1
|
Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blunden G. Some Biological Properties of Curcumin: A Review. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100613] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Curcumin (diferuloyl methane), a small-molecular weight compound isolated from the roots of Curcuma longa L. (family Zingiberaceae), has been used traditionally for centuries in Asia for medicinal, culinary and other purposes. A large number of in vitro and in vivo studies in both animals and man have indicated that curcumin has strong antioxidant, anti-carcinogenic, anti-inflammatory, anti-angiogenic, antispasmodic, antimicrobial, anti-parasitic and other activities. The mechanisms of some of these actions have recently been intensively investigated. Curcumin inhibits the promotion/ progression stage of carcinogenesis by induction of apoptosis and the arrest of cancer cells in the S, G2/M cell cycle phase. The compound inhibits the activity of growth factor receptors. The anti-inflammatory properties of curcumin are mediated through their effects on cytokines, lipid mediators, eicosanoids and proteolytic enzymes. Curcumin scavenges the superoxide radical, hydrogen peroxide and nitric oxide, and inhibits lipid peroxidation. These actions may be the basis for many of its pharmacological and therapeutic properties. Curcumin is a nutraceutical of low toxicity, which has been used successfully in a number of medical conditions that include cataracts, cystic fibrosis, and prostate and colon cancers.
Collapse
Affiliation(s)
- Badreldin H. Ali
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Husnia Marrif
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | | | - Amel O. Bakheit
- College of Veterinary Medicine and Animal Production, SUST, Sudan
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
2
|
Tosco A, Villella VR, Castaldo A, Kroemer G, Maiuri L, Raia V. Repurposing therapies for the personalised treatment of cystic fibrosis. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1483231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Antonella Tosco
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Valeria R. Villella
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alice Castaldo
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Guido Kroemer
- Equipe11 labellisée Ligue Nationale Contrele Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Paris, Sorbonne Paris Cité, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, HôpitalEuropéen Georges Pompidou, AP-HP, Paris, France
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Valeria Raia
- Regional Cystic Fibrosis Center, Pediatric Unit, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| |
Collapse
|
3
|
Cavaleri F. Presenting a New Standard Drug Model for Turmeric and Its Prized Extract, Curcumin. Int J Inflam 2018; 2018:5023429. [PMID: 29568482 PMCID: PMC5820622 DOI: 10.1155/2018/5023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023] Open
Abstract
Various parts of the turmeric plant have been used as medicinal treatment for various conditions from ulcers and arthritis to cardiovascular disease and neuroinflammation. The rhizome's curcumin extract is the most studied active constituent, which exhibits an expansive polypharmacology with influence on many key inflammatory markers. Despite the expansive reports of curcucmin's therapeutic value, clinical reliability and research repeatability with curcumin treatment are still poor. The pharmacology must be better understood and reliably mapped if curcumin is to be accepted and used in modern medical applications. Although the polypharmacology of this extract has been considered, in mainstream medicine, to be a drawback, a perspective change reveals a comprehensive and even synergistic shaping of the NF-kB pathway, including transactivation. Much of the inconsistent research data and unreliable clinical outcomes may be due to a lack of standardization which also pervades research standard samples. The possibility of other well-known curcumin by-products contributing in the polypharmacology is also discussed. A new flowchart of crosstalk in transduction pathways that lead to shaping of nuclear NF-kB transactivation is generated and a new calibration or standardization protocol for the extract is proposed which could lead to more consistent data extraction and improved reliability in therapy.
Collapse
Affiliation(s)
- Franco Cavaleri
- Biologic Pharmamedical Research, 688-2397 King George Blvd., White Rock, BC, Canada V4A7E9
| |
Collapse
|
4
|
He YJ, Kuchta K, Lv X, Lin Y, Ye GR, Liu XY, Song HD, Wang LX, Kobayashi Y, Shu JC. Curcumin, the main active constituent of turmeric (Curcuma longa L.), induces apoptosis in hepatic stellate cells by modulating the abundance of apoptosis-related growth factors. ACTA ACUST UNITED AC 2015; 70:281-5. [PMID: 26609862 DOI: 10.1515/znc-2015-4143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/09/2015] [Indexed: 01/06/2023]
Abstract
Abstract
In order to elucidate the mechanism of action of curcumin against hepatic fibrosis, cultured rat hepatic stellate cells (HSC) (HSC-T6) were incubated with curcumin for 24 h, after which apoptosis was measured by flow-cytometry. The protein levels of the pro-apoptotic factors Fas and p53b as well as of the anti-apoptotic factor Bcl-2 were monitored by immunocytochemical ABC staining after incubation with curcumin for 24 h. In the case of 20 μM curcumin, not only was the respective apoptosis index increased, but also the abundance of the pro-apoptotic factors Fas and p53 were amplified, whereas that of the anti-apoptotic factor Bcl-2 decreased. All these effects were highly reproducible (P<0.05). Consequently, curcumin has an up-regulating effect on pro-apoptotic factors like Fas and p53 as well as a down-regulating effect of the anti-apoptotic factor Bcl-2, thus inducing apoptosis in HSC.
Collapse
Affiliation(s)
- Ya-Jun He
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Kenny Kuchta
- National Institute of Health Sciences, Division of Pharmacognosy, Phytochemistry and Narcotics, Setagaya-ku, Kamiyoga 1-18-1, 158-8501 Tokyo, Japan
| | - Xia Lv
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Yu Lin
- Medical Corporation Soujikai, 541-0046 Osaka, Chuo, Hirano 2-2-2, Japan
| | - Guo-Rong Ye
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Xu-You Liu
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Hui-Dong Song
- Department of Gastroenterology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia
| | - Yuta Kobayashi
- Faculty of Medicine, Shimane University, 693-8501 Izumo, Enya 89-1, Japan
| | | |
Collapse
|
5
|
Tildy BE, Rogers DF. Therapeutic options for hydrating airway mucus in cystic fibrosis. Pharmacology 2015; 95:117-32. [PMID: 25823699 DOI: 10.1159/000377638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND In cystic fibrosis (CF), genetic mutations in the CF transmembrane conductance regulator (CFTR) gene cause reduced chloride efflux from ciliated airway epithelial cells. This results in a reduction in periciliary liquid (PCL) depth of the airway surface liquid due to associated reduced water efflux. PCL layer dehydration reduces mucociliary clearance (MCC), leading to airway obstruction (reduced airflow and inflammation due to pathogen invasion) with mucus plug formation. SUMMARY Rehydrating mucus increases MCC. Mucus hydration can be achieved by direct hydration (administering osmotic agents to set up an osmotic gradient), using CFTR modulators to correct dysfunctional CFTR, or it can be achieved pharmacologically (targeting other ion channels on airway epithelial cells). Key Messages: The molecular mechanisms of several therapies are discussed in the context of pre-clinical and clinical trial studies. Currently, only the osmotic agent 7% hypertonic saline and the CFTR 'potentiator' VX-770 (ivacaftor) are used clinically to hydrate mucus. Emerging therapies include the osmotic agent mannitol (Bronchitol), the intracellular Ca(2+)-raising agent Moli1901/lancovutide, the CFTR potentiator sildenafil [phosphodiesterase type 5 (PDE5) inhibitor] and the CFTR 'corrector' VX-809 (lumacaftor). Other CFTR correctors (e.g. 'chemical chaperones') are also showing pre-clinical promise.
Collapse
|
6
|
Zhang X, Chen Q, Wang Y, Peng W, Cai H. Effects of curcumin on ion channels and transporters. Front Physiol 2014; 5:94. [PMID: 24653706 PMCID: PMC3949287 DOI: 10.3389/fphys.2014.00094] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/21/2014] [Indexed: 01/04/2023] Open
Abstract
Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], a polyphenolic compound isolated from the rhizomes of Curcuma longa (turmeric), has been shown to exhibit a wide range of pharmacological activities including anti-inflammatory, anti-cancer, anti-oxidant, anti-atherosclerotic, anti-microbial, and wound healing effects. These activities of curcumin are based on its complex molecular structure and chemical features, as well as its ability to interact with multiple signaling molecules. The ability of curcumin to regulate ion channels and transporters was recognized a decade ago. The cystic fibrosis transmembrane conductance regulator (CFTR) is a well-studied ion channel target of curcumin. During the process of studying its anti-cancer properties, curcumin was found to inhibit ATP-binding cassette (ABC) family members including ABCA1, ABCB1, ABCC1, and ABCG2. Recent studies have revealed that many channels and transporters are modulated by curcumin, such as voltage-gated potassium (Kv) channels, high-voltage-gated Ca(2+) channels (HVGCC), volume-regulated anion channel (VRAC), Ca(2+) release-activated Ca(2+) channel (CRAC), aquaporin-4 (AQP-4), glucose transporters, etc., In this review, we aim to provide an overview of the interactions of curcumin with different types of ion channels and transporters and to help better understand and integrate the underlying molecular mechanisms of the multiple pharmacological activities of curcumin.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Qijing Chen
- Department of Pharmacology, School of Pharmacy, Fudan University Shanghai, China
| | - Yunman Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Wen Peng
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai, China
| | - Hui Cai
- Renal Division, Department of Medicine, Department of Physiology, Emory University School of Medicine Atlanta, GA, USA ; Section of Nephrology, Atlanta Veterans Administration Medical Center Decatur, GA, USA
| |
Collapse
|
7
|
Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 2013; 12:2623-40. [PMID: 23339312 DOI: 10.2174/1568026611212220014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation are widely implicated in an increasing number of human diseases providing for new therapeutic opportunities targeting protein homeostasis (proteostasis). The cellular response to proteotoxicity is highly regulated by stress signaling pathways, molecular chaperones, transport and clearance machineries that function as a proteostasis network (PN) to protect the stability and functional properties of the proteome. Consequently, the PN is essential at the cellular and organismal level for development and lifespan. However, when challenged during aging, stress, and disease, the folding and clearance machineries can become compromised leading to both gain-of-function and loss-of-function proteinopathies. Here, we assess the role of small molecules that activate the heat shock response, the unfolded protein response, and clearance mechanisms to increase PN capacity and protect cellular proteostasis against proteotoxicity. We propose that this strategy to enhance cell stress pathways and chaperone activity establishes a cytoprotective state against misfolding and/or aggregation and represents a promising therapeutic avenue to prevent the cellular damage associated with the variety of protein conformational diseases.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University, Durham, NC, USA
| | | |
Collapse
|
8
|
Guerriero CJ, Brodsky JL. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 2012; 92:537-76. [PMID: 22535891 DOI: 10.1152/physrev.00027.2011] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein folding is a complex, error-prone process that often results in an irreparable protein by-product. These by-products can be recognized by cellular quality control machineries and targeted for proteasome-dependent degradation. The folding of proteins in the secretory pathway adds another layer to the protein folding "problem," as the endoplasmic reticulum maintains a unique chemical environment within the cell. In fact, a growing number of diseases are attributed to defects in secretory protein folding, and many of these by-products are targeted for a process known as endoplasmic reticulum-associated degradation (ERAD). Since its discovery, research on the mechanisms underlying the ERAD pathway has provided new insights into how ERAD contributes to human health during both normal and diseases states. Links between ERAD and disease are evidenced from the loss of protein function as a result of degradation, chronic cellular stress when ERAD fails to keep up with misfolded protein production, and the ability of some pathogens to coopt the ERAD pathway. The growing number of ERAD substrates has also illuminated the differences in the machineries used to recognize and degrade a vast array of potential clients for this pathway. Despite all that is known about ERAD, many questions remain, and new paradigms will likely emerge. Clearly, the key to successful disease treatment lies within defining the molecular details of the ERAD pathway and in understanding how this conserved pathway selects and degrades an innumerable cast of substrates.
Collapse
Affiliation(s)
- Christopher J Guerriero
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
9
|
Sirimulla S, Pal R, Raparla M, Bailey JB, Duran R, Altamirano AM, Herndon WC, Narayan M. Identification of Novel Nitrosative Stress Inhibitors through Virtual Screening and Experimental Evaluation. Mol Inform 2012; 31:167-72. [DOI: 10.1002/minf.201100044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 11/02/2011] [Indexed: 11/07/2022]
|
10
|
De Boeck C, Cuppens H. Ion channel regulators for the treatment of cystic fibrosis. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/thy.11.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Srivastava RM, Singh S, Dubey SK, Misra K, Khar A. Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol 2010; 11:331-41. [PMID: 20828642 DOI: 10.1016/j.intimp.2010.08.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/22/2010] [Indexed: 12/13/2022]
Abstract
Inflammation is a disease of vigorous uncontrolled activated immune responses. Overwhelming reports have suggested that the modulation of immune responses by curcumin plays a dominant role in the treatment of inflammation and metabolic diseases. Observations from both in-vitro and in-vivo studies have provided strong evidence towards the therapeutic potential of curcumin. These studies have also identified a plethora of biological targets and intricate mechanisms of action that characterize curcumin as a potent 'drug' for numerous ailments. During inflammation the functional influence of lymphocytes and the related cross-talk can be modulated by curcumin to achieve the desired immune status against diseases. This review describes the regulation of immune responses by curcumin and effectiveness of curcumin in treatment of diseases of diverse nature.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Department of Otolaryngology, Hillman Cancer Centre, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
12
|
Yang HT, Sun CF, Cui CC, Xue XL, Zhang AF, Li HB, Wang DQ, Shu J. HERG-F463L potassium channels linked to long QT syndrome reduce I(Kr) current by a trafficking-deficient mechanism. Clin Exp Pharmacol Physiol 2010; 36:822-7. [PMID: 19215240 DOI: 10.1111/j.1440-1681.2009.05150.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Congenital long QT syndrome (LQTS) is a genetically heterogeneous disease. The aim of the present study was to identify the gene mutation in a Chinese family with LQTS and investigate the functional changes associated with the mutation. 2. Polymerase chain reaction and DNA sequencing were used to screen for the KCNH2 mutation in the proband. A mutant F463L HERG channel was expressed in HEK293 cells using a lipofectamine method. The IKr current was recorded using the whole-cell voltage clamp technique. Expression of HERG protein was detected by western blotting and the subcellular location of HERG channels in cell was analysed by confocal microscopy. 3. The novel heterozygous missense mutation F463L in KCNH2 was detected. We found that the F463L mutation did not lead to any expression of detectable I(Kr) current, which was consistent with western blotting analysis indicating that the F463L mutation only expressed a band at 135 kDa. When coexpressed with wild-type HERG, F463L HERG exhibited strong dominant-negative current suppression, resulting in a decrease in I(Kr) current density, and induced a positive shift in the voltage dependence of activation, as well as interference with trafficking of wild-type channel protein. The processing of the F463L channels was partly corrected in cells incubated in E4031. In addition, confocal microscopy demonstrated that F463L subunits could be inserted into the cell membrane when forming heteromultimeric channels with wild-type channel subunits. 4. The results of the present study suggest that the F463L mutation leads to loss of function in HERG through a dominant-negative effect caused by impaired trafficking of the channel.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Department of Cardiology, First Affiliated Hospital, Ion Channel Disease Laboratory, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pal R, Cristan EA, Schnittker K, Narayan M. Rescue of ER oxidoreductase function through polyphenolic phytochemical intervention: implications for subcellular traffic and neurodegenerative disorders. Biochem Biophys Res Commun 2010; 392:567-71. [PMID: 20097158 DOI: 10.1016/j.bbrc.2010.01.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 11/28/2022]
Abstract
Protein disulfide isomerase (PDI), the chief endoplasmic reticulum (ER) resident oxidoreductase chaperone that catalyzes maturation of disulfide-bond-containing proteins is involved in the pathogenesis of both Parkinson's (PD) and Alzheimer's (AD) diseases. S-nitrosylation of PDI cysteines due to nitrosative stress is associated with cytosolic debris accumulation and Lewy-body aggregates in PD and AD brains. We demonstrate that the polyphenolic phytochemicals curcumin and masoprocol can rescue PDI from becoming S-nitrosylated and maintain its catalytic function under conditions mimicking nitrosative stress by forming stable NOx adducts. Furthermore, both polyphenols intervene to prevent the formation of PDI-resistant polymeric misfolded protein forms that accumulate upon exposure to oxidative stress. Our study suggests that curcumin and masoprocol can serve as lead-candidate prophylactics for reactive oxygen species induced chaperone damage, protein misfolding and neurodegenerative disease; importantly, they can play a vital role in sustaining traffic along the ER's secretory pathway by preserving functional integrity of PDI.
Collapse
Affiliation(s)
- Rituraj Pal
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Cystic fibrosis (CF) is characterised by respiratory and pancreatic deficiencies that stem from the loss of fully functional CFTR (CF transmembrane conductance regulator) at the membrane of epithelial cells. Current treatment modalities aim to delay the deterioration in lung function, Which is mostly responsible for the relatively short life expectancy of CF sufferers; however none have so far successfully dealt with the underlying molecular defect. Novel pharmacological approaches to ameliorate the lack of active CFTR in respiratory epithelial cells are beginning to address more of the pathophysiological defects caused by CFTR mutations. However, CFTR gene replacement by gene therapy remains the most likely option for addressing the basic defects, including ion transport and inflammatory functions of CFTR. In this chapter, We will review the latest preclinical and clinical advances in pharmacotherapy and gene therapy for CF lung disease.
Collapse
|
15
|
Norez C, Antigny F, Noel S, Vandebrouck C, Becq F. A Cystic Fibrosis Respiratory Epithelial Cell Chronically Treated by Miglustat Acquires a Non–Cystic Fibrosis–Like Phenotype. Am J Respir Cell Mol Biol 2009; 41:217-25. [DOI: 10.1165/rcmb.2008-0285oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Proesmans M, Vermeulen F, De Boeck K. What's new in cystic fibrosis? From treating symptoms to correction of the basic defect. Eur J Pediatr 2008; 167:839-49. [PMID: 18389279 DOI: 10.1007/s00431-008-0693-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/11/2008] [Indexed: 01/18/2023]
Abstract
Chronic relentless lung infection and pancreatic insufficiency are the cardinal features of cystic fibrosis (CF), a life-shortening autosomal recessive disease. Mutations in the 'cystic fibrosis transmembrane conductance regulator' (CFTR) are currently classified into five groups according to their repercussion on CFTR protein synthesis and its chloride channel function. Stop codon mutations (class I) result in a truncated nonfunctional CFTR, class II mutations consist of aberrantly folded CFTR protein that is degraded by the cell quality control system, while class III mutations lead to defective regulation of the CFTR protein and, consequently, the absence of CFTR function. These three classes usually lead to a classic CF phenotype with pancreatic insufficiency. CFTR mutations that lead to defective chloride conductance are grouped together in class IV. Class V mutations interfere with normal transcription, thereby reducing the amount of otherwise normal CFTR. These latter two classes are mostly associated with a milder expression of the disease. In the absence of CFTR function, unrestrained Na+ absorption and the failure of active Cl- secretion lead to a decreased airway surface liquid (ASL) volume and subsequent failure of normal mucociliary clearance. This review highlights recent therapeutic strategies that either target the underlying defect or the early steps in CF pathophysiology. To date, gene therapy has failed to demonstrate a clinical benefit after repeated administration. Mutation-specific chloride channel correction pharmacotherapy is currently being developed, an example of which is PTC124, a new chemical compound that selectively induces read-through of premature stop codons. However, clinical efficacy for most of the compounds still has to be proven in large clinical trials. The positive effect of nebulised hypertonic saline on mucociliary clearance is based on the restoration of ASL height. Recent advances in the current treatment of lung infection and inflammation are highlighted in this review. Lung transplantation should be considered in terminally ill patients, but the timing of the transplantation is crucial: transplanting too early shortens survival, while transplanting too late results in patients dying on the waiting list.
Collapse
Affiliation(s)
- Marijke Proesmans
- Department of Pediatrics, University Hospital of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | | | | |
Collapse
|
17
|
Illek B, Maurisse R, Wahler L, Kunzelmann K, Fischer H, Gruenert DC. Cl transport in complemented CF bronchial epithelial cells correlates with CFTR mRNA expression levels. Cell Physiol Biochem 2008; 22:57-68. [PMID: 18769032 PMCID: PMC2927120 DOI: 10.1159/000149783] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2008] [Indexed: 12/12/2022] Open
Abstract
Little is known about the relationship between CF transmembrane conductance regulator (CFTR) gene expression and the corresponding transport of Cl. The phenotypic characteristics of polarized DeltaF508 homozygote CF bronchial epithelial (CFBE41o-) cells were evaluated following transfection with episomal expression vector containing either full-length (6.2kb) wild type (wt) and (4.7kb) DeltaF508CFTR cDNA. Forskolin-stimulated Cl secretion in two clones expressing the full-length wild type CFTR was assessed; clone c7-6.2wt gave 13.4+/-2.5 microA/cm(2) and clone c10-6.2wt showed 41.3+/-25.3 microA/cm(2). Another clone (c4-4.7DeltaF) complemented with the DeltaF508 CFTR cDNA showed high and stable expression of vector-derived DeltaF508 CFTR mRNA and a small cAMP-stimulated Cl current (4.7+/-0.7 microA/cm(2)) indicating DeltaF508CFTR trafficking to the plasma membrane at physiological temperatures. Vector-driven CFTR mRNA levels were 5-fold (c7-6.2wt), 14-fold (c10-6.2wt), and 27-fold (c7-4.7DeltaF) higher than observed in normal bronchial epithelial cells (16HBE14o-) endogenously expressing wtCFTR. Assessment of CFTR mRNA levels and CFTR function showed that cAMP-stimulated CFTR Cl currents were 33%, 167% and 24%, respectively, of those in 16HBE14o- cells. The data suggest that transgene expression needs to be significantly higher than endogenously expressed CFTR to restore functional wtCFTR Cl transport to levels sufficient to reverse CF pathology.
Collapse
Affiliation(s)
- Beate Illek
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Rosalie Maurisse
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Logan Wahler
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | | | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Dieter C. Gruenert
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA and Department of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Abstract
Drug-membrane interactions are well known but poorly understood. Here we describe dual measurements of membrane thickness change and membrane area change due to the binding of the amphipathic drug curcumin. The combined results allowed us to analyze the binding states of a drug to lipid bilayers, one on the water-membrane interface and another in the hydrocarbon region of the bilayer. The transition between the two states is strongly affected by the elastic energy of membrane thinning (or, equivalently, area stretching) caused by interfacial binding. The data are well described by a two-state model including this elastic energy. The binding of curcumin follows a common pattern of amphipathic peptides binding to membranes, suggesting that the binding states of curcumin are typical for amphipathic drugs.
Collapse
|
19
|
Clunes MT, Boucher RC. Front-runners for pharmacotherapeutic correction of the airway ion transport defect in cystic fibrosis. Curr Opin Pharmacol 2008; 8:292-9. [PMID: 18468487 DOI: 10.1016/j.coph.2008.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 01/08/2023]
Abstract
Although cystic fibrosis (CF) patients display multiorgan dysfunction (e.g. pancreas, gut, and lung) it is lung disease that is the leading cause of premature death in these patients. CF lung disease is characterized by persistent pulmonary infection and mucus plugging of the airways initiated by the failure of solute transport across the airway epithelium. Many drug therapies aim to alleviate the secondary characteristics of CF lung disease; however, new therapies in development are targeted at correcting the ion transport deficiency of CF. The goal is to hydrate airway surfaces by stimulating secretion (through activation of the CF transmembrane conductance regulator and calcium-activated chloride channels), and/or inhibiting absorption (through the epithelial sodium channel) thereby stimulating healthy mucociliary clearance. If mucociliary clearance can be stimulated sufficiently from an early age, then there is the possibility that secondary lung infection may be eradicated from the syndrome of CF disease.
Collapse
Affiliation(s)
- Mark T Clunes
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | |
Collapse
|
20
|
Abstract
Curcumin, a commonly available spice and alternative medicine, has been tested in the laboratory and the clinic for activity against a wide range of diseases. It is thought to possess antiinflammatory and antioxidant activities and may also function to inhibit histone acetyl transferases, which activate gene expression via chromatin remodeling. Two reports in this issue of the JCI, by Morimoto et al. and Li et al., suggest that curcumin may inhibit cardiac hypertrophy in rodent models and provide beneficial effects after myocardial infarction or in the setting of hypertension (see the related articles beginning on pages 868 and 879, respectively). These results will spur further mechanistic inquiry into the role of chromatin remodeling in the regulation of cardiac homeostasis.
Collapse
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
21
|
Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 2008; 10:511-45. [PMID: 18370854 DOI: 10.1089/ars.2007.1769] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin is a natural polyphenol used in ancient Asian medicine. Since the first article referring to the use of curcumin to treat human disease was published in The Lancet in 1937, >2,600 research studies using curcumin or turmeric have been published in English language journals. The mechanisms implicated in the inhibition of tumorigenesis by curcumin are diverse and appear to involve a combination of antiinflammatory, antioxidant, immunomodulatory, proapoptotic, and antiangiogenic properties via pleiotropic effects on genes and cell-signaling pathways at multiple levels. The potentially adverse sequelae of curcumin's effects on proapoptotic genes, particularly p53, represent a cause for current debate. When curcumin is combined with some cytotoxic drugs or certain other diet-derived polyphenols, synergistic effects have been demonstrated. Although curcumin's low systemic bioavailability after oral dosing may limit access of sufficient concentrations for pharmacologic effects in tissues outside the gastrointestinal tract, chemical analogues and novel delivery methods are in preclinical development to overcome this barrier. This article provides an overview of the extensive published literature on the use of curcumin as a therapy for malignant and inflammatory diseases and its potential use in the treatment of degenerative neurologic diseases, cystic fibrosis, and cardiovascular diseases. Despite the breadth of the coverage, particular emphasis is placed on the prevention and treatment of human cancers.
Collapse
|
22
|
Abstract
Interaction of curcumin with lipid bilayers is not well understood. A recent experiment showed that curcumin significantly affected the single-channel lifetime of gramicidin in a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer without affecting its single-channel conductance. We performed two experiments to understand this result. By isothermal titration calorimetry, we measured the partition coefficient of curcumin binding to DOPC bilayers. By x-ray lamellar diffraction, we measured the thickness change of DOPC bilayers as a function of the curcumin/lipid ratio. A nonlinear membrane-thinning effect by curcumin was discovered. The gramicidin data were qualitatively interpreted by the combination of isothermal titration calorimetry and x-ray results. We show that not only does curcumin thin the lipid bilayer, it might also weaken its elasticity moduli. The result implies that curcumin may affect the function of membrane proteins by modifying the properties of the host membrane.
Collapse
|
23
|
Robert R, Carlile GW, Pavel C, Liu N, Anjos SM, Liao J, Luo Y, Zhang D, Thomas DY, Hanrahan JW. Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol Pharmacol 2008; 73:478-89. [PMID: 17975008 DOI: 10.1124/mol.107.040725] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The F508del mutation impairs trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) to the plasma membrane and results in a partially functional chloride channel that is retained in the endoplasmic reticulum and degraded. We recently used a novel high-throughput screening (HTS) assay to identify small-molecule correctors of F508del CFTR trafficking and found several classes of hits in a screen of 2000 compounds (Carlile et al., 2007). In the present study, we have extended the screen to 42,000 compounds and confirmed sildenafil as a corrector using this assay. We evaluated structural analogs of sildenafil and found that one such molecule called KM11060 (7-chloro-4-{4-[(4-chlorophenyl) sulfonyl] piperazino}quinoline) was surprisingly potent. It partially restored F508del trafficking and increased maturation significantly when baby hamster kidney (BHK) cells were treated with 10 nM for 24 h or 10 muM for 2 h. Partial correction was confirmed by the appearance of mature CFTR in Western blots and by using halide flux, patch-clamp, and short-circuit current measurements in unpolarized BHK cells, monolayers of human airway epithelial cells (CFBE41o(-)), and intestines isolated from F508del-CFTR mice (Cftr(tm1Eur)) treated ex vivo. Small-molecule correctors such as KM11060 may serve as useful pharmacological tools in studies of the F508del-CFTR processing defect and in the development of cystic fibrosis therapeutics.
Collapse
Affiliation(s)
- Renaud Robert
- McIntyre Building, Physiology Department, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev Technol 2007; 5:567-76. [PMID: 17767425 DOI: 10.1089/adt.2007.064] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipid peroxidation has been implicated in a variety of diseases. 4-Hydroxy-2-nonenal (HNE), a major oxidation by-product, is cytotoxic, mutagenic, and genotoxic, being involved in disease pathogenesis. Naturally occurring pharmacologically active small molecules are very attractive as natural nonsteroidal anti-inflammatory agents. Interest has greatly increased recently in the pharmacotherapeutic potential of curcumin, the yellow pigment found in the rhizomes of the perennial herb Curcuma longa (turmeric). Curcumin is efficacious against colon cancer, cystic fibrosis, and a variety of other disorders. Curcumin's full pharmacological potential is limited owing to its extremely limited water solubility. We report here that the water solubility of curcumin could be increased from 0.6 microg/ml to 7.4 microg/ml (12-fold increase) by the use of heat. Spectrophotometric (400-700 nm) and mass spectrometric profiling of the heat-extracted curcumin displays no significant heat-mediated disintegration of curcumin. Using an enzyme-linked immunosorbent assay that employed HNE modification of solid-phase antigen, we found that the heat-solubilized curcumin inhibited HNE-protein modification by 80%. Thus, inhibition of HNE modification may be a mechanism by which curcumin exerts its effect. We also report a simple assay to detect curcumin spectrophotometrically. Curcumin was solubilized in methanol and serially diluted in methanol to obtain a set of standards that were then read for optical density at 405 nm. Curcumin in the heat-solubilized samples was determined from this standard. Heat-solubilized curcumin should be considered in clinical trials involving curcumin, especially in the face of frustrating results obtained regarding curcumin-mediated correction of cystic fibrosis defects.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | |
Collapse
|
25
|
Gomez G, Mansouraty G, Gardea J, Narayan M. Acceleration of oxidative protein folding by curcumin through novel non-redox chemistry. Biochem Biophys Res Commun 2007; 364:561-6. [PMID: 17959149 DOI: 10.1016/j.bbrc.2007.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/08/2007] [Indexed: 11/20/2022]
Abstract
Curcumin, the major constituent of turmeric is a known antioxidant. We have examined the oxidative folding of the model four-disulfide-bond-containing protein bovine pancreatic ribonuclease A (RNase A) in its presence; results indicate that RNase A regeneration rate increases in a curcumin-dependent manner. Examination of the native tendency of the fully-reduced polypeptide and the stability of key folding intermediates suggests that the increased oxidative folding rate can be attributed to native-like elements induced within the fully-reduced polypeptide and the stabilization of native-like species by this non-redox-active natural product. Our results provide a template for the design of curcuminoid-based synthetic small-molecule fold catalysts that accelerate the folding of ER-processed proteins; this assumes significance given that nitrosative stress and dysfunction of the ER-resident oxidoreductase protein disulfide isomerise due to S-nitrosylation are factors associated with the pathogenesis of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Gabriel Gomez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | |
Collapse
|
26
|
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. CURCUMIN: THE INDIAN SOLID GOLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:1-75. [PMID: 17569205 DOI: 10.1007/978-0-387-46401-5_1] [Citation(s) in RCA: 877] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antifungal Agents/chemistry
- Antifungal Agents/pharmacology
- Antifungal Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/chemistry
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Curcuma/chemistry
- Curcumin/analogs & derivatives
- Curcumin/chemistry
- Curcumin/metabolism
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Humans
- India
- Medicine, Ayurvedic
- Models, Biological
- Molecular Structure
- Neoplasms/drug therapy
- Phytotherapy
- Plants, Medicinal
- Spices
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
27
|
Amaral MD, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci 2007; 28:334-41. [PMID: 17573123 DOI: 10.1016/j.tips.2007.05.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/17/2007] [Accepted: 05/29/2007] [Indexed: 12/19/2022]
Abstract
One of the major challenges facing the pharmaceutical field is the identification of novel, 'druggable' targets common to distinct diseases that, despite their clinical diversity, share the same basic molecular defect(s) - thus, being termed 'horizontal diseases'. Membrane proteins constitute one of the largest families in the human genome and, given their major roles in cells and organisms, they are relevant to common human disorders such as cardiovascular disease and cancer, but also to rare genetic conditions such as cystic fibrosis (CF). Here, we review therapeutic approaches to correcting the basic defect in CF, which is caused mainly by the intracellular retention of a misfolded protein, and focus on various recent drug-discovery strategies for this important and paradigmatic disease. These strategies have possible applications in many membrane protein disorders, including other channelopathies. The mechanisms of action of potent and specific compounds, representing promising drug leads for CF pharmacotherapy, are explained and discussed.
Collapse
Affiliation(s)
- Margarida D Amaral
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal.
| | | |
Collapse
|
28
|
Clunes MT, Boucher RC. Cystic Fibrosis: The Mechanisms of Pathogenesis of an Inherited Lung Disorder. ACTA ACUST UNITED AC 2007; 4:63-72. [PMID: 18560471 DOI: 10.1016/j.ddmec.2007.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis patients exhibit lung disease consistent with a failure of innate airway defense mechanisms. The link between abnormal ion transport and disease initiation and progression is not fully understood, but airway mucus dehydration seems paramount in the initiation of CF lung disease. New therapies are currently in development that target the ion transport defects in CF with the intention of rehydrating airway surfaces.
Collapse
Affiliation(s)
- Mark T Clunes
- For The Virtual Lung Project, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | | |
Collapse
|
29
|
Bentzen PJ, Lang E, Lang F. Curcumin induced suicidal erythrocyte death. Cell Physiol Biochem 2007; 19:153-64. [PMID: 17310109 DOI: 10.1159/000099203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2006] [Indexed: 12/21/2022] Open
Abstract
The natural nutrient component Curcumin with anti-inflammatory and antitumor activity has previously been shown to stimulate apoptosis of several nucleated cell types. The present study has been performed to explore whether Curcumin could similarly induce suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are phagocytosed and thus rapidly cleared from circulating blood. Erythrocyte membrane scrambling may be triggered by increase of cytosolic Ca(2+) activity or formation of ceramide. To test for eryptosis, erythrocyte phosphatidylserine exposure has been estimated from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to Curcumin (= 1 microM) increased annexin V binding and decreased forward scatter, pointing to phosphatidylserine exposure at the cell surface and cell shrinkage. According to Fluo3 fluorescence Curcumin increased cytosolic Ca(2+) activity and according to immunofluorescence Curcumin increased ceramide formation. As shown previously, hypertonic shock (addition of 550mM sucrose), chloride removal and glucose depletion decreased the forward scatter and increased annexin V binding. The effects on annexin binding were enhanced in the presence of Curcumin. Exposure to Curcumin did, however, not significantly enhance the shrinking effect of hypertonic shock or Cl(-) removal and reversed the shrinking effect of glucose withdrawal. The present observations disclose a proeryptotic effect of Curcumin which may affect the life span of circulating erythrocytes.
Collapse
Affiliation(s)
- Peter J Bentzen
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
30
|
Mahmmoud YA. Modulation of protein kinase C by curcumin; inhibition and activation switched by calcium ions. Br J Pharmacol 2006; 150:200-8. [PMID: 17160011 PMCID: PMC2042896 DOI: 10.1038/sj.bjp.0706970] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have identified the natural polyphenol curcumin as a protein kinase C (PKC) inhibitor. In contrast, we found significant stimulation of PKC activity following curcumin treatment. Thus, the mechanism of curcumin interaction with PKC was investigated. EXPERIMENTAL APPROACH We employed phosphorylation assays in the presence of soluble or membrane-bound PKC substrates, followed by SDS-PAGE, autoradiography and phosphorylation intensity measurements. KEY RESULTS Curcumin inhibited PKC in the absence of membranes whereas stimulation was observed in the presence of membranes. Further analysis indicated that curcumin decreased PKC activity by competition with Ca(2+) stimulation of the kinase, resulting in inhibition of activity at lower Ca(2+) concentrations and stimulation at higher Ca(2+) concentrations. The role of the membrane is likely to be facilitation of Ca(2+)-binding to the kinase, thus relieving the curcumin inhibition observed at limited Ca(2+) concentrations. Curcumin was found to mildly stimulate the catalytic subunit of PKC, which does not require Ca(2+) for activation. In addition, studies on Ca(2+)-independent PKC isoforms as well as another curcumin target (the sarcoplasmic reticulum Ca(2+)-ATPase) confirmed a correlation between Ca(2+) concentration and the curcumin effects. CONCLUSIONS AND IMPLICATIONS Curcumin competes with Ca(2+) for the regulatory domain of PKC, resulting in a Ca(2+)-dependent dual effect on the kinase. We propose that curcumin interacts with the Ca(2+)-binding domains in target proteins. To our knowledge, this is the first study that defines an interaction domain for curcumin, and provides a rationale for the broad specificity of this polyphenol as a chemopreventive drug.
Collapse
Affiliation(s)
- Y A Mahmmoud
- Institute of Physiology and Biophysics, Ole Worms Allé 1185, University of Aarhus, Aarhus C, Denmark.
| |
Collapse
|
31
|
Hol EM, Fischer DF, Ovaa H, Scheper W. Ubiquitin proteasome system as a pharmacological target in neurodegeneration. Expert Rev Neurother 2006; 6:1337-47. [PMID: 17009921 DOI: 10.1586/14737175.6.9.1337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ubiquitinated protein aggregates are observed in the brains of Alzheimer's, Parkinson's and Huntington's disease patients and in other neurodegenerative disorders. These aggregates indicate that the ubiquitin proteasome system may be impaired in these diseases. To date no therapy is available that specifically targets this system, although preventing aggregate formation or stimulating the degradation of already formed aggregates by targeting components of the ubiquitin proteasome system is an attractive therapeutic approach. Here, we review the role of the ubiquitin proteasome system in aggregate formation with respect to neurodegenerative diseases, discussing the unfolded protein response, endoplasmic reticulum-associated degradation, aggresome formation and accumulation as well as aggregation and neurotoxicity of proteins involved in neurodegeneration. The potential of pharmacological intervention within this system in patients suffering from neurodegenerative diseases will be evaluated.
Collapse
Affiliation(s)
- Elly M Hol
- Netherlands Institute for Neuroscience, Research Group Cellular Quality Control, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Roy J, Denovan-Wright EM, Linsdell P, Cowley EA. Exposure to sodium butyrate leads to functional downregulation of calcium-activated potassium channels in human airway epithelial cells. Pflugers Arch 2006; 453:167-76. [PMID: 17047984 DOI: 10.1007/s00424-006-0128-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/09/2006] [Accepted: 06/22/2006] [Indexed: 11/27/2022]
Abstract
Cystic fibrosis (CF) is caused by genetic mutations that lead to dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. The most common mutation, DeltaF508, causes inefficient trafficking of mutant CFTR protein from the endoplasmic reticulum to the cell membrane. Therapeutic efforts have been aimed at increasing the level of DeltaF508-CFTR protein in the membrane using agents such as sodium butyrate. In this study, we investigated the effects of culturing a human airway epithelial cell line, Calu-3, in the presence of 5 mM sodium butyrate. Within 24 h, butyrate exposure caused a significant decrease in the basal, as well as Ca(2+)-activated, anion secretion by Calu-3 cell monolayers, determined by the change in transepithelial short-circuit current in response to the Ca(2+)-elevating agent thapsigargin. The secretory response to 1-ethyl-2-benzimidazolinone, an activator of the basolateral Ca(2+)-activated K(+) channel KCNN4, was similarly reduced by butyrate treatment. Quantitative PCR revealed that these functional effects were associated with dramatic decreases in mRNA for both KCNN4 and CFTR. Furthermore, the KCNQ1 K(+) channel was upregulated after butyrate treatment. We suggest that prolonged exposure to sodium butyrate downregulates the expression of both KCNN4 and CFTR, leading to a functional loss of Ca(2+)-activated anion secretion. Thus, butyrate may inhibit, rather than stimulate, the anion secretory capacity of human epithelial cells that express wild-type CFTR, particularly in tissues that normally exhibit robust Ca(2+)-activated secretion.
Collapse
Affiliation(s)
- Jeremy Roy
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
33
|
Mugabe C, Halwani M, Azghani AO, Lafrenie RM, Omri A. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50:2016-22. [PMID: 16723560 PMCID: PMC1479138 DOI: 10.1128/aac.01547-05] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is inherently resistant to most conventional antibiotics. The mechanism of resistance of this bacterium is mainly associated with the low permeability of its outer membrane to these agents. We sought to assess the bactericidal efficacy of liposome-entrapped aminoglycosides against resistant clinical strains of P. aeruginosa and to define the mechanism of liposome-bacterium interactions. Aminoglycosides were incorporated into liposomes, and the bactericidal efficacies of both free and liposomal drugs were evaluated. To define the mechanism of liposome-bacterium interactions, transmission electron microscopy (TEM), flow cytometry, lipid mixing assay, and immunocytochemistry were employed. Encapsulation of aminoglycosides into liposomes significantly increased their antibacterial activity against the resistant strains used in this study (MICs of > or =32 versus < or =8 microg/ml). TEM observations showed that liposomes interact intimately with the outer membrane of P. aeruginosa, leading to the membrane deformation. The flow cytometry and lipid mixing assays confirmed liposome-bacterial membrane fusion, which increased as a function of incubation time. The maximum fusion rate was 54.3% +/- 1.5% for an antibiotic-sensitive strain of P. aeruginosa and 57.8% +/- 1.9% for a drug-resistant strain. The fusion between liposomes and P. aeruginosa significantly enhanced the antibiotics' penetration into the bacterial cells (3.2 +/- 2.3 versus 24.2 +/- 6.2 gold particles/bacterium, P < or = 0.001). Our data suggest that liposome-entrapped antibiotics could successfully resolve infections caused by antibiotic-resistant P. aeruginosa through an enhanced mechanism of drug entry into the bacterial cells.
Collapse
Affiliation(s)
- Clement Mugabe
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | | | | | | | | |
Collapse
|
34
|
Amat di San Filippo C, Pasquali M, Longo N. Pharmacological rescue of carnitine transport in primary carnitine deficiency. Hum Mutat 2006; 27:513-23. [PMID: 16652335 DOI: 10.1002/humu.20314] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Primary carnitine deficiency is a recessive disorder caused by heterogeneous mutations in the SLC22A5 gene encoding the OCTN2 carnitine transporter. Here we extend mutational analysis to eight new families with this disorder. To determine the mechanism by which missense mutations impaired carnitine transport, the OCTN2 transporter was tagged with the green fluorescent protein and expressed in CHO cells. Analysis by confocal microscopy indicated that several missense mutants (M1I, R169W, T232 M, G242 V, S280F, R282Q, W283R, A301D, W351R, R399Q, T440 M, E452 K, and T468R) matured normally to the plasma membrane. By contrast, other mutations (including R19P, DeltaF22, R83L, S280F, P398L, Y447C, and A142S/R488 H) caused significant retention of the mutant OCTN2 transporter in the cytoplasm. Failed maturation to the plasma membrane is a common mechanism in disorders affecting membrane transporters/ion channels, including cystic fibrosis. To correct this defect, we tested whether drugs reducing the efficiency of protein degradation in the endoplasmic reticulum (ER) (phenylbutyrate, curcumin) or capable of binding the OCTN2 carnitine transporter (verapamil, quinidine) could improve carnitine transport. Prolonged incubation with phenylbutyrate, quinidine, and verapamil partially stimulated carnitine transport, while curcumin was ineffective. These results indicate that OCTN2 mutations can affect carnitine transport by impairing maturation of transporters to the plasma membrane. Pharmacological therapy can be effective in partially restoring activity of mutant transporters.
Collapse
|
35
|
Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT. Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation 2006; 113:365-73. [PMID: 16432067 DOI: 10.1161/circulationaha.105.570200] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The KCNH2 or human ether-a-go-go related gene (hERG) encodes the Kv11.1 alpha-subunit of the rapidly activating delayed rectifier K+ current (IKr) in the heart. Type 2 congenital long-QT syndrome (LQT2) results from KCNH2 mutations that cause loss of Kv11.1 channel function. Several mechanisms have been identified, including disruption of Kv11.1 channel synthesis (class 1), protein trafficking (class 2), gating (class 3), or permeation (class 4). For a few class 2 LQT2-Kv11.1 channels, it is possible to increase surface membrane expression of Kv11.1 current (IKv11.1). We tested the hypotheses that (1) most LQT2 missense mutations generate trafficking-deficient Kv11.1 channels, and (2) their trafficking-deficient phenotype can be corrected. METHODS AND RESULTS Wild-type (WT)-Kv11.1 channels and 34 missense LQT2-Kv11.1 channels were expressed in HEK293 cells. With Western blot analyses, 28 LQT2-Kv11.1 channels had a trafficking-deficient (class 2) phenotype. For the majority of these mutations, the class 2 phenotype could be corrected when cells were incubated for 24 hours at reduced temperature (27 degrees C) or in the drugs E4031 or thapsigargin. Four of the 6 LQT2-Kv11.1 channels that had a wild-type-like trafficking phenotype did not cause loss of Kv11.1 function, which suggests that these channels are uncommon sequence variants. CONCLUSIONS This is the first study to identify a dominant mechanism, class 2, for the loss of Kv11.1 channel function in LQT2 and to report that the class 2 phenotype for many of these mutant channels can be corrected. This suggests that if therapeutic strategies to correct protein trafficking abnormalities can be developed, it may offer clinical benefits for LQT2 patients.
Collapse
Affiliation(s)
- Corey L Anderson
- Department of Medicine, University of Wisconsin-Madison, WI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. J Clin Invest 2006; 116:797-807. [PMID: 16470247 PMCID: PMC1361349 DOI: 10.1172/jci26961] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/29/2005] [Indexed: 11/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel plays vital roles in fluid transport in many epithelia. While CFTR is expressed along the entire nephron, its function in renal tubule epithelial cells remains unclear, as no specific renal phenotype has been identified in cystic fibrosis. CFTR has been proposed as a regulator of the 30 pS, ATP-sensitive renal K channel (Kir1.1, also known as renal outer medullar K [ROMK]) that is critical for K secretion by cells of the thick ascending limb (TAL) and distal nephron segments responsive to aldosterone. We report here that both ATP and glibenclamide sensitivities of the 30 pS K channel in TAL cells were absent in mice lacking CFTR and in mice homozygous for the deltaF508 mutation. Curcumin treatment in deltaF508-CFTR mice partially reversed the defect in ATP sensitivity. We demonstrate that the effect of CFTR on ATP sensitivity was abrogated by increasing PKA activity. We propose that CFTR regulates the renal K secretory channel by providing a PKA-regulated functional switch that determines the distribution of open and ATP-inhibited K channels in apical membranes. We discuss the potential physiological role of this functional switch in renal K handling during water diuresis and the relevance to renal K homeostasis in cystic fibrosis.
Collapse
Affiliation(s)
- Ming Lu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Davies J, Bush A. Primum non nocere: does the current research publication system (or the lay press) harm our patients? Am J Respir Crit Care Med 2005; 171:937-8. [PMID: 15849326 DOI: 10.1164/rccm.2501005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Cao L, Owsianik G, Becq F, Nilius B. Chronic exposure to EGF affects trafficking and function of ENaC channel in cystic fibrosis cells. Biochem Biophys Res Commun 2005; 331:503-11. [PMID: 15850788 DOI: 10.1016/j.bbrc.2005.03.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 11/19/2022]
Abstract
Using the whole-cell patch-clamp technique, we identified an amiloride (AMI)-sensitive Na(+) current in cystic fibrosis cells, JME/CF15, growing in standard medium. The reversal potential of this current depended on Na(+) concentrations and the cation selectivity was much higher for Na(+) than for K(+), indicating that the current is through ENaC channels. In contrast, cells from EGF-containing medium lacked AMI-sensitive Na(+) currents. In permeabilized cells growing in EGF-containing medium, alphaENaC was mainly detected in a perinuclear region, while in cells from standard medium it was distributed over the cell body. Western-blot analysis showed that in standard medium cells expressed fast-migrating EndoH-insensitive and slow-migrating EndoH-sensitive alphaENaC fractions, while in cells growing in the presence of EGF, alphaENaC was only detected as the fast-migrating EndoH-insensitive fraction. Long-term incubation of cells with EGF resulted in an increased basal Ca(2+) level, [Ca(2+)](i). A similar increase of [Ca(2+)](i) was also observed in the presence of 2muM thapsigargin, resulting in inhibition of ENaC function. Thus, in JME/CF15 cells inhibition of the ENaC function by chronic incubation with EGF is a Ca(2+)-mediated process that affects trafficking and surface expression of ENaC channels.
Collapse
Affiliation(s)
- Lishuang Cao
- Department of Physiology, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|