1
|
Zhao F, Li X, Liu J, Zhang D, Diao H, Lin D. Establishment of stable expression of firefly luciferase and EGFP in a canine inflammatory mammary carcinoma cell line and tumor-bearing model in nude mice. Front Vet Sci 2022; 9:935005. [PMID: 35982924 PMCID: PMC9378969 DOI: 10.3389/fvets.2022.935005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Canine inflammatory mammary carcinoma (CIMC) is a type of canine malignant mammary tumor with a poor prognosis and high mortality. We transduced firefly luciferase and enhanced green fluorescent protein (EGFP) into CHMp, a CIMC cell line, and established CHMp-Luc-EGFP cells. We investigated the characteristics of this cell line in vitro and in vivo. CHMp-Luc-EGFP was passaged continuously 75 times, with stable expression of luciferase and EGFP. Compared with the wild-type, CHMp-Luc-EGFP had similar proliferation, metastasis, histopathology characteristics, and expression of E-cadherin, N-cadherin, and Ki-67. A tumor-bearing model was established by implantation of CHMp-Luc-EGFP cells, and the dynamic changes of tumors were visualized and quantified using the IVIS imaging system. In summary, the cell line we established could reflect the biological characteristics of CHMp cells, visualize the tumor progression in vivo, and provide a powerful tool for the study of CIMC.
Collapse
Affiliation(s)
- Fangying Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinqiu Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiayue Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Di Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Di Zhang
| | - Hongxiu Diao
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- Hongxiu Diao
| | - Degui Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Degui Lin
| |
Collapse
|
2
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
3
|
Li Y, Liu TM. Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Front Immunol 2018; 9:502. [PMID: 29599778 PMCID: PMC5863475 DOI: 10.3389/fimmu.2018.00502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022] Open
Abstract
Macrophages are an important component of host defense and inflammation and play a pivotal role in immune regulation, tissue remodeling, and metabolic regulation. Since macrophages are ubiquitous in human bodies and have versatile physiological functions, they are involved in virtually every disease, including cancer, diabetes, multiple sclerosis, and atherosclerosis. Molecular biological and histological methods have provided critical information on macrophage biology. However, many in vivo dynamic behaviors of macrophages are poorly understood and yet to be discovered. A better understanding of macrophage functions and dynamics in pathogenesis will open new opportunities for better diagnosis, prognostic assessment, and therapeutic intervention. In this article, we will review the advances in macrophage tracking and analysis with in vivo optical imaging in the context of different diseases. Moreover, this review will cover the challenges and solutions for optical imaging techniques during macrophage intravital imaging.
Collapse
Affiliation(s)
- Yue Li
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Tzu-Ming Liu
- Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
4
|
Le Pivert P, Haddad RS, Aller A, Titus K, Doulat J, Renard M, Morrison DR. Ultrasound Guided Combined Cryoablation and Microencapsulated 5-Fluorouracil Inhibits Growth of Human Prostate Tumors in Xenogenic Mouse Model Assessed by Luminescence Imaging. Technol Cancer Res Treat 2016; 3:135-42. [PMID: 15059019 DOI: 10.1177/153303460400300206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Modern approaches to minimally invasive ablative treatment of solid tumors involve the use of miniature instruments and combined treatments. These can be enhanced with ultrasound imaging that depicts tumor margins; facilitates guidance, delivery, and dosage of local chemotherapy; and can monitor the effectiveness of the treatment. This paper describes the advantages of ultrasound guided cryosurgery combined with local chemotherapy delivered in multilamellar, echogenic microcapsules of 5-FU (“μcaps”) using a xenograft tumor model. Genetically engineered bioluminescent human prostate tumor cells, DU-145Luc+, were implanted subcutaneously into athymic nude mice. Experiments were designed to mimic the situation where palliative cryoablation spares a portion of the tumor so that the combined effect of cryosurgery and focal injections of chemotherapeutic microcapsules could be evaluated. Eighteen (18) tumors were treated with percutaneous partial cryoablation or interstitial chemoablation, or a combination of both. A single F/T cycle was applied to tumor and micro-encapsulated chemotherapy is delivered at outer margin of frozen tumor in two opposite sites. Results show that the tumor and cryosurgical kill zone contours were seen with both the bio-luminescence assay (BLI) and ultrasonography (US). US can easily detect as little as 2 μl of echogenic μcaps, and monitor their lifetime in the tumor tissue. BLI was determinant in showing that minute amounts of microcapsule chemotherapy (38.7 ng of 5-FU/g tumor) dramatically inhibited tumor growth starting within two days after injection. The mean BLI emitted by control tumors was 5.6 times greater at Day 4 than the BLI measurements from tumors treated with 5-FU μcaps (p=0.036). By Day 7, BLI values from the control tumors were still 2.7 times greater than those treated with 5-FU μcaps (p<0.01). In tumors treated by partial cryoablation, the mean BLI of viable tumor cells was 20 times less at day 3 (p=0.05) and 46% less at day 7 than the non-treated tumors. The combined treatment produced a dramatic inhibition of tumor growth that lasted throughout the 7-day study. The BLI measured from viable tumor cells in non-treated tumors was 34 times greater at day 3 and more than 350 times greater at day 7 than those treated by combined cryoablation and 5-FU μcaps. The results demonstrated, for the first time, that a single moderate freeze of a human prostate tumor combined with bi-focal peripheral microcapsule chemotherapy (5-FU) has a better and longer inhibitory effect on tumor growth compared to the growth inhibition rendered by cryosurgery or local microcapsule chemo-therapy alone. This shows promise for a new, focal, combined ablative modality using US guided deposition of microencapsulated drug(s) and echogenic markers deposited in the hypothermic margin of tumors which could enhance the efficacy of cryoablation of prostate cancers.
Collapse
Affiliation(s)
- Patrick Le Pivert
- Medical Affairs, Critical Care Innovation, Chantilly, VA 20151, USA.
| | | | | | | | | | | | | |
Collapse
|
5
|
Dual-reporter Imaging and its Potential Application in Tracking Studies. J Fluoresc 2015; 26:75-80. [DOI: 10.1007/s10895-015-1673-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022]
|
6
|
Molecular and preclinical basis to inhibit PGE2 receptors EP2 and EP4 as a novel nonsteroidal therapy for endometriosis. Proc Natl Acad Sci U S A 2015. [PMID: 26199416 DOI: 10.1073/pnas.1507931112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endometriosis is a debilitating, estrogen-dependent, progesterone-resistant, inflammatory gynecological disease of reproductive age women. Two major clinical symptoms of endometriosis are chronic intolerable pelvic pain and subfertility or infertility, which profoundly affect the quality of life in women. Current hormonal therapies to induce a hypoestrogenic state are unsuccessful because of undesirable side effects, reproductive health concerns, and failure to prevent recurrence of disease. There is a fundamental need to identify nonestrogen or nonsteroidal targets for the treatment of endometriosis. Peritoneal fluid concentrations of prostaglandin E2 (PGE2) are higher in women with endometriosis, and this increased PGE2 plays important role in survival and growth of endometriosis lesions. The objective of the present study was to determine the effects of pharmacological inhibition of PGE2 receptors, EP2 and EP4, on molecular and cellular aspects of the pathogenesis of endometriosis and associated clinical symptoms. Using human fluorescent endometriotic cell lines and chimeric mouse model as preclinical testing platform, our results, to our knowledge for the first time, indicate that selective inhibition of EP2/EP4: (i) decreases growth and survival of endometriosis lesions; (ii) decreases angiogenesis and innervation of endometriosis lesions; (iii) suppresses proinflammatory state of dorsal root ganglia neurons to decrease pelvic pain; (iv) decreases proinflammatory, estrogen-dominant, and progesterone-resistant molecular environment of the endometrium and endometriosis lesions; and (v) restores endometrial functional receptivity through multiple mechanisms. Our novel findings provide a molecular and preclinical basis to formulate long-term nonestrogen or nonsteroidal therapy for endometriosis.
Collapse
|
7
|
Cui YQ, Geng Q, Yu T, Zhang FL, Lin HC, Li J, Zhu MX, Liu L, Yao M, Yan MX. Establishment of a highly metastatic model with a newly isolated lung adenocarcinoma cell line. Int J Oncol 2015; 47:927-40. [PMID: 26134302 DOI: 10.3892/ijo.2015.3065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the leading cause of malignancy-related death worldwide, and metastasis always results in a poor prognosis. However, therapeutic progress is hampered by a deficiency of appropriate pre-clinical metastatic models. To bridge this experimental gap, we developed an in vivo metastatic model via subcutaneous (s.c.) injection. The original cell line (XL-2) adopted in this model was newly isolated from the ascites of a patient with extensive metastases of lung adenocarcinoma, thereby avoiding any alteration of its initial molecular biology features from artificial serial cultivation. After comprehensive phenotypical and histological analysis, it was identified as a lung adenocarcinoma cell line. Additionally, the drug test showed that XL-2 cell line was sensitive to docetaxel, and resistant to doxorubicin, indicating it might serve as a cell line model of drug resistance for identifying mechanisms of tumors resistant to doxorubicin. Through this s.c. model, we further obtained a highly metastatic cell line (designated XL-2sci). The metastatic rate of mice in XL-2 group was 3/10, in contrast to the rate of 9/10 in XL-2sci group. Optical imaging, micro-computed tomography (micro-CT) scanning and Transwell assays were further applied to identify the enhanced metastatic capacity of Xl-2sci cells both in vivo and in vitro. Compared with XL-2 cells, ITRAQ labeled proteomics profiling study showed that some tumor metastasis-associated proteins were upregulated in XL-2sci cells, which also indicated the reliability of our model. Proliferation ability of XL-2 and XL-2sci were also evaluated. Results showed that highly metastatic XL-2sci possessed a decreased proliferation capacity versus XL-2, which demonstrated that its increased metastatic activity was not facilitated by a faster growth rate. In conclusion, we successfully developed an in vivo metastatic model using a newly established lung adenocarcinoma cell line, which will be beneficial to further investigations of lung cancer metastasis and to the development of anti-metastasis drugs.
Collapse
Affiliation(s)
- Yong-Qi Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Qin Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Fang-Lin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - He-Chun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Miao-Xin Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Lei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| | - Ming-Xia Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
8
|
Sudha T, Yalcin M, Lin HY, Elmetwally AM, Nazeer T, Arumugam T, Phillips P, Mousa SA. Suppression of pancreatic cancer by sulfated non-anticoagulant low molecular weight heparin. Cancer Lett 2014; 350:25-33. [PMID: 24769074 DOI: 10.1016/j.canlet.2014.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/17/2022]
Abstract
Sulfated non-anticoagulant heparins (S-NACHs) might be preferred for potential clinical use in cancer patients without affecting hemostasis as compared to low molecular weight heparins (LMWHs). We investigated anti-tumor effects, anti-angiogenesis effects, and mechanisms of S-NACH in a mouse model of pancreatic cancer as compared to the LMWH tinzaparin. S-NACH or tinzaparin with or without gemcitabine were administered, and tumor luminescent signal intensity, tumor weight, and histopathology were assessed at the termination of the study. S-NACH and LMWH efficiently inhibited tumor growth and metastasis, without any observed bleeding events with S-NACH as compared to tinzaparin. S-NACH distinctly increased tumor necrosis and enhanced gemcitabine response in the mouse pancreatic cancer models. These data suggest the potential implication of S-NACH as a neoadjuvant in pancreatic cancer.
Collapse
Affiliation(s)
- Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Murat Yalcin
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Department of Physiology, Veterinary Medicine Faculty, Uludag University, Gorukle, Bursa, Turkey
| | - Hung-Yun Lin
- Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ahmed M Elmetwally
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Tipu Nazeer
- Department of Pathology, Albany Medical College, Albany, NY, USA
| | - Thiruvengadam Arumugam
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Phillips
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
9
|
Bernau K, Lewis CM, Petelinsek AM, Benink HA, Zimprich CA, Meyerand ME, Suzuki M, Svendsen CN. In vivo tracking of human neural progenitor cells in the rat brain using bioluminescence imaging. J Neurosci Methods 2014; 228:67-78. [PMID: 24675049 DOI: 10.1016/j.jneumeth.2014.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Stem cell therapies appear promising for treating certain neurodegenerative disorders and molecular imaging methods that track these cells in vivo could answer some key questions regarding their survival and migration. Bioluminescence imaging (BLI), which relies on luciferase expression in these cells, has been used for this purpose due to its high sensitivity. NEW METHOD In this study, we employ BLI to track luciferase-expressing human neural progenitor cells (hNPC(Luc2)) in the rat striatum long-term. RESULTS We show that hNPC(Luc2) are detectable in the rat striatum. Furthermore, we demonstrate that using this tracking method, surviving grafts can be detected in vivo for up to 12 weeks, while those that were rejected do not produce bioluminescence signal. We also demonstrate the ability to discern hNPC(Luc2) contralateral migration. COMPARISON WITH EXISTING METHODS Some of the advantages of BLI compared to other imaging methods used to track progenitor/stem cells include its sensitivity and specificity, low background signal and ability to distinguish surviving grafts from rejected ones over the long term while the blood-brain barrier remains intact. CONCLUSIONS These new findings may be useful in future preclinical applications developing cell-based treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Ksenija Bernau
- University of Wisconsin-Madison, 4325a Veterinary Medicine Building, 2015 Linden Dr., Madison, WI 53706, USA.
| | - Christina M Lewis
- University of Wisconsin-Madison, 1005 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA.
| | - Anna M Petelinsek
- University of Wisconsin-Madison, 4325a Veterinary Medicine Building, 2015 Linden Dr., Madison, WI 53706, USA.
| | - Hélène A Benink
- Promega Corporation, 2800 Woods Hollow Rd., Fitchburg, WI 53711, USA.
| | - Chad A Zimprich
- Promega Corporation, 2800 Woods Hollow Rd., Fitchburg, WI 53711, USA.
| | - M Elizabeth Meyerand
- University of Wisconsin-Madison, 1129 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA.
| | - Masatoshi Suzuki
- University of Wisconsin-Madison, 4124 Veterinary Medicine Building, 2015 Linden Dr., Madison, WI 53706, USA.
| | - Clive N Svendsen
- University of Wisconsin-Madison, 5009 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA.
| |
Collapse
|
10
|
Mele V, Muraro MG, Calabrese D, Pfaff D, Amatruda N, Amicarella F, Kvinlaug B, Bocelli-Tyndall C, Martin I, Resink TJ, Heberer M, Oertli D, Terracciano L, Spagnoli GC, Iezzi G. Mesenchymal stromal cells induce epithelial-to-mesenchymal transition in human colorectal cancer cells through the expression of surface-bound TGF-β. Int J Cancer 2014; 134:2583-94. [PMID: 24214914 PMCID: PMC4338537 DOI: 10.1002/ijc.28598] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem/stromal cells (MSC) are multipotent precursors endowed with the ability to home to primary and metastatic tumor sites, where they can integrate into the tumor-associated stroma. However, molecular mechanisms and outcome of their interaction with cancer cells have not been fully clarified. In this study, we investigated the effects mediated by bone marrow-derived MSC on human colorectal cancer (CRC) cells in vitro and in vivo. We found that MSC triggered epithelial-to-mesenchymal transition (EMT) in tumor cells in vitro, as indicated by upregulation of EMT-related genes, downregulation of E-cadherin and acquisition of mesenchymal morphology. These effects required cell-to-cell contact and were mediated by surface-bound TGF-β newly expressed on MSC upon coculture with tumor cells. In vivo tumor masses formed by MSC-conditioned CRC cells were larger and characterized by higher vessel density, decreased E-cadherin expression and increased expression of mesenchymal markers. Furthermore, MSC-conditioned tumor cells displayed increased invasiveness in vitro and enhanced capacity to invade peripheral tissues in vivo. Thus, by promoting EMT-related phenomena, MSC appear to favor the acquisition of an aggressive phenotype by CRC cells.
Collapse
Affiliation(s)
- Valentina Mele
- Institute of Surgical Research and Hospital Management (ICFS) and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Institute of Pathology, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 2013; 65:1234-70. [PMID: 23872012 PMCID: PMC7103275 DOI: 10.1016/j.addr.2013.07.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 01/19/2023]
Abstract
Alternatives to efficient viral vectors in gene therapy are desired because of their poor safety profiles. Chitosan is a promising non-viral nucleotide delivery vector because of its biocompatibility, biodegradability, low immunogenicity and ease of manufacturing. Since the transfection efficiency of chitosan polyplexes is relatively low compared to viral counterparts, there is an impetus to gain a better understanding of the structure-performance relationship. Recent progress in preparation and characterisation has enabled coupling analysis of chitosans structural parameters that has led to increased TE by tailoring of chitosan's structure. In this review, we summarize the recent advances that have lead to a more rational design of chitosan polyplexes. We present an integrated review of all major areas of chitosan-based transfection, including preparation, chitosan and polyplexes physicochemical characterisation, in vitro and in vivo assessment. In each, we present the obstacles to efficient transfection and the strategies adopted over time to surmount these impediments.
Collapse
Affiliation(s)
- Michael D Buschmann
- Dept. Chemical Engineering and Inst. Biomedical Engineering, Ecole Polytechnique, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
T-cadherin loss promotes experimental metastasis of squamous cell carcinoma. Eur J Cancer 2013; 49:2048-58. [PMID: 23369463 DOI: 10.1016/j.ejca.2012.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/11/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
T-cadherin is gaining recognition as a determinant for the development of incipient invasive squamous cell carcinoma (SCC). However, effects of T-cadherin expression on the metastatic potential of SCC have not been studied. Here, using a murine model of experimental metastasis following tail vein injection of A431 SCC cells we report that loss of T-cadherin increased both the incidence and rate of appearance of lung metastases. T-cadherin-silenced SCC metastases were highly disordered with evidence of single cell dissemination away from main foci whereas SCC metastases overexpressing T-cadherin developed as compact, tightly organised sheets. SCC cell adhesion to vascular endothelial cells (EC) in culture was increased for T-cadherin-silenced SCC and decreased for T-cadherin-overexpressing SCC. Confocal microscopy showed that T-cadherin-silenced SCC adherent on EC display an elongated morphology with long thin extensions and a high degree of intercalation within the EC monolayer, whereas SCC overexpressing T-cadherin formed poorly-spread multicellular aggregates that remain on the outer surface of the EC monolayer. T-cadherin-deficient SCC or human keratinocyte cells exhibited increased transendothelial migration in vitro which could be attenuated in the presence of EGFR inhibitor gefitinib. Our data suggest that loss of T-cadherin can increase metastatic potential and aggressiveness of SCC, possibly due to facilitating arrest and extravasation through the vascular wall and/or more efficient establishment of metastases in the new microenvironment.
Collapse
|
13
|
Alhasan MK, Liu L, Lewis MA, Magnusson J, Mason RP. Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors. PLoS One 2012; 7:e46106. [PMID: 23029403 PMCID: PMC3460997 DOI: 10.1371/journal.pone.0046106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/28/2012] [Indexed: 01/13/2023] Open
Abstract
Small animal imaging provides diverse methods for evaluating tumor growth and acute response to therapy. This study compared the utility of non-invasive optical and ultrasound imaging to monitor growth of three diverse human tumor xenografts (brain U87-luc-mCherry, mammary MCF7-luc-mCherry, and prostate PC3-luc) growing in nude mice. Bioluminescence imaging (BLI), fluorescence imaging (FLI), and Power Doppler ultrasound (PD US) were then applied to examine acute vascular disruption following administration of arsenic trioxide (ATO). During initial tumor growth, strong correlations were found between manual caliper measured tumor volume and FLI intensity, BLI intensity following luciferin injection, and traditional B-mode US. Administration of ATO to established U87 tumors caused significant vascular shutdown within 2 hrs at all doses in the range 5 to 10 mg/kg in a dose dependant manner, as revealed by depressed bioluminescent light emission. At lower doses substantial recovery was seen within 4 hrs. At 8 mg/kg there was >85% reduction in tumor vascular perfusion, which remained depressed after 6 hrs, but showed some recovery after 24 hrs. Similar response was observed in MCF7 and PC3 tumors. Dynamic BLI and PD US each showed similar duration and percent reductions in tumor blood flow, but FLI showed no significant changes during the first 24 hrs. The results provide further evidence for comparable utility of optical and ultrasound imaging for monitoring tumor growth, More specifically, they confirm the utility of BLI and ultrasound imaging as facile assays of the vascular disruption in solid tumors based on ATO as a model agent.
Collapse
Affiliation(s)
| | | | | | - Jennifer Magnusson
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kahraman S, Dirice E, Hapil FZ, Ertosun MG, Ozturk S, Griffith TS, Sanlioglu S, Sanlioglu AD. Tracing of islet graft survival by way of in vivo fluorescence imaging. Diabetes Metab Res Rev 2011; 27:575-83. [PMID: 21584921 DOI: 10.1002/dmrr.1216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND To increase the success rate in xenogeneic islet transplantation, proper assessment of graft mass is required following transplantation. For this reason, we aimed to develop a suitable fluorescence imaging system to monitor islet xenograft survival in diabetic mice. METHODS Adenovirus vector encoding enhanced green fluorescent protein-transduced rat pancreatic islets were transplanted under the renal capsule of streptozotocin-induced diabetic mice and the fluorescence signal was quantified over time using a cooled charge-coupled device. Non-fasting blood glucose levels were recorded during the same period. Insulin release from transduced and control islets was detected via enzyme-linked immunosorbent assay. RESULTS Adenovirus vector encoding enhanced green fluorescent protein infection did not alter the function or survival of pancreatic islets post transduction. A direct correlation was found between the number of islets (250-750) transplanted under the kidney capsule and the blood glucose recovery. CONCLUSIONS Fluorescence imaging appears to be a useful tool for quantitative assessment of islet cell viability post transplantation and could permit earlier detection of graft rejection.
Collapse
Affiliation(s)
- Sevim Kahraman
- Department of Medical Biology and Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya 07058, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Close DM, Hahn RE, Patterson SS, Baek SJ, Ripp SA, Sayler GS. Comparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:047003. [PMID: 21529093 PMCID: PMC3094131 DOI: 10.1117/1.3564910] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 05/30/2023]
Abstract
Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 10(4) cells but at the cost of increasing overall image integration time.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diagnostic Imaging/methods
- Genes, Reporter
- Green Fluorescent Proteins/analysis
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- Luciferases, Bacterial/analysis
- Luciferases, Bacterial/genetics
- Luciferases, Bacterial/metabolism
- Luciferases, Firefly/analysis
- Luciferases, Firefly/genetics
- Luciferases, Firefly/metabolism
- Luminescent Measurements/methods
- Luminescent Proteins/analysis
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Nude
- Signal Processing, Computer-Assisted
- Whole Body Imaging
Collapse
Affiliation(s)
- Dan M Close
- University of Tennessee, Center for Environmental Biotechnology, 1414 Circle Drive, 676 Dabney Hall, Knoxville, Tennesssee 37996, USA
| | | | | | | | | | | |
Collapse
|
16
|
Savellano MD, Owusu-Brackett N, Son J, Callier T, Savellano DH. Development of an ErbB-overexpressing A-431 optical reporting tumor xenograft model to assess targeted photodynamic therapy regimens. Photochem Photobiol 2010; 86:1379-89. [PMID: 20880229 PMCID: PMC2991608 DOI: 10.1111/j.1751-1097.2010.00805.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To better assess the efficacy of erbB-targeted therapies, it would help to have optical reporting human tumor xenograft models that abundantly express erbB receptors. A-431 cells have frequently been used in erbB1-targeting studies, but a well-characterized optical reporting version of the cell line has not been readily available. In this study, optical reporting A-431 clones were developed that express both a fluorescent protein reporter (green, GFP; or red, RFP) and a bioluminescent reporter, firefly luciferase. Reporter genes were transduced into cells using commercial lentiviral vectors, and clonal selection was carried out using a series of procedures. A number of clones were isolated for further characterization. A GFP/luciferase clone, A-431/D4, and an RFP/luciferase clone, A-431/G4, were obtained that exhibit erbB1 expression levels and tumor growth kinetics similar to the parental cells. To demonstrate the utility of the optical reporting clones, A-431/G4 tumors were grown subcutaneously in nude mice and treated with vascular-targeted photodynamic therapy (PDT), which targets the angiogenic consequences of erbB signaling. The A-431/G4 tumor model permitted highly sensitive longitudinal monitoring of PDT treatment response using optical imaging. A-431/D4 and A-431/G4 optical reporting tumor models should also prove useful for assessing therapies that directly target the erbB1 receptor.
Collapse
Affiliation(s)
- Mark D Savellano
- Surgical Research Laboratories, Dartmouth Medical School, Lebanon, NH, USA.
| | | | | | | | | |
Collapse
|
17
|
Jia D, Yan M, Wang X, Hao X, Liang L, Liu L, Kong H, He X, Li J, Yao M. Development of a highly metastatic model that reveals a crucial role of fibronectin in lung cancer cell migration and invasion. BMC Cancer 2010; 10:364. [PMID: 20615257 PMCID: PMC2912267 DOI: 10.1186/1471-2407-10-364] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 07/09/2010] [Indexed: 01/26/2023] Open
Abstract
Background The formation of metastasis is the most common cause of death in patients with lung cancer. A major implement to understand the molecular mechanisms involved in lung cancer metastasis has been the lack of suitable models to address it. In this study, we aimed at establishing a highly metastatic model of human lung cancer and characterizing its metastatic properties and underlying mechanisms. Methods The human lung adeno-carcinoma SPC-A-1 cell line was used as parental cells for developing of highly metastatic cells by in vivo selection in NOD/SCID mice. After three rounds of selection, a new SPC-A-1sci cell line was established from pulmonary metastatic lesions. Subsequently, the metastatic properties of this cell line were analyzed, including optical imaging of in vivo metastasis, immunofluorescence and immunohistochemical analysis of several epithelial mesenchymal transition (EMT) makers and trans-well migration and invasion assays. Finally, the functional roles of fibronectin in the invasive and metastatic potentials of SPC-A-1sci cells were determined by shRNA analysis. Results A spontaneously pulmonary metastatic model of human lung adeno-carcinoma was established in NOD/SCID mice, from which a new lung cancer cell line, designated SPC-A-1sci, was isolated. Initially, the highly metastatic behavior of this cell line was validated by optical imaging in mice models. Further analyses showed that this cell line exhibit phenotypic and molecular alterations consistent with EMT. Compared with its parent cell line SPC-A-1, SPC-A-1sci was more aggressive in vitro, including increased potentials for cell spreading, migration and invasion. Importantly, fibronectin, a mesenchymal maker of EMT, was found to be highly expressed in SPC-A-1sci cells and down-regulation of it can decrease the in vitro and in vivo metastatic abilities of this cell line. Conclusions We have successfully established a new human lung cancer cell line with highly metastatic potentials, which is subject to EMT and possibly mediated by increased fibronectin expression. This cell line and its reproducible s.c. mouse model can further be used to identify underlying mechanisms of lung cancer metastasis.
Collapse
Affiliation(s)
- Deshui Jia
- Laboratory of Experimental Pathology, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
In vivo bioluminescent imaging of irradiated orthotopic pancreatic cancer xenografts in nonobese diabetic-severe combined immunodeficient mice: a novel method for targeting and assaying efficacy of ionizing radiation. Transl Oncol 2010; 3:153-9. [PMID: 20563256 DOI: 10.1593/tlo.09184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 12/17/2009] [Accepted: 12/29/2009] [Indexed: 01/23/2023] Open
Abstract
Adenocarcinoma of the pancreas is a lethal malignancy, and better models to study tumor behavior in vivo are needed for the development ofmore effective therapeutics. Ionizing radiation is a treatment modality that is commonly used in the clinical setting, in particular, for locally confined disease; however, good model systems to study the effect of ionizing radiation in orthotopic tumors have not been established. In an attempt to create clinically relevant models for studying treatments directed against pancreatic cancer, we have defined a methodology to measure the effect of varying doses of radiation in established human pancreatic cancer orthotopic xenografts using two different pancreatic cancer cell lines (Panc-1 and BXPC3) infected with a lentiviral vector expressing CMV promoter-driven luciferase to allow bioluminescence imaging of live animals in real time. Quantifiable photon emission from luciferase signaling in vivo correlated well with actual tumor growth. Bioluminescence imaging of the established pancreatic xenografts was used to direct delivery of radiation to the orthotopic tumors and minimize off-target adverse effects. Growth delay was observed with schedules in the range of 7.5 Gy in five fractions to 10 Gy in four fractions, whereas doses 3 Gy or higher produced toxic adverse effects. In conclusion, we describe a model in which the effects of ionizing radiation, alone or in combination with other therapeutics, in orthotopic xenografts, can be studied.
Collapse
|
19
|
Leblond F, Davis SC, Valdés PA, Pogue BW. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 98:77-94. [PMID: 20031443 DOI: 10.1016/j.jphotobiol.2009.11.007] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 01/07/2023]
Abstract
Fluorescence sampling of cellular function is widely used in all aspects of biology, allowing the visualization of cellular and sub-cellular biological processes with spatial resolutions in the range from nanometers up to centimeters. Imaging of fluorescence in vivo has become the most commonly used radiological tool in all pre-clinical work. In the last decade, full-body pre-clinical imaging systems have emerged with a wide range of utilities and niche application areas. The range of fluorescent probes that can be excited in the visible to near-infrared part of the electromagnetic spectrum continues to expand, with the most value for in vivo use being beyond the 630 nm wavelength, because the absorption of light sharply decreases. Whole-body in vivo fluorescence imaging has not yet reached a state of maturity that allows its routine use in the scope of large-scale pre-clinical studies. This is in part due to an incomplete understanding of what the actual fundamental capabilities and limitations of this imaging modality are. However, progress is continuously being made in research laboratories pushing the limits of the approach to consistently improve its performance in terms of spatial resolution, sensitivity and quantification. This paper reviews this imaging technology with a particular emphasis on its potential uses and limitations, the required instrumentation, and the possible imaging geometries and applications. A detailed account of the main commercially available systems is provided as well as some perspective relating to the future of the technology development. Although the vast majority of applications of in vivo small animal imaging are based on epi-illumination planar imaging, the future success of the method relies heavily on the design of novel imaging systems based on state-of-the-art optical technology used in conjunction with high spatial resolution structural modalities such as MRI, CT or ultrasound.
Collapse
Affiliation(s)
- Frederic Leblond
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
20
|
Kahraman S, Dirice E, Sanlioglu AD, Yoldas B, Bagci H, Erkilic M, Griffith TS, Sanlioglu S. In Vivo Fluorescence Imaging is Well-Suited for the Monitoring of Adenovirus Directed Transgene Expression in Living Organisms. Mol Imaging Biol 2009; 12:278-85. [DOI: 10.1007/s11307-009-0260-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/15/2009] [Accepted: 05/29/2009] [Indexed: 11/30/2022]
|
21
|
Le Pivert PJ, Morrison DR, Haddad RS, Renard M, Aller A, Titus K, Doulat J. Percutaneous tumor ablation: microencapsulated echo-guided interstitial chemotherapy combined with cryosurgery increases necrosis in prostate cancer. Technol Cancer Res Treat 2009; 8:207-16. [PMID: 19445538 DOI: 10.1177/153303460900800305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study aimed at confirming the increased growth inhibition (GI) of human prostate tumors produced by a intentionally palliative combination treatment of cryochemotherapy, i.e., partial cryoablation (CA) followed by intratumor partial chemotherapy with injection of microencapsulated 5-fluorouracil (MCC/5FU) at the ice ball (IB) periphery. We report the local effectiveness of cryochemotherapy compared to chemotherapy only with using multiple injections of MCC/5FU spaced out to maximize cumulative effect of sustained release of 5-fluorouracil (5FU) during a 21-day period. Prostate bioluminescent tumor cells - DU145 Luc+ - were implanted sub-cutaneously and bilaterally in each flank of nude mice. Tumors were treated with: (i) cryoablation alone (CA), causing necrosis in approximately 45% of the tumor volume; (ii) cryo-chemotherapy (CA+MCC/5FU), a combined regimen consisting of partial CA followed immediately and on day 14 by ultrasound assisted, intra-tumor injections (40 mul) of MCC/5FU( 0.81 ng/mm3 of tumor) containing Ethiodol (IPO) an imaging contrast agent, on two opposite sides of the unfrozen part of tumor; (iii) intratumor chemotherapy (MCC/5FU), consisting of three successive intra-tumor injections of microencapsulated 5FU on two opposite sides on Day 0, 4, and 11, and (iv) control series (MM), consisting of a single injection of echogenic microcapsules (mucaps) containing IPO but no 5FU. Tumor growth and viability were followed during a 21-day period with using biometric measurements, bioluminescent imaging (BLI) and ultrasonography (US), and then animals were sacrificed. CA, spared 54.4% of the tumor volume and the IB kill ratio was 0.4 +/-0.9. The maximum tumor volume reduction observed by Day 3 was short-lived as re-growth became significant by Day 6. CA+ MCC/5FU spared 55.6% of the tumor volume and the IB kill ratio was 0.54 +/- 0.12. The viable tumor cells, as measured by BLI remained at preoperative levels. After 11 days CA+ MCC/5FU limited the growth of the partially ablated tumors to only 10.6% of the growth of CA treated tumors (p=0.04). By Day 18 the CA+MCC/5FU had inhibited tumor growth by 78% compared to the CA treated tumors (p=0.05) and after 21 days the growth was inhibited by 71% (p=0.04) compared to more than 650% growth in the MM group and 600% growth in the CA treated group. The two injections of MCC/5FU produced a visible focal necrosis in 55% of the tumors. MCC/5FU proved effective by themselves and reduced the growth of prostate tumor volumes by 51% (p=0.025) compared to MM controls during the 21 days. Focal necrosis was macroscopically visible at the site of 66% of the tumors injected only with MCC/5FU. The BLI clearly showed zones of reduced tumor cell viability at the injection sites. The mean number of bioluminescent (viable) tumor cells, remained below preoperative levels for the first 6 days and then increased at a rate approximately 20% that of the growth of control tumor cells. The chemoablative effects of intentionally limited doses of MCC/5FU injected within the IB margin augment the effects of incomplete cryoablation in this prostate tumor model, with dramatic tumor GI and directionally increased necrosis dimensions compared to CA alone, confirming the results of a previous study. Our results indicate the potential advantages of our combination cryochemotherapy that utilizes different mechanisms to kill tumor cells and retard tumor growth in the region surrounding the IB where tumor cells escape the lethal effects of cryosurgery. The study suggests that cryochemotherapy may become a more predictable technique that could be indicated as an adjuvant or an alternative to palliative therapy of hormone refractory prostate cancer (HRPC).
Collapse
|
22
|
Priddle H, Grabowska A, Morris T, Clarke PA, McKenzie AJ, Sottile V, Denning C, Young L, Watson S. Bioluminescence imaging of human embryonic stem cells transplanted in vivo in murine and chick models. CLONING AND STEM CELLS 2009; 11:259-67. [PMID: 19522673 DOI: 10.1089/clo.2008.0056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Research into the behavior, efficacy, and biosafety of stem cells with a view to clinical transplantation requires the development of noninvasive methods for in vivo imaging of cells transplanted into animal models. This is particularly relevant for human embryonic stem cells (hESCs), because transplantation of undifferentiated hESCs leads to tumor formation. The present study aimed to monitor hESCs in real time when injected in vivo. hESCs were stably transfected to express luciferase, and luciferase expression was clearly detected in the undifferentiated and differentiated state. When transfected hESCs were injected into chick embryos, bioluminescence could be detected both ex and in ovo. In the SCID mouse model, undifferentiated hESCs were detectable after injection either into the muscle layer of the peritoneum or the kidney capsule. Tumors became detectable between days 10-30, with approximately a 3 log increase in the luminescence signal by day 75. The growth phase occurred earlier in the kidney capsule and then reached a plateau, whilst tumors in the peritoneal wall grew steadily throughout the period analysed. These results show the widespread utility of bioluminescent for in vivo imaging of hESCs in a variety of model systems for preclinical research into regenerative medicine and cancer biology.
Collapse
Affiliation(s)
- Helen Priddle
- Division of Human Development, University of Nottingham , Queens Medical Centre, Nottingham, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jain S, Zuka M, Liu J, Russell S, Dent J, Guerrero JA, Forsyth J, Maruszak B, Gartner TK, Felding-Habermann B, Ware J. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci U S A 2007; 104:9024-8. [PMID: 17494758 PMCID: PMC1885621 DOI: 10.1073/pnas.0700625104] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Indexed: 11/18/2022] Open
Abstract
The platelet paradigm in hemostasis and thrombosis involves an initiation step that depends on platelet membrane receptors binding to ligands on a damaged or inflamed vascular surface. Once bound to the surface, platelets provide a unique microenvironment supporting the accumulation of more platelets and the elaboration of a fibrin-rich network produced by coagulation factors. The platelet-specific receptor glycoprotein (GP) Ib-IX, is critical in this process and initiates the formation of a platelet-rich thrombus by tethering the platelet to a thrombogenic surface. A role for platelets beyond the hemostasis/thrombosis paradigm is emerging with significant platelet contributions in both tumorigenesis and inflammation. We have established congenic (N10) mouse colonies (C57BL/6J) with dysfunctional GP Ib-IX receptors in our laboratory that allow us an opportunity to examine the relevance of platelet GP Ib-IX in syngeneic mouse models of experimental metastasis. Our results demonstrate platelet GP Ib-IX contributes to experimental metastasis because a functional absence of GP Ib-IX correlates with a 15-fold reduction in the number of lung metastatic foci using B16F10.1 melanoma cells. The results demonstrate that the extracellular domain of the alpha-subunit of GP Ib is the structurally relevant component of the GP Ib-IX complex contributing to metastasis. Our results support the hypothesis that platelet GP Ib-IX functions that support normal hemostasis or pathologic thrombosis also contribute to tumor malignancy.
Collapse
Affiliation(s)
- Shashank Jain
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Masahiko Zuka
- Department of Molecular and Experimental Medicine, Division of Hemostasis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Jungling Liu
- Department of Biology, University of Memphis, Memphis, TN 38152
| | - Susan Russell
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Judith Dent
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - José A. Guerrero
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Jane Forsyth
- Department of Molecular and Experimental Medicine, Division of Hemostasis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Brigid Maruszak
- Department of Molecular and Experimental Medicine, Division of Hemostasis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037; and
| | - T. Kent Gartner
- Department of Biology, University of Memphis, Memphis, TN 38152
| | - Brunhilde Felding-Habermann
- Department of Molecular and Experimental Medicine, Division of Hemostasis and Thrombosis, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Jerry Ware
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| |
Collapse
|
24
|
Raman V, Pathak AP, Glunde K, Artemov D, Bhujwalla ZM. Magnetic resonance imaging and spectroscopy of transgenic models of cancer. NMR IN BIOMEDICINE 2007; 20:186-99. [PMID: 17451171 DOI: 10.1002/nbm.1136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The complexity of cancer, where a single genetic alteration can have multiple functional effects, makes it a fascinating but humbling disease to study, and the necessity of investigating it in its entirety is more imperative than ever before. Advances in transgene technology have made it possible to create cancer cells, or mice with specific genetic alterations, and the application of an array of both functional and molecular non-invasive MR methods to these transgenic cancer cells and mice to characterize their phenotypic traits is revolutionizing our understanding of cancer. With the establishment of multi-modality molecular imaging centers within barrier or pathogen-free facilities, multi-parametric and multi-modality imaging of transgenic mouse models of human cancer are becoming increasingly prevalent. In this review, we outline some of the methods currently available for generating transgenic mice and cancer cell lines. We also present examples of the application of MR methods to transgenic models that are providing novel insights into the molecular and functional characteristics of cancer and are leading to an era of "non-invasive phenotyping" of the effects of specific molecular alterations in cancer.
Collapse
Affiliation(s)
- Venu Raman
- JHU ICMIC Program, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
25
|
Comsa DC, Farrell TJ, Patterson MS. Quantification of bioluminescence images of point source objects using diffusion theory models. Phys Med Biol 2006; 51:3733-46. [PMID: 16861777 DOI: 10.1088/0031-9155/51/15/009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A simple approach for estimating the location and power of a bioluminescent point source inside tissue is reported. The strategy consists of using a diffuse reflectance image at the emission wavelength to determine the optical properties of the tissue. Following this, bioluminescence images are modelled using a single point source and the optical properties from the reflectance image, and the depth and power are iteratively adjusted to find the best agreement with the experimental image. The forward models for light propagation are based on the diffusion approximation, with appropriate boundary conditions. The method was tested using Monte Carlo simulations, Intralipid tissue-simulating phantoms and ex vivo chicken muscle. Monte Carlo data showed that depth could be recovered within 6% for depth 4-12 mm, and the corresponding relative source power within 12%. In Intralipid, the depth could be estimated within 8% for depth 4-12 mm, and the relative source power, within 20%. For ex vivo tissue samples, source depths of 4.5 and 10 mm and their relative powers were correctly identified.
Collapse
Affiliation(s)
- D C Comsa
- Juravinski Cancer Centre and McMaster University, 699 Concession Street, Hamilton, Ontario L8V 5C2, Canada
| | | | | |
Collapse
|
26
|
Nogawa M, Yuasa T, Kimura S, Kuroda J, Sato K, Segawa H, Yokota A, Maekawa T. Monitoring luciferase-labeled cancer cell growth and metastasis in different in vivo models. Cancer Lett 2005; 217:243-53. [PMID: 15617843 DOI: 10.1016/j.canlet.2004.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 07/01/2004] [Accepted: 07/08/2004] [Indexed: 11/27/2022]
Abstract
Cancer metastasis is infrequently evaluated in vivo, probably because of the few available models and the technical challenges associated with the detection of metastases. Here we show that the growth and metastases of HT1080 fibrosarcoma, A549 lung adenocarcinoma, and RENCA murine renal cancer cell lines in five different in vivo models can be successfully monitored by labeling the cells with luciferase prior to their implantation and then detecting their bioluminesence after injecting luciferin. We also used this in vivo imaging system to successfully demonstrate that YM529, a third generation bisphosphonate, inhibited the growth of sarcoma metastases in bone. We believe the models we have established in combination with the in vivo imaging system will be highly useful for future studies of metastasis and the testing of anti-metastatic therapies.
Collapse
Affiliation(s)
- Masaki Nogawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Silvertown JD, Ng J, Sato T, Summerlee AJ, Medin JA. H2 relaxin overexpression increasesin vivo prostate xenograft tumor growth and angiogenesis. Int J Cancer 2005; 118:62-73. [PMID: 16049981 DOI: 10.1002/ijc.21288] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Our study reports a preliminary investigation into the role of human H2 relaxin in prostate tumor growth. A luciferase-expressing human prostate cancer cell line, PC-3, was generated and termed PC3-Luc. PC3-Luc cells were transduced with lentiviral vectors engineering the expression of either enhanced green fluorescent protein (eGFP) or both H2 relaxin and eGFP in a bicistronic format. These transduced cells were termed PC3-Luc-eGFP and PC3-Luc-H2/eGFP, respectively. To gauge effects, PC3-Luc-H2/eGFP and PC3-Luc-eGFP cells were injected into NOD/SCID mice and monitored over 6 weeks. PC-3 tumor xenografts overexpressing H2 relaxin exhibited greater tumor volumes compared to control tumors. Circulating H2 relaxin levels in sera increased with the relative size of the tumor, with moderately elevated H2 relaxin levels in mice bearing PC3-Luc-H2/eGFP tumors compared to PC3-Luc-eGFP tumors. Zymographic analysis demonstrated that proMMP-9 enzyme activity was significantly downregulated in H2 relaxin-overexpressing tumors. An advanced angiogenic phenotype was observed in H2 relaxin-overexpressing tumors indicated by greater intratumoral vascularization by immunohistochemical staining of endothelial cells with anti-mouse CD31. Moreover, PC3-Luc-H2/eGFP tumors exhibited increased VEGF transcript by reverse-transcription PCR, compared to basal levels in control animals. Taken together, our study provides the first account of a potential role of H2 relaxin in prostate tumor development.
Collapse
Affiliation(s)
- Josh D Silvertown
- Division of Stem Cell and Differentiation, Ontario Cancer Institute, University Health Network, Toronto, Canada
| | | | | | | | | |
Collapse
|