1
|
Schweitzer MH, Zheng W, Dickinson E, Scannella J, Hartstone-Rose A, Sjövall P, Lindgren J. Taphonomic variation in vascular remains from Mesozoic non-avian dinosaurs. Sci Rep 2025; 15:4359. [PMID: 39910217 PMCID: PMC11799182 DOI: 10.1038/s41598-025-85497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
The identity and source of flexible, semi-transparent, vascular-like components recovered from non-avian dinosaur bone are debated, because: (1) such preservation is not predicted by degradation models; (2) taphonomic mechanisms for this type of preservation are not well defined; and (3) although support for molecular endogeneity has been demonstrated in select specimens, comparable data are lacking on a broader scale. Here, we use a suite of micromorphological and molecular techniques to examine vessel-like material recovered from the skeletal remains of six non-avian dinosaurs, representing different taxa, depositional environments and geological ages, and we compare the data obtained from our analyses against vessels liberated from extant ostrich bone. The results of this in-depth, multi-faceted study present strong support for endogeneity of the fossil-derived vessels, although we also detect evidence of invasive microorganisms.
Collapse
Affiliation(s)
- M H Schweitzer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA.
- Museum of the Rockies, Montana State University, Bozeman, MT, USA.
- Department of Geology, Lund University, Lund, Sweden.
| | - W Zheng
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - E Dickinson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | - J Scannella
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - A Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - P Sjövall
- Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
| | - J Lindgren
- Department of Geology, Lund University, Lund, Sweden
| |
Collapse
|
2
|
de Sousa DV, Maia PVS, Eltink E, de Moura Guimarães L. Biomolecules in Pleistocene fossils from tropical cave indicate fossil biofilm. Sci Rep 2024; 14:21071. [PMID: 39256439 PMCID: PMC11387772 DOI: 10.1038/s41598-024-71313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Finding biomolecules in fossils is a challenging task due to their degradation over time from physical, chemical, and biological factors. The primary hypothesis for explaining the presence of biomolecules in fossilized bones tissues suggests their survival in the fossilization process. In contrast, some of these biomolecules could either derive from bacteria biofilm, thus without a direct relationship with the fossil record or could be an artifact from measurement procedures. Raman spectroscopy studies across various fossil ages and environments have detected multiple bands ranging from 1200 to 1800 cm-1 associative of organic compounds. However, the significance of these bands remains elusive. Our research aims to address this issue through a deep Raman spectroscopy investigation on Pleistocene teeth from Tayassu and Smilodon populator. These fossils were obtained from a well-preserved stratigraphic succession in Toca de Cima do Pilão cave, near the National Park of Serra da Capivara in semiarid Brazil. We propose two hypotheses to explain the presence of organic compounds related to 1200 to 1800 cm-1 Raman spectral range in fossil tissues: (i) these bands are biological signatures of preserved fossil biomolecules, or (ii) they are exogenous biological signatures associated with the bacterial biofilm formation during post-depositional processes. Our results align with the latter hypothesis, followed by biofilm degradation. However, the specific mechanisms involved in the natural biofilm degradation in fossil records remain unexplored in this study. In our case, the formation of biofilm on fossil bones is attributed to the oligotrophic conditions of the cave sediment matrix. We present a comprehensive model to elucidate the existence of biofilm on fossilized tissues, emphasizing the pivotal role of post-depositional processes, especially water action, in the cave environment. As the fossils were discovered in a cave setting, post-depositional processes significantly contribute to the formation of the biofilm matrix. Although our study provides insights into biofilm formation, further research is needed to delve into the specific mechanisms driving natural biofilm degradation in fossils.
Collapse
Affiliation(s)
- Daniel Vieira de Sousa
- Colegiado de Geografia, Universidade Federal do Vale do São Francisco, Senhor do Bonfim, Petrolina, 48970-000, Brazil.
| | | | - Estevan Eltink
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco, Senhor do Bonfim, Petrolina, 48970-000, Brazil
| | | |
Collapse
|
3
|
Rossi V, Unitt R, McNamara M. A new non-destructive method to decipher the origin of organic matter in fossils using Raman spectroscopy. RSC Adv 2024; 14:26747-26759. [PMID: 39183999 PMCID: PMC11342070 DOI: 10.1039/d4ra04364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Ancient biomolecules provide a unique perspective on the past but are underutilized in paleontology because of challenges in interpreting the chemistry of fossils. Most organically preserved soft tissues in fossils have been altered by thermal maturation during the fossilization process, obscuring original chemistry. Here, we use a comprehensive program of thermal maturation experiments on soft tissues from diverse extant organisms to systematically test whether thermally altered biosignatures can be discriminated using Raman spectroscopy. All experimentally matured samples show chemical signatures that are superficially similar. Comparative analysis of Raman spectra following peak deconvolution, however, reveals strong tissue-specific signals. Application of this approach to fossils from the Bolca (49 Ma) and Libros (10 Ma) Konservat-Lagerstätten successfully discriminates fossil vertebrate soft tissue from that of fossil plants. Critically, our data confirm that a robust interrogation of Raman spectra coupled with multivariate analysis is a powerful tool to shed light on the taxonomic origins of thermally matured fossil soft tissues.
Collapse
Affiliation(s)
- Valentina Rossi
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| | - Richard Unitt
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork Cork T23 TK30 Ireland
- Environmental Research Institute, University College Cork Lee Road Cork T23 XE10 Ireland
| |
Collapse
|
4
|
Wahl J, Klint E, Hallbeck M, Hillman J, Wårdell K, Ramser K. Impact of preprocessing methods on the Raman spectra of brain tissue. BIOMEDICAL OPTICS EXPRESS 2022; 13:6763-6777. [PMID: 36589553 PMCID: PMC9774863 DOI: 10.1364/boe.476507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/01/2023]
Abstract
Delineating cancer tissue while leaving functional tissue intact is crucial in brain tumor resection. Despite several available aids, surgeons are limited by preoperative or subjective tools. Raman spectroscopy is a label-free optical technique with promising indications for tumor tissue identification. To allow direct comparisons between measurements preprocessing of the Raman signal is required. There are many recognized methods for preprocessing Raman spectra; however, there is no universal standard. In this paper, six different preprocessing methods were tested on Raman spectra (n > 900) from fresh brain tissue samples (n = 34). The sample cohort included both primary brain tumors, such as adult-type diffuse gliomas and meningiomas, as well as metastases of breast cancer. Each tissue sample was classified according to the CNS WHO 2021 guidelines. The six methods include both direct and iterative polynomial fitting, mathematical morphology, signal derivative, commercial software, and a neural network. Data exploration was performed using principal component analysis, t-distributed stochastic neighbor embedding, and k-means clustering. For each of the six methods, the parameter combination that explained the most variance in the data, i.e., resulting in the highest Gap-statistic, was chosen and compared to the other five methods. Depending on the preprocessing method, the resulting clusters varied in number, size, and associated spectral features. The detected features were associated with hemoglobin, neuroglobin, carotenoid, water, and protoporphyrin, as well as proteins and lipids. However, the spectral features seen in the Raman spectra could not be unambiguously assigned to tissue labels, regardless of preprocessing method. We have illustrated that depending on the chosen preprocessing method, the spectral appearance of Raman features from brain tumor tissue can change. Therefore, we argue both for caution in comparing spectral features from different Raman studies, as well as the importance of transparency of methodology and implementation of the preprocessing. As discussed in this study, Raman spectroscopy for in vivo guidance in neurosurgery requires fast and adaptive preprocessing. On this basis, a pre-trained neural network appears to be a promising approach for the operating room.
Collapse
Affiliation(s)
- Joel Wahl
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Elisabeth Klint
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology and Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Jan Hillman
- Department of Neurosurgery and Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, 581 85 Linköping, Sweden
| | - Kerstin Ramser
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
5
|
Anderson LA. Biomolecular histology as a novel proxy for ancient DNA and protein sequence preservation. Ecol Evol 2022; 12:e9518. [PMID: 36518622 PMCID: PMC9743065 DOI: 10.1002/ece3.9518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
Researchers' ability to accurately screen fossil and subfossil specimens for preservation of DNA and protein sequences remains limited. Thermal exposure and geologic age are usable proxies for sequence preservation on a broad scale but are of nominal use for specimens of similar depositional environments. Cell and tissue biomolecular histology is thus proposed as a novel proxy for determining sequence preservation potential of ancient specimens with improved accuracy. Biomolecular histology as a proxy is hypothesized to elucidate why fossils/subfossils of some depositional environments preserve sequences while others do not and to facilitate selection of ancient specimens for use in molecular studies.
Collapse
Affiliation(s)
- Landon A Anderson
- Department of Biology North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
6
|
Be Rziņš KR, Mapley JI, Gordon KC, Fraser-Miller SJ. Evaluating Spatially Offset Low-Frequency Anti-Stokes Raman Spectroscopy (SOLFARS) for Detecting Subsurface Composition below an Emissive Layer: A Proof of Principle Study Using a Model Bilayer System. Mol Pharm 2022; 19:4311-4319. [PMID: 36170046 DOI: 10.1021/acs.molpharmaceut.2c00656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work explores the potential use of spatially offset low-frequency anti-Stokes Raman spectroscopy (SOLFARS) to detect subsurface composition below an emissive surface. A range of bilayer tablets were used to evaluate this approach. Bilayer tablets differed in both the underlying layer composition (active pharmaceutical ingredient to excipient ratio, celecoxib: α-lactose monohydrate) and the upper layer thickness of the fluorescent coating (polyvinylpyrrolidone mixture with sunset yellow FCF dye). Two low- (<300 cm-1) plus mid- (300 to 1800 cm-1) frequency Raman instrumental setups, with lateral displacements for spatial analysis of solid dosage forms, using different excitation wavelengths were explored. The 532 nm system was used to illustrate how the low-frequency anti-Stokes Raman approach works with samples exhibiting extreme fluorescence/background emission interference, and the 785 nm system was used to demonstrate the performance when less extreme fluorescence/emission is present. Qualitative and quantitative chemometric analyses were performed to evaluate the performance of individual spectral domains and their combinations for the determination of the composition of the subsurface layer as well as the coating layer thickness. Overall, the commonly used midfrequency region (300-1800 cm-1) proved superior when using 785 nm incident laser for quantifying the coating thickness (amorphous materials), whereas a combined Stokes and anti-Stokes low-frequency region was found to be superior for quantifying underlying crystalline materials. When exploring individual spectral regions for subsurface composition using spatially offset measurements, the anti-Stokes LFR spectral window performed best. The anti-Stokes low-frequency range also demonstrated an advantage for models composed of data exhibiting high levels of fluorescence (e.g., data collected using 532 nm incident laser), as the Stokes scattering was masked by fluorescence. Transmission measurements were also explored for comparison and showed the best applicability for both upper and lower layer analysis, attributed to the inherently larger bulk sampling volume of this setup. From a practical perspective, these results highlight the potential adjustments that can be made to already existing (in-line) Raman setups to facilitate similar analysis in pharmaceutical industry-based settings.
Collapse
Affiliation(s)
- Ka Rlis Be Rziņš
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1165, Denmark
| | - Joseph I Mapley
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Sara J Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
7
|
Legendre LJ, Choi S, Clarke JA. The diverse terminology of reptile eggshell microstructure and its effect on phylogenetic comparative analyses. J Anat 2022; 241:641-666. [PMID: 35758681 PMCID: PMC9358755 DOI: 10.1111/joa.13723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Reptile eggshell ensures water and gas exchange during incubation and plays a key role in reproductive success. The diversity of reptilian incubation and life history strategies has led to many clade-specific structural adaptations of their eggshell, which have been studied in extant taxa (i.e. birds, crocodilians, turtles, and lepidosaurs). Most studies on non-avian eggshells were performed over 30 years ago and categorized reptile eggshells into two main types: "hard" and "soft" - sometimes with a third intermediate category, "semi-rigid." In recent years, however, debate over the evolution of eggshell structure of major reptile clades has revealed how definitions of hard and soft eggshells influence inferred deep-time evolutionary patterns. Here, we review the diversity of extant and fossil eggshell with a focus on major reptile clades, and the criteria that have been used to define hard, soft, and semi-rigid eggshells. We show that all scoring approaches that retain these categories discretize continuous quantitative traits (e.g. eggshell thickness) and do not consider independent variation of other functionally important microstructural traits (e.g. degree of calcification, shell unit inner structure). We demonstrate the effect of three published approaches to discretizing eggshell type into hard, semi-rigid, and soft on ancestral state reconstructions using 200+ species representing all major extant and extinct reptile clades. These approaches result in different ancestral states for all major clades including Archosauria and Dinosauria, despite a difference in scoring for only 1-4% of the sample. Proposed scenarios of reptile eggshell evolution are highly conditioned by sampling, tree calibration, and lack of congruence between definitions of eggshell type. We conclude that the traditional "soft/hard/semi-rigid" classification of reptilian eggshells should be abandoned and provide guidelines for future descriptions focusing on specific functionally relevant characteristics (e.g. inner structures of shell units, pores, and membrane elements), analyses of these traits in a phylogenetic context, and sampling of previously undescribed taxa, including fossil eggs.
Collapse
Affiliation(s)
- Lucas J. Legendre
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Seung Choi
- Department of Earth SciencesMontana State UniversityBozemanMontanaUSA
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
| | - Julia A. Clarke
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
8
|
Siljeström S, Neubeck A, Steele A. Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record. PLoS One 2022; 17:e0269568. [PMID: 35767560 PMCID: PMC9242450 DOI: 10.1371/journal.pone.0269568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Organic molecules preserved in fossils provide a wealth of new information about ancient life. The discovery of almost unaltered complex organic molecules in well-preserved fossils raise the question of how common such occurrences are in the fossil record, how to differentiate between endogenous and exogenous sources for the organic matter and what promotes such preservation. The aim of this study was the in-situ analysis of a well-preserved vertebrate fossil from 48 Ma Eocene sediments in the Messel pit, Germany for preservation of complex biomolecules. The fossil was characterized using a variety of techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX), x-ray diffraction (XRD) and Raman spectroscopy. A suite of organic molecules was detected, including porphyrins, which given the context of the detected signal are most probably diagenetically altered heme originating from the fossil though a microbial contribution cannot be completely ruled out. Diagenetic changes to the porphyrin structure were observed that included the exchange of the central iron by nickel. Further analyses on the geochemistry of the fossil and surrounding sediments showed presence of pyrite and aluminosilicates, most likely clay. In addition, a carbonate and calcium phosphate dominated crust has formed around the fossil. This suggests that several different processes are involved in the preservation of the fossil and the organic molecules associated with it. Similar processes seem to have also been involved in preservation of heme in fossils from other localities.
Collapse
Affiliation(s)
- Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
- * E-mail:
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew Steele
- Carnegie Institution for Science, Earth and Planetary Laboratory, Washington, DC, United States of America
| |
Collapse
|
9
|
Wiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DEG. Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature 2022; 606:522-526. [PMID: 35614213 DOI: 10.1038/s41586-022-04770-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
Birds and mammals independently evolved the highest metabolic rates among living animals1. Their metabolism generates heat that enables active thermoregulation1, shaping the ecological niches they can occupy and their adaptability to environmental change2. The metabolic performance of birds, which exceeds that of mammals, is thought to have evolved along their stem lineage3-10. However, there is no proxy that enables the direct reconstruction of metabolic rates from fossils. Here we use in situ Raman and Fourier-transform infrared spectroscopy to quantify the in vivo accumulation of metabolic lipoxidation signals in modern and fossil amniote bones. We observe no correlation between atmospheric oxygen concentrations11 and metabolic rates. Inferred ancestral states reveal that the metabolic rates consistent with endothermy evolved independently in mammals and plesiosaurs, and are ancestral to ornithodirans, with increasing rates along the avian lineage. High metabolic rates were acquired in pterosaurs, ornithischians, sauropods and theropods well before the advent of energetically costly adaptations, such as flight in birds. Although they had higher metabolic rates ancestrally, ornithischians reduced their metabolic abilities towards ectothermy. The physiological activities of such ectotherms were dependent on environmental and behavioural thermoregulation12, in contrast to the active lifestyles of endotherms1. Giant sauropods and theropods were not gigantothermic9,10, but true endotherms. Endothermy in many Late Cretaceous taxa, in addition to crown mammals and birds, suggests that attributes other than metabolism determined their fate during the terminal Cretaceous mass extinction.
Collapse
Affiliation(s)
- Jasmina Wiemann
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA, USA.
| | - Iris Menéndez
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), Madrid, Spain
| | | | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
| | - Jacques A Gauthier
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Pincelli M Hull
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Tahoun M, Engeser M, Namasivayam V, Sander PM, Müller CE. Chemistry and Analysis of Organic Compounds in Dinosaurs. BIOLOGY 2022; 11:670. [PMID: 35625398 PMCID: PMC9138232 DOI: 10.3390/biology11050670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
This review provides an overview of organic compounds detected in non-avian dinosaur fossils to date. This was enabled by the development of sensitive analytical techniques. Non-destructive methods and procedures restricted to the sample surface, e.g., light and electron microscopy, infrared (IR) and Raman spectroscopy, as well as more invasive approaches including liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), time-of-flight secondary ion mass spectrometry, and immunological methods were employed. Organic compounds detected in samples of dinosaur fossils include pigments (heme, biliverdin, protoporphyrin IX, melanin), and proteins, such as collagens and keratins. The origin and nature of the observed protein signals is, however, in some cases, controversially discussed. Molecular taphonomy approaches can support the development of suitable analytical methods to confirm reported findings and to identify further organic compounds in dinosaur and other fossils in the future. The chemical properties of the various organic compounds detected in dinosaurs, and the techniques utilized for the identification and analysis of each of the compounds will be discussed.
Collapse
Affiliation(s)
- Mariam Tahoun
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, D-53121 Bonn, Germany;
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| | - Paul Martin Sander
- Institute of Geosciences, Section Paleontology, University of Bonn, D-53113 Bonn, Germany;
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany; (M.T.); (V.N.)
| |
Collapse
|
11
|
Wiemann J, Briggs DEG. Raman spectroscopy is a powerful tool in molecular paleobiology: An analytical response to Alleon et al. (https://doi.org/ 10.1002/bies.202000295). Bioessays 2022; 44:e2100070. [PMID: 34993976 DOI: 10.1002/bies.202100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
Abstract
A recent article argued that signals from conventional Raman spectroscopy of organic materials are overwhelmed by edge filter and fluorescence artefacts. The article targeted a subset of Raman spectroscopic investigations of fossil and modern organisms and has implications for the utility of conventional Raman spectroscopy in comparative tissue analytics. The inferences were based on circular reasoning centered around the unconventional analysis of spectra from just two samples, one modern, and one fossil. We validated the disputed signals with in situ Fourier-Transform Infrared (FT-IR) Spectroscopy and through replication with different lasers, filters, and operators in independent laboratories. Our Raman system employs a holographic notch filter which is not affected by edge filter or other artefacts. Multiple lines of evidence confirm that conventional Raman spectra of fossils contain biologically and geologically meaningful information. Statistical analyses of large Raman and FT-IR spectral data sets reveal patterns in fossil composition and yield valuable insights into the history of life.
Collapse
Affiliation(s)
- Jasmina Wiemann
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA.,Dinosaur Institute, Natural History Museum of LA County, Los Angeles, California, USA
| | - Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA.,Yale Peabody Museum of Natural History, New Haven, Connecticut, USA
| |
Collapse
|