1
|
Tian X, Peng F, Xiong X, Xu X, Zan Y, Wang X, Yu B, Liu Z, He X, Huang Z. Artemisinin analogues are effective in the treatment of psoriasis by targeting RORγt. Mol Immunol 2025; 180:11-22. [PMID: 39987640 DOI: 10.1016/j.molimm.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Psoriasis is a chronic inflammatory skin autoimmune disease. Th17 cells, when pathologically activated, significantly contribute to the progression of psoriasis. The symptoms of this skin condition could be notably alleviated by targeting and suppressing the activity of these cells. Retinoic acid receptor-associated orphan nuclear hormone receptor γ-t (RORγt), a critical transcription factor in Th17 cells, emerges as a promising therapeutic target for autoimmune conditions which are mediated by the dysregulation of these cells. In this study, we designed and synthesised a series of artemisinin analogues based on the chemical structure of artemisinin, and screened 3 compounds, QHS-1, QHS-2, and QHS-3, with better inhibition efficiency of RORγt activity. We found that each of the three artemisinin analogues were demonstrated efficacy in curbing IMQ-induced skin inflammation and the abnormal proliferation of keratinocytes within the BALB/c mouse model of psoriasis. Our findings indicate that the three artemisinin analogues not only effectively mitigated skin inflammation and the abnormal proliferation of keratinocytes in the IMQ-induced psoriasis model of BALB/c mice but also curtailed the infiltration of immune cells and the production of pro-inflammatory cytokines in the dermis. Furthermore, these compounds modulated the cytokine expression profiles within Th17 cells. They exerted a suppressive effect on the activity of Th17 cells by targeting RORγt, thereby dampening the inflammatory response in the dorsal skin of the mice. This inhibition led to a reduction in the pathological proliferation of keratinocytes. In conclusion, our research underscores the promising therapeutic potential of artemisinin analogues in the treatment of psoriasis, offering a slate of candidate compounds which could pave the way for novel drug development in this field.
Collapse
Affiliation(s)
- Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Fanrong Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoxiao Xiong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoting Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Yu Zan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xinran Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
2
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Yadav JP, Lodhi L, Fatma T, Dey KK, Ghosh M. Investigation of the Influence of Various Functional Groups on the Dynamics of Glucocorticoids. ACS OMEGA 2022; 7:43190-43209. [PMID: 36467925 PMCID: PMC9713872 DOI: 10.1021/acsomega.2c05892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The basic configuration of glucocorticoid consists of four-fused rings associated with one cyclohexadienone ring, two cyclohexane rings, and one cyclopentane ring. The ways the structure and dynamics of five glucocorticoids (prednisone, prednisolone, prednisolone acetate, methylprednisolone, and methylprednisolone acetate) are altered because of the substitution of various functional groups with these four-fused rings are studied thoroughly by applying sophisticated solid-state nuclear magnetic resonance (NMR) methodologies. The biological activities of these glucocorticoids are also changed because of the attachment of various functional groups with these four-fused rings. The substitution of the hydroxyl group (with the C11 atom of the cyclohexane ring) in place of the keto group enhances the potential of the glucocorticoid to cross the cellular membrane. As a result, the bioavailability of prednisolone (the hydroxyl group is attached with the C11 atom of the cyclohexane ring) is increased compared to prednisone (the keto group is attached with the C11 atom of cyclohexane rings). Another notable point is that the spin-lattice relaxation rate at crystallographically distinct carbon nuclei sites of prednisolone is increased compared to that of the prednisone, which implies that the motional degrees of freedom of glucocorticoid is increased because of the substitution of the hydroxyl group in place of the keto group of the cyclohexane ring. The attachment of the methyl group with the C6 atom of cyclohexane rings further reduces the spin-lattice relaxation time at crystallographically distinct carbon nuclei sites of glucocorticoid and its bioactivity is also increased. By comparing the spin-lattice relaxation time and the local correlation time at crystallographically different carbon nuclei sites of three steroids prednisone, prednisolone, and methylprednisolone, it is observed that both the spin-lattice relaxation time and the local correlation time gradually decrease at each crystallographically distinct carbon nuclei sites when we move from prednisone to prednisolone to methyl-prednisolone. On the other hand, if we compare the same for prednisolone, prednisolone acetate, and methylprednisolone acetate, then we also observe that both the spin-lattice relaxation time and the local-correlation time gradually decrease from prednisolone to prednisolone acetate to methylprednisolone acetate for all chemically different carbon nuclei. It is also noticeable that both the spin-lattice relaxation time and the local-correlation time gradually decrease from prednisone to prednisolone to prednisolone acetate to methylprednisolone to methylprednisolone acetate for most of the carbon nuclei sites. From in silico analysis, it is also revealed that the bioavailability and efficacy of the glucocorticoid increase from prednisone to prednisolone to prednisolone acetate to methylprednisolone to methylprednisolone acetate. Hence, it can be concluded that the biological activity and the motional degrees of freedom of the glucocorticoids are highly correlated. These types of studies provide a clear picture of the structure-activity relationship of the drug molecules, which will enlighten the path of developing highly potent glucocorticoids with minimum side effects. Another important aspect of these types of studies is to provide information about the electronics configuration and nuclear spin dynamics at crystallographically different carbon nuclei sites of five glucocorticoids, which will enrich the field of "NMR crystallography".
Collapse
Affiliation(s)
- Jai Prakash Yadav
- Physics
Section, Mahila Maha Vidyalaya, Banaras
Hindu University, Varanasi, Uttar Pradesh221005, India
| | - Lekhan Lodhi
- Department
of Zoology, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh470003, India
| | - Tamseel Fatma
- Department
of Bioinformatics, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh221005, India
| | - Krishna Kishor Dey
- Department
of Physics, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh470003, India
| | - Manasi Ghosh
- Physics
Section, Mahila Maha Vidyalaya, Banaras
Hindu University, Varanasi, Uttar Pradesh221005, India
| |
Collapse
|
4
|
Association between Vitamin D Supplements, Oxidative Stress Biomarkers, and Hyperbaric Therapy in Patients with Sudden Sensorineural Hearing Loss. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8895323. [PMID: 33777323 PMCID: PMC7972839 DOI: 10.1155/2021/8895323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
The effect of vitamin D supplementation to patients with sudden sensorineural hearing loss (SSNHL), treated with hyperbaric oxygen (HBO) therapy, on the markers of the oxidant-antioxidant equilibrium was investigated. Patients were divided into two groups: those who did and did not receive vitamin D (cholecalciferol at 4000 IU/24 h). Concentrations of the following compounds, thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), conjugated dienes (CD) in plasma and erythrocytes and activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes, were determined. Haemoglobin (HGB) and haematocrit (HCT) were measured. Blood for analyses was collected from the basilic vein at three time points: before the first HBO procedure, up to 5 min after the first procedure, and after 14 procedures. No statistically significant differences in parameters tested were found between patients who did and did not receive vitamin D. In patients without supplementation, an increase of 53.2% (P ≤ 0.05) in erythrocyte TBARS was observed after the first HBO treatment. In patients receiving vitamin D, a reduction of 27.6% (P ≤ 0.05) was observed in erythrocyte MDA after 14 HBO treatments vs. that after the first treatment. In both groups, a decrease of 33.3% in plasma CD was observed after 14 treatments vs. that after the first treatment (P ≤ 0.05 and P ≤ 0.01, respectively). No statistically significant changes were observed in the erythrocyte SOD, GPx, and CAT activities and in HCT. A reduction of HGB concentration of 10.9% (P ≤ 0.05) was demonstrated in nonsupplemented patients after 14 treatments compared with baseline. The results confirm that the effect of HBO therapy on oxidative stress markers is inconclusive and complex. Repeated HBO procedures can induce adaptive changes which protect against disruption of the oxidant-antioxidant equilibrium. It is possible that vitamin D supplementation inhibits the process of lipid peroxidation in erythrocytes.
Collapse
|
5
|
Nikolaou N, Hodson L, Tomlinson JW. The role of 5-reduction in physiology and metabolic disease: evidence from cellular, pre-clinical and human studies. J Steroid Biochem Mol Biol 2021; 207:105808. [PMID: 33418075 DOI: 10.1016/j.jsbmb.2021.105808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 01/01/2023]
Abstract
The 5-reductases (5α-reductase types 1, 2 and 3 [5αR1-3], 5β-reductase [5βR]) are steroid hormone metabolising enzymes that hold fundamental roles in human physiology and pathology. They possess broad substrate specificity converting many steroid hormones to their 5α- and 5β-reduced metabolites, as well as catalysing crucial steps in bile acid synthesis. 5αRs are fundamentally important in urogenital development by converting testosterone to the more potent androgen 5α-dihydrotestosterone (5αDHT); inactivating mutations in 5αR2 lead to disorders of sexual development. Due to the ability of the 5αRs to generate 5αDHT, they are an established drug target, and 5αR inhibitors are widely used for the treatment of androgen-dependent benign or malignant prostatic diseases. There is an emerging body of evidence to suggest that the 5-reductases can impact upon aspects of health and disease (other than urogenital development); alterations in their expression and activity have been associated with metabolic disease, polycystic ovarian syndrome, inflammation and bone metabolism. This review will outline the evidence base for the extra-urogenital role of 5-reductases from in vitro cell systems, pre-clinical models and human studies, and highlight the potential adverse effects of 5αR inhibition in human health and disease.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.
| |
Collapse
|
6
|
Appanna N, Gibson H, Gangitano E, Dempster NJ, Morris K, George S, Arvaniti A, Gathercole LL, Keevil B, Penning TM, Storbeck KH, Tomlinson JW, Nikolaou N. Differential activity and expression of human 5β-reductase (AKR1D1) splice variants. J Mol Endocrinol 2021; 66:181-194. [PMID: 33502336 PMCID: PMC7965358 DOI: 10.1530/jme-20-0160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Steroid hormones, including glucocorticoids and androgens, exert a wide variety of effects in the body across almost all tissues. The steroid A-ring 5β-reductase (AKR1D1) is expressed in human liver and testes, and three splice variants have been identified (AKR1D1-001, AKR1D1-002, AKR1D1-006). Amongst these, AKR1D1-002 is the best described; it modulates steroid hormone availability and catalyses an important step in bile acid biosynthesis. However, specific activity and expression of AKR1D1-001 and AKR1D1-006 are unknown. Expression of AKR1D1 variants were measured in human liver biopsies and hepatoma cell lines by qPCR. Their three-dimensional (3D) structures were predicted using in silico approaches. AKR1D1 variants were overexpressed in HEK293 cells, and successful overexpression confirmed by qPCR and Western blotting. Cells were treated with either cortisol, dexamethasone, prednisolone, testosterone or androstenedione, and steroid hormone clearance was measured by mass spectrometry. Glucocorticoid and androgen receptor activation were determined by luciferase reporter assays. AKR1D1-002 and AKR1D1-001 are expressed in human liver, and only AKR1D1-006 is expressed in human testes. Following overexpression, AKR1D1-001 and AKR1D1-006 protein levels were lower than AKR1D1-002, but significantly increased following treatment with the proteasomal inhibitor, MG-132. AKR1D1-002 efficiently metabolised glucocorticoids and androgens and decreased receptor activation. AKR1D1-001 and AKR1D1-006 poorly metabolised dexamethasone, but neither protein metabolised cortisol, prednisolone, testosterone or androstenedione. We have demonstrated the differential expression and role of AKR1D1 variants in steroid hormone clearance and receptor activation in vitro. AKR1D1-002 is the predominant functional protein in steroidogenic and metabolic tissues. In addition, AKR1D1-001 and AKR1D1-006 may have a limited, steroid-specific role in the regulation of dexamethasone action.
Collapse
Affiliation(s)
- Nathan Appanna
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Hylton Gibson
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Elena Gangitano
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Lazio, Italy
| | - Niall J Dempster
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Karen Morris
- Biochemistry Department, Manchester University NHS Trust, Manchester Academic Health Science Centre, Manchester, Greater Manchester, UK
| | - Sherly George
- Biochemistry Department, Manchester University NHS Trust, Manchester Academic Health Science Centre, Manchester, Greater Manchester, UK
| | - Anastasia Arvaniti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, UK
| | - Laura L Gathercole
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, Oxfordshire, UK
| | - Brian Keevil
- Biochemistry Department, Manchester University NHS Trust, Manchester Academic Health Science Centre, Manchester, Greater Manchester, UK
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, Oxfordshire, UK
- Correspondence should be addressed to N Nikolaou:
| |
Collapse
|
7
|
Tian X, Tang L, Wei F, Chen H, Sheng L, Yang Y, Zhou X, Li Y, Xu X, Zhang B, Liu Z, Lei Y, Yu B, Bai C, He X, Huang Z. Pentacyclic triterpene compounds from loquat leaves reduce skin inflammation and epidermal hyperplasia in psoriasis via inhibiting the Th17 cells. Mol Immunol 2021; 132:30-40. [PMID: 33540227 DOI: 10.1016/j.molimm.2021.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/25/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is a refractory inflammatory skin disease affecting 2 %-3 % of the world population, characterized by the infiltration and hyper-proliferation of inflammatory cells and aberrant differentiation of keratinocytes. Targeting the IL-23/ Th17 axis has been well recognized as a promising therapeutic strategy, as the IL-23/ Th17 signal plays a vital role in the pathology of psoriasis. Three pentacyclic triterpene compounds isolated from loquat leaves have been reported with significant inhibitory effects on RORγt transcription activity and Th17 cell differentiation, and excellent performance in preventing lupus nephritis pathogenesis. However, the potential effects of these pentacyclic triterpene compounds on psoriasis remain unknown. In this study, we demonstrated the potent therapeutic effects of these pentacyclic triterpene compounds on psoriasis. These three pentacyclic triterpene compounds significantly alleviated skin inflammation as well as aberrant keratinocyte proliferation in an imiquimod-induced mouse psoriasis model. These compounds also inhibited the infiltration of immune cells and the level of pro-inflammatory cytokine in the dermis, as well as the cells number and changed the cytokine profiling expression of Th17 cells. These compounds could reduce the amount of CD4+ and CD8+ T cells in local lymph node, but not in spleen, which is different from hydrocortisone, the positive control treatment. These results suggest better performance of these compounds than steroids on treating psoriasis with less side effects on the integrated immune system. In summary, our findings uncover the potent therapeutic effects of pentacyclic triterpene compounds on psoriasis, providing potential candidate compounds for drug development.
Collapse
Affiliation(s)
- Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Lipeng Tang
- Department of Pharmacology of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengjiao Wei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Huanpeng Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Longxiang Sheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, China
| | - Yuying Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiaoqing Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Yongchao Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Xu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boyang Zhang
- Animal Experiment Center, South China Agricultural University, Guangzhou, China
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China
| | - Yu Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
8
|
Parsons TK, Pratt RN, Tang L, Wu Y. An active and selective molecular mechanism mediating the uptake of sex steroids by prostate cancer cells. Mol Cell Endocrinol 2018; 477:121-131. [PMID: 29928927 DOI: 10.1016/j.mce.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/16/2018] [Indexed: 12/21/2022]
Abstract
Steroid hormones play important roles in normal physiological functions and diseases. Sex steroids hormones are important in the biology and treatment of sex hormone-related cancer such as prostate cancer and breast cancer. Cells may take up steroids using multiple mechanisms. The conventionally accepted hypothesis that steroids cross cell membrane through passive diffusion has not been tested rigorously. Experimental data suggested that cells may take up sex steroid using an active uptake mechanism. 3H-testosterone uptake by prostate cancer cells showed typical transporter-mediated uptake kinetic. Cells retained testosterone taken up from the medium. The uptake of testosterone was selective for certain steroid hormones but not others. Data also indicated that the active and selective uptake mechanism resided in cholesterol-rich membrane domains, and may involve ATP and membrane transporters. In summary, the present study provided strong evidence to support the existence of an active and selective molecular mechanism for sex steroid uptake.
Collapse
Affiliation(s)
- Todd K Parsons
- Department of Urology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Rachel N Pratt
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Li Tang
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Yue Wu
- Department of Urology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
9
|
Chow CC, Simons SS. An Approach to Greater Specificity for Glucocorticoids. Front Endocrinol (Lausanne) 2018; 9:76. [PMID: 29593646 PMCID: PMC5859375 DOI: 10.3389/fendo.2018.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid steroids are among the most prescribed drugs each year. Nonetheless, the many undesirable side effects, and lack of selectivity, restrict their greater usage. Research to increase glucocorticoid specificity has spanned many years. These efforts have been hampered by the ability of glucocorticoids to both induce and repress gene transcription and also by the lack of success in defining any predictable properties that control glucocorticoid specificity. Correlations of transcriptional specificity have been observed with changes in steroid structure, receptor and chromatin conformation, DNA sequence for receptor binding, and associated cofactors. However, none of these studies have progressed to the point of being able to offer guidance for increased specificity. We summarize here a mathematical theory that allows a novel and quantifiable approach to increase selectivity. The theory applies to all three major actions of glucocorticoid receptors: induction by agonists, induction by antagonists, and repression by agonists. Simple graphical analysis of competition assays involving any two factors (steroid, chemical, peptide, protein, DNA, etc.) yields information (1) about the kinetically described mechanism of action for each factor at that step where the factor acts in the overall reaction sequence and (2) about the relative position of that step where each factor acts. These two pieces of information uniquely provide direction for increasing the specificity of glucocorticoid action. Consideration of all three modes of action indicate that the most promising approach for increased specificity is to vary the concentrations of those cofactors/pharmaceuticals that act closest to the observed end point. The potential for selectivity is even greater when varying cofactors/pharmaceuticals in conjunction with a select class of antagonists.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| |
Collapse
|
10
|
Abstract
Glucocorticoid hormones (GC) regulate essential physiological functions including energy homeostasis, embryonic and postembryonic development, and the stress response. From the biomedical perspective, GC have garnered a tremendous amount of attention as highly potent anti-inflammatory and immunosuppressive medications indispensable in the clinic. GC signal through the GC receptor (GR), a ligand-dependent transcription factor whose structure, DNA binding, and the molecular partners that it employs to regulate transcription have been under intense investigation for decades. In particular, next-generation sequencing-based approaches have revolutionized the field by introducing a unified platform for a simultaneous genome-wide analysis of cellular activities at the level of RNA production, binding of transcription factors to DNA and RNA, and chromatin landscape and topology. Here we describe fundamental concepts of GC/GR function as established through traditional molecular and in vivo approaches and focus on the novel insights of GC biology that have emerged over the last 10 years from the rapidly expanding arsenal of system-wide genomic methodologies.
Collapse
Affiliation(s)
- Maria A Sacta
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| | - Yurii Chinenov
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021;
| | - Inez Rogatsky
- Hospital for Special Surgery, The David Rosensweig Genomics Center, New York, NY 10021; .,Weill Cornell/Rockefeller/Sloan Kettering MD/PhD program, New York, NY 10021
| |
Collapse
|
11
|
Dougherty EJ, Elinoff JM, Ferreyra GA, Hou A, Cai R, Sun J, Blaine KP, Wang S, Danner RL. Mineralocorticoid Receptor (MR) trans-Activation of Inflammatory AP-1 Signaling: DEPENDENCE ON DNA SEQUENCE, MR CONFORMATION, AND AP-1 FAMILY MEMBER EXPRESSION. J Biol Chem 2016; 291:23628-23644. [PMID: 27650495 DOI: 10.1074/jbc.m116.732248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoids are commonly used to treat inflammatory disorders. The glucocorticoid receptor (GR) can tether to inflammatory transcription factor complexes, such as NFκB and AP-1, and trans-repress the transcription of cytokines, chemokines, and adhesion molecules. In contrast, aldosterone and the mineralocorticoid receptor (MR) primarily promote cardiovascular inflammation by incompletely understood mechanisms. Although MR has been shown to weakly repress NFκB, its role in modulating AP-1 has not been established. Here, the effects of GR and MR on NFκB and AP-1 signaling were directly compared using a variety of ligands, two different AP-1 consensus sequences, GR and MR DNA-binding domain mutants, and siRNA knockdown or overexpression of core AP-1 family members. Both GR and MR repressed an NFκB reporter without influencing p65 or p50 binding to DNA. Likewise, neither GR nor MR affected AP-1 binding, but repression or activation of AP-1 reporters occurred in a ligand-, AP-1 consensus sequence-, and AP-1 family member-specific manner. Notably, aldosterone interactions with both GR and MR demonstrated a potential to activate AP-1. DNA-binding domain mutations that eliminated the ability of GR and MR to cis-activate a hormone response element-driven reporter variably affected the strength and polarity of these responses. Importantly, MR modulation of NFκB and AP-1 signaling was consistent with a trans-mechanism, and AP-1 effects were confirmed for specific gene targets in primary human cells. Steroid nuclear receptor trans-effects on inflammatory signaling are context-dependent and influenced by nuclear receptor conformation, DNA sequence, and the expression of heterologous binding partners. Aldosterone activation of AP-1 may contribute to its proinflammatory effects in the vasculature.
Collapse
Affiliation(s)
- Edward J Dougherty
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Jason M Elinoff
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Gabriela A Ferreyra
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Angela Hou
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Rongman Cai
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Junfeng Sun
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Kevin P Blaine
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Shuibang Wang
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert L Danner
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
12
|
Abstract
Glucocorticoids are the most effective treatment for asthma. However, their clinical applications are limited by low efficacy in severe asthma and by undesired side effects associated with high dose or prolonged use. The most successful approach to overcome these limitations has been the development of highly potent glucocorticoids that can be delivered to the lungs by inhalation to achieve local efficacy with minimal systemic effects. On the basis of our previous structural studies, we designed and developed a highly potent glucocorticoid, VSGC12, which showed an improved anti-inflammation activity in both cell-based reporter assays and cytokine inhibition experiments, as well as in a gene expression profiling of mouse macrophage RAW264.7 cells. In a mouse asthma model, VSGC12 delivered a higher efficacy than fluticasone furoate, a leading clinical compound, in many categories including histology and the number of differentiated immune cells. VSGC12 also showed a higher potency than fluticasone furoate in repressing most asthma symptoms. Finally, VSGC12 showed a better side effect profile than fluticasone furoate at their respective effective doses, including better insulin response and less bone loss in an animal model. The excellent therapeutic and side effect properties of VSGC12 provide a promising perspective for developing this potent glucocorticoid as a new effective drug for asthma.
Collapse
|
13
|
Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways. Sci Rep 2015; 5:17476. [PMID: 26635083 PMCID: PMC4669453 DOI: 10.1038/srep17476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast number of approved drugs, and in many situations their ligands are co-administered. However, this drug association has no clear rationale and has arisen from clinical practice. We hypothesized that H1R signaling could affect GR-mediated activity, impacting on its transcriptional outcome. Indeed, our results show a dual regulation of GR activity by the H1R: a potentiation mediated by G-protein βγ subunits and a parallel inhibitory effect mediated by Gαq-PLC pathway. Activation of the H1R by its full agonists resulted in a composite potentiating effect. Intriguingly, inactivation of the Gαq-PLC pathway by H1R inverse agonists resulted also in a potentiation of GR activity. Moreover, histamine and clinically relevant antihistamines synergized with the GR agonist dexamethasone to induce gene transactivation and transrepression in a gene-specific manner. Our work provides a delineation of molecular mechanisms underlying the widespread clinical association of antihistamines and GR agonists, which may contribute to future dosage optimization and reduction of well-described side effects associated with glucocorticoid administration.
Collapse
|
14
|
Pradhan MA, Blackford JA, Devaiah BN, Thompson PS, Chow CC, Singer DS, Simons SS. Kinetically Defined Mechanisms and Positions of Action of Two New Modulators of Glucocorticoid Receptor-regulated Gene Induction. J Biol Chem 2015; 291:342-54. [PMID: 26504077 DOI: 10.1074/jbc.m115.683722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 11/06/2022] Open
Abstract
Most of the steps in, and many of the factors contributing to, glucocorticoid receptor (GR)-regulated gene induction are currently unknown. A competition assay, based on a validated chemical kinetic model of steroid hormone action, is now used to identify two new factors (BRD4 and negative elongation factor (NELF)-E) and to define their sites and mechanisms of action. BRD4 is a kinase involved in numerous initial steps of gene induction. Consistent with its complicated biochemistry, BRD4 is shown to alter both the maximal activity (Amax) and the steroid concentration required for half-maximal induction (EC50) of GR-mediated gene expression by acting at a minimum of three different kinetically defined steps. The action at two of these steps is dependent on BRD4 concentration, whereas the third step requires the association of BRD4 with P-TEFb. BRD4 is also found to bind to NELF-E, a component of the NELF complex. Unexpectedly, NELF-E modifies GR induction in a manner that is independent of the NELF complex. Several of the kinetically defined steps of BRD4 in this study are proposed to be related to its known biochemical actions. However, novel actions of BRD4 and of NELF-E in GR-controlled gene induction have been uncovered. The model-based competition assay is also unique in being able to order, for the first time, the sites of action of the various reaction components: GR < Cdk9 < BRD4 ≤ induced gene < NELF-E. This ability to order factor actions will assist efforts to reduce the side effects of steroid treatments.
Collapse
Affiliation(s)
- Madhumita A Pradhan
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology
| | - John A Blackford
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology
| | | | | | - Carson C Chow
- the Mathematical Biology Section, NIDDK/Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland 20892
| | | | - S Stoney Simons
- From the Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology,
| |
Collapse
|
15
|
Simon TW, Budinsky RA, Rowlands JC. A model for aryl hydrocarbon receptor-activated gene expression shows potency and efficacy changes and predicts squelching due to competition for transcription co-activators. PLoS One 2015; 10:e0127952. [PMID: 26039703 PMCID: PMC4454675 DOI: 10.1371/journal.pone.0127952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
A stochastic model of nuclear receptor-mediated transcription was developed based on activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and subsequent binding the activated AHR to xenobiotic response elements (XREs) on DNA. The model was based on effects observed in cells lines commonly used as in vitro experimental systems. Following ligand binding, the AHR moves into the cell nucleus and forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT). In the model, a requirement for binding to DNA is that a generic coregulatory protein is subsequently bound to the AHR-ARNT dimer. Varying the amount of coregulator available within the nucleus altered both the potency and efficacy of TCDD for inducing for transcription of CYP1A1 mRNA, a commonly used marker for activation of the AHR. Lowering the amount of available cofactor slightly increased the EC50 for the transcriptional response without changing the efficacy or maximal response. Further reduction in the amount of cofactor reduced the efficacy and produced non-monotonic dose-response curves (NMDRCs) at higher ligand concentrations. The shapes of these NMDRCs were reminiscent of the phenomenon of squelching. Resource limitations for transcriptional machinery are becoming apparent in eukaryotic cells. Within single cells, nuclear receptor-mediated gene expression appears to be a stochastic process; however, intercellular communication and other aspects of tissue coordination may represent a compensatory process to maintain an organism’s ability to respond on a phenotypic level to various stimuli within an inconstant environment.
Collapse
Affiliation(s)
- Ted W. Simon
- Ted Simon LLC, Winston, GA, United States of America
- * E-mail:
| | - Robert A. Budinsky
- The Dow Chemical Company, Toxicology and Environmental Research & Consulting. Midland, MI, United States of America
| | - J. Craig Rowlands
- The Dow Chemical Company, Toxicology and Environmental Research & Consulting. Midland, MI, United States of America
| |
Collapse
|
16
|
Paul S, Jeon WK, Bizon JL, Han JS. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment. Front Aging Neurosci 2015; 7:43. [PMID: 25883567 PMCID: PMC4382969 DOI: 10.3389/fnagi.2015.00043] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/12/2015] [Indexed: 11/28/2022] Open
Abstract
A substantial number of studies on basal forebrain (BF) cholinergic neurons (BFCN) have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD), and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA) axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine (ACh), glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, to which could help decipher disease states and propose leads for pharmacological intervention.
Collapse
Affiliation(s)
- Saswati Paul
- Department of Biological Sciences, Konkuk University Seoul, South Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine Daejeon, South Korea
| | - Jennifer L Bizon
- Department of Neuroscience, College of Medicine, Evelyn F. and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University Seoul, South Korea
| |
Collapse
|
17
|
An exposure:activity profiling method for interpreting high-throughput screening data for estrogenic activity—Proof of concept. Regul Toxicol Pharmacol 2015; 71:398-408. [DOI: 10.1016/j.yrtph.2015.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 11/17/2022]
|
18
|
Joshi T, Johnson M, Newton R, Giembycz M. An analysis of glucocorticoid receptor-mediated gene expression in BEAS-2B human airway epithelial cells identifies distinct, ligand-directed, transcription profiles with implications for asthma therapeutics. Br J Pharmacol 2015; 172:1360-78. [PMID: 25393397 PMCID: PMC4337707 DOI: 10.1111/bph.13014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/08/2014] [Accepted: 11/05/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE International asthma guidelines recommend that inhaled glucocorticoids be used as a monotherapy in all patients with mild to moderate disease because of their ability to suppress airways inflammation. Current evidence suggests that the therapeutic benefit of glucocorticoids is due to the transactivation and transrepression of anti-inflammatory and pro-inflammatory genes respectively. However, the extent to which clinically relevant glucocorticoids are equivalent in their ability to modulate gene expression is unclear. EXPERIMENTAL APPROACH A pharmacodynamics investigation of glucocorticoid receptor (GR)-mediated gene transactivation in BEAS-2B human airway epithelial cells was performed using a glucocorticoid response element luciferase reporter coupled with an analysis of glucocorticoid-inducible genes encoding proteins with anti-inflammatory and adverse-effect potential. KEY RESULTS Using transactivation as a functionally relevant output, a given glucocorticoid displayed a unique, gene expression 'fingerprint' where intrinsic efficacy and GR density were essential determinants. We showed that depending on the gene selected for analysis, a given glucocorticoid can behave as an antagonist, partial agonist, full agonist or even 'super agonist'. In the likely event that different, tissue-dependent gene expression profiles are reproduced in vivo, then the anti-inflammatory and adverse-effect potential of many glucocorticoids currently available as asthma therapeutics may not be equivalent. CONCLUSIONS AND IMPLICATIONS The generation of gene expression 'fingerprints' in target and off-target human tissues could assist the rational design of GR agonists with improved therapeutic ratios. This approach could identify compounds that are useful in the management of severe asthma and other inflammatory disorders where systemic exposure is desirable.
Collapse
Affiliation(s)
- T Joshi
- Airways Inflammation Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - M Johnson
- GlaxoSmithKline Research and DevelopmentUxbridge, Middlesex, UK
| | - R Newton
- Department of Cell Biology and Anatomy, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - M Giembycz
- Airways Inflammation Research Group, Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| |
Collapse
|
19
|
Abstract
The different amounts of residual partial agonist activity (PAA) of antisteroids under assorted conditions have long been useful in clinical applications but remain largely unexplained. Not only does a given antagonist often afford unequal induction for multiple genes in the same cell but also the activity of the same antisteroid with the same gene changes with variations in concentration of numerous cofactors. Using glucocorticoid receptors as a model system, we have recently succeeded in constructing from first principles a theory that accurately describes how cofactors can modulate the ability of agonist steroids to regulate both gene induction and gene repression. We now extend this framework to the actions of antisteroids in gene induction. The theory shows why changes in PAA cannot be explained simply by differences in ligand affinity for receptor and requires action at a second step or site in the overall sequence of reactions. The theory also provides a method for locating the position of this second site, relative to a concentration limited step (CLS), which is a previously identified step in glucocorticoid-regulated transactivation that always occurs at the same position in the overall sequence of events of gene induction. Finally, the theory predicts that classes of antagonist ligands may be grouped on the basis of their maximal PAA with excess added cofactor and that the members of each class differ by how they act at the same step in the overall gene induction process. Thus, this theory now makes it possible to predict how different cofactors modulate antisteroid PAA, which should be invaluable in developing more selective antagonists.
Collapse
Affiliation(s)
- Carson C Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD 20892-5621, USA
| | - Karen M Ong
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD 20892-5621, USA ; Computational Biology Program, New York University School of Medicine, New York, NY 10016, USA
| | - Benjamin Kagan
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD 20892-1772, USA ; Science Department, Tuscarora High School, Loudoun County Public Schools, Leesburg, VA 20176, USA
| | - S Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD 20892-1772, USA
| |
Collapse
|
20
|
C. Chow C, M. Ong K, Kagan B, Stoney Simons Jr. S. Theory of partial agonist activity of steroid hormones. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.2.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Ahsendorf T, Wong F, Eils R, Gunawardena J. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms. BMC Biol 2014; 12:102. [PMID: 25475875 PMCID: PMC4288563 DOI: 10.1186/s12915-014-0102-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. RESULTS Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. CONCLUSIONS As epigenomic data become increasingly available, we anticipate that gene function will come to be represented by graphs, as gene structure has been represented by sequences, and that the methods introduced here will provide a broader foundation for understanding how genes work.
Collapse
Affiliation(s)
- Tobias Ahsendorf
- DKFZ, Heidelberg, D-69120, Germany. .,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, 02115, USA.
| | - Felix Wong
- Harvard College, Cambridge, 02138, USA. .,Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, 02115, USA.
| | - Roland Eils
- DKFZ, Heidelberg, D-69120, Germany. .,Institute of Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, University of Heidelberg, Heidelberg, Germany.
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, 02115, USA.
| |
Collapse
|
22
|
Ayroldi E, Macchiarulo A, Riccardi C. Targeting glucocorticoid side effects: selective glucocorticoid receptor modulator or glucocorticoid-induced leucine zipper? A perspective. FASEB J 2014; 28:5055-70. [PMID: 25205742 DOI: 10.1096/fj.14-254755] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones that are necessary for life and important in health and disease. They regulate crucial homeostatic functions, including metabolism, cell growth, and development. Although GCs are regulated by circadian rhythm, increased production is associated with stress. Synthetic GCs are a valuable resource for anti-inflammatory and immunosuppressive therapy. Natural and synthetic GCs transduce signals mainly through GC receptor (GR) activation. Extensive research has explored the downstream targets of the GR, and optimization of GC therapy has required collaborative efforts. One highly promising approach involves new dissociative GR modulators. Because transrepression and transactivation of GR genes induce beneficial and adverse effects, respectively, this approach favors transrepression. Another approach involves the use of GC-dependent genes to generate proteins to mediate therapeutic GC effects. In a third approach, drug discovery is used to identify agents that selectively target GR isoforms to obtain differential gene transcription and effects. In this review, we focus on mechanisms of GR function compatible with the use of dissociative drugs. We highlight GC-induced leucine zipper (GILZ), a gene cloned in our laboratory, as a mediator of GC anti-inflammatory and immunosuppressive effects, to outline our perspective on the future of GC therapy.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department of Medicine, Section of Pharmacology, and
| | - Antonio Macchiarulo
- Department of Chemistry and Drug Technology, University of Perugia, Perugia, Italy
| | | |
Collapse
|
23
|
Shi JX, Li JS, Hu R, Shi Y, Su X, Guo XJ, Li XM. Tristetraprolin is involved in the glucocorticoid-mediated interleukin 8 repression. Int Immunopharmacol 2014; 22:480-5. [PMID: 25111853 DOI: 10.1016/j.intimp.2014.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/20/2014] [Accepted: 07/27/2014] [Indexed: 11/29/2022]
Abstract
Glucocorticoids have been widely used in various inflammatory disorders, and the transcriptional repression of inflammatory mediators has been considered to be the main mechanism of action. However, a previous study showed that dexamethasone inhibited interleukin 8 (IL-8) expression by promoting IL-8 mRNA decay, which implies a posttranscriptional regulation. Nevertheless, by which mechanism dexamethasone destabilized IL-8 mRNA was unclear. Another study indicated that an RNA-binding protein, tristetraprolin (TTP), could be induced by dexamethasone. TTP can bind to AU-rich elements (ARE) in the 3'-untranslated region of target mRNAs and promotes mRNA degradation. So, we speculated that dexamethasone destabilized IL-8 mRNA by upregulating TTP expression. Here, we report that dexamethasone reduced IL-8 expression through destabilizing IL-8 mRNA in human pulmonary microvascular endothelial cells (HPMECs). Dexamethasone stimulation increased TTP mRNA and protein levels. TTP silencing led to mRNA stabilization and protein upregulation of IL-8. These results provide the evidence that the glucocorticoid, in HPMECs, inhibits IL-8 expression through TTP at the posttranscriptional level.
Collapse
Affiliation(s)
- Jia-Xin Shi
- Department of Respiratory Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Clinical Medical School of Nanjing Medical University, Lianyungang 222002, China.
| | - Jia-Shu Li
- Department of Respiratory Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Clinical Medical School of Nanjing Medical University, Lianyungang 222002, China.
| | - Rong Hu
- Department of Respiratory Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Clinical Medical School of Nanjing Medical University, Lianyungang 222002, China
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Xiang-Jun Guo
- Department of Respiratory Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Clinical Medical School of Nanjing Medical University, Lianyungang 222002, China
| | - Xiao-Mei Li
- Department of Respiratory Medicine, Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical College, Clinical Medical School of Nanjing Medical University, Lianyungang 222002, China
| |
Collapse
|
24
|
Simon TW, Simons SS, Preston RJ, Boobis AR, Cohen SM, Doerrer NG, Fenner-Crisp PA, McMullin TS, McQueen CA, Rowlands JC. The use of mode of action information in risk assessment: Quantitative key events/dose-response framework for modeling the dose-response for key events. Crit Rev Toxicol 2014; 44 Suppl 3:17-43. [DOI: 10.3109/10408444.2014.931925] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Hapgood JP, Africander D, Louw R, Ray RM, Rohwer JM. Potency of progestogens used in hormonal therapy: toward understanding differential actions. J Steroid Biochem Mol Biol 2014; 142:39-47. [PMID: 23954501 DOI: 10.1016/j.jsbmb.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Abstract
Progestogens are widely used in contraception and in hormone therapy. Biochemical and molecular biological evidence suggests that progestogens differ widely in their affinities and transcriptional effects via different steroid receptors, and hence cannot be considered as a single class of compounds. Consistent with these observations, recent clinical evidence suggests that, despite their similar progestogenic actions, these differences underlie different side-effect profiles for cardiovascular disease and susceptibility to infectious diseases. However, choice of progestogen for maximal benefit and minimal side-effects is hampered by insufficient comparative clinical and molecular studies to understand their relative mechanisms of action, as well as their relative potencies for different assays and clinical effects. This review evaluates the usage, meaning and significance of the terms affinity, potency and efficacy in different models systems, with a view to improved understanding of their physiological and pharmacological significance. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- J P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7700, South Africa.
| | - D Africander
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - R Louw
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - R M Ray
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7700, South Africa
| | - J M Rohwer
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| |
Collapse
|
26
|
Torres RL, Torres ILDS, Laste G, Ferreira MBC, Cardoso PFG, Belló-Klein A. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs. J Bras Pneumol 2014; 40:238-43. [PMID: 25029646 PMCID: PMC4109195 DOI: 10.1590/s1806-37132014000300006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/12/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO) and total reactive antioxidant potential (TRAP), in rat lungs. METHODS Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.); acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days); and chronic control, comprising rats receiving normal drinking water. RESULTS The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. CONCLUSIONS Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels.
Collapse
Affiliation(s)
| | - Iraci Lucena da Silva Torres
- Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Laste
- Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Beatriz Cardoso Ferreira
- Department of Pharmacology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Adriane Belló-Klein
- Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
27
|
He Y, Yi W, Suino-Powell K, Zhou XE, Tolbert WD, Tang X, Yang J, Yang H, Shi J, Hou L, Jiang H, Melcher K, Xu HE. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res 2014; 24:713-26. [PMID: 24763108 DOI: 10.1038/cr.2014.52] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/28/2014] [Accepted: 03/12/2014] [Indexed: 02/07/2023] Open
Abstract
The evolution of glucocorticoid drugs was driven by the demand of lowering the unwanted side effects, while keeping the beneficial anti-inflammatory effects. Potency is an important aspect of this evolution as many undesirable side effects are associated with use of high-dose glucocorticoids. The side effects can be minimized by highly potent glucocorticoids that achieve the same treatment effects at lower doses. This demand propelled the continuous development of synthetic glucocorticoids with increased potencies, but the structural basis of their potencies is poorly understood. To determine the mechanisms underlying potency, we solved the X-ray structures of the glucocorticoid receptor (GR) ligand-binding domain (LBD) bound to its endogenous ligand, cortisol, which has relatively low potency, and a highly potent synthetic glucocorticoid, mometasone furoate (MF). The cortisol-bound GR LBD revealed that the flexibility of the C1-C2 single bond in the steroid A ring is primarily responsible for the low affinity of cortisol to GR. In contrast, we demonstrate that the very high potency of MF is achieved by its C-17α furoate group completely filling the ligand-binding pocket, thus providing additional anchor contacts for high-affinity binding. A single amino acid in the ligand-binding pocket, Q642, plays a discriminating role in ligand potency between MF and cortisol. Structure-based design led to synthesis of several novel glucocorticoids with much improved potency and efficacy. Together, these results reveal key structural mechanisms of glucocorticoid potency and provide a rational basis for developing novel highly potent glucocorticoids.
Collapse
Affiliation(s)
- Yuanzheng He
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Wei Yi
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kelly Suino-Powell
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - W David Tolbert
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Xiaobo Tang
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Yang
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huaiyu Yang
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingjing Shi
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Hou
- VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - H Eric Xu
- 1] Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI 49503, USA [2] VARI-SIMM Center, Center for Structure and Function of Drug Targets, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
28
|
Zhu R, Lu X, Pradhan M, Armstrong S, Storchan GB, Chow C, Simons SS. A kinase-independent activity of Cdk9 modulates glucocorticoid receptor-mediated gene induction. Biochemistry 2014; 53:1753-67. [PMID: 24559102 PMCID: PMC3985961 DOI: 10.1021/bi5000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/20/2014] [Indexed: 12/18/2022]
Abstract
A gene induction competition assay has recently uncovered new inhibitory activities of two transcriptional cofactors, NELF-A and NELF-B, in glucocorticoid-regulated transactivation. NELF-A and -B are also components of the NELF complex, which participates in RNA polymerase II pausing shortly after the initiation of gene transcription. We therefore asked if cofactors (Cdk9 and ELL) best known to affect paused polymerase could reverse the effects of NELF-A and -B. Unexpectedly, Cdk9 and ELL augmented, rather than prevented, the effects of NELF-A and -B. Furthermore, Cdk9 actions are not blocked either by Ckd9 inhibitors (DRB or flavopiridol) or by two Cdk9 mutants defective in kinase activity. The mode and site of action of NELF-A and -B mutants with an altered NELF domain are similarly affected by wild-type and kinase-dead Cdk9. We conclude that Cdk9 is a new modulator of GR action, that Ckd9 and ELL have novel activities in GR-regulated gene expression, that NELF-A and -B can act separately from the NELF complex, and that Cdk9 possesses activities that are independent of Cdk9 kinase activity. Finally, the competition assay has succeeded in ordering the site of action of several cofactors of GR transactivation. Extension of this methodology should be helpful in determining the site and mode of action of numerous additional cofactors and in reducing unwanted side effects.
Collapse
Affiliation(s)
- Rong Zhu
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Xinping Lu
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Madhumita Pradhan
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Stephen
P. Armstrong
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Geoffrey B. Storchan
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - Carson
C. Chow
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| | - S. Stoney Simons
- Steroid Hormones Section, National Institute
of Diabetes and Digestive
and Kidney Diseases/Laboratory of Endocrinology and Receptor Biology, and Laboratory of
Biological Modeling, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United
States
| |
Collapse
|
29
|
Han DH, Lee YJ, Kim K, Kim CJ, Cho S. Modulation of glucocorticoid receptor induction properties by core circadian clock proteins. Mol Cell Endocrinol 2014; 383:170-80. [PMID: 24378737 DOI: 10.1016/j.mce.2013.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
Abstract
Glucocorticoid (GC) plays important roles in diverse physiological processes including metabolism and immune functions. While circadian control of GC synthesis and secretion is relatively well appreciated, circadian control of GC action within target tissues remains poorly understood. Here, we demonstrate that CLOCK/BMAL1, the core circadian clock components, reduces maximal GR transactivation (A(max)) as well as efficacy (EC₅₀) by a novel mechanism that requires binding to DNA and transactivation of target genes. Accordingly, we observe that PER1 and CRY1, the primary targets of CLOCK/BMAL1 action, reduce maximal GR transactivation while not affecting the efficacy. Moreover, we observe hyper-activations of GRE-dependent transcription in BMAL1- or PERs-deficient MEFs. In addition, endogenous GC target genes expression negatively correlates with the CLOCK/BMAL1 activity. Considering that GC sensitivity is widely implicated in human health and diseases, these results provide valuable insights into plethora of GC-related physiology and pathology.
Collapse
Affiliation(s)
- Dong-Hee Han
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Ju Lee
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungjin Kim
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sehyung Cho
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea; Department of Physiology, Kyung Hee University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Luo M, Lu X, Zhu R, Zhang Z, Chow CC, Li R, Simons SS. A conserved protein motif is required for full modulatory activity of negative elongation factor subunits NELF-A and NELF-B in modifying glucocorticoid receptor-regulated gene induction properties. J Biol Chem 2013; 288:34055-34072. [PMID: 24097989 DOI: 10.1074/jbc.m113.512426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
NELF-B is a BRCA1-interacting protein and subunit (with NELF-A, -C/D, and -E) of the human negative elongation factor (NELF) complex, which participates in RNA polymerase II pausing shortly after transcription initiation, especially for synchronized gene expression. We now report new activities of NELF-B and other NELF complex subunits, which are to attenuate glucocorticoid receptor (GR)-mediated gene induction, reduce the partial agonist activity of an antagonist, and increase the EC50 of an agonist during nonsynchronized expression of exogenous and endogenous reporters. Stable knockdown of endogenous NELF-B has the opposite effects on an exogenous gene. The GR ligand-binding domain suffices for these biological responses. ChIP assays reveal that NELF-B diminishes GR recruitment to promoter regions of two endogenous genes. Using a new competition assay, NELF-A and NELF-B are each shown to act independently as competitive decelerators at two steps after the site of GR action and before or at the site of reporter gene activity. A common motif in each NELF was identified that is required for full activity of both NELF-A and NELF-B. These studies allow us to position the actions of two new modulators of GR-regulated transactivation, NELF-A and NELF-B, relative to other factors in the overall gene induction sequence.
Collapse
Affiliation(s)
- Min Luo
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892
| | - Xinping Lu
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892
| | - Rong Zhu
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892
| | - Zhenhuan Zhang
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892
| | - Carson C Chow
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Rong Li
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, Texas 78229
| | - S Stoney Simons
- Steroid Hormones Section, NIDDK/Laboratory of Endocrinology and Receptor Biology (LERB), National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
31
|
Borgert CJ, Baker SP, Matthews JC. Potency matters: thresholds govern endocrine activity. Regul Toxicol Pharmacol 2013; 67:83-8. [PMID: 23838262 DOI: 10.1016/j.yrtph.2013.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 01/17/2023]
Abstract
Whether thresholds exist for endocrine active substances and for endocrine disrupting effects of exogenous chemicals has been posed as a question for regulatory policy by the European Union. This question arises from a concern that the endocrine system is too complex to allow estimations of safe levels of exposure to any chemical with potential endocrine activity, and a belief that any such chemical can augment, retard, or disrupt the normal background activity of endogenous hormones. However, vital signaling functions of the endocrine system require it to continuously discriminate the biological information conveyed by potent endogenous hormones from a more concentrated background of structurally similar, endogenous molecules with low hormonal potential. This obligatory ability to discriminate important hormonal signals from background noise can be used to define thresholds for induction of hormonal effects, without which normal physiological functions would be impossible. From such thresholds, safe levels of exposure can be estimated. This brief review highlights how the fundamental principles governing hormonal effects - affinity, efficacy, potency, and mass action - dictate the existence of thresholds and why these principles also define the potential that exogenous chemicals might have to interfere with normal endocrine functioning.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology & Toxicology, Inc., C.E.H.T, University of Florida, Department of Physiological Sciences, 2250 NW 24th Ave., Gainesville, Fl 32605, United States.
| | | | | |
Collapse
|
32
|
Robertson S, Rohwer JM, Hapgood JP, Louw A. Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model. PLoS One 2013; 8:e64831. [PMID: 23717665 PMCID: PMC3661511 DOI: 10.1371/journal.pone.0064831] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/18/2013] [Indexed: 11/26/2022] Open
Abstract
Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs.
Collapse
Affiliation(s)
- Steven Robertson
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
| | - Johann M. Rohwer
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
| | - Janet P. Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, Republic of South Africa
| | - Ann Louw
- Department of Biochemistry, University of Stellenbosch, Matieland, Stellenbosch, Republic of South Africa
| |
Collapse
|
33
|
Robertson S, Hapgood JP, Louw A. Glucocorticoid receptor concentration and the ability to dimerize influence nuclear translocation and distribution. Steroids 2013. [PMID: 23178279 DOI: 10.1016/j.steroids.2012.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid receptor (GR) concentrations and the ability of the GR to dimerize are factors which influence sensitivity to glucocorticoids. Upon glucocorticoid binding, the GR is actively transported into the nucleus, a crucial step in determining GR function. We examined the effects of GR concentration and the ability to dimerize on GR nuclear import, export and nuclear distribution using both live cell microscopy of GFP-tagged GR and immunofluorescence of untagged GR, with both wild type GR (GRwt) and dimerization deficient GR (GRdim). We found that the observed rate of GR nuclear import increases significantly at higher GR concentrations, at saturating concentrations of dexamethasone (10(-6) M) using GFP-tagged GR, while with untagged GR it is only discernable at sub-saturating ligand concentrations (10(-10)-10(-9) M). Loss of dimerization results in a slower observed rate of nuclear import (2.5- to 3.3-fold decrease for GFP-GRdim) as well as a decreased extent of GR nuclear localization (18-27% decrease for untagged GRdim). These results were linked to an increased rate of GR export at low GR concentrations (1.4- to 1.6-fold increase for untagged GR) and where GR dimerization is abrogated (1.5- to 1.7-fold increase for GFP-GRdim). Furthermore, GR dimerization was shown to be required for the appearance of discrete GC-dependent GR nuclear foci, the loss of which may explain the increased rate of GR export for the GRdim. The reduction in the observed rate of nuclear import and increased rate of nuclear export displayed at low GR concentrations and by the GRdim could explain the lowered glucocorticoid response under these conditions.
Collapse
Affiliation(s)
- Steven Robertson
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | |
Collapse
|
34
|
Zhang Z, Sun Y, Cho YW, Chow CC, Simons SS. PA1 protein, a new competitive decelerator acting at more than one step to impede glucocorticoid receptor-mediated transactivation. J Biol Chem 2012; 288:42-58. [PMID: 23161582 DOI: 10.1074/jbc.m112.427740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous cofactors modulate the gene regulatory activity of glucocorticoid receptors (GRs) by affecting one or more of the following three major transcriptional properties: the maximal activity of agonists (A(max)), the potency of agonists (EC(50)), and the partial agonist activity of antisteroids (PAA). Here, we report that the recently described nuclear protein, Pax2 transactivation domain interaction protein (PTIP)-associated protein 1 (PA1), is a new inhibitor of GR transactivation. PA1 suppresses A(max), increases the EC(50), and reduces the PAA of an exogenous reporter gene in a manner that is independent of associated PTIP. PA1 is fully active with, and strongly binds to, the C-terminal half of GR. PA1 reverses the effects of the coactivator TIF2 on GR-mediated gene induction but is unable to augment the actions of the corepressor SMRT. Analysis of competition assays between PA1 and TIF2 with an exogenous reporter indicates that the kinetic definition of PA1 action is a competitive decelerator at two sites upstream from where TIF2 acts. With the endogenous genes IGFBP1 and IP6K3, PA1 also represses GR induction, increases the EC(50), and decreases the PAA. ChIP and re-ChIP experiments indicate that PA1 accomplishes this inhibition of the two genes via different mechanisms as follows: PA1 appears to increase GR dissociation from and reduce GR transactivation at the IGFBP1 promoter regions but blocks GR binding to the IP6K3 promoter. We conclude that PA1 is a new competitive decelerator of GR transactivation and can act at more than one molecularly defined step in a manner that depends upon the specific gene.
Collapse
Affiliation(s)
- Zhenhuan Zhang
- Steroid Hormones Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
35
|
Ayroldi E, Cannarile L, Migliorati G, Nocentini G, Delfino DV, Riccardi C. Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. FASEB J 2012; 26:4805-20. [PMID: 22954589 DOI: 10.1096/fj.12-216382] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones produced by the adrenal gland and regulated by the hypothalamus-pituitary-adrenal axis. GCs mediate effects that mostly result in transcriptional regulation of glucocorticoid receptor target genes. Mitogen-activated protein kinases (MAPKs) comprise a family of signaling proteins that convert extracellular stimuli into the activation of intracellular transduction pathways via phosphorylation of a cascade of substrates. They modulate a variety of physiological cell processes, such as proliferation, apoptosis, and development. However, when MAPKs are improperly activated by proinflammatory and/or extracellular stress stimuli, they contribute to the regulation of proinflammatory transcription factors, thus perpetuating activation of the inflammatory cascade. One of the mechanisms by which GCs exert their anti-inflammatory effects is negative interference with MAPK signaling pathways. Several functional interactions between GCs and MAPK signaling have been discovered and studied. Some of these interactions involve the GC-mediated up-regulation of proteins that in turn interfere with the activation of MAPK, such as glucocorticoid-induced-leucine zipper, MAPK phosphatase-1, and annexin-1. Other mechanisms include activated GR directly interacting with components of the MAPK pathway and negatively regulating their activation. The multiple interactions between GCs and MAPK pathways and their potential biological relevance in mediating the anti-inflammatory effects of GCs are reviewed.
Collapse
Affiliation(s)
- Emira Ayroldi
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Awasthi S, Simons SS. Separate regions of glucocorticoid receptor, coactivator TIF2, and comodulator STAMP modify different parameters of glucocorticoid-mediated gene induction. Mol Cell Endocrinol 2012; 355:121-34. [PMID: 22342989 PMCID: PMC3312974 DOI: 10.1016/j.mce.2012.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
Abstract
Increased specificity in steroid-regulated gene expression is a long-sought goal of endocrinologists. Considerable progress has resulted from the discovery of coactivators, corepressors, and comodulators that adjust the total activity (A(max)) of gene induction. Two less frequently quantitated, but equally potent, means of improving specificity are the concentration of agonist steroid required for half-maximal activity (EC(50)) and the residual or partial agonist activity displayed by most antisteroids (PAA). It is usually assumed that the modulatory activity of transcriptional cofactors coordinately regulates A(max), EC(50), and PAA. Here we examine the hypothesis that these three parameters can be independently modified by separate protein domains. The test system involves three differently sized fragments of each of three factors (glucocorticoid receptor [GR], coactivator TIF2, and comodulator STAMP), which are shown to form a ternary complex and similarly affect the induction properties of transfected and endogenous genes. Twenty-five different fragment combinations of the ternary complex are examined for their ability to modulate the A(max), EC(50), and PAA of a transiently transfected synthetic reporter gene. Different combinations selectively alter one, two, or all three parameters. These results clearly demonstrate that A(max), EC(50), and PAA can be independently regulated under some conditions by different pathways or molecular interactions. This new mechanistic insight suggests that selected activities of individual transcription factors are attractive targets for small molecules, which would have obvious clinical applications for increasing the specificity of steroids during endocrine therapies.
Collapse
Affiliation(s)
- Smita Awasthi
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
37
|
García-Becerra R, Ordaz-Rosado D, Noé G, Chávez B, Cooney AJ, Larrea F. Comparison of 7α-methyl-19-nortestosterone effectiveness alone or combined with progestins on androgen receptor mediated-transactivation. Reproduction 2012; 143:211-9. [DOI: 10.1530/rep-11-0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
7α-methyl-19-nortestosterone (MENT) is an androgen with potent gonadotropin inhibitory activity and prostate-sparing effects. These attributes give MENT advantages over testosterone as a male contraceptive, but, as in the case of testosterone, a partial dose-dependent suppression of spermatogenesis has been observed. Combination of testosterone or MENT with synthetic progestins improves the rate of azoospermia; however, it is unknown whether these combinations affect hormone androgenicity or exert synergistic effects via progestational or androgenic interaction. Herein, using transactivation assays, we examined the ability of MENT alone or combined with several 19-nor-derived synthetic progestins to activate androgen receptor (AR)-dependent gene transcription. In addition, the capability of 7α-methyl-estradiol (7α-methyl-E2), an aromatized metabolite of MENT, to transactivate gene transcription via estrogen receptor α (ERα; ESR1) or ERβ (ESR2) was also investigated. As expected, MENT induced gene transactivation through either the progesterone receptor (PGR) or the AR. MENT was as efficient as progesterone in activating PGR-mediated reporter gene expression, but it was ten times more potent than testosterone and dihydrotestoterone in activating of AR-driven gene expression. The addition of increasing concentrations of other 19-nortestosterone derivatives (norethisterone or levonorgestrel) did not affect, in a significant manner, the ability of MENT to activate AR-dependent reporter gene transcription. The same results were obtained with different cell lines. 7α-Methyl-E2 resulted in potent estrogen activity via both ER subtypes with efficiency similar to natural E2. These results suggest that the addition of 19-nortestosterone-derived progestins, as a hormonal adjuvant in male fertility strategies for effective spermatogenic suppression, does not display any detrimental effect that would interfere with MENT androgenic transcriptional activity.
Collapse
|
38
|
Simons SS, Chow CC. The road less traveled: new views of steroid receptor action from the path of dose-response curves. Mol Cell Endocrinol 2012; 348:373-82. [PMID: 21664235 PMCID: PMC3184374 DOI: 10.1016/j.mce.2011.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 10/25/2022]
Abstract
Conventional studies of steroid hormone action proceed via quantitation of the maximal activity for gene induction at saturating concentrations of agonist steroid (i.e., A(max)). Less frequently analyzed parameters of receptor-mediated gene expression are EC(50) and PAA. The EC(50) is the concentration of steroid required for half-maximal agonist activity and is readily determined from the dose-response curve. The PAA is the partial agonist activity of an antagonist steroid, expressed as percent of A(max) under the same conditions. Recent results demonstrate that new and otherwise inaccessible mechanistic information is obtained when the EC(50) and/or PAA are examined in addition to the A(max). Specifically, A(max), EC(50), and PAA can be independently regulated, which suggests that novel pathways and factors may preferentially modify the EC(50) and/or PAA with little effect on A(max). Other approaches indicate that the activity of receptor-bound factors can be altered without changing the binding of factors to receptor. Finally, a new theoretical model of steroid hormone action not only permits a mechanistically based definition of factor activity but also allows the positioning of when a factor acts, as opposed to binds, relative to a kinetically defined step. These advances illustrate some of the benefits of expanding the mechanistic studies of steroid hormone action to routinely include EC(50) and PAA.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section, NIDDK/CEB, NIDDK, National Institutes of Health, Bethesda, MD 20892-1772, United States.
| | | |
Collapse
|
39
|
Deducing the temporal order of cofactor function in ligand-regulated gene transcription: theory and experimental verification. PLoS One 2012; 7:e30225. [PMID: 22272313 PMCID: PMC3260260 DOI: 10.1371/journal.pone.0030225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/14/2011] [Indexed: 11/19/2022] Open
Abstract
Cofactors are intimately involved in steroid-regulated gene expression. Two critical questions are (1) the steps at which cofactors exert their biological activities and (2) the nature of that activity. Here we show that a new mathematical theory of steroid hormone action can be used to deduce the kinetic properties and reaction sequence position for the functioning of any two cofactors relative to a concentration limiting step (CLS) and to each other. The predictions of the theory, which can be applied using graphical methods similar to those of enzyme kinetics, are validated by obtaining internally consistent data for pair-wise analyses of three cofactors (TIF2, sSMRT, and NCoR) in U2OS cells. The analysis of TIF2 and sSMRT actions on GR-induction of an endogenous gene gave results identical to those with an exogenous reporter. Thus new tools to determine previously unobtainable information about the nature and position of cofactor action in any process displaying first-order Hill plot kinetics are now available.
Collapse
|
40
|
Clark AR, Belvisi MG. Maps and legends: the quest for dissociated ligands of the glucocorticoid receptor. Pharmacol Ther 2011; 134:54-67. [PMID: 22212616 DOI: 10.1016/j.pharmthera.2011.12.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 01/19/2023]
Abstract
Glucocorticoids are steroid hormones that have pleiotropic effects on development, metabolism, cognitive function and other aspects of physiology. Since the demonstration more than sixty years ago of their capacity to suppress inflammation, synthetic glucocorticoids have been extremely widely used in the treatment of inflammatory diseases. However, their clinical use is limited by numerous, unpredictable and potentially serious side effects. Glucocorticoids regulate gene expression both positively and negatively. Both of these effects are mediated by the glucocorticoid receptor, a ligand-dependent transcription factor. It has become widely accepted that anti-inflammatory effects of glucocorticoids are mostly due to inhibition of transcription, whereas the activation of transcription by the glucocorticoid receptor accounts for the majority of side effects. This dogma (which we refer to as the "transrepression hypothesis") predicts the possibility of uncoupling therapeutic, anti-inflammatory effects from side effects by identifying novel, selective ligands of the glucocorticoid receptor, which preferentially mediate inhibition rather than activation of transcription. It is argued that such "dissociated" glucocorticoid receptor ligands should retain anti-inflammatory potency but cause fewer side effects. Here we critically re-examine the history and foundations of the transrepression hypothesis. We argue that it is incompatible with the complexity of gene regulation by glucocorticoids and poorly supported by experimental evidence; that it no longer aids clear thinking about the actions of the glucocorticoid receptor; and that it will not prove a fruitful basis for continued refinement and improvement of anti-inflammatory drugs that target the glucocorticoid receptor.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, 65 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| | | |
Collapse
|
41
|
Hadley KE, Louw A, Hapgood JP. Differential nuclear localisation and promoter occupancy play a role in glucocorticoid receptor ligand-specific transcriptional responses. Steroids 2011; 76:1176-84. [PMID: 21641918 DOI: 10.1016/j.steroids.2011.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 04/20/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
The glucocorticoid receptor (GR) is a ligand-activated transcription factor for which a number of endogenous and synthetic ligands exist. A key question in steroid receptor biology is how different ligands elicit different maximal transcriptional responses via the same receptor and on the same promoter. This question was addressed quantitatively for the GR, using a panel of agonists, partial agonists and antagonists, on the endogenous GILZ gene in two different human cell lines. It was found that the extent of GR nuclear localization correlated with the efficacy for GILZ transactivation by the GR in U2OS cells. However, in A549 cells there was no significant correlation, with all ligands resulting in similar levels of GR nuclear localization, despite different levels of transcriptional activation of the GILZ gene. Chromatin immunoprecipitation analysis on the other hand, revealed ligand-specific differences in GILZ promoter occupancy in the A549 cells, which correlated with the transcriptional efficacy of the subset of ligands investigated. This suggests that ligand-specific differences in promoter occupancy by activated GR play a major role in discrimination between agonist, partial agonist and antagonist responses on the endogenous GILZ gene in A549 cells, while differences in nuclear localisation of liganded GR play a role in determining the transcriptional outcome in U2OS cells. These cell line-specific differences were not dependent on the amount of GR present, since transient overexpression of GR in U2OS did not alter the relative ligand-selective nuclear localisation. Our results show that there is a relationship between ligand-specific transactivation efficacy, extent of nuclear translocation and recruitment of GR to the promoter. However, the relative contribution of nuclear translocation and GR promoter recruitment to ligand-specific transactivation efficacy is cell-specific.
Collapse
Affiliation(s)
- Katie E Hadley
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| | | | | |
Collapse
|
42
|
Africander D, Verhoog N, Hapgood JP. Molecular mechanisms of steroid receptor-mediated actions by synthetic progestins used in HRT and contraception. Steroids 2011; 76:636-52. [PMID: 21414337 DOI: 10.1016/j.steroids.2011.03.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 03/02/2011] [Accepted: 03/06/2011] [Indexed: 01/01/2023]
Abstract
Synthetic progestins are used by millions of women as contraceptives and in hormone replacement therapy (HRT), although their molecular mechanisms of action are not well understood. The importance of investigating these mechanisms, as compared to those of progesterone, has been highlighted by clinical evidence showing that medroxyprogesterone acetate (MPA), a first generation progestin, increases the risk of breast cancer and coronary heart disease in HRT users. A diverse range of later generation progestins with varying structures and pharmacological properties is available for therapeutic use and it is becoming clear that different progestins elicit beneficial and adverse effects to different extents. These differences in biological activity are likely to be due to many factors including variations in dose, metabolism, pharmacokinetics, bioavailability, and regulation of, and/or binding, to serum-binding proteins and steroidogenic enzymes. Since the intracellular effects on gene expression and cell signaling of steroids are mediated via intracellular steroid receptors, differential actions via the progesterone and other steroid receptors and their isoforms, are likely to be the major cause of differential intracellular actions of progestins. Since many progestins bind not only to the progesterone receptor, but also to the glucocorticoid, androgen, mineralocorticoid, and possibly the estrogen receptors, it is plausible that synthetic progestins exert therapeutic actions as well as side-effects via some of these receptors. Here we review the molecular mechanisms of intracellular actions of old (MPA, norethisterone, levonorgestrel, gestodene) vs. new (drospirenone, dienogest, trimegestone) generation progestins, via steroid receptors.
Collapse
Affiliation(s)
- Donita Africander
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | | | | |
Collapse
|
43
|
Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011; 335:2-13. [PMID: 20398732 PMCID: PMC3047790 DOI: 10.1016/j.mce.2010.04.005] [Citation(s) in RCA: 1186] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/02/2010] [Accepted: 04/06/2010] [Indexed: 02/08/2023]
Abstract
Since the discovery of glucocorticoids in the 1940s and the recognition of their anti-inflammatory effects, they have been amongst the most widely used and effective treatments to control inflammatory and autoimmune diseases. However, their clinical efficacy is compromised by the metabolic effects of long-term treatment, which include osteoporosis, hypertension, dyslipidaemia and insulin resistance/type 2 diabetes mellitus. In recent years, a great deal of effort has been invested in identifying compounds that separate the beneficial anti-inflammatory effects from the adverse metabolic effects of glucocorticoids, with limited effect. It is clear that for these efforts to be effective, a greater understanding is required of the mechanisms by which glucocorticoids exert their anti-inflammatory and immunosuppressive actions. Recent research is shedding new light on some of these mechanisms and has produced some surprising new findings. Some of these recent developments are reviewed here.
Collapse
Affiliation(s)
| | - Karen E. Chapman
- Corresponding author. Tel.: +44 131 242 6736; fax: +44 131 242 6779.
| |
Collapse
|
44
|
Maj T, Switała-Jelen K, Miazek A, Szafarowicz-Basta B, Kiczak L, Slawek A, Chelmonska-Soyta A. Effects of tamoxifen on estrogen receptor-α level in immune cells and humoral specific response after immunization of C3H/He male mice with syngeneic testicular germ cells (TGC). Autoimmunity 2011; 44:520-30. [DOI: 10.3109/08916934.2010.549529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Aguilera G. HPA axis responsiveness to stress: implications for healthy aging. Exp Gerontol 2011; 46:90-5. [PMID: 20833240 PMCID: PMC3026863 DOI: 10.1016/j.exger.2010.08.023] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/19/2010] [Accepted: 08/27/2010] [Indexed: 02/06/2023]
Abstract
The major neuroendocrine response mediating stress adaptation is activation of the hypothalamic pituitary adrenal axis, with stimulation of corticotropin releasing hormone (CRH) and vasopressin (VP) from parvocellular neurons of the hypothalamic paraventricular nucleus, leading to stimulation of pituitary ACTH secretion and increases in glucocorticoid secretion from the adrenal cortex. Basal production and transient increases during stress of glucocorticoids and its hypothalamic regulators are essential for neuronal plasticity and normal brain function. While activation of the HPA axis is essential for survival during stress, chronic exposure to stress hormones can predispose to psychological, metabolic and immune alterations. Thus, prompt termination of the stress response is essential to prevent negative effects of inappropriate levels of CRH and glucocorticoids. This review addresses the regulation of HPA axis activity with emphasis on the mechanisms of termination of CRH transcription, which is a critical step in this process. In addition, the actions by which glucocorticoids, CRH and VP can affect the aging process will be discussed.
Collapse
Affiliation(s)
- Greti Aguilera
- Section on Endocrine Physiology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shiver Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Lee GS, Simons SS. Ligand binding domain mutations of the glucocorticoid receptor selectively modify the effects with, but not binding of, cofactors. Biochemistry 2010; 50:356-66. [PMID: 21142156 DOI: 10.1021/bi101792d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We previously reported that several point mutations in the ligand binding domain (LBD) of glucocorticoid receptors (GRs) marginally affect the binding affinity of the synthetic glucocorticoids dexamethasone (Dex) and deacylcortivazol (DAC). However, these mutations dramatically alter the efficacy (A(max)) and potency (EC(50)) of agonists, along with the partial agonist activity (PAA) of the antisteroid Dex-mesylate (DM), for gene induction and repression in a steroid-dependent manner. This was proposed to result, in part, from altered protein-protein interactions in the complex of GR with the coactivator TIF2 despite normal TIF2 binding. To explore the generality of this phenomenon, we now ask whether these mutations also affect the transactivation properties, but not binding, of other GR-bound factors. We find that an elevated concentration of GR, to probe unidentified cofactors, or of the comodulator Ubc9 does not reverse the effects of GR LBD mutations that increase the EC(50) and lower the PAA with the GREtkLUC reporter in both CV-1 and U2OS cells. This behavior is more dramatic with Ubc9 and the isolated GR LBD fused to the GAL4 DNA binding domain, despite normal binding of Ubc9 to the mutant GRs. Similar effects, albeit gene, steroid, and transcriptional property-specific, are seen with full-length GRs and three endogenous genes in U2OS cells. Thus, changes in simple steady-state binding capacities of mutant receptors for factors cannot account for the modified transcriptional properties. In all cases, the nuclear translocation of Dex- and DAC-bound wild-type and mutant receptors is the same. These results are consistent with the earlier results with TIF2 and support the hypothesis that small changes in the GR LBD can alter the activities of the bound cofactor without modifying cofactor binding. We propose that this separation of binding and the modulation of transactivation parameters occurs for a wide variety of GR-associated cofactors.
Collapse
Affiliation(s)
- Geun-Shik Lee
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases/Clinical Endocrinology Branch, National Institutes of Health, Bethesda, MD 20892-1772, USA
| | | |
Collapse
|
47
|
Simons SS. Glucocorticoid receptor cofactors as therapeutic targets. Curr Opin Pharmacol 2010; 10:613-9. [PMID: 20801081 DOI: 10.1016/j.coph.2010.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Numerous transcriptional cofactors (e.g. coactivators, corepressors, and comodulators) are known to alter the maximal transcriptional activity (A(max)) in gene induction and repression by steroid receptors in general and glucocorticoid receptors (GRs) in particular. However, recent data advance the earlier reports that these same factors also modify other parameters of glucocorticoid receptor transcriptional activity: the potency of agonists (or EC₅₀ and the partial agonist activity of antisteroids (or PAA). In several instances, factors modulate the EC₅₀ and/or PAA without changing A(max). Thus, studies of all three parameters reveal new factors acting at various stages of receptor action, thereby increasing the potential therapeutic targets for adjusting GR actions in pathological situations.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section, Bldg. 10, Room 8N-307B, NIDDK/CEB, National Institutes of Health (NIH), Bethesda, MD 20892-1772, USA.
| |
Collapse
|
48
|
He Y, Blackford JA, Kohn EC, Simons SS. STAMP alters the growth of transformed and ovarian cancer cells. BMC Cancer 2010; 10:128. [PMID: 20374646 PMCID: PMC2858746 DOI: 10.1186/1471-2407-10-128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 04/07/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC50) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. METHODS The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. RESULTS Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. CONCLUSIONS This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This cell-line dependency is also seen for STAMP effects on glucocorticoid receptor-mediated transactivation. These preliminary findings suggest that further studies of STAMP in ovarian cancer may yield insight into ovarian cancer proliferation and may be useful in the development of biomarker panels.
Collapse
Affiliation(s)
- Yuanzheng He
- Steroid Hormones Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1772, USA
| | | | | | | |
Collapse
|
49
|
A theoretical framework for gene induction and experimental comparisons. Proc Natl Acad Sci U S A 2010; 107:7107-12. [PMID: 20351279 DOI: 10.1073/pnas.0911095107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ligand-mediated gene induction by steroid receptors is a multistep process characterized by a dose-response curve for gene product that follows a first-order Hill equation. This behavior has classically been explained by steroid binding to receptor being the rate-limiting step. However, this predicts a constant potency of gene induction (EC(50)) for a given receptor-steroid complex, which is challenged by the findings that various cofactors/reagents can alter this parameter in a gene-specific manner. These properties put strong constraints on the mechanisms of gene induction and raise two questions: How can a first-order Hill dose-response curve (FHDC) arise from a multistep reaction sequence, and how do cofactors modify potency? Here we introduce a theoretical framework in which a sequence of steps yields an FHDC for the final product as a function of the initial agonist concentration. An exact determination of all constants is not required to describe the final FHDC. The theory predicts mechanisms for cofactor/reagent effects on gene-induction potency and maximal activity and it assigns a relative order to cofactors in the sequence of steps. The theory is supported by several observations from glucocorticoid receptor-mediated gene induction. It identifies the mechanism and matches the measured dose-response curves for different concentrations of the combination of cofactor Ubc9 and receptor. It also predicts that an FHDC cannot involve the DNA binding of preformed receptor dimers, which is validated experimentally. The theory is general and can be applied to any biochemical reaction that shows an FHDC.
Collapse
|
50
|
Watson CS, Jeng YJ, Kochukov MY. Nongenomic signaling pathways of estrogen toxicity. Toxicol Sci 2009; 115:1-11. [PMID: 19955490 DOI: 10.1093/toxsci/kfp288] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Xenoestrogens can affect the healthy functioning of a variety of tissues by acting as potent estrogens via nongenomic signaling pathways or by interfering with those actions of multiple physiological estrogens. Collectively, our and other studies have compared a wide range of estrogenic compounds, including some closely structurally related subgroups. The estrogens that have been studied include environmental contaminants of different subclasses, dietary estrogens, and several prominent physiological metabolites. By comparing the nongenomic signaling and functional responses to these compounds, we have begun to address the structural requirements for their actions through membrane estrogen receptors in the pituitary, in comparison to other tissues, and to gain insights into their typical non-monotonic dose-response behavior. Their multiple inputs into cellular signaling begin processes that eventually integrate at the level of mitogen-activated protein kinase activities to coordinately regulate broad cellular destinies, such as proliferation, apoptosis, or differentiation.
Collapse
Affiliation(s)
- Cheryl S Watson
- Biochemistry & Molecular Biology Department, University of Texas Medical Branch, Galveston, Texas 77555-0645, USA.
| | | | | |
Collapse
|