is primarily responsible for transporting O2 and CO2 between the lungs and other tissues of the body. The α subunit of Hb, encoded by the HBA gene, is a crucial component of the protein. However, whether variations in the HBA gene sequence affect the adaptation of Tibetan sheep to high-altitude hypoxia remains unclear. In this study, we sequenced the HBA gene and identified three single nucleotide polymorphisms (SNPs). These SNPs were genotyped in Tibetan and Hu sheep using Kompetitive Allele-Specific PCR (KASP). The results showed that the frequencies of the AT genotype and H1H2 haplotype were higher in Tibetan sheep than in Hu sheep. Individuals with the AT genotype exhibited higher P50 levels, whereas those with the H1H2 haplotype exhibited lower PO2 and SaO2 levels. The higher P50 levels indicated that O2 was more readily released from oxygenated Hb into the tissues, with the lower PO2 and SaO2 levels facilitating this process. These findings indicate that variations in the HBA gene sequence contribute to enhancing O2 transfer efficiency in Tibetan sheep.
Collapse
Affiliation(s)
- Pengfei Zhao
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China.
| | - Xiong Ma
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China.
| | - Jianming Ren
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China
| | - Lan Zhang
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China
| | - Yunxin Min
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China
| | - Chunyang Li
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China
| | - Yaoyao Lu
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China
| | - Ying Ma
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China
| | - Mingjie Hou
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China
| | - Hui Jia
- Faculty of Chemistry and Life Sciences, Gansu Minzu Normal University, Hezuo, China
| |
Collapse
|
13
|
Liu Y, Xia X, Ren W, Hong X, Tang X, Pang H, Yang Y. Alternative splicing perspective to prey preference of environmentally friendly biological agent Cryptolaemus montrouzieri. BMC Genomics 2024; 25:967. [PMID: 39407100 PMCID: PMC11481726 DOI: 10.1186/s12864-024-10870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cryptolaemus montrouzieri (Coccinellidae) is widely utilized as biological control agents in modern agriculture. A comprehensive understanding of its food preference can help guide mass rearing and safety management during field application of pest control. Although some studies have paid attentions to the impacts of prey shift on C. montrouzieri, little is known regarding the role of post-transcriptional regulations in its acclimation to unnatural preys. RESULTS We performed a genome-wide investigation on alternative splicing dynamics in C. montrouzieri in response to the predation transition from natural prey to unnatural ones. When feeding on undesired diets, 402-764 genes were differentially alternative spliced in C. montrouzieri. It is noteworthy that the majority of these genes (> 87%) were not differentially expressed, and these differentially spliced genes regulated distinct biological processes from differentially expressed genes, such as organ development and morphogenesis, locomotory behavior, and homeostasis processes. These suggested the functionally nonredendant role of alternative splicing in modulating physiological and metabolic responses of C. montrouzieri to the shift to undesired preys. In addition, the individuals feeding on aphids were subject to a lower level of changes in splicing than other alternative diets, which might be because of the similar chemical and microbial compositions. Our study further suggested a putative coupling of alternative splicing and nonsense-mediated decay (AS-NMD), which may play an important role in fine-tuning the protein repertoire of C. montrouzieri, and promoting its acclimation to predation changes. CONCLUSION These findings highlight the key role of alternative splicing in modulating the acclimation of ladybirds to prey shift and provide new genetic clues for the future application of ladybirds in biocontrol.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xinhui Xia
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenxu Ren
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiyao Hong
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xuefei Tang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Pang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yuchen Yang
- School of Ecology, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
14
|
Williams DE, King K, Jackson R, Kuehner F, Arnoldy C, Marroquin JN, Tobey I, Banka A, Ragonese S, Van Doorslaer K. PRMT1 Modulates Alternative Splicing to Enhance HPV18 mRNA Stability and Promote the Establishment of Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.614592. [PMID: 39386465 PMCID: PMC11463397 DOI: 10.1101/2024.09.26.614592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Only persistent HPV infections lead to the development of cancer. Thus, understanding the virus-host interplay that influences the establishment of viral infection has important implications for HPV biology and human cancers. The ability of papillomaviruses to establish in cells requires the strict temporal regulation of viral gene expression in sync with cellular differentiation. This control primarily happens at the level of RNA splicing and polyadenylation. However, the details of how this spatio-temporal regulation is achieved still need to be fully understood. Until recently, it has been challenging to study the early events of the HPV lifecycle following infection. We used a single-cell genomics approach to identify cellular factors involved in viral infection and establishment. We identify protein arginine N-methyltransferase 1 (PRMT1) as an important factor in viral infection of primary human cervical cells. PRMT1 is the main cellular enzyme responsible for asymmetric dimethylation of cellular proteins. PRMT1 is an enzyme responsible for catalyzing the methylation of arginine residues on various proteins, which influences processes such as RNA processing, transcriptional regulation, and signal transduction. In this study, we show that HPV18 infection leads to increased PRMT1 levels across the viral lifecycle. PRMT1 is critical for the establishment of a persistent infection in primary cells. Mechanistically, PRMT1 inhibition leads to a highly dysregulated viral splicing pattern. Specifically, reduced PRMT1 activity leads to intron retention and a change in the E6 and E7 expression ratio. In the absence of PRMT1, viral transcripts are destabilized and subject to degradation via the nonsense-mediated decay (NMD) pathway. These findings highlight PRMT1 as a critical regulator of the HPV18 lifecycle, particularly in RNA processing, and position it as a potential therapeutic target for persistent HPV18 infections.
Collapse
Affiliation(s)
- David E.J. Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- Medical Scientist Training M.D.-Ph.D. Program, University of Arizona, Tucson, AZ, USA
| | - Kelly King
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Robert Jackson
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Franziska Kuehner
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Christina Arnoldy
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | | | - Isabelle Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
| | - Amy Banka
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
| | - Sofia Ragonese
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Molecular and cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
- The Department of Immunobiology, University of Arizona Tucson, Arizona, USA
- Microbiology Graduate program, University of Arizona, Tucson, Arizona, USA
- The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA
| |
Collapse
|
15
|
Periasamy P, Joseph C, Campos A, Rajandran S, Batho C, Hudson JE, Sivakumaran H, Kore H, Datta K, Yeong J, Gowda H. Regulation of non-canonical proteins from diverse origins through the nonsense-mediated mRNA decay pathway. Proteomics 2024; 24:e2300361. [PMID: 38350726 DOI: 10.1002/pmic.202300361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.
Collapse
Affiliation(s)
- Parthiban Periasamy
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Craig Joseph
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Adrian Campos
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Regeneron Genetics Center, Tarrytown, New York, USA
| | - Sureka Rajandran
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Flow Cytometry Department, Covance Central Laboratory Services, Singapore, 609917, Singapore
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hitesh Kore
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Keshava Datta
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Joe Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Harsha Gowda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Rojo C, Gárate-Rascón M, Recalde M, Álava A, Elizalde M, Azkona M, Aldabe I, Guruceaga E, López-Pascual A, Latasa MU, Sangro B, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. Caspases compromise SLU7 and UPF1 stability and NMD activity during hepatocarcinogenesis. JHEP Rep 2024; 6:101118. [PMID: 39105183 PMCID: PMC11298840 DOI: 10.1016/j.jhepr.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 08/07/2024] Open
Abstract
Background & Aims The homeostasis of the cellular transcriptome depends on transcription and splicing mechanisms. Moreover, the fidelity of gene expression, essential to preserve cellular identity and function is secured by different quality control mechanisms including nonsense-mediated RNA decay (NMD). In this context, alternative splicing is coupled to NMD, and several alterations in these mechanisms leading to the accumulation of aberrant gene isoforms are known to be involved in human disease including cancer. Methods RNA sequencing, western blotting, qPCR and co-immunoprecipitation were performed in multiple silenced culture cell lines (replicates n ≥4), primary hepatocytes and samples of animal models (Jo2, APAP, Mdr2 -/- mice, n ≥3). Results Here we show that in animal models of liver injury and in human HCC (TCGA, non-tumoral = 50 vs. HCC = 374), the process of NMD is inhibited. Moreover, we demonstrate that the splicing factor SLU7 interacts with and preserves the levels of the NMD effector UPF1, and that SLU7 is required for correct NMD. Our previous findings demonstrated that SLU7 expression is reduced in the diseased liver, contributing to hepatocellular dedifferentiation and genome instability during disease progression. Here we build on this by providing evidence that caspases activated during liver damage are responsible for the cleavage and degradation of SLU7. Conclusions Here we identify the downregulation of UPF1 and the inhibition of NMD as a new molecular pathway contributing to the malignant reshaping of the liver transcriptome. Moreover, and importantly, we uncover caspase activation as the mechanism responsible for the downregulation of SLU7 expression during liver disease progression, which is a new link between apoptosis and hepatocarcinogenesis. Impact and implications The mechanisms involved in reshaping the hepatocellular transcriptome and thereby driving the progressive loss of cell identity and function in liver disease are not completely understood. In this context, we provide evidence on the impairment of a key mRNA surveillance mechanism known as nonsense-mediated mRNA decay (NMD). Mechanistically, we uncover a novel role for the splicing factor SLU7 in the regulation of NMD, including its ability to interact and preserve the levels of the key NMD factor UPF1. Moreover, we demonstrate that the activation of caspases during liver damage mediates SLU7 and UPF1 protein degradation and NMD inhibition. Our findings identify potential new markers of liver disease progression, and SLU7 as a novel therapeutic target to prevent the functional decay of the chronically injured organ.
Collapse
Affiliation(s)
- Carla Rojo
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - María Gárate-Rascón
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Miriam Recalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Ane Álava
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - María Elizalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - María Azkona
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Iratxe Aldabe
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Elisabet Guruceaga
- Bioinformatics Platform, CIMA, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- ProteoRed-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amaya López-Pascual
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - M Ujue Latasa
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Bruno Sangro
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- Hepatology Unit, Clínica Universidad de Navarra, CCUN, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| | - Maite G. Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| | - Matías A. Ávila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), Madrid, 28029, Spain
| |
Collapse
|
17
|
Santanasto AJ, Acharya S, Wojczynski MK, Cvejkus RK, Lin S, Brent MR, Anema JA, Wang L, Thyagarajan B, Christensen K, Daw EW, Zmuda JM. Whole Genome Linkage and Association Analyses Identify DLG Associated Protein-1 as a Novel Positional and Biological Candidate Gene for Muscle Strength: The Long Life Family Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae144. [PMID: 38808484 PMCID: PMC11226997 DOI: 10.1093/gerona/glae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Grip strength is a robust indicator of overall health, is moderately heritable, and predicts longevity in older adults. METHODS Using genome-wide linkage analysis, we identified a novel locus on chromosome 18p (mega-basepair region: 3.4-4.0) linked to grip strength in 3 755 individuals from 582 families aged 64 ± 12 years (range 30-110 years; 55% women). There were 26 families that contributed to the linkage peak (cumulative logarithm of the odds [LOD] score = 10.94), with 6 families (119 individuals) accounting for most of the linkage signal (LOD = 6.4). In these 6 families, using whole genome sequencing data, we performed association analyses between the 7 312 single nucleotide (SNVs) and insertion deletion (INDELs) variants in the linkage region and grip strength. Models were adjusted for age, age2, sex, height, field center, and population substructure. RESULTS We found significant associations between genetic variants (8 SNVs and 4 INDELs, p < 5 × 10-5) in the Disks Large-associated Protein 1 (DLGAP1) gene and grip strength. Haplotypes constructed using these variants explained up to 98.1% of the LOD score. Finally, RNAseq data showed that these variants were significantly associated with the expression of nearby Myosin Light Chain 12A (MYL12A), Structural Maintenance of Chromosomes Flexible Hinge Domain Containing 1 (SMCHD1), Erythrocyte Membrane Protein Band 4.1 Like 3 (EPB41L3) genes (p < .0004). CONCLUSIONS The DLGAP1 gene plays an important role in the postsynaptic density of neurons; thus, it is both a novel positional and biological candidate gene for follow-up studies aimed at uncovering genetic determinants of muscle strength.
Collapse
Affiliation(s)
- Adam J Santanasto
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sandeep Acharya
- Division of Computational and Data Sciences, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Computer Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ryan K Cvejkus
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shiow Lin
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Michael R Brent
- Division of Computational and Data Sciences, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Computer Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jason A Anema
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kaare Christensen
- Epidemiology Unit, Institute of Public Health, The Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Joseph M Zmuda
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Zheng P, Zhang X, Ren D, Bai Q. Alternative Splicing in Glioblastoma and its Clinical Implication in Outcome Prediction. Neurol India 2024; 72:846-855. [PMID: 39216044 DOI: 10.4103/neurol-india.ni_1219_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/08/2022] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Alternative splicing (AS) offers an important mechanism to form protein polymorphism. A growing body of evidence indicates the correlation between splicing abnormality and carcinoma. Nevertheless, an overall analysis of AS signatures in glioblastoma (GBM) is absent and urgently needed. METHODS TCGA SpliceSea data was used to evaluate the AS profiles and further classified into different AS events. The survival analysis was based on these AS events, and AS-related genes were identified and performed with enrichment analysis. At last, the splicing factor-AS regulatory network was established in Cytoscape. RESULTS Eight hundred forty-two splicing events were confirmed as prognostic molecular events in GBM. Furthermore, the final prognostic signature constructed by seven AS events gave good result with an area under the curve (AUC) of receiver operating characteristic (ROC) curve up to 0.935 for five years, showing high potency in predicting patients' outcome. We built the splicing regulatory network to show the internal relationship of splicing events in GBM. PC4 and SFRS1 interacting protein 1 (PSIP1) and histone H4 acetylation may play a significant part in the prognosis induced by splicing events. CONCLUSION In our study, a high-efficiency prognostic prediction model was built for GBM patients based on AS events, which could become potential prognostic biomarkers for GBM. Meanwhile, PSIP1 may be a critical target for pharmaceutical treatment.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, China
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, China
| | - Xiaoxue Zhang
- Department of Key Laboratory, Shanghai Pudong New Area People's Hospital, China
| | - Dabin Ren
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, China
| | - Qingke Bai
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, China
| |
Collapse
|
19
|
Wu Q, Liao R, Miao C, Hasnat M, Li L, Sun L, Wang X, Yuan Z, Jiang Z, Zhang L, Yu Q. Oncofetal SNRPE promotes HCC tumorigenesis by regulating the FGFR4 expression through alternative splicing. Br J Cancer 2024; 131:77-89. [PMID: 38796598 PMCID: PMC11231362 DOI: 10.1038/s41416-024-02689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Due to insufficient knowledge about key molecular events, Hepatocellular carcinoma (HCC) lacks effective treatment targets. Spliceosome-related genes were significantly altered in HCC. Oncofetal proteins are ideal tumor therapeutic targets. Screening of differentially expressed Spliceosome-related oncofetal protein in embryonic liver development and HCC helps discover effective therapeutic targets for HCC. METHODS Differentially expressed spliceosome genes were analysis in fetal liver and HCC through bioinformatics analysis. Small nuclear ribonucleoprotein polypeptide E (SNRPE) expression was detected in fetal liver, adult liver and HCC tissues. The role of SNRPE in HCC was performed multiple assays in vitro and in vivo. SNRPE-regulated alternative splicing was recognized by RNA-Seq and confirmed by multiple assays. RESULTS We herein identified SNRPE as a crucial oncofetal splicing factor, significantly associated with the adverse prognosis of HCC. SOX2 was identified as the activator for SNRPE reactivation. Efficient knockdown of SNRPE resulted in the complete cessation of HCC tumorigenesis and progression. Mechanistically, SNRPE knockdown reduced FGFR4 mRNA expression by triggering nonsense-mediated RNA decay. A partial inhibition of SNRPE-induced malignant progression of HCC cells was observed upon FGFR4 knockdown. CONCLUSIONS Our findings highlight SNRPE as a novel oncofetal splicing factor and shed light on the intricate relationship between oncofetal splicing factors, splicing events, and carcinogenesis. Consequently, SNRPE emerges as a potential therapeutic target for HCC treatment. Model of oncofetal SNRPE promotes HCC tumorigenesis by regulating the AS of FGFR4 pre-mRNA.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Alternative Splicing
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Mice, Nude
- Prognosis
- Receptor, Fibroblast Growth Factor, Type 4/genetics
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
Collapse
Affiliation(s)
- Qipeng Wu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Ruyan Liao
- Guangzhou Customs District Technology Center, Guangzhou, China
| | - Chunmeng Miao
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan
| | - Le Li
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Xinru Wang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| | - Luyong Zhang
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Qinwei Yu
- New Drug Screening Center, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
20
|
Sánchez RS, Lazarte MA, Abdala VSL, Sánchez SS. Antagonistic regulation of homeologous uncx.L and uncx.S genes orchestrates myotome and sclerotome differentiation in the evolutionarily divergent vertebral column of Xenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:350-367. [PMID: 38155515 DOI: 10.1002/jez.b.23235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
In anurans, the vertebral column diverges widely from that of other tetrapods; yet the molecular mechanisms underlying its morphogenesis remain largely unexplored. In this study, we investigate the role of the homeologous uncx.L and uncx.S genes in the vertebral column morphogenesis of the allotetraploid frog Xenopus laevis. We initiated our study by cloning the uncx orthologous genes in the anuran Xenopus and determining their spatial expression patterns using in situ hybridization. Additionally, we employed gain-of-function and loss-of-function approaches through dexamethasone-inducible uncx constructs and antisense morpholino oligonucleotides, respectively. Comparative analysis of the messenger RNA sequences of homeologous uncx genes revealed that the uncx.L variant lacks the eh1-like repressor domain. Our spatial expression analysis indicated that in the presomitic mesoderm and somites, the transcripts of uncx.L and uncx.S are located in overlapping domains. Alterations in the function of uncx genes significantly impact the development and differentiation of the sclerotome and myotome, resulting in axial skeleton malformations. Our findings suggest a scenario where the homeologous genes uncx.L and uncx.S exhibit antagonistic functions during somitogenesis. Specifically, uncx.S appears to be crucial for sclerotome development and differentiation, while uncx.L primarily influences myotome development. Postallotetraploidization, the uncx.L gene in X. laevis evolved to lose its eh1-like repressor domain, transforming into a "native dominant negative" variant that potentially competes with uncx.S for the same target genes. Finally, the histological analysis revealed that uncx.S expression is necessary for the correct formation of pedicles and neural arch of the vertebrae, and uncx.L is required for trunk muscle development.
Collapse
Affiliation(s)
- Romel S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET and Instituto de Biología "Dr. Francisco D. Barbieri, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Cátedra de Fisiología, Departamento Biomédico, Facultad de Medicina, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - María A Lazarte
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - Virginia S L Abdala
- Cátedra de Biología General, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
- Instituto de Biodiversidad Neotropical (IBN), CONICET, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina
| | - Sara S Sánchez
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET and Instituto de Biología "Dr. Francisco D. Barbieri, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
21
|
Duman ET, Sitte M, Conrads K, Mackay A, Ludewig F, Ströbel P, Ellenrieder V, Hessmann E, Papantonis A, Salinas G. A single-cell strategy for the identification of intronic variants related to mis-splicing in pancreatic cancer. NAR Genom Bioinform 2024; 6:lqae057. [PMID: 38800828 PMCID: PMC11127633 DOI: 10.1093/nargab/lqae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Most clinical diagnostic and genomic research setups focus almost exclusively on coding regions and essential splice sites, thereby overlooking other non-coding variants. As a result, intronic variants that can promote mis-splicing events across a range of diseases, including cancer, are yet to be systematically investigated. Such investigations would require both genomic and transcriptomic data, but there currently exist very few datasets that satisfy these requirements. We address this by developing a single-nucleus full-length RNA-sequencing approach that allows for the detection of potentially pathogenic intronic variants. We exemplify the potency of our approach by applying pancreatic cancer tumor and tumor-derived specimens and linking intronic variants to splicing dysregulation. We specifically find that prominent intron retention and pseudo-exon activation events are shared by the tumors and affect genes encoding key transcriptional regulators. Our work paves the way for the assessment and exploitation of intronic mutations as powerful prognostic markers and potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Emre Taylan Duman
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Maren Sitte
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Karly Conrads
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Adi Mackay
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Fabian Ludewig
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Volker Ellenrieder
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Elisabeth Hessmann
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Argyris Papantonis
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Gabriela Salinas
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
| |
Collapse
|
22
|
Lee GY, Ham S, Sohn J, Kwon HC, Lee SJV. Meta-analysis of the transcriptome identifies aberrant RNA processing as common feature of aging in multiple species. Mol Cells 2024; 47:100047. [PMID: 38508494 PMCID: PMC11026732 DOI: 10.1016/j.mocell.2024.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
Aging is accompanied by the gradual deregulation of the transcriptome. However, whether age-dependent changes in the transcriptome are evolutionarily conserved or diverged remains largely unexplored. Here, we performed a meta-analysis examining the age-dependent changes in the transcriptome using publicly available datasets of 11 representative metazoans, ranging from Caenorhabditis elegans to humans. To identify the transcriptomic changes associated with aging, we analyzed various aspects of the transcriptome, including genome composition, RNA processing, and functional consequences. The use of introns and novel splice sites tended to increase with age, particularly in the brain. In addition, our analysis suggests that the age-dependent accumulation of premature termination codon-containing transcripts is a common feature of aging across multiple animal species. Using C. elegans as a test model, we showed that several splicing factors that are evolutionarily conserved and age-dependently downregulated were required to maintain a normal lifespan. Thus, aberrant RNA processing appears to be associated with aging and a short lifespan in various species.
Collapse
Affiliation(s)
- Gee-Yoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hyunwoo C Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
| |
Collapse
|
23
|
Lv Y, Li J, Yu S, Zhang Y, Hu H, Sun K, Jia D, Han Y, Tu J, Huang Y, Liu X, Zhang X, Gao P, Chen X, Shaw Williams MT, Tang Z, Shu X, Liu M, Ren X. The splicing factor Prpf31 is required for hematopoietic stem and progenitor cell expansion during zebrafish embryogenesis. J Biol Chem 2024; 300:105772. [PMID: 38382674 PMCID: PMC10959673 DOI: 10.1016/j.jbc.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Pre-mRNA splicing is a precise regulated process and is crucial for system development and homeostasis maintenance. Mutations in spliceosomal components have been found in various hematopoietic malignancies (HMs) and have been considered as oncogenic derivers of HMs. However, the role of spliceosomal components in normal and malignant hematopoiesis remains largely unknown. Pre-mRNA processing factor 31 (PRPF31) is a constitutive spliceosomal component, which mutations are associated with autosomal dominant retinitis pigmentosa. PRPF31 was found to be mutated in several HMs, but the function of PRPF31 in normal hematopoiesis has not been explored. In our previous study, we generated a prpf31 knockout (KO) zebrafish line and reported that Prpf31 regulates the survival and differentiation of retinal progenitor cells by modulating the alternative splicing of genes involved in mitosis and DNA repair. In this study, by using the prpf31 KO zebrafish line, we discovered that prpf31 KO zebrafish exhibited severe defects in hematopoietic stem and progenitor cell (HSPC) expansion and its sequentially differentiated lineages. Immunofluorescence results showed that Prpf31-deficient HSPCs underwent malformed mitosis and M phase arrest during HSPC expansion. Transcriptome analysis and experimental validations revealed that Prpf31 deficiency extensively perturbed the alternative splicing of mitosis-related genes. Collectively, our findings elucidate a previously undescribed role for Prpf31 in HSPC expansion, through regulating the alternative splicing of mitosis-related genes.
Collapse
Affiliation(s)
- Yuexia Lv
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualei Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mark Thomas Shaw Williams
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Werren EA, LaForce GR, Srivastava A, Perillo DR, Li S, Johnson K, Baris S, Berger B, Regan SL, Pfennig CD, de Munnik S, Pfundt R, Hebbar M, Jimenez-Heredia R, Karakoc-Aydiner E, Ozen A, Dmytrus J, Krolo A, Corning K, Prijoles EJ, Louie RJ, Lebel RR, Le TL, Amiel J, Gordon CT, Boztug K, Girisha KM, Shukla A, Bielas SL, Schaffer AE. TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome. Nat Commun 2024; 15:1640. [PMID: 38388531 PMCID: PMC10884030 DOI: 10.1038/s41467-024-45948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Delia R Perillo
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Shaokun Li
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Katherine Johnson
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Brandon Berger
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christian D Pfennig
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 98195, Seattle, WA, USA
| | - Raúl Jimenez-Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Jasmin Dmytrus
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Ken Corning
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - E J Prijoles
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | | | - Robert Roger Lebel
- Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thuy-Linh Le
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
| | - Jeanne Amiel
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, 75015, France
| | | | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, 1090, Austria
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, 1090, Austria
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
25
|
Shamnas v M, Singh A, Kumar A, Mishra GP, Sinha SK. Exitrons: offering new roles to retained introns-the novel regulators of protein diversity and utility. AOB PLANTS 2024; 16:plae014. [PMID: 38566894 PMCID: PMC10985678 DOI: 10.1093/aobpla/plae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Exitrons are exonic introns. This subclass of intron retention alternative splicing does not contain a Pre-Terminating stop Codon. Therefore, when retained, they are always a part of a protein. Intron retention is a frequent phenomenon predominantly found in plants, which results in either the degradation of the transcripts or can serve as a stable intermediate to be processed upon induction by specific signals or the cell status. Interestingly, exitrons have coding ability and may confer additional attributes to the proteins that retain them. Therefore, exitron-containing and exitron-spliced isoforms will be a driving force for creating protein diversity in the proteome of an organism. This review establishes a basic understanding of exitron, discussing its genesis, key features, identification methods and functions. We also try to depict its other potential roles. The present review also aims to provide a fundamental background to those who found such exitronic sequences in their gene(s) and to speculate the future course of studies.
Collapse
Affiliation(s)
- Muhammed Shamnas v
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Akanksha Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
- Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette 47906, Indiana, USA
| | - Anuj Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
26
|
Zhang Y, Li F, Han Z, Teng Z, Jin C, Yuan H, Zhang S, Sun K, Wang Y. Downregulated RBM5 Enhances CARM1 Expression and Activates the PRKACA/GSK3β Signaling Pathway through Alternative Splicing-Coupled Nonsense-Mediated Decay. Cancers (Basel) 2023; 16:139. [PMID: 38201567 PMCID: PMC10778212 DOI: 10.3390/cancers16010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Downregulated RNA-binding motif protein 5 (RBM5) promotes the development and progression of various tumors, including bladder cancer (BC). Alternative splicing (AS) plays a crucial role in the progression of cancer by producing protein isomers with different functions or by promoting nonsense-mediated mRNA decay (NMD). However, whether RBM5 modulates the progression of BC through AS-NMD remains unexplored. In this study, we revealed that the downregulation of RBM5 expression promoted the expression of coactivator-associated arginine methyltransferase 1 (CARM1) in BC cells and tissues. Increased expression of CARM1 facilitated the activation of the Wnt/β-catenin axis and cell proliferation, which then contributed to the poor prognosis of patients with BC. Interestingly, RBM5 bound directly to CARM1 mRNA and participated in AS-NMD, downregulating the expression of CARM1. In addition, we revealed that protein kinase catalytic subunit alpha (PRKACA) functioned as a phosphorylated kinase of GSK3β, was regulated by CARM1 at the transcription level, and promoted the growth and progression of BC cells. Furthermore, in this study, we demonstrated a regulatory mechanism of Wnt/β-catenin activation through the RBM5/CARM1/PRKACA axis and identified a novel potential target for treating BC.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Fang Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Chenggen Jin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Hao Yuan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Sihao Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Kexin Sun
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| |
Collapse
|
27
|
Ma Z, Horrocks J, Mir DA, Cox M, Ruzga M, Rollins J, Rogers AN. The integrated stress response protects against ER stress but is not required for altered translation and lifespan from dietary restriction in Caenorhabditis elegans. Front Cell Dev Biol 2023; 11:1263344. [PMID: 38161330 PMCID: PMC10755965 DOI: 10.3389/fcell.2023.1263344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
The highly conserved integrated stress response (ISR) reduces and redirects mRNA translation in response to certain forms of stress and nutrient limitation. It is activated when kinases phosphorylate a key residue in the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). General Control Nonderepressible-2 (GCN2) is activated to phosphorylate eIF2α by the presence of uncharged tRNA associated with nutrient scarcity, while protein kinase R-like ER kinase-1 (PERK) is activated during the ER unfolded protein response (UPRER). Here, we investigated the role of the ISR during nutrient limitation and ER stress with respect to changes in protein synthesis, translationally driven mRNA turnover, and survival in Caenorhabditis elegans. We found that, while GCN2 phosphorylates eIF2α when nutrients are restricted, the ability to phosphorylate eIF2α is not required for changes in translation, nonsense-mediated decay, or lifespan associated with dietary restriction (DR). Interestingly, loss of both GCN2 and PERK abolishes increased lifespan associated with dietary restriction, indicating the possibility of other substrates for these kinases. The ISR was not dispensable under ER stress conditions, as demonstrated by the requirement for PERK and eIF2α phosphorylation for decreased translation and wild type-like survival. Taken together, results indicate that the ISR is critical for ER stress and that other translation regulatory mechanisms are sufficient for increased lifespan under dietary restriction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aric N. Rogers
- MDI Biological Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
28
|
Gittings LM, Alsop EB, Antone J, Singer M, Whitsett TG, Sattler R, Van Keuren-Jensen K. Cryptic exon detection and transcriptomic changes revealed in single-nuclei RNA sequencing of C9ORF72 patients spanning the ALS-FTD spectrum. Acta Neuropathol 2023; 146:433-450. [PMID: 37466726 PMCID: PMC10412668 DOI: 10.1007/s00401-023-02599-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023]
Abstract
The C9ORF72-linked diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by the nuclear depletion and cytoplasmic accumulation of TAR DNA-binding protein 43 (TDP-43). Recent studies have shown that the loss of TDP-43 function leads to the inclusion of cryptic exons (CE) in several RNA transcript targets of TDP-43. Here, we show for the first time the detection of CEs in a single-nuclei RNA sequencing (snRNA-seq) dataset obtained from frontal and occipital cortices of C9ORF72 patients that phenotypically span the ALS-FTD disease spectrum. We assessed each cellular cluster for detection of recently described TDP-43-induced CEs. Transcripts containing CEs in the genes STMN2 and KALRN were detected in the frontal cortex of all C9ORF72 disease groups with the highest frequency in excitatory neurons in the C9ORF72-FTD group. Within the excitatory neurons, the cluster with the highest proportion of cells containing a CE had transcriptomic similarities to von Economo neurons, which are known to be vulnerable to TDP-43 pathology and selectively lost in C9ORF72-FTD. Differential gene expression and pathway analysis of CE-containing neurons revealed multiple dysregulated metabolic processes. Our findings reveal novel insights into the transcriptomic changes of neurons vulnerable to TDP-43 pathology.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Eric B Alsop
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Jerry Antone
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Mo Singer
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Timothy G Whitsett
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute, part of City of Hope, Phoenix, AZ, USA.
| |
Collapse
|
29
|
Peixoto J, Príncipe C, Pestana A, Osório H, Pinto MT, Prazeres H, Soares P, Lima RT. Using a Dual CRISPR/Cas9 Approach to Gain Insight into the Role of LRP1B in Glioblastoma. Int J Mol Sci 2023; 24:11285. [PMID: 37511044 PMCID: PMC10379115 DOI: 10.3390/ijms241411285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
LRP1B remains one of the most altered genes in cancer, although its relevance in cancer biology is still unclear. Recent advances in gene editing techniques, particularly CRISPR/Cas9 systems, offer new opportunities to evaluate the function of large genes, such as LRP1B. Using a dual sgRNA CRISPR/Cas9 gene editing approach, this study aimed to assess the impact of disrupting LRP1B in glioblastoma cell biology. Four sgRNAs were designed for the dual targeting of two LRP1B exons (1 and 85). The U87 glioblastoma (GB) cell line was transfected with CRISPR/Cas9 PX459 vectors. To assess LRP1B-gene-induced alterations and expression, PCR, Sanger DNA sequencing, and qRT-PCR were carried out. Three clones (clones B9, E6, and H7) were further evaluated. All clones presented altered cellular morphology, increased cellular and nuclear size, and changes in ploidy. Two clones (E6 and H7) showed a significant decrease in cell growth, both in vitro and in the in vivo CAM assay. Proteomic analysis of the clones' secretome identified differentially expressed proteins that had not been previously associated with LRP1B alterations. This study demonstrates that the dual sgRNA CRISPR/Cas9 strategy can effectively edit LRP1B in GB cells, providing new insights into the impact of LRP1B deletions in GBM biology.
Collapse
Grants
- PTDC/MEC-ONC/31520/2017 FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- POCI-01-0145-FEDER-028779 (PTDC/BIA-MIC/28779/2017) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- project "Institute for Research and Innovation in Health Sciences" (UID/BIM/04293/2019) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- "Cancer Research on Therapy Resistance: From Basic Mechanisms to Novel Targets"-NORTE-01-0145-FEDER-000051 Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF
- The Porto Comprehensive Cancer Center" with the reference NORTE-01-0145-FEDER-072678 - Consórcio PORTO.CCC - Porto.Comprehensive Cancer Center Raquel Seruca European Regional Development Fund
- ROTEIRO/0028/2013; LISBOA-01-0145-FEDER-022125 Portuguese Mass Spectrometry Network, integrated in the National Roadmap of Research Infra-structures of Strategic Relevance
Collapse
Affiliation(s)
- Joana Peixoto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Pestana
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Teixeira Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
30
|
Brand CM, Colbran LL, Capra JA. Resurrecting the alternative splicing landscape of archaic hominins using machine learning. Nat Ecol Evol 2023; 7:939-953. [PMID: 37142741 PMCID: PMC11440953 DOI: 10.1038/s41559-023-02053-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Alternative splicing contributes to adaptation and divergence in many species. However, it has not been possible to directly compare splicing between modern and archaic hominins. Here, we unmask the recent evolution of this previously unobservable regulatory mechanism by applying SpliceAI, a machine-learning algorithm that identifies splice-altering variants (SAVs), to high-coverage genomes from three Neanderthals and a Denisovan. We discover 5,950 putative archaic SAVs, of which 2,186 are archaic-specific and 3,607 also occur in modern humans via introgression (244) or shared ancestry (3,520). Archaic-specific SAVs are enriched in genes that contribute to traits potentially relevant to hominin phenotypic divergence, such as the epidermis, respiration and spinal rigidity. Compared to shared SAVs, archaic-specific SAVs occur in sites under weaker selection and are more common in genes with tissue-specific expression. Further underscoring the importance of negative selection on SAVs, Neanderthal lineages with low effective population sizes are enriched for SAVs compared to Denisovan and shared SAVs. Finally, we find that nearly all introgressed SAVs in humans were shared across the three Neanderthals, suggesting that older SAVs were more tolerated in human genomes. Our results reveal the splicing landscape of archaic hominins and identify potential contributions of splicing to phenotypic differences among hominins.
Collapse
Affiliation(s)
- Colin M Brand
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
31
|
Schulz L, Ramirez P, Lemieux A, Gonzalez E, Thomson T, Frost B. Tau-Induced Elevation of the Activity-Regulated Cytoskeleton Associated Protein Arc1 Causally Mediates Neurodegeneration in the Adult Drosophila Brain. Neuroscience 2023; 518:101-111. [PMID: 35487302 PMCID: PMC9606145 DOI: 10.1016/j.neuroscience.2022.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease and other tauopathies are neurodegenerative disorders pathologically defined by aggregated forms of tau protein in the brain. While synaptic degradation is a well-established feature of tau-induced neurotoxicity, the underlying mechanisms of how pathogenic forms of tau drive synaptic dysfunction are incompletely understood. Synaptic function and subsequent memory consolidation are dependent upon synaptic plasticity, the ability of synapses to adjust their structure and strength in response to changes in activity. The activity regulated cytoskeleton associated protein ARC acts in the nucleus and at postsynaptic densities to regulate various forms of synaptic plasticity. ARC harbors a retrovirus-like Gag domain that facilitates ARC multimerization and capsid formation. Trans-synaptic transfer of RNA-containing ARC capsids is required for synaptic plasticity. While ARC is elevated in brains of patients with Alzheimer's disease and genetic variants in ARC increase susceptibility to Alzheimer's disease, mechanistic insight into the role of ARC in Alzheimer's disease is lacking. Using a Drosophila model of tauopathy, we find that pathogenic tau significantly increases multimeric species of the protein encoded by the Drosophila homolog of ARC, Arc1, in the adult fly brain. We find that Arc1 is elevated within nuclei and the neuropil of tau transgenic Drosophila, but does not localize to synaptic vesicles or presynaptic terminals. Lastly, we find that genetic manipulation of Arc1 modifies tau-induced neurotoxicity, suggesting that tau-induced Arc1 elevation mediates neurodegeneration. Taken together, our results suggest that ARC elevation in human Alzheimer's disease is a consequence of tau pathology and is a causal factor contributing to neuronal death.
Collapse
Affiliation(s)
- Lulu Schulz
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States
| | - Adrienne Lemieux
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Elias Gonzalez
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, United States; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, United States; Department of Cell Systems and Anatomy, San Antonio, TX, United States; University of Texas Health San Antonio, San Antonio, TX, United States.
| |
Collapse
|
32
|
Sharma E, Bhatnagar A, Bhaskar A, Majee SM, Kieffer M, Kepinski S, Khurana P, Khurana JP. Stress-induced F-Box protein-coding gene OsFBX257 modulates drought stress adaptations and ABA responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1207-1231. [PMID: 36404527 DOI: 10.1111/pce.14496] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
F-box (FB) proteins that form part of SKP1-CUL1-F-box (SCF) type of E3 ubiquitin ligases are important components of plant growth and development. Here we characterized OsFBX257, a rice FB protein-coding gene that is differentially expressed under drought conditions and other abiotic stresses. Population genomics analysis suggest that OsFBX257 shows high allelic diversity in aus accessions and has been under positive selection in some japonica, aromatic and indica cultivars. Interestingly, allelic variation at OsFBX257 in aus cultivar Nagina22 is associated with an alternatively spliced transcript. Conserved among land plants, OsFBX257 is a component of the SCF complex, can form homomers and interact molecularly with the 14-3-3 rice proteins GF14b and GF14c. OsFBX257 is co-expressed in a network involving protein kinases and phosphatases. We show that OsFBX257 can bind the kinases OsCDPK1 and OsSAPK2, and that its phosphorylation can be reversed by phosphatase OsPP2C08. OsFBX257 expression level modulates root architecture and drought stress tolerance in rice. OsFBX257 knockdown (OsFBX257KD ) lines show reduced total root length and depth, crown root number, panicle size and survival under stress. In contrast, its overexpression (OsFBX257OE ) increases root depth, leaf and grain length, number of panicles, and grain yield in rice. OsFBX257 is a promising breeding target for alleviating drought stress-induced damage in rice.
Collapse
Affiliation(s)
- Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akanksha Bhatnagar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Susmita M Majee
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Martin Kieffer
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stefan Kepinski
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Global Food and Environment Institute, University of Leeds, Leeds, UK
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
33
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
34
|
Ullah F, Jabeen S, Salton M, Reddy ASN, Ben-Hur A. Evidence for the role of transcription factors in the co-transcriptional regulation of intron retention. Genome Biol 2023; 24:53. [PMID: 36949544 PMCID: PMC10031921 DOI: 10.1186/s13059-023-02885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/16/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Alternative splicing is a widespread regulatory phenomenon that enables a single gene to produce multiple transcripts. Among the different types of alternative splicing, intron retention is one of the least explored despite its high prevalence in both plants and animals. The recent discovery that the majority of splicing is co-transcriptional has led to the finding that chromatin state affects alternative splicing. Therefore, it is plausible that transcription factors can regulate splicing outcomes. RESULTS We provide evidence for the hypothesis that transcription factors are involved in the regulation of intron retention by studying regions of open chromatin in retained and excised introns. Using deep learning models designed to distinguish between regions of open chromatin in retained introns and non-retained introns, we identified motifs enriched in IR events with significant hits to known human transcription factors. Our model predicts that the majority of transcription factors that affect intron retention come from the zinc finger family. We demonstrate the validity of these predictions using ChIP-seq data for multiple zinc finger transcription factors and find strong over-representation for their peaks in intron retention events. CONCLUSIONS This work opens up opportunities for further studies that elucidate the mechanisms by which transcription factors affect intron retention and other forms of splicing. AVAILABILITY Source code available at https://github.com/fahadahaf/chromir.
Collapse
Affiliation(s)
- Fahad Ullah
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Saira Jabeen
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - Maayan Salton
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Anireddy S N Reddy
- Biochemistry and Molecular Biology Department, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
35
|
Sharma H, Pani T, Dasgupta U, Batra J, Sharma RD. Prediction of transcript structure and concentration using RNA-Seq data. Brief Bioinform 2023; 24:6995379. [PMID: 36682028 DOI: 10.1093/bib/bbad022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 01/06/2023] [Indexed: 01/23/2023] Open
Abstract
Alternative splicing (AS) is a key post-transcriptional modification that helps in increasing protein diversity. Almost 90% of the protein-coding genes in humans are known to undergo AS and code for different transcripts. Some transcripts are associated with diseases such as breast cancer, lung cancer and glioblastoma. Hence, these transcripts can serve as novel therapeutic and prognostic targets for drug discovery. Herein, we have developed a pipeline, Finding Alternative Splicing Events (FASE), as the R package that includes modules to determine the structure and concentration of transcripts using differential AS. To predict the correct structure of expressed transcripts in given conditions, FASE combines the AS events with the information of exons, introns and junctions using graph theory. The estimated concentration of predicted transcripts is reported as the relative expression in terms of log2CPM. Using FASE, we were able to identify several unique transcripts of EMILIN1 and SLK genes in the TCGA-BRCA data, which were validated using RT-PCR. The experimental study demonstrated consistent results, which signify the high accuracy and precision of the developed methods. In conclusion, the developed pipeline, FASE, can efficiently predict novel transcripts that are missed in general transcript-level differential expression analysis. It can be applied selectively from a single gene to simple or complex genome even in multiple experimental conditions for the identification of differential AS-based biomarkers, prognostic targets and novel therapeutics.
Collapse
Affiliation(s)
- Harsh Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| | - Trishna Pani
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| | - Jyotsna Batra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation (IHBI), Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
36
|
Regulation of Arp5 expression by alternative splicing coupled to nonsense-mediated RNA decay. Biochem Biophys Res Commun 2023; 657:50-58. [PMID: 36977368 DOI: 10.1016/j.bbrc.2023.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Actin-related protein 5 (ARP5) inhibits the differentiation of skeletal, smooth, and cardiac muscle tissues, and ARP5 expression increases or decreases according to physiological and pathological changes in the muscle differentiation status. However, the regulatory mechanisms of ARP5 expression are largely unknown. Here, we identified a novel Arp5 mRNA isoform that contains premature termination codons in alternative exon 7b and is thus targeted by nonsense-mediated mRNA decay (NMD). In mouse skeletal muscle cells, switching from the canonical Arp5 isoform, i.e., Arp5(7a), to the NMD-targeted isoform Arp5(7b) occurred during differentiation, suggesting that Arp5 expression is regulated by alternative splicing coupled to NMD (AS-NMD). We developed an original method to accurately quantify the proportion of both Arp5 isoforms and measured higher levels of Arp5(7b) in muscle and brain tissues, where ARP5 is less expressed. The 3' splice site in Arp5 exon 7 has an unusual acceptor sequence that often leads to the skip of the authentic splice site and the use of the cryptic splice site localized 16 bases downstream. When the unusual acceptor sequence was mutated to the usual one, the Arp5(7b) isoform was barely detectable. The expression of several splicing factors involved in 3' splice site recognition was reduced after muscle differentiation. Additionally, knockdown of splicing factors increased the levels of Arp5(7b) and decreased the expression of Arp5(7a). Furthermore, strong positive correlations were found between Arp5 expression and the levels of these splicing factors in human skeletal and cardiac muscle tissues. Thus, Arp5 expression in muscle tissues is most likely regulated by the AS-NMD pathway.
Collapse
|
37
|
Xiao Y, Chen J, Yang S, Sun H, Xie L, Li J, Jing N, Zhu X. Maternal mRNA deadenylation and allocation via Rbm14 condensates facilitate vertebrate blastula development. EMBO J 2023; 42:e111364. [PMID: 36477743 PMCID: PMC9890236 DOI: 10.15252/embj.2022111364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Early embryonic development depends on proper utilization and clearance of maternal transcriptomes. How these processes are spatiotemporally regulated remains unclear. Here we show that nuclear RNA-binding protein Rbm14 and maternal mRNAs co-phase separate into cytoplasmic condensates to facilitate vertebrate blastula-to-gastrula development. In zebrafish, Rbm14 condensates were highly abundant in blastomeres and markedly reduced after prominent activation of zygotic transcription. They concentrated at spindle poles by associating with centrosomal γ-tubulin puncta and displayed mainly asymmetric divisions with a global symmetry across embryonic midline in 8- and 16-cell embryos. Their formation was dose-dependently stimulated by m6 A, but repressed by m5 C modification of the maternal mRNA. Furthermore, deadenylase Parn co-phase separated with these condensates, and this was required for deadenylation of the mRNAs in early blastomeres. Depletion of Rbm14 impaired embryonic cell differentiations and full activations of the zygotic genome in both zebrafish and mouse and resulted in developmental arrest at the blastula stage. Our results suggest that cytoplasmic Rbm14 condensate formation regulates early embryogenesis by facilitating deadenylation, protection, and mitotic allocation of m6 A-modified maternal mRNAs, and by releasing the poly(A)-less transcripts upon regulated disassembly to allow their re-polyadenylation and translation or clearance.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jiehui Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Lele Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Xueliang Zhu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| |
Collapse
|
38
|
Zuniga G, Levy S, Ramirez P, Mange JD, Gonzalez E, Gamez M, Frost B. Tau-induced deficits in nonsense-mediated mRNA decay contribute to neurodegeneration. Alzheimers Dement 2023; 19:405-420. [PMID: 35416419 PMCID: PMC9673995 DOI: 10.1002/alz.12653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION While brains of patients with Alzheimer's disease and related tauopathies have evidence of altered RNA processing, we lack a mechanistic understanding of how altered RNA processing arises in these disorders and if such changes are causally linked to neurodegeneration. METHODS Using Drosophila melanogaster models of tauopathy, we find that overall activity of nonsense-mediated mRNA decay (NMD), a key RNA quality-control mechanism, is reduced. Genetic manipulation of NMD machinery significantly modifies tau-induced neurotoxicity, suggesting that deficits in NMD are causally linked to neurodegeneration. Mechanistically, we find that deficits in NMD are a consequence of aberrant RNA export and RNA accumulation within nuclear envelope invaginations in tauopathy. We identify a pharmacological activator of NMD that suppresses neurodegeneration in tau transgenic Drosophila, indicating that tau-induced deficits in RNA quality control are druggable. DISCUSSION Our studies suggest that NMD activators should be explored for their potential therapeutic value to patients with tauopathies.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Simon Levy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Jasmine De Mange
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Elias Gonzalez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Maria Gamez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
39
|
Vital T, Wali A, Butler KV, Xiong Y, Foster JP, Marcel SS, McFadden AW, Nguyen VU, Bailey BM, Lamb KN, James LI, Frye SV, Mosely AL, Jin J, Pattenden SG, Davis IJ. MS0621, a novel small-molecule modulator of Ewing sarcoma chromatin accessibility, interacts with an RNA-associated macromolecular complex and influences RNA splicing. Front Oncol 2023; 13:1099550. [PMID: 36793594 PMCID: PMC9924231 DOI: 10.3389/fonc.2023.1099550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Ewing sarcoma is a cancer of children and young adults characterized by the critical translocation-associated fusion oncoprotein EWSR1::FLI1. EWSR1::FLI1 targets characteristic genetic loci where it mediates aberrant chromatin and the establishment of de novo enhancers. Ewing sarcoma thus provides a model to interrogate mechanisms underlying chromatin dysregulation in tumorigenesis. Previously, we developed a high-throughput chromatin-based screening platform based on the de novo enhancers and demonstrated its utility in identifying small molecules capable of altering chromatin accessibility. Here, we report the identification of MS0621, a molecule with previously uncharacterized mechanism of action, as a small molecule modulator of chromatin state at sites of aberrant chromatin accessibility at EWSR1::FLI1-bound loci. MS0621 suppresses cellular proliferation of Ewing sarcoma cell lines by cell cycle arrest. Proteomic studies demonstrate that MS0621 associates with EWSR1::FLI1, RNA binding and splicing proteins, as well as chromatin regulatory proteins. Surprisingly, interactions with chromatin and many RNA-binding proteins, including EWSR1::FLI1 and its known interactors, were RNA-independent. Our findings suggest that MS0621 affects EWSR1::FLI1-mediated chromatin activity by interacting with and altering the activity of RNA splicing machinery and chromatin modulating factors. Genetic modulation of these proteins similarly inhibits proliferation and alters chromatin in Ewing sarcoma cells. The use of an oncogene-associated chromatin signature as a target allows for a direct approach to screen for unrecognized modulators of epigenetic machinery and provides a framework for using chromatin-based assays for future therapeutic discovery efforts.
Collapse
Affiliation(s)
- Tamara Vital
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aminah Wali
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kyle V. Butler
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joseph P. Foster
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shelsa S. Marcel
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew W. McFadden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Valerie U. Nguyen
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benton M. Bailey
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kelsey N. Lamb
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lindsey I. James
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen V. Frye
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amber L. Mosely
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Therapeutics Discovery, Department of Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samantha G. Pattenden
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian J. Davis
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
40
|
David JK, Maden SK, Wood MA, Thompson RF, Nellore A. Retained introns in long RNA-seq reads are not reliably detected in sample-matched short reads. Genome Biol 2022; 23:240. [PMID: 36369064 PMCID: PMC9652823 DOI: 10.1186/s13059-022-02789-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There is growing interest in retained introns in a variety of disease contexts including cancer and aging. Many software tools have been developed to detect retained introns from short RNA-seq reads, but reliable detection is complicated by overlapping genes and transcripts as well as the presence of unprocessed or partially processed RNAs. RESULTS We compared introns detected by 8 tools using short RNA-seq reads with introns observed in long RNA-seq reads from the same biological specimens. We found significant disagreement among tools (Fleiss' [Formula: see text]) such that 47.7% of all detected intron retentions were not called by more than one tool. We also observed poor performance of all tools, with none achieving an F1-score greater than 0.26, and qualitatively different behaviors between general-purpose alternative splicing detection tools and tools confined to retained intron detection. CONCLUSIONS Short-read tools detect intron retention with poor recall and precision, calling into question the completeness and validity of a large percentage of putatively retained introns called by commonly used methods.
Collapse
Affiliation(s)
- Julianne K. David
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,Present Address: Base5 Genomics, Inc., Mountain View, CA USA
| | - Sean K. Maden
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.21107.350000 0001 2171 9311Present Address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Mary A. Wood
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.429936.30000 0004 5914 210XPortland VA Research Foundation, Portland, OR USA ,Present Address: Phase Genomics, Inc., Seattle, WA USA
| | - Reid F. Thompson
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.484322.bDivision of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Radiation Medicine, Oregon Health & Science University, Portland, OR USA
| | - Abhinav Nellore
- grid.5288.70000 0000 9758 5690Computational Biology Program, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Surgery, Oregon Health & Science University, Portland, OR USA
| |
Collapse
|
41
|
Chousal JN, Sohni A, Vitting-Seerup K, Cho K, Kim M, Tan K, Porse B, Wilkinson MF, Cook-Andersen H. Progression of the pluripotent epiblast depends upon the NMD factor UPF2. Development 2022; 149:dev200764. [PMID: 36255229 PMCID: PMC9687065 DOI: 10.1242/dev.200764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.
Collapse
Affiliation(s)
- Jennifer N. Chousal
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
- Section for Bioinformatics, Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
Huang W, Kew C, Fernandes SDA, Löhrke A, Han L, Demetriades C, Antebi A. Decreased spliceosome fidelity and egl-8 intron retention inhibit mTORC1 signaling to promote longevity. NATURE AGING 2022; 2:796-808. [PMID: 37118503 PMCID: PMC10154236 DOI: 10.1038/s43587-022-00275-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
AbstractChanges in splicing fidelity are associated with loss of homeostasis and aging, yet only a handful of splicing factors have been shown to be causally required to promote longevity, and the underlying mechanisms and downstream targets in these paradigms remain elusive. Surprisingly, we found a hypomorphic mutation within ribonucleoprotein RNP-6/poly(U)-binding factor 60 kDa (PUF60), a spliceosome component promoting weak 3′-splice site recognition, which causes aberrant splicing, elevates stress responses and enhances longevity in Caenorhabditis elegans. Through genetic suppressor screens, we identify a gain-of-function mutation within rbm-39, an RNP-6-interacting splicing factor, which increases nuclear speckle formation, alleviates splicing defects and curtails longevity caused by rnp-6 mutation. By leveraging the splicing changes induced by RNP-6/RBM-39 activities, we uncover intron retention in egl-8/phospholipase C β4 (PLCB4) as a key splicing target prolonging life. Genetic and biochemical evidence show that neuronal RNP-6/EGL-8 downregulates mammalian target of rapamycin complex 1 (mTORC1) signaling to control organismal lifespan. In mammalian cells, PUF60 downregulation also potently and specifically inhibits mTORC1 signaling. Altogether, our results reveal that splicing fidelity modulates lifespan through mTOR signaling.
Collapse
|
43
|
Diaz F, Allan CW, Chen X, Coleman JM, Bono JM, Matzkin LM. Divergent evolutionary trajectories shape the postmating transcriptional profiles of conspecifically and heterospecifically mated cactophilic Drosophila females. Commun Biol 2022; 5:842. [PMID: 35986208 PMCID: PMC9391497 DOI: 10.1038/s42003-022-03758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Postmating-prezygotic (PMPZ) reproductive isolation is hypothesized to result from divergent coevolutionary trajectories of sexual selection and/or sexual conflict in isolated populations. However, the genetic basis of PMPZ incompatibilities between species is poorly understood. Here, we use a comparative framework to compare global gene expression in con- and heterospecifically mated Drosophila mojavensis and D. arizonae female reproductive tracts. We find striking divergence between the species in the female postmating transcriptional response to conspecific mating, including differences in differential expression (DE), alternative splicing (AS), and intron retention (IR). As predicted, heterospecific matings produce disrupted transcriptional profiles, but the overall patterns of misregulation are different between the reciprocal crosses. Moreover, we find a positive correlation between postmating transcriptional divergence between species and levels of transcriptional disruption in heterospecific crosses. This result indicates that mating responsive genes that have diverged more in expression also have more disrupted transcriptional profiles in heterospecifically mated females. Overall, our results provide insights into the evolution of PMPZ isolation and lay the foundation for future studies aimed at identifying specific genes involved in PMPZ incompatibilities and the evolutionary forces that have contributed to their divergence in closely related species. Comparison of global gene expression patterns in con- and heterospecifically mated Drosophila mojavensis and Drosophila arizonae suggest that mating-responsive genes with divergent expression also exhibit more disrupted transcriptional profiles in heterospecifically mated females, providing further insight into the evolution of postmating-prezygotic reproductive isolation.
Collapse
|
44
|
Intron retention is a stress response in sensor genes and is restored by Japanese herbal medicines: A basis for future clinical applications. Gene X 2022; 830:146496. [PMID: 35504437 DOI: 10.1016/j.gene.2022.146496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Intron retention (IR) is a regulatory mechanism that can retard protein production by acting at the level of mRNA processing. We recently demonstrated that IR occurs at the pre-symptomatic state during the aging process of a mouse model of aging, providing a promising biomarker for that state, and can be restored to the normal state by juzentaihoto (JTT), a Japanese herbal medicine (Kampo) (Okada et al. 2021). Here we characterized the genes that accumulate retained introns, examined the biological significance of increased IR in these genes for the host, and determined whether drugs other than JTT can have this effect. By analyzing RNA-sequencing data generated from the hippocampus of the 19-week-old SAMP8 mouse, a model for studying age-related depression and Alzheimer's disease, we showed that genes with increased IR are generally involved in multiple metabolic pathways and have pivotal roles in sensing homeostasis. We thus propose that IR is a stress response and works to fine-tune the expression of many downstream target genes, leading to lower levels of their translation under stress conditions. Interestingly, Kampo medicines, as well as other organic compounds, restored splicing of a specific set of retained introns in these sensor genes in accordance with the physiological recovery conditions of the host, which corresponds with the recovery of transcripts represented by differentially expressed genes. Thus, analysis of IR genes may have broad applicability in evaluating the pre-symptomatic state based on the extent of IR of selective sensor genes, opening a promising early diagnosis of any diseases and a strategy for evaluating efficacies of several drugs based on the extent of IR restoration of these sensor genes.
Collapse
|
45
|
Gao Y, Pang AP, Ma L, Wang H, Durrani S, Li B, Wu FG, Lin F. Intron retention coupled with nonsense-mediated decay is involved in cellulase biosynthesis in cellulolytic fungi. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:53. [PMID: 35590374 PMCID: PMC9118705 DOI: 10.1186/s13068-022-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/14/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Knowledge on regulatory networks associated with cellulase biosynthesis is prerequisite for exploitation of such regulatory systems in enhancing cellulase production with low cost. The biological functions of intron retention (IR) and nonsense-mediated mRNA decay (NMD) in filamentous fungi is lack of study, let alone their roles in cellulase biosynthesis. RESULTS We found that major cellulase genes (cel7a, cel7b, and cel3a) exhibited concomitant decrease in IR rates and increase in their gene expression in T. reesei under cellulase-producing condition (cellulose and lactose) that was accompanied with a more active NMD pathway, as compared to cellulase non-producing condition (glucose). In the presence of the NMD pathway inhibitor that successfully repressed the NMD pathway, the mRNA levels of cellulase genes were sharply down-regulated, but the rates of IR in these genes were significantly up-regulated. Consistently, the cellulase activities were severely inhibited. In addition, the NMD pathway inhibitor caused the downregulated mRNA levels of two important genes of the target of rapamycin (TOR) pathway, trfkbp12 and trTOR1. The absence of gene trfkbp12 made the cellulase production in T. reesei more sensitive to the NMD pathway inhibitor. CONCLUSIONS All these findings suggest that the IR of cellulase genes regulates their own gene expression by coupling with the NMD pathway, which might involve the TOR pathway. Our results provide better understanding on intron retention, the NMD pathway, and cellulase production mechanism in filamentous fungi.
Collapse
Affiliation(s)
- Yichen Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ai-Ping Pang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haiyan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Samran Durrani
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bingzhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
46
|
Genome-Wide Analysis of Alternative Splicing (AS) Mechanism Provides Insights into Salinity Adaptation in the Livers of Three Euryhaline Teleosts, including Scophthalmus maximus, Cynoglossus semilaevis and Oncorhynchus mykiss. BIOLOGY 2022; 11:biology11020222. [PMID: 35205090 PMCID: PMC8869236 DOI: 10.3390/biology11020222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Alternative splicing (AS) is a key post-transcriptional regulatory mechanism that acts an important regulator in response to environmental stimuli in organisms. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of AS in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). The results indicated that different salinity environments changed the splicing patterns of numerous RNA splicing regulators, which might affect the splicing decisions of many downstream target genes in response to salinity changes. This study provides preliminary evidence for the important roles of AS events in salinity adaptation in teleosts. Abstract Salinity is an important environmental factor that directly affects the survival of aquatic organisms, including fish. However, the underlying molecular mechanism of salinity adaptation at post-transcriptional regulation levels is still poorly understood in fish. In the present study, 18 RNA-Seq datasets were utilized to investigate the potential roles of alternative splicing (AS) in response to different salinity environments in the livers of three euryhaline teleosts, including turbot (Scophthalmus maximus), tongue sole (Cynoglossus semilaevis) and steelhead trout (Oncorhynchus mykiss). A total of 10,826, 10,741 and 10,112 AS events were identified in the livers of the three species. The characteristics of these AS events were systematically investigated. Furthermore, a total of 940, 590 and 553 differentially alternative splicing (DAS) events were determined and characterized in the livers of turbot, tongue sole and steelhead trout, respectively, between low- and high-salinity environments. Functional enrichment analysis indicated that these DAS genes in the livers of three species were commonly enriched in some GO terms and KEGG pathways associated with RNA processing. The most common DAS genes work as RNA-binding proteins and play crucial roles in the regulation of RNA splicing. The study provides new insights into uncovering the molecular mechanisms of salinity adaptation in teleosts.
Collapse
|
47
|
Iron metabolism protein transferrin receptor 1 involves in cervical cancer progression by affecting gene expression and alternative splicing in HeLa cells. Genes Genomics 2022; 44:637-650. [DOI: 10.1007/s13258-021-01205-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
|
48
|
Kumari A, Sedehizadeh S, Brook JD, Kozlowski P, Wojciechowska M. Differential fates of introns in gene expression due to global alternative splicing. Hum Genet 2022; 141:31-47. [PMID: 34907472 PMCID: PMC8758631 DOI: 10.1007/s00439-021-02409-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023]
Abstract
The discovery of introns over four decades ago revealed a new vision of genes and their interrupted arrangement. Throughout the years, it has appeared that introns play essential roles in the regulation of gene expression. Unique processing of excised introns through the formation of lariats suggests a widespread role for these molecules in the structure and function of cells. In addition to rapid destruction, these lariats may linger on in the nucleus or may even be exported to the cytoplasm, where they remain stable circular RNAs (circRNAs). Alternative splicing (AS) is a source of diversity in mature transcripts harboring retained introns (RI-mRNAs). Such RNAs may contain one or more entire retained intron(s) (RIs), but they may also have intron fragments resulting from sequential excision of smaller subfragments via recursive splicing (RS), which is characteristic of long introns. There are many potential fates of RI-mRNAs, including their downregulation via nuclear and cytoplasmic surveillance systems and the generation of new protein isoforms with potentially different functions. Various reports have linked the presence of such unprocessed transcripts in mammals to important roles in normal development and in disease-related conditions. In certain human neurological-neuromuscular disorders, including myotonic dystrophy type 2 (DM2), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) and Duchenne muscular dystrophy (DMD), peculiar processing of long introns has been identified and is associated with their pathogenic effects. In this review, we discuss different mechanisms involved in the processing of introns during AS and the functions of these large sections of the genome in our biology.
Collapse
Affiliation(s)
- Anjani Kumari
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Saam Sedehizadeh
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - John David Brook
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Marzena Wojciechowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
- Department of Rare Human Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
| |
Collapse
|
49
|
Kwak YD, Shaw TI, Downing SM, Tewari A, Jin H, Li Y, Dumitrache LC, Katyal S, Khodakhah K, Russell HR, McKinnon PJ. Chromatin architecture at susceptible gene loci in cerebellar Purkinje cells characterizes DNA damage-induced neurodegeneration. SCIENCE ADVANCES 2021; 7:eabg6363. [PMID: 34910524 DOI: 10.1126/sciadv.abg6363] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The pathogenesis of inherited genome instability neurodegenerative syndromes remains largely unknown. Here, we report new disease-relevant murine models of genome instability–driven neurodegeneration involving disabled ATM and APTX that develop debilitating ataxia. We show that neurodegeneration and ataxia result from transcriptional interference in the cerebellum via aberrant messenger RNA splicing. Unexpectedly, these splicing defects were restricted to only Purkinje cells, disrupting the expression of critical homeostatic regulators including ITPR1, GRID2, and CA8. Abundant genotoxic R loops were also found at these Purkinje cell gene loci, further exacerbating DNA damage and transcriptional disruption. Using ATAC-seq to profile global chromatin accessibility in the cerebellum, we found a notably unique chromatin conformation specifically in Purkinje chromatin at the affected gene loci, thereby promoting susceptibility to DNA damage. These data reveal the pathogenic basis of DNA damage in the nervous system and suggest chromatin conformation as a feature in directing genome instability–associated neuropathology.
Collapse
Affiliation(s)
- Young Don Kwak
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | | | - Susanna M Downing
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | - Ambika Tewari
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yang Li
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | - Lavinia C Dumitrache
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | - Sachin Katyal
- CancerCare Manitoba Research Institute, CancerCare Manitoba and Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E OV9, Canada
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Helen R Russell
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Departments of Genetics and Cell Molecular Biology, Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Memphis, TN 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN 38105, USA
| |
Collapse
|
50
|
Wang G, Qi W, Shen L, Wang S, Xiao R, Li W, Zhang Y, Bian X, Sun L, Qiu W. The pattern of alternative splicing in lung adenocarcinoma shows novel events correlated with tumorigenesis and immune microenvironment. BMC Pulm Med 2021; 21:400. [PMID: 34872548 PMCID: PMC8647402 DOI: 10.1186/s12890-021-01776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the leading cause of cancer deaths worldwide due to the lack of early diagnostic markers and specific drugs. Previous studies have shown the association of LUAD growth with aberrant alternative splicing (AS). Herein, clinical data of 535 tumor tissues and 59 normal tissues were extracted from The Cancer Genome Atlas (TCGA) database. Each sample was analyzed using the ESTIMATE algorithm; a comparison between higher and lower score groups (stromal or immune) was made to determine the overall- and progression-free survival-related differentially expressed AS (DEAS) events. We then performed unsupervised clustering of these DEASs, followed by determining their relationship with survival rate, immune cells, and the tumor microenvironment (TME). Next, two prognostic signatures were developed using bioinformatics tools to explore the prognosis of cases with LUAD. Five OS- and six PFS-associated DEAS events were implemented to establish a prognostic risk score model. When compared to the high-risk group (HRG), the PFS and OS of the low-risk group (LRG) were found to be considerable. Additionally, a better prognosis was found considerably associated with the ESTIMATE score of the patients as well as immune cells infiltration. Our analysis of AS events in LUAD not only helps to clarify the tumorigenesis mechanism of AS but also provides ideas for revealing potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Gongjun Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Medcine, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liwei Shen
- Department of Oncology, Women and Children's Hospital, Qingdao University, Qingdao, Shandong, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruoxi Xiao
- Department of Medcine, Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Medcine, Qingdao University, Qingdao, China
| | - Yuqi Zhang
- Department of Medcine, Qingdao University, Qingdao, China
| | - Xiaoqian Bian
- Department of Medcine, Qingdao University, Qingdao, China
| | - Libin Sun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|