1
|
Xu TT, Wang YF, Yuan JJ, Mi CL, Geng SL, Wang XY, Wang TY. Optimization of the intron sequences combined with the CMV promoter increases recombinant protein expression in CHO cells. Sci Rep 2025; 15:3732. [PMID: 39881196 PMCID: PMC11779943 DOI: 10.1038/s41598-025-87941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells. The results showed that the truncated, EF-1α first, chimeric, and β-globin introns can significantly improve stable transgene expression in CHO cells. The qPCR results indicated that the mRNA level of transgene increased through optimizing intron sequences combined with the CMV promoter. Transcriptomics analysis was performed and found that differential expression of genes involved in mRNA processing, RNA export from nucleus, cytoplasmic translation, transcriptional activation and cell cycle regulation. In conclusion, optimization of the intron sequences combined with the CMV promoter can achieve a higher yield of recombinant proteins in CHO cells. This will be valuable for generating CHO cell lines with high productivity for industrial applications.
Collapse
Affiliation(s)
- Ting-Ting Xu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- Department of General Medicine, People's Hospital of Longhua, Shenzhen, China
| | - Yan-Fang Wang
- The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Jing-Jia Yuan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Chun-Liu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Shao-Lei Geng
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China.
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
2
|
Eisenhut P, Marx N, Borsi G, Papež M, Ruggeri C, Baumann M, Borth N. Manipulating gene expression levels in mammalian cell factories: An outline of synthetic molecular toolboxes to achieve multiplexed control. N Biotechnol 2024; 79:1-19. [PMID: 38040288 DOI: 10.1016/j.nbt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Mammalian cells have developed dedicated molecular mechanisms to tightly control expression levels of their genes where the specific transcriptomic signature across all genes eventually determines the cell's phenotype. Modulating cellular phenotypes is of major interest to study their role in disease or to reprogram cells for the manufacturing of recombinant products, such as biopharmaceuticals. Cells of mammalian origin, for example Chinese hamster ovary (CHO) and Human embryonic kidney 293 (HEK293) cells, are most commonly employed to produce therapeutic proteins. Early genetic engineering approaches to alter their phenotype have often been attempted by "uncontrolled" overexpression or knock-down/-out of specific genetic factors. Many studies in the past years, however, highlight that rationally regulating and fine-tuning the strength of overexpression or knock-down to an optimum level, can adjust phenotypic traits with much more precision than such "uncontrolled" approaches. To this end, synthetic biology tools have been generated that enable (fine-)tunable and/or inducible control of gene expression. In this review, we discuss various molecular tools used in mammalian cell lines and group them by their mode of action: transcriptional, post-transcriptional, translational and post-translational regulation. We discuss the advantages and disadvantages of using these tools for each cell regulatory layer and with respect to cell line engineering approaches. This review highlights the plethora of synthetic toolboxes that could be employed, alone or in combination, to optimize cellular systems and eventually gain enhanced control over the cellular phenotype to equip mammalian cell factories with the tools required for efficient production of emerging, more difficult-to-express biologics formats.
Collapse
Affiliation(s)
- Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| | - Giulia Borsi
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Ruggeri
- BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Muthgasse 11, 1190 Vienna, Austria; BOKU University of Natural Resources and Life Sciences, Institute of Animal Cell Technology and Systems Biology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
3
|
Verdú-Navarro F, Moreno-Cid JA, Weiss J, Egea-Cortines M. The advent of plant cells in bioreactors. FRONTIERS IN PLANT SCIENCE 2023; 14:1310405. [PMID: 38148861 PMCID: PMC10749943 DOI: 10.3389/fpls.2023.1310405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Ever since agriculture started, plants have been bred to obtain better yields, better fruits, or sustainable products under uncertain biotic and abiotic conditions. However, a new way to obtain products from plant cells emerged with the development of recombinant DNA technologies. This led to the possibility of producing exogenous molecules in plants. Furthermore, plant chemodiversity has been the main source of pharmacological molecules, opening a field of plant biotechnology directed to produce high quality plant metabolites. The need for different products by the pharma, cosmetics agriculture and food industry has pushed again to develop new procedures. These include cell production in bioreactors. While plant tissue and cell culture are an established technology, beginning over a hundred years ago, plant cell cultures have shown little impact in biotechnology projects, compared to bacterial, yeasts or animal cells. In this review we address the different types of bioreactors that are currently used for plant cell production and their usage for quality biomolecule production. We make an overview of Nicotiana tabacum, Nicotiana benthamiana, Oryza sativa, Daucus carota, Vitis vinifera and Physcomitrium patens as well-established models for plant cell culture, and some species used to obtain important metabolites, with an insight into the type of bioreactor and production protocols.
Collapse
Affiliation(s)
- Fuensanta Verdú-Navarro
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan A. Moreno-Cid
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
4
|
Wang XY, Zhang WL, Zhang X, Fu YS, Wang HM, Sun QL, Li Q, Jia YL, Zhang JH, Wang TY. Combination of MAR and intron increase transgene expression of episomal vectors in CHO cells. Biotechnol J 2023; 18:e2200643. [PMID: 37551822 DOI: 10.1002/biot.202200643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Previous work has shown that the EF-1α promoter of episomal vectors maintains high-level transgene expression in stably transfected Chinese hamster ovary (CHO) cells. However, the transgene expression levels need to be further increased. Here, we first incorporated matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE), stabilizing anti repressor elements 40 (STAR 40) elements into episomal vector at different sites and orientations, and systemically assessed their effects on transgene expression in transfected CHO-K1 cells. Results showed that enhanced green fluorescent protein (eGFP) expression levels increased remarkably when MAR X-29 was inserted upstream of the promoter, followed by the insertion of MAR1 downstream of the poly A, and the orientation had no significant effect. Moreover, MAR X-29 combined with human cytomegalovirus intron (hCMVI) yielded the highest transgene expression levels (4.52-fold). Transgene expression levels were not exclusively dependent on transgene copy numbers and were not related to the mRNA expression level. In addition, vector with MAR X-29+hCMVI can induce herpes simplex virus thymidine kinase (HSV-TK) protein expression, and the HSV-TK protein showed a cell-killing effect and an obvious bystander effect on HCT116 cells. In conclusion, the combination of MAR X-29 and hCMV intron can achieve high efficiency transgene expression mediated by episomal vectors in CHO-K1 cells.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Wei-Li Zhang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- Center for Medical Genetics, Nanyang Second General Hospital, Nanyang, China
| | - Xi Zhang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Yu-Shun Fu
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Hao-Min Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Qiu-Li Sun
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qin Li
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Yan-Long Jia
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jun-He Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Sinegubova MV, Orlova NA, Vorobiev II. Promoter from Chinese hamster elongation factor-1a gene and Epstein-Barr virus terminal repeats concatemer fragment maintain stable high-level expression of recombinant proteins. PeerJ 2023; 11:e16287. [PMID: 37901457 PMCID: PMC10607201 DOI: 10.7717/peerj.16287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Background The Chinese hamster ovary (CHO) cell line is the main host for the high-titer production of therapeutic and diagnostic proteins in the biopharmaceutical industry. In most cases, plasmids for efficient protein expression in CHO cells are based on the cytomegalovirus (CMV) promoter. The autologous Chinese hamster eukaryotic translation elongation factor 1α (EEF1A1) promoter is a viable alternative to the CMV promoter in industrial applications. The EEF1A1 promoter and its surrounding DNA regions proved to be effective at maintaining high-level and stable expression of recombinant proteins in CHO cells. EEF1A1-based plasmids' large size can lead to low transfection efficiency and hamper target gene amplification. We hypothesized that an efficient EEF1A1-based expression vector with a long terminal repeat fragment from the Epstein-Barr virus (EBVTR) could be truncated without affecting promoter strength or the long-term stability of target gene expression. Methods We made a series of deletions in the downstream flanking region of the EEF1A1 gene, and then in its upstream flanking region. The resulting plasmids, which coded for the enhanced green fluorescent protein (eGFP), were tested for the level of eGFP expression in the populations of stably transfected CHO DG44 cells and the stability of eGFP expression in the long-term culture in the absence of selection agents. Results It was shown that in the presence of the EBVTR fragment, the entire downstream flanking region of the EEF1A1 gene could be excluded from the plasmid vector. Shortening of the upstream flanking region of the EEF1A1 gene to a length of 2.5 kbp also had no significant effect on the level of eGFP expression or long-term stability. The EBVTR fragment significantly increased expression stability for both the CMV and EEF1A1 promoter-based plasmids, and the expression level drop during the two-month culture was more significant for both CMV promoter-based plasmids. Conclusion Target protein expression stability for the truncated plasmid, based on the EEF1A1 gene and EBVTR fragment, is sufficient for common biopharmaceutical applications, making these plasmid vectors a viable alternative to conventional CMV promoter-based vectors.
Collapse
Affiliation(s)
- Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
7
|
Meskova K, Martonova K, Hrasnova P, Sinska K, Skrabanova M, Fialova L, Njemoga S, Cehlar O, Parmar O, Kolenko P, Pevala V, Skrabana R. Cost-Effective Protein Production in CHO Cells Following Polyethylenimine-Mediated Gene Delivery Showcased by the Production and Crystallization of Antibody Fabs. Antibodies (Basel) 2023; 12:51. [PMID: 37606435 PMCID: PMC10443350 DOI: 10.3390/antib12030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Laboratory production of recombinant mammalian proteins, particularly antibodies, requires an expression pipeline assuring sufficient yield and correct folding with appropriate posttranslational modifications. Transient gene expression (TGE) in the suspension-adapted Chinese Hamster Ovary (CHO) cell lines has become the method of choice for this task. The antibodies can be secreted into the media, which facilitates subsequent purification, and can be glycosylated. However, in general, protein production in CHO cells is expensive and may provide variable outcomes, namely in laboratories without previous experience. While achievable yields may be influenced by the nucleotide sequence, there are other aspects of the process which offer space for optimization, like gene delivery method, cultivation process or expression plasmid design. Polyethylenimine (PEI)-mediated gene delivery is frequently employed as a low-cost alternative to liposome-based methods. In this work, we are proposing a TGE platform for universal medium-scale production of antibodies and other proteins in CHO cells, with a novel expression vector allowing fast and flexible cloning of new genes and secretion of translated proteins. The production cost has been further reduced using recyclable labware. Nine days after transfection, we routinely obtain milligrams of antibody Fabs or human lactoferrin in a 25 mL culture volume. Potential of the platform is established based on the production and crystallization of antibody Fabs and their complexes.
Collapse
Affiliation(s)
- Klaudia Meskova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Katarina Martonova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Patricia Hrasnova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Kristina Sinska
- AXON Neuroscience R&D Services SE, 811 02 Bratislava, Slovakia
| | - Michaela Skrabanova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Lubica Fialova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, 811 02 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | - Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Olga Parmar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Petr Kolenko
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19 Prague, Czech Republic
| | - Vladimir Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| |
Collapse
|
8
|
Milito A, Aschern M, McQuillan JL, Yang JS. Challenges and advances towards the rational design of microalgal synthetic promoters in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3833-3850. [PMID: 37025006 DOI: 10.1093/jxb/erad100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Microalgae hold enormous potential to provide a safe and sustainable source of high-value compounds, acting as carbon-fixing biofactories that could help to mitigate rapidly progressing climate change. Bioengineering microalgal strains will be key to optimizing and modifying their metabolic outputs, and to render them competitive with established industrial biotechnology hosts, such as bacteria or yeast. To achieve this, precise and tuneable control over transgene expression will be essential, which would require the development and rational design of synthetic promoters as a key strategy. Among green microalgae, Chlamydomonas reinhardtii represents the reference species for bioengineering and synthetic biology; however, the repertoire of functional synthetic promoters for this species, and for microalgae generally, is limited in comparison to other commercial chassis, emphasizing the need to expand the current microalgal gene expression toolbox. Here, we discuss state-of-the-art promoter analyses, and highlight areas of research required to advance synthetic promoter development in C. reinhardtii. In particular, we exemplify high-throughput studies performed in other model systems that could be applicable to microalgae, and propose novel approaches to interrogating algal promoters. We lastly outline the major limitations hindering microalgal promoter development, while providing novel suggestions and perspectives for how to overcome them.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
10
|
Lao N, Barron N. Enhancing recombinant protein and viral vector production in mammalian cells by targeting the YTHDF readers of N 6 -methyladenosine in mRNA. Biotechnol J 2023; 18:e2200451. [PMID: 36692010 DOI: 10.1002/biot.202200451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
N6 -methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNA and has been implicated in a wide range of fundamental cellular processes. This modification is regulated and interpreted by a set of writer, eraser, and reader proteins. To date, there have been no reports on the potential of mRNA epigenetic regulators to influence recombinant protein expression in mammalian cells. In this study, the potential of manipulating the expression of the m6A YTH domain-containing readers, YTHDF1, 2 and 3 to improve recombinant protein yield based on their role in regulating mRNA stability and promoting translation were evaluated. Using siRNA-mediated gene depletion, cDNA over-expression, and methylation-specific RNA immunoprecipitation, it is demonstrated that (i) knock-down of YTHDF2 enhances (~2-fold) the levels of recombinant protein derived from GFP and EPO transgenes in CHO cells; (ii) the effects of YTHDF2 depletion on transgene expression is m6A-mediated; and (iii) YTHDF2 depletion, or over-expression of YTHDF1 increases viral protein expression and yield of infectious lentiviral (LV) particles (~2-3-fold) in HEK293 cells. We conclude that various transgenes can be subjected to regulation by m6A regulators in mammalian cell lines and that these findings demonstrate the utility of epitranscriptomic-based approaches to host cell line engineering for improved recombinant protein and viral vector production.
Collapse
Affiliation(s)
- Nga Lao
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Chitwood DG, Wang Q, Klaubert SR, Green K, Wu CH, Harcum SW, Saski CA. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci Rep 2023; 13:1200. [PMID: 36681715 PMCID: PMC9862248 DOI: 10.1038/s41598-023-27962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.
Collapse
Affiliation(s)
- Dylan G Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Stephanie R Klaubert
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Kiana Green
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Sarah W Harcum
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
12
|
Chen WCW, Gaidukov L, Lai Y, Wu MR, Cao J, Gutbrod MJ, Choi GCG, Utomo RP, Chen YC, Wroblewska L, Kellis M, Zhang L, Weiss R, Lu TK. A synthetic transcription platform for programmable gene expression in mammalian cells. Nat Commun 2022; 13:6167. [PMID: 36257931 PMCID: PMC9579178 DOI: 10.1038/s41467-022-33287-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Precise, scalable, and sustainable control of genetic and cellular activities in mammalian cells is key to developing precision therapeutics and smart biomanufacturing. Here we create a highly tunable, modular, versatile CRISPR-based synthetic transcription system for the programmable control of gene expression and cellular phenotypes in mammalian cells. Genetic circuits consisting of well-characterized libraries of guide RNAs, binding motifs of synthetic operators, transcriptional activators, and additional genetic regulatory elements express mammalian genes in a highly predictable and tunable manner. We demonstrate the programmable control of reporter genes episomally and chromosomally, with up to 25-fold more activity than seen with the EF1α promoter, in multiple cell types. We use these circuits to program the secretion of human monoclonal antibodies and to control T-cell effector function marked by interferon-γ production. Antibody titers and interferon-γ concentrations significantly correlate with synthetic promoter strengths, providing a platform for programming gene expression and cellular function in diverse applications.
Collapse
Affiliation(s)
- William C W Chen
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| | - Leonid Gaidukov
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yong Lai
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ming-Ru Wu
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Jicong Cao
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael J Gutbrod
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Gigi C G Choi
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Rachel P Utomo
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biochemistry, Wellesley College, Wellesley, MA, 02481, USA
| | - Ying-Chou Chen
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Lin Zhang
- Pfizer Inc., Andover, MA, 01810, USA
| | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy K Lu
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
13
|
Hertel O, Neuss A, Busche T, Brandt D, Kalinowski J, Bahnemann J, Noll T. Enhancing stability of recombinant CHO cells by CRISPR/Cas9-mediated site-specific integration into regions with distinct histone modifications. Front Bioeng Biotechnol 2022; 10:1010719. [PMID: 36312557 PMCID: PMC9606416 DOI: 10.3389/fbioe.2022.1010719] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most important platform for producing biotherapeutics. Random integration of a transgene into epigenetically instable regions of the genome results in silencing of the gene of interest and loss of productivity during upstream processing. Therefore, cost- and time-intensive long-term stability studies must be performed. Site-specific integration into safe harbors is a strategy to overcome these limitations of conventional cell line design. Recent publications predict safe harbors in CHO cells based on omics data sets or by learning from random integrations, but those predictions remain theory. In this study, we established a CRISPR/Cas9-mediated site-specific integration strategy based on ChIP-seq data to improve stability of recombinant CHO cells. Therefore, a ChIP experiment from the exponential and stationary growth phase of a fed-batch cultivation of CHO-K1 cells yielded 709 potentially stable integration sites. The reporter gene eGFP was integrated into three regions harboring specific modifications by CRISPR/Cas9. Targeted Cas9 nanopore sequencing showed site-specific integration in all 3 cell pools with a specificity between 23 and 73%. Subsequently, the cells with the three different integration sites were compared with the randomly integrated donor vector in terms of transcript level, productivity, gene copy numbers and stability. All site-specific integrations showed an increase in productivity and transcript levels of up to 7.4-fold. In a long-term cultivation over 70 generations, two of the site-specific integrations showed a stable productivity (>70%) independent of selection pressure.
Collapse
Affiliation(s)
- Oliver Hertel
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- *Correspondence: Oliver Hertel,
| | - Anne Neuss
- Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Aachen, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - David Brandt
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
14
|
Min H, Kim SM, Kim D, Lee S, Lee S, Lee JS. Hybrid cell line development system utilizing site-specific integration and methotrexate-mediated gene amplification in Chinese hamster ovary cells. Front Bioeng Biotechnol 2022; 10:977193. [PMID: 36185448 PMCID: PMC9521551 DOI: 10.3389/fbioe.2022.977193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Site-specific integration has emerged as a promising strategy for streamlined and predictable Chinese hamster ovary (CHO) cell line development (CLD). However, the low specific productivity of the targeted integrants limits their practical application. In this study, we developed a hybrid CLD platform combining site-specific integration of a transgene and dihydrofolate reductase/methotrexate (DHFR/MTX)-mediated gene amplification to generate high-producing recombinant CHO cell lines. We used the CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform to integrate the DHFR expression cassette and transgene landing pad into a CHO genomic hot spot, C12orf35 locus, of DHFR-knockout CHO-K1 host cell lines. When subjected to various MTX concentrations up to 1 μM, EGFP-expressing targeted integrants showed a 3.6-fold increase in EGFP expression in the presence of 200 nM MTX, accompanied by an increase in the DHFR and EGFP copy number. A single-step 200 nM MTX amplification increased the specific monoclonal antibody (mAb) productivity (qmAb) of recombinant mAb-producing targeted integrants by 2.8-folds, reaching a qmAb of 9.1–11.0 pg/cell/day. Fluorescence in situ hybridization analysis showed colocalization of DHFR and mAb sequences at the intended chromosomal locations without clear amplified arrays of signals. Most MTX-amplified targeted integrants sustained recombinant mAb production during long-term culture in the absence of MTX, supporting stable gene expression in the amplified cell lines. Our study provides a new CLD platform that increases the productivity of targeted integrants by amplifying the transgene copies.
Collapse
Affiliation(s)
- Honggi Min
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seul Mi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Dongwoo Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Solhwi Lee
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Sumin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
- *Correspondence: Jae Seong Lee,
| |
Collapse
|
15
|
Tanemura H, Masuda K, Okumura T, Takagi E, Kajihara D, Kakihara H, Nonaka K, Ushioda R. Development of a stable antibody production system utilizing an Hspa5 promoter in CHO cells. Sci Rep 2022; 12:7239. [PMID: 35610229 PMCID: PMC9130236 DOI: 10.1038/s41598-022-11342-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used for manufacturing antibody drugs. We attempted to clone a novel high-expression promoter for producing monoclonal antibodies (mAbs) based on transcriptome analysis to enhance the transcriptional abundance of mAb genes. The efficacy of conventional promoters such as CMV and hEF1α decrease in the latter phase of fed-batch cell culture. To overcome this, we screened genes whose expression was maintained or increased throughout the culture period. Since CHO cells have diverse genetic expression depending on the selected clone and culture medium, transcriptome analysis was performed on multiple clones and culture media anticipated to be used in mAb manufacturing. We thus acquired the Hspa5 promoter as a novel high-expression promoter, which uniquely enables mAb productivity per cell to improve late in the culture period. Productivity also improved for various IgG subclasses under Hspa5 promoter control, indicating this promoter’s potential universal value for mAb production. Finally, it was suggested that mAb production with this promoter is correlated with the transcription levels of endoplasmic reticulum stress-related genes. Therefore, mAb production utilizing the Hspa5 promoter might be a new method for maintaining protein homeostasis and achieving stable expression of introduced mAb genes during fed-batch culture.
Collapse
Affiliation(s)
- Hiroki Tanemura
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Kenji Masuda
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Takeshi Okumura
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Eri Takagi
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Daisuke Kajihara
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Hirofumi Kakihara
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Koichi Nonaka
- Biologics Technology Research Laboratories Biologics Division, Daiichi Sankyo Co., Ltd., 2716-1, Aza Kurakake, Oaza Akaiwa, Chiyoda-machi, Oura-gun, Gunma, 370-0503, Japan
| | - Ryo Ushioda
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto City, 603-8555, Japan. .,Institute for Protein Dynamics, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto City, 603-8555, Japan.
| |
Collapse
|
16
|
Park JH, Lee HM, Jin EJ, Lee EJ, Kang YJ, Kim S, Yoo SS, Lee GM, Kim YG. Development of an in vitro screening system for synthetic signal peptide in mammalian cell-based protein production. Appl Microbiol Biotechnol 2022; 106:3571-3582. [PMID: 35581431 DOI: 10.1007/s00253-022-11955-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Optimizing appropriate signal peptides in mammalian cell-based protein production is crucial given that most recombinant proteins produced in mammalian cells are thought to be secreted proteins. Until now, most studies on signal peptide in mammalian cells have replaced native signal peptides with well-known heterologous signal peptides and bioinformatics-based signal peptides. In the present study, we successfully established an in vitro screening system for synthetic signal peptide in CHO cells by combining a degenerate codon-based oligonucleotides library, a site-specific integration system, and a FACS-based antibody detection assay. Three new signal peptides were screened using this new screening system, confirming to have structural properties as signal peptides by the SignalP web server, a neural network-based algorithm that quantifies the signal peptide-ness of amino acid sequences. The novel signal peptides selected in this study increased Fc-fusion protein production in CHO cells by increasing specific protein productivity, whereas they did not negatively affect cell growth. Particularly, the SP-#149 clone showed the highest qp, 0.73 ± 0.01 pg/cell/day from day 1 to day 4, representing a 1.47-fold increase over the native signal peptide in a serum-free suspension culture mode. In addition, replacing native signal peptide with the novel signal peptides did not significantly affect sialylated N-glycan formation, N-terminal cleavage pattern, and biological function of Fc-fusion protein produced in CHO cells. The overall results indicate the utility of a novel in vitro screening system for synthetic signal peptide for mammalian cell-based protein production. KEY POINTS: • An in vitro screening system for synthetic signal peptide in mammalian cells was established • This system combined a degenerate codon-based library, site-specific integration, and a FACS-based detection assay • The novel signal peptides selected in this study could increase Fc-fusion protein production in mammalian cells.
Collapse
Affiliation(s)
- Jong-Ho Park
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Eun-Ju Jin
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Eun-Ji Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Yeon-Ju Kang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Sungkyun Kim
- Choong Ang Vaccine Laboratory Co., Ltd. (CAVAC), 1476-37 Yuseong-daero, Yuseong-gu, Daejeon, Korea
| | - Sung-Sick Yoo
- Choong Ang Vaccine Laboratory Co., Ltd. (CAVAC), 1476-37 Yuseong-daero, Yuseong-gu, Daejeon, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
17
|
Toktay Y, Dayanc B, Senturk S. Engineering and validation of a dual luciferase reporter system for quantitative and systematic assessment of regulatory sequences in Chinese hamster ovary cells. Sci Rep 2022; 12:6050. [PMID: 35410414 PMCID: PMC9001649 DOI: 10.1038/s41598-022-09887-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Ongoing research efforts to identify potent regulatory sequences that deliver robust and sustained transgene expression are critical for Chinese hamster ovary (CHO) cell line development technologies to meet the growing demand for recombinant proteins. Here we report the engineering and validation of a highly customizable single vector toolkit that comprises an all-in-one dual luciferase reporter system for quantitative and systematic interrogation of transcriptional regulatory sequences in transient and stable transfectants of CHO cells. To model the execution of the reporter system, we implemented a battery of known constitutive promoters including human CMV-mIE, SV40, HSV-TK, mouse PGK, human EF1α, EF1α short (EFS), human UBC, synthetic CAG, and Chinese hamster EF1α (CHEF1α). Of the nine promoters, CMV-mIE yielded the highest transcriptional activity in transient transfection settings, while CHEF1α was the strongest among a select subset of promoters in stable transfectants of CHO-DG44 pools. Remodeling the vector toolkit to build a dual fluorescent reporter system featured an alternative to bioluminescence based reporters. We infer that the findings of this study may serve as a basis to establish new vectors with weak or strong constitutive promoters. Furthermore, the modular all-in-one architecture of the reporter system proved to be a viable tool for discovering novel regulatory sequences that ensure high levels of transient and stable transgene expression in CHO and perhaps other mammalian cell lines.
Collapse
|
18
|
Oliviero C, Hinz SC, Bogen JP, Kornmann H, Hock B, Kolmar H, Hagens G. Generation of a Host Cell line containing a MAR-rich landing pad for site-specific integration and expression of transgenes. Biotechnol Prog 2022; 38:e3254. [PMID: 35396920 PMCID: PMC9539524 DOI: 10.1002/btpr.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
In recent years, targeted gene integration (TI) has been introduced as a strategy for the generation of recombinant mammalian cell lines for the production of biotherapeutics. Besides reducing the immense heterogeneity within a pool of recombinant transfectants, TI also aims at shortening the duration of the current cell line development process. Here we describe the generation of a host cell line carrying Matrix‐Attachment Region (MAR)‐rich landing pads (LPs), which allow for the simultaneous and site‐specific integration of multiple genes of interest (GOIs). We show that several copies of each chicken lysozyme 5'MAR‐based LP containing either BxB1 wild type or mutated recombination sites, integrated at one random chromosomal locus of the host cell genome. We further demonstrate that these LP‐containing host cell lines can be used for the site‐specific integration of several GOIs and thus, generation of transgene‐expressing stable recombinant clones. Transgene expression was shown by site‐specific integration of heavy and light chain genes coding for a monospecific antibody (msAb) as well as for a bi‐specific antibody (bsAb). The genetic stability of the herein described LP‐based recombinant clones expressing msAb or bsAb was demonstrated by cultivating the recombinant clones and measuring antibody titers over 85 generations. We conclude that the host cell containing multiple copies of MAR‐rich landing pads can be successfully used for stable expression of one or several GOIs.
Collapse
Affiliation(s)
- Claudia Oliviero
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| | - Steffen C Hinz
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Henri Kornmann
- Ferring Biologics Innovation Center, Route de la Corniche 8, CH-1066, Epalinges, Switzerland
| | - Björn Hock
- Ferring Biologics Innovation Center, Route de la Corniche 8, CH-1066, Epalinges, Switzerland.,SwissThera SA, Route de la Corniche 4, CH-1066, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Gerrit Hagens
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| |
Collapse
|
19
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
20
|
Effects of ubiquitous chromatin opening element (UCOE) on recombinant anti-TNFα antibody production and expression stability in CHO-DG44 cells. Cytotechnology 2022; 74:31-49. [PMID: 35185284 PMCID: PMC8817031 DOI: 10.1007/s10616-021-00503-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023] Open
Abstract
To date, the production of antibodies (mAbs) usually faces the risks of transgene expression reduction and instability, especially after long-time culture. The inclusion of ubiquitous chromatin opening element (UCOE) into expression vectors was reported to enhance protein production and maintain transgene expression stability in CHO cell lines. Thus, we investigate the effects of UCOE on recombinant monoclonal anti-TNFα antibody (mAbTNFα) production and expression stability in CHO-DG44 cells. In our study, non-UCOE and UCOE-based vectors encoding mAbTNFα were constructed and introduced into the CHO-DG44 cells. Cell pools and single-cell clones were obtained by selecting transfected cells with G418, amplifying them by treatment with methotrexate (MTX), and isolating them by limiting dilution. The effects of UCOE on mAb production and stable transgene expression in transfected cells were analyzed via the correlation between mAb yields and mRNA expression level variations, and gene copy number changes. The UCOE pool exhibited higher mAb yield compared to non-UCOE pool. The UCOE was associated with higher transgene transcriptional activity, leading to improvement of mAb production after MTX-mediated gene amplification. The incorporation of UCOE generated cells allowed isolation of greater numbers of positive clones with higher expression. Despite the slightly decreased mAb yield, UCOE clones still retain stable long-term expression in the absence of selective pressure, which was explained by the loss of transgene copies rather than due to the decline of transcriptional activity. In addition, the purified mAb had primary chemical and biological characteristics similar to those of adalimumab. The results showed that the incorporation of UCOE within vectors provides significant advantages in the generation of high-producing clones, enhancement of mAb production, and improvement of gene expression stability.
Collapse
|
21
|
Zagoskin AA, Zakharova MV, Nagornykh MO. Structural Elements of DNA and RNA Eukaryotic Expression Vectors for In Vitro and In Vivo Genome Editor Delivery. Mol Biol 2022; 56:950-962. [PMCID: PMC9735121 DOI: 10.1134/s0026893322060218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
Gene editing with programmable nucleases opens new perspectives in important practice areas, such as healthcare and agriculture. The most challenging problem for the safe and effective therapeutic use of gene editing technologies is the proper delivery and expression of gene editors in cells and tissues of different organisms. Virus-based and nonviral systems can be used for the successful delivery of gene editors. Here we have reviewed structural elements of nonviral DNA- and RNA-based expression vectors for gene editing and delivery methods in vitro and in vivo.
Collapse
Affiliation(s)
- A. A. Zagoskin
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - M. V. Zakharova
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - M. O. Nagornykh
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia ,Sirius University of Science and Technology, Sirius, 354349 Sochi, Russia
| |
Collapse
|
22
|
Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:25-34. [PMID: 34895638 DOI: 10.1016/j.ddtec.2021.02.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
Recombinant proteins used in biomedical research, diagnostics and different therapies are mostly produced in Chinese hamster ovary cells in the pharmaceutical industry. These biotherapeutics, monoclonal antibodies in particular, have shown remarkable market growth in the past few decades. The increasing demand for high amounts of biologics requires continuous optimization and improvement of production technologies. Research aims at discovering better means and methods for reaching higher volumetric capacity, while maintaining stable product quality. An increasing number of complex novel protein therapeutics, such as viral antigens, vaccines, bi- and tri-specific monoclonal antibodies, are currently entering industrial production pipelines. These biomolecules are, in many cases, difficult to express and require tailored product-specific solutions to improve their transient or stable production. All these requirements boost the development of more efficient expression optimization systems and high-throughput screening platforms to facilitate the design of product-specific cell line engineering and production strategies. In this minireview, we provide an overview on recent advances in CHO cell line development, targeted genome manipulation techniques, selection systems and screening methods currently used in recombinant protein production.
Collapse
Affiliation(s)
- Borbála Tihanyi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
23
|
Dehdilani N, Taemeh SY, Goshayeshi L, Dehghani H. Genetically engineered birds; pre-CRISPR and CRISPR era. Biol Reprod 2021; 106:24-46. [PMID: 34668968 DOI: 10.1093/biolre/ioab196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
Generating biopharmaceuticals in genetically engineered bioreactors continues to reign supreme. Hence, genetically engineered birds have attracted considerable attention from the biopharmaceutical industry. Fairly recent genome engineering methods have made genome manipulation an easy and affordable task. In this review, we first provide a broad overview of the approaches and main impediments ahead of generating efficient and reliable genetically engineered birds, and various factors that affect the fate of a transgene. This section provides an essential background for the rest of the review, in which we discuss and compare different genome manipulation methods in the pre-CRISPR and CRISPR era in the field of avian genome engineering.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
24
|
Doan CC, Ho NQC, Nguyen TT, Nguyen TPT, Do DG, Hoang NS, Le TL. Enhancement of anti-TNFα monoclonal antibody production in CHO cells through the use of UCOE and DHFR elements in vector construction and the optimization of cell culture media. Prep Biochem Biotechnol 2021; 52:452-470. [PMID: 34427158 DOI: 10.1080/10826068.2021.1963981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, there has been a high demand for anti-tumor necrosis factor-α monoclonal antibodies (mAbTNFα) in the treatment of rheumatoid arthritis and other autoimmune diseases. Thus, efficient strategies and stable high-producing cell lines need to be established to increase antibody production. In this study, we describe an efficient approach to establish a mAbTNFα high-producing clone through the optimization of expression vectors and cell culture media. The ubiquitous chromatin opening element (UCOE) and dihydrofolate reductase (DHFR)-based vectors encoding mAbTNFα were introduced into the CHO-DG44 cells using lipofection. Clones were obtained by selecting transfected cells with G418, amplifying them by treatment with methotrexate, and isolating them by limiting dilution. Different media formulated with commercial feeds and media were also screened to develop an improved medium. The antibody produced by the selected clone was purified, characterized, and compared to standard adalimumab. Using our established protocol, a cell clone obtained from stable mAbTNFα-expressing cell pools showed a 3.8-fold higher antibody titer compared to stable cell pools. Furthermore, the highest antibody yield of selected clones cultured in fed-batch mode using improved medium was 2450 ± 30 µg/mL, which was 13.2-fold higher than that of stable cell pool cultivated in batch mode using a basal medium. The purified antibody had primary chemical and biological characteristics similar to those of adalimumab. Therefore, the use of UCOE and DHFR vectors in combination with the optimization of cell culture media may help in establishing stable and high-producing CHO cell lines for therapeutic antibody production.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Thuy Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Dang Giap Do
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| |
Collapse
|
25
|
Cazier AP, Blazeck J. Advances in promoter engineering: novel applications and predefined transcriptional control. Biotechnol J 2021; 16:e2100239. [PMID: 34351706 DOI: 10.1002/biot.202100239] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Synthetic biology continues to progress by relying on more robust tools for transcriptional control, of which promoters are the most fundamental component. Numerous studies have sought to characterize promoter function, determine principles to guide their engineering, and create promoters with stronger expression or tailored inducible control. In this review, we will summarize promoter architecture and highlight recent advances in the field, focusing on the novel applications of inducible promoter design and engineering towards metabolic engineering and cellular therapeutic development. Additionally, we will highlight how the expansion of new, machine learning techniques for modeling and engineering promoter sequences are enabling more accurate prediction of promoter characteristics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew P Cazier
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| |
Collapse
|
26
|
Mahboudi S, Moosavi-Nasab M, Kazemi B, Rahimpour A, Eskandari MH, Mohammadian O, Shams F. Utilization of the human gamma-satellite insulator for the enhancement of anti-PCSK9 monoclonal antibody expression in Chinese hamster ovary cells. Mol Biol Rep 2021; 48:4405-4412. [PMID: 34089466 DOI: 10.1007/s11033-021-06456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Monoclonal antibodies (mAbs) are widely employed as invaluable therapeutics for a vast number of human disorders. Several approaches have been introduced for the improvement of mAb production in Chinese hamster ovary (CHO) cells due to the increasing demand for these products. In this regard, various chromatin-modifying elements such as insulators have been incorporated in the expression vectors to augment mAb expression. In this study, human gamma-satellite insulator containing vectors were utilized for the expression of an anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) mAb in CHO-K1 cells. To this aim, dual expression vectors encoding the antibody light chain (LC) and heavy chain (HC) with or without the insulator element were constructed, and mAb expression was evaluated in transient and stable expression. Based on the results, mAb expression significantly increased in the stable cell pool, and clonal cells developed using the human gamma-satellite insulator. In contrast, transient antibody expression was not affected by the insulator element. Finally, the enhancement of LC and HC mRNA levels was found in the insulator containing stable cell pools using the quantitative real-time-polymerase chain reaction (qRT-PCR). Our findings showed the positive effect of the human gamma-satellite insulator on the stable expression of an anti-PCSK9 immunoglobulin G1 (IgG1) mAb in CHO-K1 cells using dual expression vectors.
Collapse
Affiliation(s)
- Somayeh Mahboudi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Omid Mohammadian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Hirano T, Adachi S, Ichimura N, Kasai A, Kobayashi M, Okuda T, Ogawa R, Kagiya G. Culturing Chinese hamster ovary cells on cyclo olefin polymer triggers epithelial-mesenchymal transition and spheroid formation, which increases the foreign gene expression driven by the Moloney murine leukemia virus long terminal repeat promoter. Biotechnol Prog 2021; 37:e3159. [PMID: 33913259 DOI: 10.1002/btpr.3159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022]
Abstract
Chinese hamster ovary (CHO) cells are frequently used for recombinant protein production (RPP) as a host. While the RPP has been proven successful, there is still a compelling need for further improvement. Cyclo olefin polymer (COP) is a plastic material widely utilized due to its properties including its low protein absorption. We applied this as a raw material for RPP cell culture to see if the COP is suitable. A recombinant CHO cell line expressing the human erythropoietin (hEPO) gene under the control of the Moloney murine leukemia virus-long terminal repeat (MMLV-LTR) was established. When the cells were cultured in a dish made from COP, the cells attached to the bottom, and then started to float and form spheroids. RNASeq data analysis suggested the epithelial-mesenchymal transition (EMT) was triggered with receptor tyrosine kinase activation shortly after cultivation. It coincided with the hEPO transcription increase. After the cell floating, though EMT marker gene expression subsided, a hEPO expression increase sustained. When fibronectin was applied to COP dish surface, the cell floating was suppressed and hEPO expression decreased. We then treated cells with MβCD, a drug that destroys the lipid raft, eliminating molecules in the raft. This facilitated cell floating and spheroid formation coincided with hEPO expression enhancement. These results suggest interactions between a cell and COP surface might trigger the EMT and the subsequent event, both of which activated the MMLV-LTR promoter. Thus, employing COP for culturing cells, a potent RPP system could be established with its advantage for efficient protein purification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryohei Ogawa
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Go Kagiya
- School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
28
|
Zheng F, Kawabe Y, Murakami M, Takahashi M, Nishihata K, Yoshida S, Ito A, Kamihira M. LINE-1 vectors mediate recombinant antibody gene transfer by retrotransposition in Chinese hamster ovary cells. Biotechnol J 2021; 16:e2000620. [PMID: 33938150 DOI: 10.1002/biot.202000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/09/2022]
Abstract
Retrotransposons, such as long interspersed element-1 (LINE-1), can copy themselves to other genomic loci via a transposition event (termed retrotransposition). Retrotransposons, therefore, have potential use as an efficient gene delivery tool to integrate multiple copies of a target gene into a host genome. Here, we developed a retrotransposon vector based on LINE-1 that achieves target gene integration of multiple transgene copies. The retrotransposon vector contains a neomycin resistance gene split by an intron as a marker gene, and a gene encoding an antibody single-chain variable fragment (Fv) fused with the constant antibody region (Fc) (scFv-Fc) as a model target gene. G418-resistant Chinese hamster ovary cells were generated using this retrotransposon vector, and scFv-Fc was produced in the culture medium. To regulate retrotransposition, we developed a retrotransposon vector system that separately expressed the two open reading frames (ORF1 and ORF2) of LINE-1. Genomic PCR analysis detected the transgene sequence in almost all tested clones. Compared with clones established using the intact LINE-1 vector, clones generated with the split ORF1 and ORF2 system showed similar specific scFv-Fc productivity and retrotransposition efficiency. This approach of using a retrotransposon-based vector system has the potential to provide a new gene delivery tool for mammalian cells.
Collapse
Affiliation(s)
- Feiyang Zheng
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Mai Murakami
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Mamika Takahashi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Kyoka Nishihata
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Souichiro Yoshida
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Masamichi Kamihira
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan.,Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
29
|
Dong E, Lam C, Tang D, Louie S, Yim M, Williams AJ, Sawyer W, Yip S, Carver J, AlBarakat A, Tsukuda J, Snedecor B, Misaghi S. Concurrent transfection of randomized transgene configurations into targeted integration CHO host is an advantageous and cost-effective method for expression of complex molecules. Biotechnol J 2020; 16:e2000230. [PMID: 33259700 DOI: 10.1002/biot.202000230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Complex recombinant proteins are increasingly desired as potential therapeutic options for many disease indications and are commonly expressed in the mammalian Chinese hamster ovary (CHO) cells. Generally, stoichiometric expression and proper folding of all subunits of a complex recombinant protein are required to achieve the desired titers and product qualities for a complex molecule. Targeted integration (TI) cell line development (CLD), which entails the insertion of the desired transgene(s) into a predefined landing-pad in the CHO genome, enables the generation of a homogeneous pool of cells from which clonally stable and high titer clones can be isolated with minimal screening efforts. Despite these advantages, using a single transgene(s) configuration with predetermined gene dosage might not be adequate for the expression of complex molecules. The goal of this study is to develop a method for seamless screening of many vector configurations in a single TI CLD attempt. As testing vector configurations in transient expression systems is not predictive of protein expression in the stable cell lines and parallel TI CLDs with different transgene configurations is resource-intensive, we tested the concept of randomized configuration targeted integration (RCTI) CLD approach for expression of complex molecules. RCTI allows simultaneous transfection of multiple vector configurations, encoding a complex molecule, to generate diverse TI clones each with a single transgene configuration but clone specific productivity and product qualities. Our findings further revealed a direct correlation between transgenes' configuration/copy-number and titer/product quality of the expressed proteins. RCTI CLD enabled, with significantly fewer resources, seamless isolation of clones with comparable titers and product quality attributes to that of several parallel standard TI CLDs. Therefore, RCTI introduces randomness to the TI CLD platform while maintaining all the advantages, such as clone stability and reduced sequence variant levels, that the TI system has to offer.
Collapse
Affiliation(s)
- Emily Dong
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Salina Louie
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Mandy Yim
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Ambrose J Williams
- Purification Development Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - William Sawyer
- Biochemical and Cellular Pharmacology Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Shirley Yip
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Joseph Carver
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Ali AlBarakat
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Joni Tsukuda
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| |
Collapse
|
30
|
Guo X, Wang C, Wang TY. Chromatin-modifying elements for recombinant protein production in mammalian cell systems. Crit Rev Biotechnol 2020; 40:1035-1043. [PMID: 32777953 DOI: 10.1080/07388551.2020.1805401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian cells are the preferred choice system for the production of complex molecules, such as recombinant therapeutic proteins. Although the technology for increasing the yield of proteins has improved rapidly, the process of selecting, identifying as well as maintaining high-yield cell clones is still troublesome, time-consuming and usually uncertain. Optimization of expression vectors is one of the most effective methods for enhancing protein expression levels. Several commonly used chromatin-modifying elements, including the matrix attachment region, ubiquitous chromatin opening elements, insulators, stabilizing anti-repressor elements can be used to increase the expression level and stability of recombinant proteins. In this review, these chromatin-modifying elements used for the expression vector optimization in mammalian cells are summarized, and future strategies for the utilization of expression cassettes are also discussed.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,Perildicals Publishing House, Xinxiang Medical University, Xinxiang, China
| | - Chong Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,Perildicals Publishing House, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
31
|
Feng L, Chen L, Yun J, Cao X. Expression of recombinant classical swine fever virus E2 glycoprotein by endogenous Txnip promoter in stable transgenic CHO cells. Eng Life Sci 2020; 20:320-330. [PMID: 32774204 PMCID: PMC7401223 DOI: 10.1002/elsc.201900147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/12/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022] Open
Abstract
As the main immunogen that could stimulate neutralized antibody in pigs, recombinant E2 protein of CSFV was expressed in CHO-dhfr-cells driven by endogenous Txnip promoter from Chinese hamster. Different fragments of Txnip promoter were amplified by PCR from isolated genomic DNA of CHO cells and cloned into different expression vectors. Compared with CMV promoter, CHO-pTxnip-4-rE2 (F12) cell clone with the highest yield of rE2 protein was established by random insertion of the expression cassette driven by 860 bp sequences of Txnip promoter. In combination with treatment of 800 nM MTX for copy amplification of inserted expression cassette, the dynamic expression profile of rE2 protein was observed. Then inducible expression strategy of balance between viable cell density and product yield was conducted by mixed addition of 0.1 mM NADH and 0.1 mM ATP in culture medium at day 3 of batch-wise culture. It could be concluded that Txnip promoter would be a promising alternative promoter for recombinant antigen protein expression in transgenic cells.
Collapse
Affiliation(s)
- Lei Feng
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
- School of pharmacyJiangsu UniversityZhenjiangP. R. China
| | - Li Chen
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| | - Junwen Yun
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| | - Xinglin Cao
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| |
Collapse
|
32
|
Lee Y, Kwak JM, Lee JS. Endogenous p21-Dependent Transgene Control for CHO Cell Engineering. ACS Synth Biol 2020; 9:1572-1580. [PMID: 32539343 DOI: 10.1021/acssynbio.9b00526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous engineering efforts have been made in Chinese hamster ovary (CHO) cells for high level production of therapeutic proteins. However, the dynamic regulation of transgene expression is limited in current systems. Here, we investigated the effective regulation of transgene expression in CHO cells via targeted integration-based endogenous gene tagging with engineering target genes. Targeted integration of EGFP-human Bcl-2 into the p21 locus effectively reduced the apoptosis, compared with random populations in which Bcl-2 expression was driven by cytomegalovirus (CMV) promoter. Endogenous p21 and EGFP-human Bcl-2 displayed similar expression dynamics in batch cultures, and the antiapoptotic effect altered the expression pattern of endogenous p21 showing the mutual influences between expression of p21 and Bcl-2. We further demonstrated the inducible transgene expression by adding low concentrations of hydroxyurea. The present engineering strategy will provide a valuable CHO cell engineering tool that can be used to control dynamic transgene expression in accordance with cellular states.
Collapse
Affiliation(s)
- Youngsik Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jin Myeong Kwak
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
33
|
Effects of viral promoters, the Woodchuck hepatitis post-transcriptional regulatory element, and weakened antibiotic resistance markers on transgene expression in Chinese hamster ovary cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Identifying metabolic features and engineering targets for productivity improvement in CHO cells by integrated transcriptomics and genome-scale metabolic model. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol 2020; 104:5673-5688. [PMID: 32372203 DOI: 10.1007/s00253-020-10640-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiao Guo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Perildicals Publishing House, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
36
|
Nguyen LN, Novak N, Baumann M, Koehn J, Borth N. Bioinformatic Identification of Chinese Hamster Ovary (CHO) Cold‐Shock Genes and Biological Evidence of their Cold‐Inducible Promoters. Biotechnol J 2019; 15:e1900359. [DOI: 10.1002/biot.201900359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/02/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Ly Ngoc Nguyen
- Austrian Centre of Industrial Biotechnology Muthgasse 11 1190 Vienna Austria
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 1190 Vienna Austria
| | - Neža Novak
- Austrian Centre of Industrial Biotechnology Muthgasse 11 1190 Vienna Austria
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 1190 Vienna Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology Muthgasse 11 1190 Vienna Austria
| | - Jadranka Koehn
- Rentschler Biopharma Erwin‐Rentschler‐Strasse 21 88471 Laupheim Germany
| | - Nicole Borth
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
37
|
Gupta K, Parasnis M, Jain R, Dandekar P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol Adv 2019; 37:107415. [DOI: 10.1016/j.biotechadv.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
|
38
|
Enabling HEK293 cells for antibiotic-free media bioprocessing through CRISPR/Cas9 gene editing. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Nguyen LN, Baumann M, Dhiman H, Marx N, Schmieder V, Hussein M, Eisenhut P, Hernandez I, Koehn J, Borth N. Novel Promoters Derived from Chinese Hamster Ovary Cells via In Silico and In Vitro Analysis. Biotechnol J 2019; 14:e1900125. [DOI: 10.1002/biot.201900125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ly N. Nguyen
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Martina Baumann
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Heena Dhiman
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Nicolas Marx
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Valerie Schmieder
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Mohamed Hussein
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | - Peter Eisenhut
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| | | | | | - Nicole Borth
- Department of BiotechnologyBOKU University of Natural Resources and Life SciencesMuthgasse 18 1190 Vienna Austria
- Austrian Center of Industrial Biotechnology GmbH1190 Vienna Austria
| |
Collapse
|
40
|
Recombinant hemagglutinin produced from Chinese Hamster Ovary (CHO) stable cell clones and a PELC/CpG combination adjuvant for H7N9 subunit vaccine development. Vaccine 2019; 37:6933-6941. [PMID: 31383491 PMCID: PMC7115541 DOI: 10.1016/j.vaccine.2019.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/11/2019] [Accepted: 02/15/2019] [Indexed: 01/17/2023]
Abstract
The novel H7N9 avian influenza A virus has caused human infections in China since 2013; some isolates from the fifth wave of infections have emerged as highly pathogenic avian influenza viruses. Recombinant hemagglutinin proteins of H7N9 viruses can be rapidly and efficiently produced with low-level biocontainment facilities. In this study, recombinant H7 antigen was obtained from engineered stable clones of Chinese Hamster Ovary (CHO) cells for subsequent large-scale production. The stable CHO cell clones were also adapted to grow in serum-free suspension cultures. To improve the immunogenicity of the recombinant H7 antigens, we evaluated the use of a novel combination adjuvant of PELC and CpG (PELC/CpG) to augment the anti-H7N9 immune responses in mice. We compared the effects with other adjuvants such as alum, AddaVax (MF59-like), and several Toll-like receptor ligands such as R848, CpG, and poly (I:C). With the PELC/CpG combination adjuvant, CHO cell-expressed rH7 antigens containing terminally sialylated complex type N-glycans were able to induce high titers of neutralizing antibodies in sera and conferred protection following live virus challenges. These data indicate that the CHO cell-expressed recombinant H7 antigens and a PELC/CpG combination adjuvant can be used for H7N9 subunit vaccine development.
Collapse
|
41
|
Jia YL, Guo X, Ni TJ, Lu JT, Wang XY, Wang TY. Novel short synthetic matrix attachment region for enhancing transgenic expression in recombinant Chinese hamster ovary cells. J Cell Biochem 2019; 120:18478-18486. [PMID: 31168866 DOI: 10.1002/jcb.29165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 01/17/2023]
Abstract
Matrix attachment regions (MARs) are DNA fragments with specific motifs that enhance transgenic expression; however, the characteristics and functions of these elements remain unclear. In this study, we designed and synthesized three short chimeric MARs, namely, SM4, SM5, and SM6, with different numbers and orders of motifs on the basis of the features and motifs of previously reported MARs, namely, SM1, SM2, and SM3, respectively. Expression vectors with six synthetic MARs flanking the down or upstream of the expression cassette for enhanced green fluorescence protein (EGFP) were constructed and introduced into Chinese hamster ovary (CHO) cells. Results indicated that the EGFP expression of the CHO cells with transfection bySM4, SM5, or SM6-containing vectors was higher than that of those containing SM1, SM2, or SM3 regardless of the MAR insertion position. The improving effect of SM5 was particularly pronounced. Transgenic expression was further enhanced with the increasing SM5 copy number. Bioinformatics analysis indicated that several arrangements of the DNA-binding motifs for CEBP, FAST, Hox, glutathione, and NMP4 may help increase transgenic expression levels and the average population of highly expressed cells. Our findings on novel synthetic MARs will help establish stable expression systems in mammalian cells.
Collapse
Affiliation(s)
- Yan-Long Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Jun Ni
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiang-Tao Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
42
|
Pristovšek N, Nallapareddy S, Grav LM, Hefzi H, Lewis NE, Rugbjerg P, Hansen HG, Lee GM, Andersen MR, Kildegaard HF. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synth Biol 2019; 8:758-774. [PMID: 30807689 DOI: 10.1021/acssynbio.8b00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components. Here we show in a systematic manner how multiple components contribute to final net expression of recombinant genes in a characterized integration site. We develop a CRISPR/Cas9-based toolbox for construction of mammalian cell lines with targeted integration of a landing pad, containing a recombinant gene under defined 5' proximal regulatory elements. Generated site-specific recombinant cell lines can be used in a streamlined recombinase-mediated cassette exchange for fast screening of different expression cassettes. Using the developed toolbox, we show that different 5' proximal regulatory elements generate distinct and robust recombinant gene expression patterns in defined integration sites of CHO cells with a wide range of transcriptional outputs. This approach facilitates the generation of user-defined and product-specific gene expression patterns for programmable mammalian cell engineering.
Collapse
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Saranya Nallapareddy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Hooman Hefzi
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Peter Rugbjerg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
43
|
Gao JH, Wang TY, Zhang MY, Shi F, Gu SZ. Identification of consensus sequence from matrix attachment regions and functional analysis of its activity in stably transfected Chinese hamster ovary cells. J Cell Biochem 2019; 120:13985-13993. [PMID: 30957285 DOI: 10.1002/jcb.28673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023]
Abstract
Matrix attachment regions (MARs) can enhance transgene expression levels and maintain stability. However, the consensus sequence from MARs and its functional analysis remains to be examined. Here, we assessed a possible consensus sequence from MARs and assessed its activity in stably transfected Chinese hamster ovary (CHO) cells. First, we analyzed the effects of 10 MARs on transfected CHO cells and then analyzed the consensus motifs from these MARs using a bioinformatics method. The consensus sequence was synthesized and cloned upstream or downstream of the eukaryotic vector. The constructs were transfected into CHO cells and the expression levels and stability of enhanced green fluorescent protein were detected by flow cytometry. The results indicated that eight of the ten MARs increased transgene expression in transfected CHO cells. Three consensus motifs were found after bioinformatics analyses. The consensus sequence tandemly enhanced transgene expression when it was inserted into the eukaryotic expression vector; the effect of the addition upstream was stronger than that downstream. Thus, we found a MAR consensus sequence that may regulate the MAR-mediated increase in transgene expression.
Collapse
Affiliation(s)
- Jian-Hui Gao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mao-Ying Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Fang Shi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shan-Zhi Gu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
44
|
Jia YL, Guo X, Wang XC, Wang TY. Human genome-derived TOP1 matrix attachment region enhances transgene expression in the transfected CHO cells. Biotechnol Lett 2019; 41:701-709. [DOI: 10.1007/s10529-019-02673-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/02/2019] [Indexed: 01/08/2023]
|
45
|
|
46
|
Li Q, Zhao CP, Lin Y, Song C, Wang F, Wang TY. Two human MARs effectively increase transgene expression in transfected CHO cells. J Cell Mol Med 2018; 23:1613-1616. [PMID: 30450759 PMCID: PMC6349195 DOI: 10.1111/jcmm.14018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Matrix attachment regions (MARs) can enhance the expression level of transgene in Chinese hamster ovaries (CHO) cell expression system. However, improvements in function and analyses of the mechanism remains unclear. In this study, we screened two new and more functional MAR elements from the human genome DNA. The human MAR-3 and MAR-7 element were cloned and inserted downstream of the polyA site in a eukaryotic vector. The constructs were transfected into CHO cells, and screened under G418 to produce the stably transfected cell pools. The expression levels and stability of enhanced green fluorescent protein (eGFP) were detected by flow cytometry. The transgene copy number and transgene expression at mRNA level were detected by quantitative real-time PCR. The results showed that the expression level of eGFP of cells transfected with MAR-containing vectors were all higher than those of the vectors without MARs under transient and stably transfection. The enhancing effect of MAR-7 was higher than that of MAR-3. Additionally, we found that MAR significantly increased eGFP copy numbers and eGFP gene mRNA expression level as compared with the vector without. In conclusion, MAR-3 and MAR-7 gene can promote the expression of transgene in transfected CHO cells, and its effect may be related to the increase of the number of copies.
Collapse
Affiliation(s)
- Qin Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Lin
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chao Song
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
47
|
Naderi F, Hashemi M, Bayat H, Mohammadian O, Pourmaleki E, Etemadzadeh MH, Rahimpour A. The Augmenting Effects of the tDNA Insulator on Stable Expression of Monoclonal Antibody in Chinese Hamster Ovary Cells. Monoclon Antib Immunodiagn Immunother 2018; 37:200-206. [DOI: 10.1089/mab.2018.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fatemeh Naderi
- Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Bayat
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Es'hagh Pourmaleki
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Affiliation(s)
- Nicole Borth
- Department of Biotechnology, Universität für Bodenkultur, Austria
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, USA
| |
Collapse
|