1
|
Brockmöller S, Worek F, Rothmiller S. Protein networking: nicotinic acetylcholine receptors and their protein-protein-associations. Mol Cell Biochem 2024; 479:1627-1642. [PMID: 38771378 DOI: 10.1007/s11010-024-05032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.
Collapse
Affiliation(s)
- Sabrina Brockmöller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| |
Collapse
|
2
|
Abstract
Thirty to fifty percent of patients with acetylcholine receptor (AChR) antibody (Ab)-negative myasthenia gravis (MG) have Abs to muscle specific kinase (MuSK) and are referred to as having MuSK-MG. MuSK is a 100 kD single-pass post-synaptic transmembrane receptor tyrosine kinase crucial to the development and maintenance of the neuromuscular junction. The Abs in MuSK-MG are predominantly of the IgG4 immunoglobulin subclass. MuSK-MG differs from AChR-MG, in exhibiting more focal muscle involvement, including neck, shoulder, facial and bulbar-innervated muscles, as well as wasting of the involved muscles. MuSK-MG is highly associated with the HLA DR14-DQ5 haplotype and occurs predominantly in females with onset in the fourth decade of life. Some of the standard treatments of AChR-MG have been found to have limited effectiveness in MuSK-MG, including thymectomy and cholinesterase inhibitors. Therefore, current treatment involves immunosuppression, primarily by corticosteroids. In addition, patients respond especially well to B cell depletion agents, e.g., rituximab, with long-term remissions. Future treatments will likely derive from the ongoing analysis of the pathogenic mechanisms underlying this disease, including histologic and physiologic studies of the neuromuscular junction in patients as well as information derived from the development and study of animal models of the disease.
Collapse
Affiliation(s)
| | - David P. Richman
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Alleviating Sepsis-Induced Neuromuscular Dysfunction Linked With Acetylcholine Receptors by Agrin. J Surg Res 2019; 241:308-316. [PMID: 31055156 DOI: 10.1016/j.jss.2019.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Abnormal expression and distribution of nicotinic acetylcholine receptors (nAChRs) in skeletal muscle caused by sepsis can lead to neuromuscular dysfunction. Here, we asked whether neural agrin regulates nAChRs to ameliorate muscle function, which could be associated with the agrin/muscle-specific kinase pathway. METHODS Rats were subjected to cecal ligation and puncture (CLP) group, sham group, or control group to observe the alteration caused by sepsis. To verify the effect of improving function, rats were injected with agrin or normal saline intramuscularly after CLP. Electromyogram was used to measure neuromuscular function. Cytokines levels of serum and the expression of related proteins and mRNA were tested after treatment. RESULTS Compared with the rats in control or sham group, CLP-treated rats showed an acute inflammatory status and a reduction of neuromuscular dysfunction in tibialis anterior muscle, which was associated with abnormal expression in agrin/muscle-specific kinase pathway and increased expression of γ- and α7-nAChR. Exogenous agrin alleviated neuromuscular dysfunction and decreased the expression of γ- and α7-nAChR through agrin-related signaling pathway. CONCLUSIONS The decreased expression of agrin may lead to skeletal muscle dysfunction. Early enhancement of intramuscular agrin levels after sepsis may be a potential strategy for the treatment of sepsis-induced muscle dysfunction.
Collapse
|
4
|
Cunha JE, Barbosa GM, Castro PATDS, Luiz BLF, Silva ACA, Russo TL, Vasilceac FA, Cunha TM, Cunha FQ, Salvini TF. Knee osteoarthritis induces atrophy and neuromuscular junction remodeling in the quadriceps and tibialis anterior muscles of rats. Sci Rep 2019; 9:6366. [PMID: 31019213 PMCID: PMC6482306 DOI: 10.1038/s41598-019-42546-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022] Open
Abstract
Knee osteoarthritis (KOA) is associated with muscle weakness, but it is unclear which structures are involved in the muscle changes. This study assessed morphological alterations and the expression of genes and proteins linked to muscular atrophy and neuromuscular junctions (NMJs) in KOA, induced by anterior cruciate ligament transection (ACLT) in rats. Two groups of rats were assessed: control (without intervention) and KOA (ACLT surgery in the right knee). After 8 weeks, quadriceps, tibialis anterior (TA) and gastrocnemius muscles were analyzed (area of muscle fibers, NMJ, gene and protein expression). KOA group showed atrophy in quadriceps (15.7%) and TA (33%), with an increase in atrogin-1 and muscle RING-finger protein-1 (MuRF-1). KOA group showed quadriceps NMJ remodeling (reduction area and perimeter) and decrease in NMJ diameter in TA muscle. The expression of nicotinic acetylcholine receptor (nAChR) γ-nAChR increased and that of α-nAChR and muscle specific tyrosine kinase (MuSK) declined in the quadriceps, with a decrease in ε-nAChR in TA. MuRF-1 protein expression increased in quadriceps and TA, with no changes in neural cell adhesion molecule (NCAM). In conclusion, ACLT-induced KOA promotes NMJ remodeling and atrophy in quadriceps and TA muscles, associated with inflammatory signs and changes in muscle gene and protein expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Thiago Luiz Russo
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Thiago Mattar Cunha
- Pharmacology Department, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Tania Fátima Salvini
- Physical Therapy Department, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
6
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
Shpakov AO, Zharova OA, Derkach KV. Antibodies to extracellular regions of G protein-coupled receptors and receptor tyrosine kinases as one of the causes of autoimmune diseases. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567817020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Sami N, Kumar V, Islam A, Ali S, Ahmad F, Hassan I. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration. Mol Neurobiol 2016; 54:5085-5106. [PMID: 27544236 DOI: 10.1007/s12035-016-0046-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
Protein kinases are one of the largest families of evolutionarily related proteins and the third most common protein class of human genome. All the protein kinases share the same structural organization. They are made up of an extracellular domain, transmembrane domain and an intra cellular kinase domain. Missense mutations in these kinases have been studied extensively and correlated with various neurological disorders. Individual mutations in the kinase domain affect the functions of protein. The enhanced or reduced expression of protein leads to hyperactivation or inactivation of the signalling pathways, resulting in neurodegeneration. Here, we present extensive analyses of missense mutations in the tyrosine kinase focussing on the neurodegenerative diseases encompassing structure function relationship. This is envisaged to enhance our understanding about the neurodegeneration and possible therapeutic measures.
Collapse
Affiliation(s)
- Neha Sami
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
9
|
Soga S, Ota N, Shimotoyodome A. Dietary milk fat globule membrane supplementation combined with regular exercise improves skeletal muscle strength in healthy adults: a randomized double-blind, placebo-controlled, crossover trial. Nutr J 2015; 14:85. [PMID: 26303780 PMCID: PMC4547417 DOI: 10.1186/s12937-015-0073-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/12/2015] [Indexed: 01/20/2023] Open
Abstract
Background Our previous studies demonstrated that dietary supplementation with milk fat globule membrane (MFGM) combined with habitual exercise improved muscle strength by stimulating neuromuscular development in mice. This study aimed to demonstrate the beneficial effects of dietary MFGM supplementation plus regular exercise on muscle strength and neuromuscular function in healthy humans. Methods The study was designed as a randomized, double-blind, placebo-controlled, crossover trial. Fourteen Japanese adults aged 31–48 years took daily MFGM (1 g) or placebo tablets during the 4-week study period and attended a training program twice a week. Physical function tests and surface electromyography (EMG) were conducted at baseline and at the end of the study period. Results The MFGM group had significantly greater leg extension strength than the placebo group after the 4-week study period. Surface EMG showed that the MFGM group had a significantly higher root mean square amplitude than the placebo group, which indicated that the MFGM group had higher motor unit activity. Conclusions Dietary MFGM supplementation combined with regular exercise improves skeletal muscle strength, which may be due to increased motor unit recruitment in healthy Japanese middle-aged adults.
Collapse
Affiliation(s)
- Satoko Soga
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Noriyasu Ota
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Akira Shimotoyodome
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| |
Collapse
|
10
|
Ha JC, Richman DP. Myasthenia gravis and related disorders: Pathology and molecular pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:651-7. [DOI: 10.1016/j.bbadis.2014.11.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/20/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022]
|
11
|
Gallenmüller C, Müller-Felber W, Dusl M, Stucka R, Guergueltcheva V, Blaschek A, von der Hagen M, Huebner A, Müller JS, Lochmüller H, Abicht A. Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK. Neuromuscul Disord 2013; 24:31-5. [PMID: 24183479 PMCID: PMC4018985 DOI: 10.1016/j.nmd.2013.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/20/2013] [Accepted: 08/01/2013] [Indexed: 12/24/2022]
Abstract
Congenital myasthenic syndromes (CMS) are clinically and genetically heterogeneous disorders characterized by a neuromuscular transmission defect. In recent years, causative mutations have been identified in atleast 15 genes encoding proteins of the neuromuscular junction. Mutations in MUSK are known as a very rare genetic cause of CMS and have been described in only three families, world-wide. Consequently, the knowledge about efficient drug therapy is very limited. We identified a novel missense mutation (p.Asp38Glu) heteroallelic to a genomic deletion affecting exons 2–3 of MUSK as cause of a limb-girdle CMS in two brothers of Turkish origin. Clinical symptoms included fatigable limb weakness from early childhood on. Upon diagnosis of a MUSK-related CMS at the age of 16 and 13 years, respectively, treatment with salbutamol was initiated leading to an impressive improvement of clinical symptoms, while treatment with esterase inhibitors did not show any benefit. Our findings highlight the importance of a molecular diagnosis in CMS and demonstrate considerable similarities between patients with MUSK and DOK7-related CMS in terms of clinical phenotype and treatment options.
Collapse
Affiliation(s)
| | | | - Marina Dusl
- Friedrich-Baur-Institut, Ludwig Maximilians University, Munich, Germany
| | - Rolf Stucka
- Friedrich-Baur-Institut, Ludwig Maximilians University, Munich, Germany
| | - Velina Guergueltcheva
- Friedrich-Baur-Institut, Ludwig Maximilians University, Munich, Germany; Clinic of Neurology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Astrid Blaschek
- Haunersche Kinderklinik, Ludwig Maximilians University, Munich, Germany
| | | | - Angela Huebner
- Children's Hospital, Technical University Dresden, Germany
| | - Juliane S Müller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela Abicht
- Friedrich-Baur-Institut, Ludwig Maximilians University, Munich, Germany; Medical Genetics Center, Munich, Germany.
| |
Collapse
|
12
|
Skjei KL, Lennon VA, Kuntz NL. Muscle specific kinase autoimmune myasthenia gravis in children: a case series. Neuromuscul Disord 2013; 23:874-82. [PMID: 24012245 DOI: 10.1016/j.nmd.2013.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022]
Abstract
We report clinical, neurophysiological and autoantibody profiles of 9 children presenting with fatigable weakness and MuSK autoantibody seropositivity. Eight were female, 3 were black; median onset age was 8 years. Diplopia or bulbar dysfunction were common presenting symptoms. Half of the patients experienced moderate to severe weakness of bulbar, facial and respiratory muscles (including exacerbations requiring mechanical ventilation). Muscle AChR antibodies were detected transiently in 2 patients but no other autoantibodies were detected. Clinical response to treatment was variable and incomplete. No thymic abnormalities were noted by CT or pathologically (3 underwent thymectomy). Electromyographic (EMG) abnormalities (decrement of compound muscle action potential amplitude during slow repetitive nerve stimulation and variation in individual motor unit potentials) were limited to clinically weak muscles. Single fiber EMG demonstrated abnormalities in an asymptomatic muscle in the single patient studied. As in adults, MuSK autoimmune MG presents more commonly in females, and weakness preferentially affects bulbar, facial and respiratory muscles. Morbidity is significant and responses to standard therapies are variable and incomplete. Neurophysiological confirmation is more challenging in children because testing of weak muscles (cranial nerve-innervated and respiratory) may require moderate sedation and monitoring.
Collapse
Affiliation(s)
- Karen L Skjei
- Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|
13
|
IGF-1 antibody prolongs the effective duration time of botulinum toxin in decreasing muscle strength. Int J Mol Sci 2013; 14:9051-61. [PMID: 23698763 PMCID: PMC3676772 DOI: 10.3390/ijms14059051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/28/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022] Open
Abstract
Botulinum toxin type-A (Btx-A), a powerful therapeutic tool in various medical specialties, requires repeated injections to maintain its effect. Therefore, novel methods to prolong the effective duration time of Btx-A are highly needed. Rats were assigned to three major groups: control group (n = 30), Btx-A group (n = 30), and IGF-1 Ab groups. IGF-1 Ab groups were composed by sub-groups A1-A5 (each has 25 rats) for the subsequent IGF-1Ab dose-effect study. Muscle strength was determined by a survey system for rat lower limbs nerve and muscle function. Muscle-specific receptor tyrosine kinase (MuSK), Insulin-like growth factor binding protein-5 (IGFBP5), and growth-associated protein, 43-kDa (GAP43) were determined by real-time polymerase chain reactions (PCRs) and Western blot. We found that Btx-A decreased the muscle strength, with a paralysis maintained for 70 days. IGF-1Ab prolonged the effective duration time of Btx-A. Real-time PCRs and Western blot showed that IGF-1Ab delayed the increase of MuSK and IGFBP5 after Btx-A injection, without affecting GAP43. These results indicate that IGF-1Ab might prolong the effective duration time of Btx-A on muscle strength through delaying the increase of MuSK. It would be interesting to determine whether IGF-1Ab can be used as an auxiliary measure to the Btx-A treatment in the future.
Collapse
|
14
|
Richman DP, Nishi K, Ferns MJ, Schnier J, Pytel P, Maselli RA, Agius MA. Animal models of antimuscle-specific kinase myasthenia. Ann N Y Acad Sci 2013; 1274:140-7. [PMID: 23252909 DOI: 10.1111/j.1749-6632.2012.06782.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antimuscle-specific kinase (anti-MuSK) myasthenia (AMM) differs from antiacetylcholine receptor myasthenia gravis in exhibiting more focal muscle involvement (neck, shoulder, facial, and bulbar muscles) with wasting of the involved, primarily axial, muscles. AMM is not associated with thymic hyperplasia and responds poorly to anticholinesterase treatment. Animal models of AMM have been induced in rabbits, mice, and rats by immunization with purified xenogeneic MuSK ectodomain, and by passive transfer of large quantities of purified serum IgG from AMM patients into mice. The models have confirmed the pathogenic role of the MuSK antibodies in AMM and have demonstrated the involvement of both the presynaptic and postsynaptic components of the neuromuscular junction. The observations in this human disease and its animal models demonstrate the role of MuSK not only in the formation of this synapse but also in its maintenance.
Collapse
Affiliation(s)
- David P Richman
- Department of Neurology, Center for Neuroscience, University of California, Davis, 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Locascio LE, Donoghue DJ. KIDs rule: regulatory phosphorylation of RTKs. Trends Biochem Sci 2013; 38:75-84. [PMID: 23312584 DOI: 10.1016/j.tibs.2012.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 01/14/2023]
Abstract
Receptor tyrosine kinases (RTKs) are mediators of multiple cell signaling networks linked to cell growth and differentiation. In general, they exhibit similar overall structure with a ligand-binding extracellular domain and a conserved intracellular tyrosine kinase domain. In many RTKs, the kinase domain is interrupted by a sequence known as the kinase insert domain (KID). In addition to phosphorylation sites within the kinase domain, regulatory phosphorylation also occurs within the KID of several RTKs important in human health and disease. Phosphorylation of specific Tyr or Ser residues within the KID of some RTKs triggers distinct cellular signaling outcomes. Here, we review the functionality of KIDs throughout all RTK families, and provide justification for further study of this often-overlooked domain.
Collapse
Affiliation(s)
- Lauren E Locascio
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, USA
| | | |
Collapse
|
16
|
Ben Ammar A, Soltanzadeh P, Bauché S, Richard P, Goillot E, Herbst R, Gaudon K, Huzé C, Schaeffer L, Yamanashi Y, Higuchi O, Taly A, Koenig J, Leroy JP, Hentati F, Najmabadi H, Kahrizi K, Ilkhani M, Fardeau M, Eymard B, Hantaï D. A mutation causes MuSK reduced sensitivity to agrin and congenital myasthenia. PLoS One 2013; 8:e53826. [PMID: 23326516 PMCID: PMC3541344 DOI: 10.1371/journal.pone.0053826] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
Congenital myasthenic syndromes (CMSs) are a heterogeneous group of genetic disorders affecting neuromuscular transmission. The agrin/muscle-specific kinase (MuSK) pathway is critical for proper development and maintenance of the neuromuscular junction (NMJ). We report here an Iranian patient in whom CMS was diagnosed since he presented with congenital and fluctuating bilateral symmetric ptosis, upward gaze palsy and slowly progressive muscle weakness leading to loss of ambulation. Genetic analysis of the patient revealed a homozygous missense mutation c.2503A>G in the coding sequence of MUSK leading to the p.Met835Val substitution. The mutation was inherited from the two parents who were heterozygous according to the notion of consanguinity. Immunocytochemical and electron microscopy studies of biopsied deltoid muscle showed dramatic changes in pre- and post-synaptic elements of the NMJs. These changes induced a process of denervation/reinnervation in native NMJs and the formation, by an adaptive mechanism, of newly formed and ectopic NMJs. Aberrant axonal outgrowth, decreased nerve terminal ramification and nodal axonal sprouting were also noted. In vivo electroporation of the mutated MuSK in a mouse model showed disorganized NMJs and aberrant axonal growth reproducing a phenotype similar to that observed in the patient's biopsy specimen. In vitro experiments showed that the mutation alters agrin-dependent acetylcholine receptor aggregation, causes a constitutive activation of MuSK and a decrease in its agrin- and Dok-7-dependent phosphorylation.
Collapse
MESH Headings
- Agrin/metabolism
- Animals
- Child
- HEK293 Cells
- Humans
- Male
- Mice
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Weakness/genetics
- Muscle Weakness/metabolism
- Muscle Weakness/physiopathology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/physiopathology
- Mutation, Missense
- Myasthenic Syndromes, Congenital/genetics
- Myasthenic Syndromes, Congenital/metabolism
- Myasthenic Syndromes, Congenital/physiopathology
- Neuromuscular Junction/genetics
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/physiopathology
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/metabolism
- Signal Transduction
- Synaptic Transmission/genetics
Collapse
Affiliation(s)
- Asma Ben Ammar
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Laboratoire de Neurobiologie Moléculaire et Neuropathologie, Institut National de Neurologie, Université Tunis El Manar, La Rabta, Tunis, Tunisia
| | - Payam Soltanzadeh
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Stéphanie Bauché
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Ecole Pratique des Hautes Etudes, Paris, France
| | - Pascale Richard
- APHP, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Evelyne Goillot
- Equipe Différenciation Neuromusculaire, IFR128, UMR5161, ENS Lyon, CNRS, INRA, Université de Lyon, Lyon, France
| | - Ruth Herbst
- Medical University of Vienna, Center for Brain Research, Vienna, Austria
| | - Karen Gaudon
- APHP, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Caroline Huzé
- Equipe Différenciation Neuromusculaire, IFR128, UMR5161, ENS Lyon, CNRS, INRA, Université de Lyon, Lyon, France
| | - Laurent Schaeffer
- Equipe Différenciation Neuromusculaire, IFR128, UMR5161, ENS Lyon, CNRS, INRA, Université de Lyon, Lyon, France
| | - Yuji Yamanashi
- Division of Genetics, Department of Cancer Biology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Osamu Higuchi
- Division of Genetics, Department of Cancer Biology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Antoine Taly
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Illkirch, France
| | - Jeanine Koenig
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jean-Paul Leroy
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Fayçal Hentati
- Laboratoire de Neurobiologie Moléculaire et Neuropathologie, Institut National de Neurologie, Université Tunis El Manar, La Rabta, Tunis, Tunisia
| | - Hossein Najmabadi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran, Islamic Republic of Iran
| | - Kimia Kahrizi
- University of Social Welfare and Rehabilitation Sciences, Genetics Research Center, Tehran, Islamic Republic of Iran
| | - Manouchehr Ilkhani
- Shahid Beheshti University of Medical Sciences, Department of Neurology, Tehran, Islamic Republic of Iran
| | - Michel Fardeau
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Bruno Eymard
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- APHP, Centre de Référence en Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Daniel Hantaï
- Inserm, UMRS 975, UPMC, Institut du Cerveau et de la Moelle épinière, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- APHP, Centre de Référence en Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Plomp JJ, Huijbers MG, van der Maarel SM, Verschuuren JJ. Pathogenic IgG4 subclass autoantibodies in MuSK myasthenia gravis. Ann N Y Acad Sci 2012; 1275:114-22. [DOI: 10.1111/j.1749-6632.2012.06808.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Park M, Shen K. WNTs in synapse formation and neuronal circuitry. EMBO J 2012; 31:2697-704. [PMID: 22617419 DOI: 10.1038/emboj.2012.145] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/20/2012] [Indexed: 11/09/2022] Open
Abstract
Wnt proteins play important roles in wiring neural circuits. Wnts regulate many aspects of neural circuit generation through their receptors and distinct signalling pathways. In this review, we discuss recent findings on the functions of Wnts in various aspects of neural circuit formation, including neuronal polarity, axon guidance, synapse formation, and synaptic plasticity in vertebrate and invertebrate nervous systems.
Collapse
Affiliation(s)
- Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Seoul, Korea.
| | | |
Collapse
|
19
|
Klooster R, Plomp JJ, Huijbers MG, Niks EH, Straasheijm KR, Detmers FJ, Hermans PW, Sleijpen K, Verrips A, Losen M, Martinez-Martinez P, De Baets MH, van der Maarel SM, Verschuuren JJ. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain 2012; 135:1081-101. [DOI: 10.1093/brain/aws025] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Abstract
Skeletal muscle innervation is a multi-step process leading to the neuromuscular junction (NMJ) apparatus formation. The transmission of the signal from nerve to muscle occurs at the NMJ level. The molecular mechanism that orchestrates the organization and functioning of synapses is highly complex, and it has not been completely elucidated so far. Neuromuscular junctions are assembled on the muscle fibers at very precise locations called end plates (EP). Acetylcholine receptor (AChR) clusterization at the end plates is required for an accurate synaptic transmission. This review will focus on some mechanisms responsible for accomplishing the correct distribution of AChRs at the synapses. Recent evidences support the concept that a dual transcriptional control of AChR genes in subsynaptic and extrasynaptic nuclei is crucial for AChR clusterization. Moreover, new players have been discovered in the agrin-MuSK pathway, the master organizer of postsynaptical differentiation. Mutations in this pathway cause neuromuscular congenital disorders. Alterations of the postynaptic apparatus are also present in physiological conditions characterized by skeletal muscle wasting. Indeed, recent evidences demonstrate how NMJ misfunctioning has a crucial role at the onset of age-associated sarcopenia.
Collapse
|
21
|
Ngo ST, Cole RN, Sunn N, Phillips WD, Noakes PG. Neuregulin-1 potentiates agrin-induced acetylcholine receptor clustering through muscle-specific kinase phosphorylation. J Cell Sci 2012; 125:1531-43. [PMID: 22328506 DOI: 10.1242/jcs.095109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At neuromuscular synapses, neural agrin (n-agrin) stabilizes embryonic postsynaptic acetylcholine receptor (AChR) clusters by signalling through the muscle-specific kinase (MuSK) complex. Live imaging of cultured myotubes showed that the formation and disassembly of primitive AChR clusters is a dynamic and reversible process favoured by n-agrin, and possibly other synaptic signals. Neuregulin-1 is a growth factor that can act through muscle ErbB receptor kinases to enhance synaptic gene transcription. Recent studies suggest that neuregulin-1-ErbB signalling can modulate n-agrin-induced AChR clustering independently of its effects on transcription. Here we report that neuregulin-1 increased the size of developing AChR clusters when injected into muscles of embryonic mice. We investigated this phenomenon using cultured myotubes, and found that in the ongoing presence of n-agrin, neuregulin-1 potentiates AChR clustering by increasing the tyrosine phosphorylation of MuSK. This potentiation could be blocked by inhibiting Shp2, a postsynaptic tyrosine phosphatase known to modulate the activity of MuSK. Our results provide new evidence that neuregulin-1 modulates the signaling activity of MuSK and hence might function as a second-order regulator of postsynaptic AChR clustering at the neuromuscular synapse. Thus two classic synaptic signalling systems (neuregulin-1 and n-agrin) converge upon MuSK to regulate postsynaptic differentiation.
Collapse
Affiliation(s)
- Shyuan T Ngo
- School of Biomedical Sciences, University of Queensland, St. Lucia, 4072, Queensland, Australia
| | | | | | | | | |
Collapse
|
22
|
Wnt4 participates in the formation of vertebrate neuromuscular junction. PLoS One 2012; 7:e29976. [PMID: 22253844 PMCID: PMC3257248 DOI: 10.1371/journal.pone.0029976] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/07/2011] [Indexed: 01/27/2023] Open
Abstract
Neuromuscular junction (NMJ) formation requires the highly coordinated communication of several reciprocal signaling processes between motoneurons and their muscle targets. Identification of the early, spatially restricted cues in target recognition at the NMJ is still poorly documented, especially in mammals. Wnt signaling is one of the key pathways regulating synaptic connectivity. Here, we report that Wnt4 contributes to the formation of vertebrate NMJ in vivo. Results from a microarray screen and quantitative RT-PCR demonstrate that Wnt4 expression is regulated during muscle cell differentiation in vitro and muscle development in vivo, being highly expressed when the first synaptic contacts are formed and subsequently downregulated. Analysis of the mouse Wnt4−/− NMJ phenotype reveals profound innervation defects including motor axons overgrowing and bypassing AChR aggregates with 30% of AChR clusters being unapposed by nerve terminals. In addition, loss of Wnt4 function results in a 35% decrease of the number of prepatterned AChR clusters while Wnt4 overexpression in cultured myotubes increases the number of AChR clusters demonstrating that Wnt4 directly affects postsynaptic differentiation. In contrast, muscle structure and the localization of several synaptic proteins including acetylcholinesterase, MuSK and rapsyn are not perturbed in the Wnt4 mutant. Finally, we identify MuSK as a Wnt4 receptor. Wnt4 not only interacts with MuSK ectodomain but also mediates MuSK activation. Taken together our data reveal a new role for Wnt4 in mammalian NMJ formation that could be mediated by MuSK, a key receptor in synaptogenesis.
Collapse
|
23
|
Richman DP, Nishi K, Morell SW, Chang JM, Ferns MJ, Wollmann RL, Maselli RA, Schnier J, Agius MA. Acute severe animal model of anti-muscle-specific kinase myasthenia: combined postsynaptic and presynaptic changes. ACTA ACUST UNITED AC 2011; 69:453-60. [PMID: 22158720 DOI: 10.1001/archneurol.2011.2200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To determine the pathogenesis of anti-muscle-specific kinase (MuSK) myasthenia, a newly described severe form of myasthenia gravis associated with MuSK antibodies characterized by focal muscle weakness and wasting and absence of acetylcholine receptor antibodies, and to determine whether antibodies to MuSK, a crucial protein in the formation of the neuromuscular junction (NMJ) during development, can induce disease in the mature NMJ. Design, Setting, and PARTICIPANTS Lewis rats were immunized with a single injection of a newly discovered splicing variant of MuSK, MuSK 60, which has been demonstrated to be expressed primarily in the mature NMJ. Animals were assessed clinically, serologically, and by repetitive stimulation of the median nerve. Muscle tissue was examined immunohistochemically and by electron microscopy. RESULTS Animals immunized with 100 μg of MuSK 60 developed severe progressive weakness starting at day 16, with 100% mortality by day 27. The weakness was associated with high MuSK antibody titers, weight loss, axial muscle wasting, and decrementing compound muscle action potentials. Light and electron microscopy demonstrated fragmented NMJs with varying degrees of postsynaptic muscle end plate destruction along with abnormal nerve terminals, lack of registration between end plates and nerve terminals, local axon sprouting, and extrajunctional dispersion of cholinesterase activity. CONCLUSIONS These findings support the role of MuSK antibodies in the human disease, demonstrate the role of MuSK not only in the development of the NMJ but also in the maintenance of the mature synapse, and demonstrate involvement of this disease in both presynaptic and postsynaptic components of the NMJ.
Collapse
Affiliation(s)
- David P Richman
- Department of Neurology, University of California-Davis, 1515 Newton Ct., Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization. Biol Cell 2011; 103:287-301. [PMID: 21524273 DOI: 10.1042/bc20110018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND INFORMATION Cholesterol/sphingolipid-rich membrane microdomains or membrane rafts have been implicated in various aspects of receptor function such as activation, trafficking and synapse localization. More specifically in muscle, membrane rafts are involved in AChR (acetylcholine receptor) clustering triggered by the neural factor agrin, a mechanism considered integral to NMJ (neuromuscular junction) formation. In addition, actin polymerization is required for the formation and stabilization of AChR clusters in muscle fibres. Since membrane rafts are platforms sustaining actin nucleation, we hypothesize that these microdomains provide the suitable microenvironment favouring agrin/MuSK (muscle-specific kinase) signalling, eliciting in turn actin cytoskeleton reorganization and AChR clustering. However, the identity of the signalling pathways operating through these microdomains still remains unclear. RESULTS In this work, we attempted to identify the interactions between membrane raft components and cortical skeleton that regulate, upon signalling by agrin, the assembly and stabilization of synaptic proteins of the postsynaptic membrane domain at the NMJ. We provide evidence that in C2C12 myotubes, agrin triggers the association of a subset of membrane rafts enriched in AChR, the -MuSK and Cdc42 (cell division cycle 42) to the actin cytoskeleton. Disruption of the liquid-ordered phase by methyl-β-cyclodextrin abolished this association. We further show that actin and the actin-nucleation factors, N-WASP (neuronal Wiscott-Aldrich syndrome protein) and Arp2/3 (actin-related protein 2/3) are transiently associated with rafts on agrin engagement. Consistent with these observations, pharmacological inhibition of N-WASP activity perturbed agrin-elicited AChR clustering. Finally, immunoelectron microscopic analyses of myotube membrane uncovered that AChRs were constitutively associated with raft nanodomains at steady state that progressively coalesced on agrin activation. These rearrangements of membrane domains correlated with the reorganization of cortical actin cytoskeleton through concomitant and transient recruitment of the Arp2/3 complex to AChR-enriched rafts. CONCLUSIONS The present observations support the notion that membrane rafts are involved in AChR clustering by promoting local actin cytoskeleton reorganization through the recruitment of effectors of the agrin/MuSK signalling cascade. These mechanisms are believed to play an important role in vivo in the formation of the NMJ.
Collapse
|
25
|
Barišić N, Chaouch A, Müller JS, Lochmüller H. Genetic heterogeneity and pathophysiological mechanisms in congenital myasthenic syndromes. Eur J Paediatr Neurol 2011; 15:189-96. [PMID: 21498094 DOI: 10.1016/j.ejpn.2011.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/20/2011] [Indexed: 10/18/2022]
Abstract
Congenital myasthenic syndromes (CMS) are a rare heterogeneous group of inherited neuromuscular disorders associated with distinctive clinical, electrophysiological, ultrastructural and genetic abnormalities. These genetic defects either impair neuromuscular transmission directly or result in secondary impairments, which eventually compromise the safety margin of neuromuscular transmission. In this report we will explore the significant progress made in understanding the molecular pathogenesis of CMS, which is important for both patients and clinicians in terms of reaching a definite diagnosis and selecting the most appropriate treatment.
Collapse
Affiliation(s)
- Nina Barišić
- Department of Pediatrics, Medical School, University of Zagreb, 10000 Zagreb, Rebro, Kišpatićeva 12, Zagreb, Croatia.
| | | | | | | |
Collapse
|
26
|
Maeder CI, Shen K. Genetic dissection of synaptic specificity. Curr Opin Neurobiol 2011; 21:93-9. [PMID: 21087855 PMCID: PMC3168556 DOI: 10.1016/j.conb.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/04/2010] [Accepted: 10/21/2010] [Indexed: 11/22/2022]
Abstract
Nervous systems are built of a myriad of neurons connected by an even larger number of synapses. While it has been long known that neurons specifically select their synaptic partners among many possible choices during development, we only begin to understand how they make those decisions. Recent findings have started to elucidate the molecular mechanisms underlying synaptic target selection including positive as well as negative cues from synaptic partners, intermediate targets and surrounding tissues. Furthermore, emerging evidence suggests that synaptic connections are not only formed among specific sets of neurons, but also targeted to specific subcellular domains. Finally, spatial and temporal transcriptional regulation of these molecular cues represents an additional, versatile mechanism to provide wiring specificity.
Collapse
Affiliation(s)
- Celine I. Maeder
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Deparment of Pathology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Barros CS, Franco SJ, Müller U. Extracellular matrix: functions in the nervous system. Cold Spring Harb Perspect Biol 2011; 3:a005108. [PMID: 21123393 DOI: 10.1101/cshperspect.a005108] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An astonishing number of extracellular matrix glycoproteins are expressed in dynamic patterns in the developing and adult nervous system. Neural stem cells, neurons, and glia express receptors that mediate interactions with specific extracellular matrix molecules. Functional studies in vitro and genetic studies in mice have provided evidence that the extracellular matrix affects virtually all aspects of nervous system development and function. Here we will summarize recent findings that have shed light on the specific functions of defined extracellular matrix molecules on such diverse processes as neural stem cell differentiation, neuronal migration, the formation of axonal tracts, and the maturation and function of synapses in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Claudia S Barros
- The Scripps Research Institute, Department of Cell Biology, Dorris Neuroscience Center, La Jolla, California 92037, USA
| | | | | |
Collapse
|
28
|
Maselli RA, Arredondo J, Cagney O, Mozaffar T, Skinner S, Yousif S, Davis RR, Gregg JP, Sivak M, Konia TH, Thomas K, Wollmann RL. Congenital myasthenic syndrome associated with epidermolysis bullosa caused by homozygous mutations in PLEC1 and CHRNE. Clin Genet 2010; 80:444-51. [PMID: 21175599 DOI: 10.1111/j.1399-0004.2010.01602.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in the plectin gene (PLEC1) cause epidermolysis bullosa simplex (EBS), which may associate with muscular dystrophy (EBS-MD) or pyloric atresia (EBS-PA). The association of EBS with congenital myasthenic syndrome (CMS) is also suspected to result from PLEC1 mutations. We report here a consanguineous patient with EBS and CMS for whom mutational analysis of PLEC1 revealed a homozygous 36 nucleotide insertion (1506_1507ins36) that results in a reduced expression of PLEC1 mRNA and plectin in the patient muscle. In addition, mutational analysis of CHRNE revealed a homozygous 1293insG, which is a well-known low-expressor receptor mutation. A skin biopsy revealed signs of EBS, and an anconeus muscle biopsy showed signs of a mild myopathy. Endplate studies showed fragmentation of endplates, postsynaptic simplification, and large collections of thread-like mitochondria. Amplitudes of miniature endplate potentials were diminished, but the endplate quantal content was actually increased. The complex phenotype presented here results from mutations in two separate genes. While the skin manifestations are because of the PLEC1 mutation, footprints of mutations in PLEC1 and CHRNE are present at the neuromuscular junction of the patient indicating that abnormalities in both genes contribute to the CMS phenotype.
Collapse
Affiliation(s)
- R A Maselli
- Department of Neurology, University of California Davis, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cole RN, Ghazanfari N, Ngo ST, Gervásio OL, Reddel SW, Phillips WD. Patient autoantibodies deplete postsynaptic muscle-specific kinase leading to disassembly of the ACh receptor scaffold and myasthenia gravis in mice. J Physiol 2010; 588:3217-29. [PMID: 20603331 PMCID: PMC2976017 DOI: 10.1113/jphysiol.2010.190298] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 07/02/2010] [Indexed: 01/14/2023] Open
Abstract
The postsynaptic muscle-specific kinase (MuSK) coordinates formation of the neuromuscular junction (NMJ) during embryonic development. Here we have studied the effects of MuSK autoantibodies upon the NMJ in adult mice. Daily injections of IgG from four MuSK autoantibody-positive myasthenia gravis patients (MuSK IgG; 45 mg day(1)i.p. for 14 days) caused reductions in postsynaptic ACh receptor (AChR) packing as assessed by fluorescence resonance energy transfer (FRET). IgG from the patients with the highest titres of MuSK autoantibodies caused large (51-73%) reductions in postsynaptic MuSK staining (cf. control mice; P < 0.01) and muscle weakness. Among mice injected for 14 days with control and MuSK patient IgGs, the residual level of MuSK correlated with the degree of impairment of postsynaptic AChR packing. However, the loss of postsynaptic MuSK preceded this impairment of postsynaptic AChR. When added to cultured C2 muscle cells the MuSK autoantibodies caused tyrosine phosphorylation of MuSK and the AChR beta-subunit, and internalization of MuSK from the plasma membrane. The results suggest a pathogenic mechanism in which MuSK autoantibodies rapidly deplete MuSK from the postsynaptic membrane leading to progressive dispersal of postsynaptic AChRs. Moreover, maintenance of postsynaptic AChR packing at the adult NMJ would appear to depend upon physical engagement of MuSK with the AChR scaffold, notwithstanding activation of the MuSK-rapsyn system of AChR clustering.
Collapse
Affiliation(s)
- R N Cole
- Physiology, Anderson Stuart Bldg (F13), University of Sydney, NSW 2006 Australia
| | | | | | | | | | | |
Collapse
|
30
|
Niks EH, Kuks JBM, Wokke JHJ, Veldman H, Bakker E, Verschuuren JJGM, Plomp JJ. Pre- and postsynaptic neuromuscular junction abnormalities in musk myasthenia. Muscle Nerve 2010; 42:283-8. [PMID: 20544919 DOI: 10.1002/mus.21642] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autoantibodies to muscle-specific kinase (MuSK) can cause myasthenia gravis (MG). The pathophysiological mechanism remains unknown. We report in vitro electrophysiological and histological studies of the neuromuscular junction in a MuSK MG patient. Low levels of presynaptic acetylcholine release and small miniature endplate potentials were found. This combination of pre- and postsynaptic abnormalities was supported by histology, revealing partially denervated postsynaptic areas, and some degeneration of postsynaptic folds. Results suggest that anti-MuSK antibodies reduce the stability of muscle-nerve contact.
Collapse
Affiliation(s)
- Erik H Niks
- Department of Neurology, Leiden University Medical Center, K5Q-114, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Shigemoto K, Kubo S, Mori S, Yamada S, Akiyoshi T, Miyazaki T. Muscle weakness and neuromuscular junctions in aging and disease. Geriatr Gerontol Int 2010; 10 Suppl 1:S137-47. [DOI: 10.1111/j.1447-0594.2010.00608.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Maselli RA, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, Gerke BJ, Soliven B, Wollmann RL. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet 2010; 19:2370-9. [PMID: 20371544 PMCID: PMC2876883 DOI: 10.1093/hmg/ddq110] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a severe congenital myasthenic syndrome (CMS) caused by two missense mutations in the gene encoding the muscle specific receptor tyrosine kinase (MUSK). The identified MUSK mutations M605I and A727V are both located in the kinase domain of MuSK. Intracellular microelectrode recordings and microscopy studies of the neuromuscular junction conducted in an anconeus muscle biopsy revealed decreased miniature endplate potential amplitudes, reduced endplate size and simplification of secondary synaptic folds, which were consistent with postsynaptic deficit. The study also showed a striking reduction of the endplate potential quantal content, consistent with additional presynaptic failure. Expression studies in MuSK deficient myotubes revealed that A727V, which is located within the catalytic loop of the enzyme, caused severe impairment of agrin-dependent MuSK phosphorylation, aggregation of acetylcholine receptors (AChRs) and interaction of MuSK with Dok-7, an essential intracellular binding protein of MuSK. In contrast, M605I, resulted in only moderate impairment of agrin-dependent MuSK phosphorylation, aggregation of AChRs and interaction of MuSK with Dok-7. There was no impairment of interaction of mutants with either the low-density lipoprotein receptor-related protein, Lrp4 (a co-receptor of agrin) or with the mammalian homolog of the Drosophila tumorous imaginal discs (Tid1). Our findings demonstrate that missense mutations in MUSK can result in a severe form of CMS and indicate that the inability of MuSK mutants to interact with Dok-7, but not with Lrp4 or Tid1, is a major determinant of the pathogenesis of the CMS caused by MUSK mutations.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, School of Veterinary Medicine, University of California Davis, Davis, CA 95618, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Méjat A, Misteli T. LINC complexes in health and disease. Nucleus 2010; 1:40-52. [PMID: 21327104 PMCID: PMC3035119 DOI: 10.4161/nucl.1.1.10530] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022] Open
Abstract
The cell nucleus communicates with the rest of the cell via nucleo/cytoplasmic transport of proteins and RNA through the nuclear pores. Direct mechanical links between the nucleus and the cytoplasm have recently emerged in the form of LINC (Linkers of the nucleoskeleton to the cytoskeleton) protein complexes. A LINC complex consists of four components. At its core are an inner nuclear membrane (INM) transmembrane protein and an outer nuclear membrane (ONM) transmembrane protein which physically interact with each other in the lumen of the NE. The INM LINC component interacts on the nucleoplasmic side with either the lamina or with an INM-associated protein. The ONM LINC component on the other hand contacts on the cytoplasmatic side a component of the cytoskeleton. This review highlights the components of LINC complexes and their emerging roles in mechanotransduction, nuclear migration, chromosome positioning, signaling, meiosis, cytoskeletal organization and human disease.
Collapse
Affiliation(s)
- Alexandre Méjat
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
34
|
Lee Y, Rudell J, Ferns M. Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience 2009; 163:222-32. [PMID: 19482062 PMCID: PMC2728176 DOI: 10.1016/j.neuroscience.2009.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/01/2009] [Accepted: 05/25/2009] [Indexed: 12/12/2022]
Abstract
At the developing vertebrate neuromuscular junction, the acetylcholine receptor becomes aggregated at high density in the postsynaptic muscle membrane. Receptor localization is regulated by the motoneuron-derived factor, agrin, and requires an intracellular, scaffolding protein called rapsyn. However, it remains unclear where rapsyn binds on the acetylcholine receptor and how their interaction is regulated. In this study, we identified rapsyn's binding site on the acetylcholine receptor using chimeric constructs where the intracellular domain of CD4 was substituted for the major intracellular loop of each mouse acetylcholine receptor subunit. When expressed in heterologous cells, we found that rapsyn clustered and cytoskeletally anchored CD4-alpha, beta and epsilon subunit loops but not CD4-delta loop. Rapsyn-mediated clustering and anchoring was highest for beta loop, followed by epsilon and alpha, suggesting that rapsyn interacts with the loops with different affinities. Moreover, by making deletions within the beta subunit intracellular loop, we show that rapsyn interacts with the alpha-helical region, a secondary structural motif present in the carboxyl terminal portion of the subunit loops. When expressed in muscle cells, rapsyn co-immunoprecipitated together with a CD4-alpha helical region chimera, independent of agrin signaling. Together, these findings demonstrate that rapsyn interacts with the acetylcholine receptor via an alpha-helical structural motif conserved between the alpha, beta and epsilon subunits. Binding at this site likely mediates the critical rapsyn interaction involved in localizing the acetylcholine receptor at the neuromuscular junction.
Collapse
Affiliation(s)
- Y Lee
- Department of Anesthesiology and Physiology and Membrane Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
35
|
Receptor tyrosine kinases and respiratory motor plasticity. Respir Physiol Neurobiol 2009; 164:242-51. [PMID: 18634908 DOI: 10.1016/j.resp.2008.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/13/2008] [Accepted: 06/18/2008] [Indexed: 11/23/2022]
Abstract
Protein kinases are a family of enzymes that transfer a phosphate group from adenosine tri-phosphate to an amino acid residue on a protein. The receptor tyrosine kinases (RTKs) are expressed on the outer cell membrane, bind extracellular protein ligands, and phosphorylate tyrosine residues on other proteins-essentially permitting communication between cells. Such activity regulates multiple aspects of cellular physiology including cell growth and differentiation, adhesion, motility, cell death, and morphological and synaptic plasticity. This review will focus on the role of RTKs in respiratory motor plasticity, with particular emphasis on long-term changes in respiratory motoneuron function. Reflecting the predominant literature, specific attention will be devoted to the role of tropomyosin-related kinase type B (TrkB) activation on phrenic motoneuron activity. However, many RTKs share similar patterns of expression and mechanisms of ligand-induced activation and downstream signaling. Thus, a perspective based on TrkB-induced phrenic motor plasticity may provide insight into the potential roles of other RTKs in the neural control of breathing. Finally, understanding how different RTKs affect respiratory motor output in the long-term may provide future avenues for pharmacological development with the goal of increasing respiratory motor output in disorders such as obstructive sleep apnea and after spinal cord injury. This is best illustrated in recent studies where we have used small, highly diffusible molecules to transactivate TrkB receptors near phrenic motoneurons to improve breathing after cervical spinal cord injury.
Collapse
|
36
|
Cartaud J, Cartaud A. LRP4 : le co-récepteur de l’agrine enfin identifié ? Med Sci (Paris) 2009; 25:215-6. [DOI: 10.1051/medsci/2009253215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Abstract
Receptors represent an abundant class of integral membrane proteins that transmit information on various types of signals within the cell. Assemblages of receptors and their interacting proteins (receptor complexes) have emerged as important units of signal transduction for various types of receptors including G protein coupled, ligand-gated ion channel, and receptor tyrosine kinase. This review aims to summarize the major approaches and findings of receptor proteomics. Isolation and characterization of receptor complexes from cells has become common using the methods of immunoaffinity-, ligand-, and tag-based chromatography followed by MS for the analysis of enriched receptor preparations. In addition, tools such as stable isotope labeling have contributed to understanding quantitative properties and PTMs to receptors and their interacting proteins. As data from studies on receptor-protein interactions considerably expands, complementary approaches such as bioinformatics and computational biology will undoubtedly play a significant role in defining cellular and network functions for various types of receptor complexes. Findings from receptor proteomics may also shed light on the mechanism of action for pharmacological drugs and can be of value in understanding molecular pathologies of disease states.
Collapse
Affiliation(s)
- Nadine Kabbani
- Institut Jacques Monod, CNRS/Universités Paris 6, Paris, France.
| |
Collapse
|
38
|
Borges LS, Yechikhov S, Lee YI, Rudell JB, Friese MB, Burden SJ, Ferns MJ. Identification of a motif in the acetylcholine receptor beta subunit whose phosphorylation regulates rapsyn association and postsynaptic receptor localization. J Neurosci 2008; 28:11468-76. [PMID: 18987183 PMCID: PMC2606670 DOI: 10.1523/jneurosci.2508-08.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/10/2008] [Accepted: 09/22/2008] [Indexed: 11/21/2022] Open
Abstract
At the neuromuscular junction, the acetylcholine receptor (AChR) is specifically clustered in the postsynaptic membrane via interactions with rapsyn and other scaffolding proteins. However, it remains unclear where these proteins bind on the AChR and how the interactions are regulated. Here, we define a phosphorylation-dependent binding site on the receptor that mediates agrin-induced clustering. Using chimeric proteins in which CD4 is fused to the large intracellular loop of each of the AChR subunits we found that agrin induced clustering of only chimeras containing the beta subunit loop. By making deletions in the beta loop we defined a 20 amino-acid sequence that is sufficient for clustering. The sequence contains a conserved tyrosine (Y390) whose phosphorylation is induced by agrin and whose mutation abolished clustering of beta loop chimeras and their ability to inhibit agrin-induced clustering of the endogenous AChR. Phosphorylation of the AChR beta subunit is correlated with increased rapsyn/AChR binding, suggesting that the effect of betaY390 phosphorylation on clustering is mediated by rapsyn. Indeed, we found that rapsyn associated with CD4-beta loop chimeras in a phosphorylation-dependent manner, and that agrin increased the ratio of rapsyn binding to wild type AChR but not to AChR-beta(3F/3F), which lacks beta loop tyrosine phosphorylation sites. Together, these findings suggest that agrin-induced phosphorylation of the beta subunit motif increases the stoichiometry of rapsyn binding to the AChR, thereby helping to stably cluster the receptor and anchor it at high density in the postsynaptic membrane.
Collapse
Affiliation(s)
- Lucia S. Borges
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| | - Sergey Yechikhov
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| | - Young I. Lee
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| | - John B. Rudell
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| | - Matthew B. Friese
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016
| | - Steven J. Burden
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, New York 10016
| | - Michael J. Ferns
- Departments of Anesthesiology and Physiology and Membrane Biology, University of California, Davis, Davis, California 95616, and
| |
Collapse
|
39
|
Kim ML, Chandrasekharan K, Glass M, Shi S, Stahl MC, Kaspar B, Stanley P, Martin PT. O-fucosylation of muscle agrin determines its ability to cluster acetylcholine receptors. Mol Cell Neurosci 2008; 39:452-64. [PMID: 18775496 PMCID: PMC2646263 DOI: 10.1016/j.mcn.2008.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022] Open
Abstract
Protein O-fucosyltransferase 1 (Pofut1) transfers fucose to serine or threonine on proteins, including Notch receptors, that contain EGF repeats with a particular consensus sequence. Here we demonstrate that agrin is O-fucosylated in a Pofut1-dependent manner, and that this glycosylation can regulate agrin function. Fucosylation of recombinant C45 agrin, both active (neural, z8) and inactive (muscle, z0) splice forms, was eliminated when agrin was overexpressed in Pofut1-deficient cells or by mutation of a consensus site for Pofut1 fucosylation (serine 1726 in the EGF4 domain). Loss of O-fucosylation caused a gain of function for muscle agrin such that it stimulated AChR clustering and MuSK phosphorylation in cultured myotubes at levels normally only found with the neural splice form. Deletion of Pofut1 in cultured primary myotubes and in adult skeletal muscle increased AChR aggregation. In addition, Pofut1 gene and protein expression and Pofut1 activity of the EGF4 domain of agrin were modulated during neuromuscular development. These data are consistent with a role for Pofut1 in AChR aggregation during synaptogenesis via the regulation of the synaptogenic activity of muscle agrin.
Collapse
Affiliation(s)
- Mi-Lyang Kim
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital
- Graduate Program in Molecular, Cellular, and Developmental Biology, Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205, Phone: (614) 722-4072, FAX: (614) 722-5893,
| | | | - Matthew Glass
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital
| | - Shaolin Shi
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY 10461
| | - Mark C. Stahl
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY 10461
| | - Brian Kaspar
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, NY 10461
| | - Paul T. Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital
- Department of Pediatrics
| |
Collapse
|
40
|
Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. LRP4 serves as a coreceptor of agrin. Neuron 2008; 60:285-97. [PMID: 18957220 PMCID: PMC2743173 DOI: 10.1016/j.neuron.2008.10.006] [Citation(s) in RCA: 427] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/09/2008] [Accepted: 10/08/2008] [Indexed: 11/17/2022]
Abstract
Neuromuscular junction (NMJ) formation requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. We report that LRP4, a low-density lipoprotein receptor (LDLR)-related protein, is expressed specifically in myotubes and binds to neuronal agrin. Its expression enables agrin binding and MuSK signaling in cells that otherwise do not respond to agrin. Suppression of LRP4 expression in muscle cells attenuates agrin binding, agrin-induced MuSK tyrosine phosphorylation, and AChR clustering. LRP4 also forms a complex with MuSK in a manner that is stimulated by agrin. Finally, we showed that LRP4 becomes tyrosine-phosphorylated in agrin-stimulated muscle cells. These observations indicate that LRP4 is a coreceptor of agrin that is necessary for MuSK signaling and AChR clustering and identify a potential target protein whose mutation and/or autoimmunization may cause muscular dystrophies.
Collapse
Affiliation(s)
- Bin Zhang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Shiwen Luo
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Qiang Wang
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Tatsuo Suzuki
- Department of Neuroplasticity, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Wen C. Xiong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | - Lin Mei
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Department of Neurology, Medical College of Georgia, Augusta, Georgia 30912, USA
| |
Collapse
|
41
|
Brockhausen J, Cole RN, Gervásio OL, Ngo ST, Noakes PG, Phillips WD. Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse. Dev Neurobiol 2008; 68:1153-69. [PMID: 18506821 DOI: 10.1002/dneu.20654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescence resonance energy transfer (FRET) experiments at neuromuscular junctions in the mouse tibialis anterior muscle show that postsynaptic acetylcholine receptors (AChRs) become more tightly packed during the first month of postnatal development. Here, we report that the packing of AChRs into postsynaptic aggregates was reduced in 4-week postnatal mice that had reduced amounts of the AChR-associated protein, rapsyn, in the postsynaptic membrane (rapsyn(+/-) mice). We hypothesize that nerve-derived agrin increases postsynaptic expression and targeting of rapsyn, which then drives the developmental increase in AChR packing. Neural agrin treatment elevated the expression of rapsyn in C2 myotubes by a mechanism that involved slowing of rapsyn protein degradation. Similarly, exposure of synapses in postnatal muscle to exogenous agrin increased rapsyn protein levels and elevated the intensity of anti-rapsyn immunofluorescence, relative to AChR, in the postsynaptic membrane. This increase in the rapsyn-to-AChR immunofluorescence ratio was associated with tighter postsynaptic AChR packing and slowed AChR turnover. Acute blockade of synaptic AChRs with alpha-bungarotoxin lowered the rapsyn-to-AChR immunofluorescence ratio, suggesting that AChR signaling also helps regulate the assembly of extra rapsyn in the postsynaptic membrane. The results suggest that at the postnatal neuromuscular synapse agrin signaling elevates the expression and targeting of rapsyn to the postsynaptic membrane, thereby packing more AChRs into stable, functionally-important AChR aggregates.
Collapse
Affiliation(s)
- Jennifer Brockhausen
- School of Medical Sciences (Physiology), Bosch Institute, University of Sydney, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The Wnt family of secreted proteins plays a crucial role in nervous system wiring. Wnts regulate neuronal positioning, polarization, axon and dendrite development, and synaptogenesis. These diverse roles of Wnt proteins are due not only to the large numbers of Wnt ligands and receptors but also to their ability to signal through distinct signaling pathways in different cell types and developmental contexts. Studies on Wnts have shed new light on novel molecular mechanisms that control the development of complex neuronal connections. This review discusses recent advances on how Wnt signaling influences different aspects of neuronal circuit assembly through changes in gene expression and/or cytoskeletal modulation.
Collapse
Affiliation(s)
- Patricia C Salinas
- Department of Anatomy and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom.
| | | |
Collapse
|
43
|
Heuss D, Klascinski J, Schubert SW, Moriabadi T, Lochmüller H, Hashemolhosseini S. Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies. Mol Cell Biochem 2008; 316:135-40. [PMID: 18553059 DOI: 10.1007/s11010-008-9819-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
Abstract
Motoneurons release the heparansulfate proteoglycan agrin and thereby activate the muscle-specific receptor tyrosine kinase (MuSK), which is the main organizer of subsynaptic specializations at the neuromuscular junction. Recently, we showed that (1) the protein kinase CK2 interacts with the intracellular region of MuSK; (2) the CK2 protein is enriched and co-localized with MuSK at postsynaptic specializations; (3) CK2-mediated phosphorylation of serine residues within a specific MuSK epitope, named the kinase insert, regulates acetylcholine receptor (AChR) clustering; (4) muscle-specific CK2beta knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function (see Genes Dev 20(13):1800-1816, 2006). Here, we investigated for the first time if CK2 is modulated in biopsies from human patients. To this end, we measured transcript amounts of the subunits CK2alpha and CK2beta and determined holoenzyme CK2 activity in 34 muscle biopsies of human patients with different muscle pathologies.
Collapse
Affiliation(s)
- Dieter Heuss
- Neurologische Klinik, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Cole RN, Reddel SW, Gervásio OL, Phillips WD. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction. Ann Neurol 2008; 63:782-9. [DOI: 10.1002/ana.21371] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Kim N, Burden SJ. MuSK controls where motor axons grow and form synapses. Nat Neurosci 2008; 11:19-27. [PMID: 18084289 PMCID: PMC2923649 DOI: 10.1038/nn2026] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 11/09/2007] [Indexed: 11/08/2022]
Abstract
Motor axons approach muscles that are regionally prespecialized, as acetylcholine receptors are clustered in the central region of muscle before and independently of innervation. This muscle prepattern requires MuSK, a receptor tyrosine kinase that is essential for synapse formation. It is not known how muscle prepatterning is established, and whether motor axons recognize this prepattern. Here we show that expression of Musk is prepatterned in muscle and that early Musk expression in developing myotubes is sufficient to establish muscle prepatterning. We further show that ectopic Musk expression promotes ectopic synapse formation, indicating that muscle prepatterning normally has an instructive role in directing where synapses will form. In addition, ectopic Musk expression stimulates synapse formation in the absence of Agrin and rescues the lethality of Agrn mutant mice, demonstrating that the postsynaptic cell, and MuSK in particular, has a potent role in regulating the formation of synapses.
Collapse
Affiliation(s)
- Natalie Kim
- Molecular Neurobiology Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU Medical School, 540 First Avenue, N.Y., NY 10016
| | - Steven J. Burden
- Molecular Neurobiology Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU Medical School, 540 First Avenue, N.Y., NY 10016
| |
Collapse
|
46
|
Reliability of neuromuscular transmission and how it is maintained. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:27-101. [PMID: 18631840 DOI: 10.1016/s0072-9752(07)01502-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors. BMC Neurosci 2007; 8:46. [PMID: 17605785 PMCID: PMC1924855 DOI: 10.1186/1471-2202-8-46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 07/02/2007] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Development of neural networks requires that synapses are formed, eliminated and stabilized. At the neuromuscular junction (NMJ), agrin/MuSK signaling, by triggering downstream pathways, causes clustering and phosphorylation of postsynaptic acetylcholine receptors (AChRs). Postnatally, AChR aggregates are stabilized by molecular pathways that are poorly characterized. Gain or loss of function of Src-family kinases (SFKs) disassembles AChR clusters at adult NMJs in vivo, whereas AChR aggregates disperse rapidly upon withdrawal of agrin from cultured src-/-;fyn-/- myotubes. This suggests that a balance between protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) such as those of the Src-family may be essential in stabilizing clusters of AChRs. RESULTS We have analyzed the role of PTPs in maintenance of AChR aggregates, by adding and then withdrawing agrin from cultured myotubes in the presence of PTP or PTK inhibitors and quantitating remaining AChR clusters. In wild-type myotubes, blocking PTPs with pervanadate caused enhanced disassembly of AChR clusters after agrin withdrawal. When added at the time of agrin withdrawal, SFK inhibitors destabilized AChR aggregates but concomitant addition of pervanadate rescued cluster stability. Likewise in src-/-;fyn-/- myotubes, in which agrin-induced AChR clusters form normally but rapidly disintegrate after agrin withdrawal, pervanadate addition stabilized AChR clusters. The PTP SHP-2, known to be enriched at the NMJ, associated and colocalized with MuSK, and agrin increased this interaction. Specific SHP-2 knockdown by RNA interference reduced the stability of AChR clusters in wild-type myotubes. Similarly, knockdown of SHP-2 in adult mouse soleus muscle by electroporation of RNA interference constructs caused disassembly of pretzel-shaped AChR-rich areas in vivo. Finally, we found that src-/-;fyn-/- myotubes contained elevated levels of SHP-2 protein. CONCLUSION Our data are the first to show that the fine balance between PTPs and SFKs is a key aspect in stabilization of postsynaptic AChR clusters. One phosphatase that acts in this equilibrium is SHP-2. Thus, PTPs such as SHP-2 stabilize AChR clusters under normal circumstances, but when these PTPs are not balanced by SFKs, they render clusters unstable.
Collapse
|
48
|
Baer K, Bürli T, Huh KH, Wiesner A, Erb-Vögtli S, Göckeritz-Dujmovic D, Moransard M, Nishimune A, Rees MI, Henley JM, Fritschy JM, Fuhrer C. PICK1 interacts with alpha7 neuronal nicotinic acetylcholine receptors and controls their clustering. Mol Cell Neurosci 2007; 35:339-55. [PMID: 17467288 PMCID: PMC3310904 DOI: 10.1016/j.mcn.2007.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 03/13/2007] [Accepted: 03/19/2007] [Indexed: 01/28/2023] Open
Abstract
Central to synaptic function are protein scaffolds associated with neurotransmitter receptors. Alpha7 neuronal nicotinic acetylcholine receptors (nAChRs) modulate network activity, neuronal survival and cognitive processes in the CNS, but protein scaffolds that interact with these receptors are unknown. Here we show that the PDZ-domain containing protein PICK1 binds to alpha7 nAChRs and plays a role in their clustering. PICK1 interacted with the alpha7 cytoplasmic loop in yeast in a PDZ-dependent way, and the interaction was confirmed in recombinant pull-down experiments and by co-precipitation of native proteins. Some alpha7 and PICK1 clusters were adjacent at the surface of SH-SY5Y cells and GABAergic interneurons in hippocampal cultures. Expression of PICK1 caused decreased alpha7 clustering on the surface of the interneurons in a PDZ-dependent way. These data show that PICK1 negatively regulates surface clustering of alpha7 nAChRs on hippocampal interneurons, which may be important in inhibitory functions of alpha7 in the hippocampus.
Collapse
Affiliation(s)
- Kristin Baer
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- School of Medicine, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
| | - Thomas Bürli
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Kyung-Hye Huh
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Wiesner
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Susanne Erb-Vögtli
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Dubravka Göckeritz-Dujmovic
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Martijn Moransard
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Atsushi Nishimune
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| | - Mark I. Rees
- School of Medicine, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
| | - Jeremy M. Henley
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Christian Fuhrer
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
49
|
Gervásio OL, Armson PF, Phillips WD. Developmental increase in the amount of rapsyn per acetylcholine receptor promotes postsynaptic receptor packing and stability. Dev Biol 2007; 305:262-75. [PMID: 17362913 DOI: 10.1016/j.ydbio.2007.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 02/07/2023]
Abstract
Neuromuscular synaptic transmission depends upon tight packing of acetylcholine receptors (AChRs) into postsynaptic AChR aggregates, but not all postsynaptic AChRs are aggregated. Here we describe a new confocal Fluorescence Resonance Energy Transfer (FRET) assay for semi-quantitative comparison of the degree to which AChRs are aggregated at synapses. During the first month of postnatal life the mouse tibialis anterior muscle showed increases both in the number of postsynaptic AChRs and the efficiency with which AChR was aggregated (by FRET). There was a concurrent two-fold increase in immunofluorescent labeling for the AChR-associated cytoplasmic protein, rapsyn. When 1-month old muscle was denervated, postsynaptic rapsyn immunostaining was reduced, as was the efficiency of AChR aggregation. In vivo electroporation of rapsyn-EGFP into muscle fibers increased postsynaptic rapsyn levels. Those synapses with higher ratios of rapsyn-EGFP to AChR displayed a slower metabolic turnover of AChR. Conversely, the reduction of postsynaptic rapsyn after denervation was accompanied by an acceleration of AChR turnover. Thus, a developmental increase in the amount of rapsyn targeted to the postsynaptic membrane may drive enhanced postsynaptic AChRs aggregation and AChR stability within the postsynaptic membrane.
Collapse
Affiliation(s)
- Othon L Gervásio
- School of Medical Sciences (Physiology), Bosch Institute, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
50
|
Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J. Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes. J Lipid Res 2006; 47:2121-33. [PMID: 16816402 DOI: 10.1194/jlr.m600182-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of the neuromuscular junction is characterized by the progressive accumulation of nicotinic acetylcholine receptors (AChRs) in the postsynaptic membrane facing the nerve terminal, induced predominantly through the agrin/muscle-specific kinase (MuSK) signaling cascade. However, the cellular mechanisms linking MuSK activation to AChR clustering are still poorly understood. Here, we investigate whether lipid rafts are involved in agrin-elicited AChR clustering in a mouse C2C12 cell line. We observed that in C2C12 myotubes, both AChR clustering and cluster stability were dependent on cholesterol, because depletion by methyl-beta-cyclodextrin inhibited cluster formation or dispersed established clusters. Importantly, AChR clusters resided in ordered membrane domains, a biophysical property of rafts, as probed by Laurdan two-photon fluorescence microscopy. We isolated detergent-resistant membranes (DRMs) by three different biochemical procedures, all of which generate membranes with similar cholesterol/GM1 ganglioside contents, and these were enriched in several postsynaptic components, notably AChR, syntrophin, and raft markers flotillin-2 and caveolin-3. Agrin did not recruit AChRs into DRMs, suggesting that they are present in rafts independently of agrin activation. Consequently, in C2C12 myotubes, agrin likely triggers AChR clustering or maintains clusters through the coalescence of lipid rafts. These data led us to propose a model in which lipid rafts play a pivotal role in the assembly of the postsynaptic membrane at the neuromuscular junction upon agrin signaling.
Collapse
Affiliation(s)
- Françoise Stetzkowski-Marden
- Biologie Cellulaire des Membranes, Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris 6, Université Paris 7, F-75251 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|